JP3890930B2 - Nitride semiconductor light emitting device - Google Patents

Nitride semiconductor light emitting device Download PDF

Info

Publication number
JP3890930B2
JP3890930B2 JP2001238146A JP2001238146A JP3890930B2 JP 3890930 B2 JP3890930 B2 JP 3890930B2 JP 2001238146 A JP2001238146 A JP 2001238146A JP 2001238146 A JP2001238146 A JP 2001238146A JP 3890930 B2 JP3890930 B2 JP 3890930B2
Authority
JP
Japan
Prior art keywords
layer
type
nitride semiconductor
light emitting
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001238146A
Other languages
Japanese (ja)
Other versions
JP2002134786A (en
Inventor
孝志 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2001238146A priority Critical patent/JP3890930B2/en
Publication of JP2002134786A publication Critical patent/JP2002134786A/en
Application granted granted Critical
Publication of JP3890930B2 publication Critical patent/JP3890930B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

【0001】
【産業上の利用分野】
本発明は発光ダイオード(LED)、レーザダイオード(LD)等に使用される窒化物半導体(InAlGa1−a−bN、0≦a、0≦b、a+b≦1)よりなる発光素子に係り、特にn型窒化物半導体層とp型窒化物半導体層との間に活性層を有するダブルへテロ構造の窒化物半導体発光素子に関する。
【0002】
【従来の技術】
紫外〜赤色に発光するLED、LD等の発光素子の材料として窒化物半導体(InAlGa1−a−bN、0≦a、0≦b、a+b≦1)が知られている。我々はこの半導体材料を用いて、1993年11月に光度1cdの青色LEDを発表し、1994年4月に光度2cdの青緑色LEDを発表し、1994年10月には光度2cdの青色LEDを発表した。これらのLEDは全て製品化されて、現在ディスプレイ、道路信号等の実用に供されている。
【0003】
図2に窒化物半導体よりなる従来の青色、青緑色LEDの発光チップの構造を示す。基本的には、基板21の上に、GaNよりなるバッファ層22、n型GaNよりなるn型コンタクト層23と、n型AlGaNよりなるn型クラッド層24と、n型InGaNよりなる活性層25と、p型AlGaNよりなるp型クラッド層26と、p型GaNよりなるp型コンタクト層27とが順に積層されたダブルへテロ構造を有している。活性層25のn型InGaNにはSi、Ge等のドナー不純物および/またはZn、Mg等のアクセプター不純物がドープされており、LED素子の発光波長は、その活性層のInGaNのIn組成比を変更するか、若しくは活性層にドープする不純物の種類を変更することで、紫外〜赤色まで変化させることが可能となっている。現在、活性層にドナー不純物とアクセプター不純物とが同時にドープされた発光波長510nm以下のLEDが実用化されている。
【0004】
【発明が解決しようとする課題】
従来の青色LEDは順方向電流(If)20mAで順方向電圧(Vf)が3.6V〜3.8V、発光出力は3mW近くあり、SiCよりなる青色LEDと比較して20倍以上の発光出力を有している。順方向電圧が低いのはp−n接合を形成しているためであり、発光出力が高いのはダブルへテロ構造を実現しているためである。このように、現在実用化されているLEDは非常に性能の高いものであるが、さらに高性能なLED、LDのような発光素子が求められている。例えばLEDのVfは前記のように3.6V〜3.8Vという低い値を達成しているが、LDのように電極幅や電極面積の小さい発光素子を実現するためには、さらにVfを低下させる必要がある。
【0005】
従って、本発明はこのような事情を鑑みて成されたものであり、その目的とするところは、ダブルへテロ構造の窒化物半導体よりなる発光素子の性能をさらに向上させることにあり、具体的には、発光素子のVfをさらに低下させることにより発光効率に優れた素子を提供することにある。
【0006】
【課題を解決するための手段】
本発明は、n型窒化物半導体層とp型窒化物半導体層の間に発光する活性層を有し、p型窒化物半導体層の表面に正電極が形成されてなるダブルへテロ構造の窒化物半導体発光素子において、前記活性層は、InGa1−x(0< X <1)よりなる井戸層のみの単一量子井戸構造、若しくはInGa1−x(0< X ≦1)よりなる井戸層とInGa1−YN(0≦Y<1、Y<X)よりなる障壁層との多重量子井戸構造のInを含む活性層であり、前記p型窒化物半導体層は、正電極と接する側から順に、アクセプター不純物濃度の高い第一のp型窒化物半導体層と、第一のp型窒化物半導体層よりもアクセプター不純物濃度の低い第二のp型窒化物半導体層と、GaN、AlGaN又はInAlGaNを組成に選択したp型クラッド層とを有し、前記第一のp型窒化物半導体層の膜厚が500Å以下であることを特徴とする。
【0007】
さらに前記発光素子において、第一のp型窒化物半導体の膜厚は0.1μm以下、さらに好ましくは500オングストローム以下、最も好ましくは200オングストローム以下に調整する。0.1μmよりも厚いと結晶自体に不純物による結晶欠陥が多くなり、逆にVfが高くなる傾向にある。
【0008】
【作用】
p層を高キャリア濃度のp型と低キャリア濃度のp型とする技術が特開平6−151964号、特開平6−151965号、特開平6−151966号等に記載されている。これらの公報に開示される発光素子はGaNのホモ接合により発光する。このためp−n接合界面を基準として、この接合界面より遠ざかる方向にn型GaN層を低キャリア濃度のn型と高キャリア濃度のn+型とし、p型GaNを低キャリア濃度のp型と、高キャリア濃度のp+型としている。そしてこれら二段のキャリア濃度よりなるn層とp層とを組み合わせることにより、発光素子の長寿命と発光輝度の向上を図っている。
【0009】
一方、本発明の発光素子が前記公報と異なるところは、ダブルへテロ構造の発光素子のp型層をアクセプター不純物濃度の低い第二のp型層と、アクセプター不純物濃度の高い第一のp型層とにしている点である。ダブルへテロ構造の発光素子はホモ接合の発光素子に比較して10倍以上発光出力が高い。従って、前記公報のようにp型層をp+型とp型との組み合わせにしても、出力の増加はほとんどない。むしろ本発明では発光出力よりも、ダブルへテロ構造のVfを低下させ、発光効率を改善している点が従来の技術と異なる。また、アクセプター不純物に関して、一般にキャリア濃度はアクセプター不純物の濃度とおおよそ比例しているが、窒化物半導体の場合、半導体層にアクセプター不純物をドープした後、400℃以上でアニーリングを行うことにより完全なp型として作用する。このためホールキャリア濃度はアニーリング状態、アニール温度等により変動することが多く、素子構造とした時の正確なキャリア濃度を測定することは困難であるので、本発明ではアクセプター不純物濃度で発光素子を特徴づけている。
【0010】
次に、本発明の発光素子は従来のようにp−n接合界面を基準としているのではなく、正電極の接触面を基準とし、この正電極と接する面を高不純物濃度の第一のp型層として、その第一のp型層に接して低不純物濃度の第二のp型層としている点で異なる。正電極に接する層を基準としてp層を構成することにより、Vfを低下させることができる。
【0011】
さらに前記公報に開示される発光素子と、本発明の発光素子とが最も異なる点はp+層の膜厚である。つまり、前記公報では高キャリア濃度のp+型の半導体層の膜厚が0.2μm以上なければ発光素子の発光出力が低下するが、本発明の発光素子では高不純物濃度の第一のp型層の膜厚を0.2μm以上にすると、Vfが高くなる。これは不純物ドープによる結晶性の悪化によるものである。逆に本発明の発光素子では高不純物濃度の第一のp型層の膜厚は0.1μm以下であることが好ましい。0.1μm以下とすることにより、効果的に発光素子のVfを低下させることが可能である。
【0012】
【実施例】
[実施例1]
以下、図面を元に本発明の発光素子を詳説する。図1は本発明の一実施例の発光素子の構造を示す模式断面図である。この発光素子は基板1の上にバッファ層2、n型コンタクト層3、n型クラッド層4、活性層5、p型クラッド層6、アクセプター不純物濃度の低い第二のp型コンタクト層72、アクセプター不純物濃度が高い第一のp型コンタクト層71を順に積層した構造を示している。さらに第一のp型コンタクト層71には正電極9が形成され、n型コンタクト層3には負電極8が形成されている。
【0013】
基板1にはサファイア(A面、C面、R面を含む)の他、SiC(6H、4Hを含む)、ZnO、Si、GaAsのような窒化物半導体と格子不整合の基板、またNGO(ネオジウムガリウム酸化物)のような酸化物単結晶よりなる窒化物半導体と格子定数の近い基板等を使用することができる。
【0014】
バッファ層2はGaN、AlN、GaAlN等を例えば50オングストローム〜0.1μmの膜厚で成長させることが好ましく、例えばMOVPE法によると400℃〜600℃の低温で成長させることにより形成できる。バッファ層2は基板1と窒化物半導体との格子不整合を緩和するために設けられるが、SiC、ZnOのような窒化物半導体と格子定数が近い基板、窒化物半導体と格子整合した基板を使用する際にはバッファ層が形成されないこともある。
【0015】
n型コンタクト層3は負電極8を形成する層であり、GaN、AlGaN、InAlGaN等を例えば1μm〜10μmの膜厚で成長させることが好ましく、その中でもGaNを選択することにより負電極の材料と好ましいオーミック接触を得ることができる。負電極8の材料としては例えばTiとAl、TiとAu等を好ましく用いることができる。
【0016】
n型クラッド層4はGaN、AlGaN、InAlGaN等を例えば500オングストローム〜0.5μmの膜厚で成長させることが好ましく、その中でもGaN、AlGaNを選択することにより結晶性の良い層が得られる。また、n型クラッド層4、n型コンタクト層3のいずれかを省略することも可能である。どちらかを省略すると、残った層がn型クラッド層およびn型コンタクト層として作用する。
【0017】
活性層5はクラッド層よりもバンドギャップエネルギーが小さいInGaN、InAlGaN、AlGaN等の窒化物半導体であれば良く、特に所望のバンドギャップによってインジウムの組成比を適宜変更したInGaNにすることが好ましい。また活性層5を例えばInGaN/GaN、InGaN/InGaN(組成が異なる)等の組み合わせで、それぞれの薄膜を積層した多重量子井戸構造としてもよい。単一量子井戸構造、多重量子井戸構造いずれの活性層においても、活性層はn型、p型いずれでもよいが、特にノンドープ(無添加)とすることにより半値幅の狭いバンド間発光、励起子発光、あるいは量子井戸準位発光が得られ、LED素子、LD素子を実現する上で特に好ましい。活性層を単一量子井戸(SQW:single quantum well)構造若しくは多重量子井戸(MQW:multi quantum well)構造とすると非常に出力の高い発光素子が得られる。SQW、MQWとはノンドープのInGaNによる量子準位間の発光が得られる活性層の構造を指し、例えばSQWでは活性層を単一組成のInGa1−XN(0≦X<1)で構成した層であり、InGa1−XNの膜厚を100オングストローム以下、さらに好ましくは70オングストローム以下とすることにより量子準位間の強い発光が得られる。またMQWは組成比の異なるInGa1−XN(この場合X=0、X=1を含む)の薄膜を複数積層した多層膜とする。このように活性層をSQW、MQWとすることにより量子準位間発光で、約365nm〜660nmまでの発光が得られる。量子構造の井戸層の厚さとしては、前記のように70オングストローム以下が好ましい。多重量子井戸構造では井戸層はInGa1−XNで構成し、障壁層は同じくInGa1−YN(Y<X、この場合Y=0を含む)で構成することが望ましい。特に好ましくは井戸層と障壁層をInGaNで形成すると同一温度で成長できるので結晶性のよい活性層が得られる。障壁層の膜厚は150オングストローム以下、さらに好ましくは120オングストローム以下にすると高出力な発光素子が得られる。また、活性層5にドナー不純物および/またはアクセプター不純物をドープしてもよい。不純物をドープした活性層の結晶性がノンドープと同じであれば、ドナー不純物をドープするとノンドープのものに比べてバンド間発光強度をさらに強くすることができる。アクセプター不純物をドープするとバンド間発光のピーク波長よりも約0.5eV低エネルギー側にピーク波長を持っていくことができるが、半値幅は広くなる。アクセプター不純物とドナー不純物を同時にドープすると、アクセプター不純物のみドープした活性層の発光強度をさらに大きくすることができる。特にアクセプター不純物をドープした活性層を実現する場合、活性層の導電型はSi等のドナー不純物を同時にドープしてn型とすることが好ましい。活性層5は例えば数オングストローム〜0.5μmの膜厚で成長させることができる。但し、活性層を単一量子井戸構造若しくは多重量子井戸構造として、活性層を構成する窒化物半導体層の膜厚を薄くするときはn型クラッド層4と活性層5との間にInを含むn型の窒化物半導体よりなる第二のn型クラッド層40を形成することが望ましい。
【0018】
p型クラッド層6はGaN、AlGaN、InAlGaN等を例えば500オングストローム〜0.5μmの膜厚で成長させることが好ましく、その中でもGaN、AlGaNを選択することにより結晶性の良い層が得られる。なおこのp型クラッド層6を省略することも可能である。
【0019】
次に、本発明の特徴であるコンタクト層71、72について述べる。このコンタクト層71、72は正電極9を形成して、正電極9と好ましいオーミック接触を得る層であり完全なオーミックに近ければ近いほど、発光素子のVfを低下させることができる。そのため、このコンタクト層は、正電極9に接する層をアクセプター不純物濃度が高い第一の窒化物半導体層である第一のp型コンタクト層71と、その第一のp型コンタクト層よりもアクセプター不純物濃度が低い第二の窒化物半導体である第二のp型コンタクト層72とで構成されている。
【0020】
第一のp型コンタクト層71、および第二のp型コンタクト層72は同一組成の窒化物半導体で形成することが望ましく、例えばGaN、AlGaN、InAlGaN等を成長させることができる。その中でもGaNを選択することにより正電極9の材料と好ましいオーミック接触を得ることができる。
【0021】
高濃度の第一のp型コンタクト層71のアクセプター不純物濃度は1×1017〜5×1021/cmに調整することが望ましい。1×1017/cmよりも低いと、電極とオーミック接触を得ることが難しく、5×1021/cmよりも高いと不純物により窒化物半導体の結晶性が悪くなり、Vfが高くなる傾向にある。
【0022】
一方、低濃度の第二のp型コンタクト層72のアクセプター不純物濃度は2×1015〜5×1020/cmの範囲に調整することが望ましい。2×1015/cmよりも低いと、p型としての抵抗が高くなるのでVfが高くなる傾向にある。5×1020/cmよりも高いと高濃度の第一のp型コンタクト層71とのバランスが取りにくく、Vfの向上があまり望めなくなる傾向にある。
【0023】
コンタクト層71、72のホールキャリア濃度は前にも述べたように、窒化物半導体にドープするアクセプター不純物の濃度を変化させるか、あるいはアクセプター不純物をドープしたコンタクト層71、72を、400℃以上でアニーリングすることにより調整できるが、正確な値を測定することは困難である。おおよその値としては、前記アクセプター不純物濃度で400℃以上のアニールを行うことにより、例えばホールキャリア濃度およそ1×1016〜5×1019/cmの第一のp型コンタクト層71が得られ、同じくホールキャリア濃度およそ1×1015〜1×1019/cmの第二のp型コンタクト層72が得られる。
【0024】
第一のp型コンタクト層71と好ましいオーミックが得られる正電極9の材料としてはNiおよびAuを含む金属を用いることができる。NiおよびAuを含む正電極は特にp型GaNと好ましいオーミックを得ることができる。
【0025】
本発明の発光素子は例えばMOVPE(有機金属気相成長法)、MBE(分子線気相成長法)、HDVPE(ハイドライド気相成長法)等の気相成長法を用いて、基板上にInAlGa1−a−bN(0≦a、0≦b、a+b≦1)をn型、p型等の導電型で積層することによって得られる。n型の窒化物半導体はノンドープの状態でも得られるが、Si、Ge、S等のドナー不純物を結晶成長中に半導体層中に導入することによって得られる。
【0026】
一方、p型の窒化物半導体層はMg、Zn、Cd、Ca、Be、C等のアクセプター不純物を同じく結晶成長中に半導体層中に導入することにより得られるが、前にも述べたように、アクセプター不純物導入後400℃以上でアニーリングを行うことにより、さらに好ましいp型が得られる。
【0027】
次に図1の発光素子を具体的に述べる。以下の実施例はMOVPE法による成長方法を示している。
【0028】
まず、TMG(トリメチルガリウム)とNHとを用い、反応容器にセットしたサファイア基板1のC面に500℃でGaNよりなるバッファ層2を500オングストロームの膜厚で成長させる。
【0029】
次に温度を1050℃まで上げ、TMG、NHに加えシランガスを用い、Siドープn型GaNよりなるn型コンタクト層23を4μmの膜厚で成長させる。
【0030】
続いて原料ガスにTMA(トリメチルアルミニウム)を加え、同じく1050℃でSiドープn型Al0.3Ga0.7n相よりなるn型クラッド層4を0.1μmの膜厚で成長させる。
【0031】
次に温度を800℃に下げ、TMG、TMI(トリメチルインジウム)、NH3、シランガス、DEZ(ジエチルジンク)を用い、Si+Znドープn型In0.05Ga0.95Nよりなる活性層5を0.1μmの膜厚で成長させる。
【0032】
次に温度を1050℃に上げ、TMG、TMA、NH、CpMg(シクロペンタジエニルマグネシウム)を用い、Mgドープp型Al0.3Ga0.7Nよりなるp型クラッド層6を0.1μmの膜厚で成長させる。
【0033】
次に1050℃でTMG、NH、CpMgを用い、Mgドープp型GaNよりなる第二のp型コンタクト層72を0.5μmの膜厚で成長させる。なおこの第二のp型コンタクト層のMg濃度は1×1018/cmであった。
【0034】
続いて1050℃でCpMgの流量を多くして、Mgドープp型GaNよりなる第一のp型コンタクト層71を200オングストロームの膜厚で成長させる。なおこの第一のp型コンタクト層71のMg濃度は2×1019/cmであった。
【0035】
反応終了後、温度を室温まで下げてウェーハを反応容器から取り出し、700℃でウェーハのアニーリングを行い、p型層をさらに低抵抗化する。次に最上層のp型コンタクト層7の表面に所定の形状のマスクを形成し、n型コンタクト層3の表面が露出するまでエッチングする。エッチング後、n型コンタクト層3の表面にTiとAlよりなる負電極8、第一のp型コンタクト層71の表面にNiとAuよりなる正電極9を形成する。電極形成後、ウェーハを350μm角のチップに分離した後、LED素子とした。このLED素子はIf20mAで、Vf3.1V、発光ピーク波長450nm、半値幅70nmの青色発光を示し、発光出力は3mWであった。
【0036】
[実施例2]
実施例1において第一のp型コンタクト層71の膜厚を500オングストロームとする他は同様にして発光素子を得たところ、If20mAにおいて、Vf3.2V、発光出力はほぼ同一であった。
【0037】
[実施例3]
実施例1において第一のp型コンタクト層71の膜厚を0.1μmとする他は同様にして発光素子を得たところ、If20mAにおいて、Vfが3.3V、発光出力2.9mWであった。
【0038】
[実施例4]
実施例1において第一のp型コンタクト層71の膜厚を0.3μmとする他は同様にして発光素子を得たところ、If20mAにおいてVfは3.7Vとなり、発光出力は2.8mWであった。
【0039】
[実施例5]
実施例1において、第二のp型コンタクト層72のMg濃度を5×1017/cmとし、第一のp型コンタクト層71のMg濃度を1×1019/cmとする他は、同様にしてLED素子を得たところ、実施例1とほぼ同一の特性を示した。
【0040】
[実施例6]
図3は実施例5に係る発光素子の構造を示す模式的な断面図である。この発光素子が図1の発光素子と異なるところは、n型クラッド層4と活性層5との間に新たなバッファ層としてInを含むn型の窒化物半導体よりなる第二のn型クラッド層40を形成しているところである。この第二のクラッド層40は10オングストローム以上、0.1μm以下の膜厚で形成することが望ましく、さらに第二のn型クラッド層40と活性層5の膜厚を300オングストローム以上にすると、Inを含む第一のn型クラッド層40とInを含む活性層5とがバッファ層として作用し、n型クラッド層4、p型クラッド層6にクラックが入らず結晶性良く成長できる。さらに、この第二のn型クラッド層40を成長させることにより、不純物をドープしない量子構造の活性層が実現でき、半値幅が狭く、出力の高い発光を得ることができる。なおこの第二のn型クラッド層40はGaNでもよい。
【0041】
この第二のn型クラッド層40は、活性層5とAlとGaとを含むn型クラッド層4との間のバッファ層として作用する。つまりInとGaとを含む第二のn型クラッド層40が結晶の性質として柔らかい性質を有しているので、AlとGaとを含むn型クラッド層4と活性層5との格子定数不整と熱膨張係数差によって生じる歪を吸収する働きがある。従って活性層を単一量子井戸構造、若しくは多重量子井戸構造として、活性層を構成する窒化物半導体層の膜厚を薄くしても、活性層5、n型クラッド層4にクラックが入らないので、活性層が弾性的に変形し、活性層の結晶欠陥が少なくなる。つまり活性層を量子井戸構造としたことにより、活性層の結晶性が良くなるので発光出力が増大する。さらに、活性層を量子井戸構造とすると、量子効果および励起子効果により発光出力が増大する。言い換えると、従来の発光素子では活性層の膜厚を例えば1000オングストローム以上と厚くすることにより、クラッド層、活性層にクラックが入るのを防止していた。しかしながら活性層には常に熱膨張係数差、格子不整による歪が係っており、従来の発光素子では活性層の厚さが弾性的に変形可能な臨界膜厚を超えているので、弾性的に変形することができず、活性層中に多数の結晶欠陥を生じ、バンド間発光ではあまり光らない。この第二のn型クラッド層40を形成することにより、活性層が量子構造の状態において、発光素子の発光出力を飛躍的に向上させることが可能である。
【0042】
具体的には、実施例1においてn型クラッド層4を成長させた後、温度を800℃に下げ、TMG、TMI(トリメチルインジウム)、NH、シランガスを用い、Siドープn型In0.01Ga0.99Nよりなる第二のn型クラッド層40を500オングストロームの膜厚で成長させる。
【0043】
続いてTMG、TMI、NHを用い800℃でノンドープn型In0.05Ga0.95Nよりなる活性層5を80オングストロームの膜厚で成長させる。後は実施例1と同様にして、p型クラッド層6、第二のp型コンタクト層72、第一のp型コンタクト層71を成長させてLED素子としたところ、このLED素子は、If20mAでVf3.1V、発光ピーク波長400nmの青色発光を示し、発光出力は12mWであった。さらに、発光スペクトルの半値幅は20nmであり、非常に色純度の良い発光を示した。
【0044】
[実施例7]
実施例6において、活性層5の組成をノンドープIn0.05Ga0.95Nよりなる井戸層を25オングストロームと、ノンドープIn0.01Ga0.99Nよりなる障壁層を50オングストロームの膜厚で成長させる。この操作を26回繰り返し、最後に井戸層を積層して総厚約2000オングストロームの活性層6を成長させた。後は実施例6と同様にして、LED素子としたところ、このLED素子も、If20mAでVf3.1V、発光ピーク波長400nmの青色発光を示し、発光出力は12mWであった。さらに、発光スペクトルの半値幅は20nmであり、非常に色純度の良い発光を示した。
【0045】
【発明の効果】
以上説明したように、本発明の発光素子はダブルへテロ構造の発光素子において、正電極を形成するp型層を高アクセプター不純物濃度の第一のp型層と、低不純物濃度の第二のp型層とすることにより、Vfを低下させることができるので発光効率が向上する。従ってLEDを大量に用いた大型ディスプレイ、屋外広告板等を実現した際には消費電力の少ないデバイスを実現でき、その産業上の利用価値は大きい。
【図面の簡単な説明】
【図1】 本発明の一実施例に係る発光素子の構造を示す模式断面図。
【図2】 従来の発光素子の構造を示す模式断面図。
【図3】 本発明の他の実施例に係る発光素子の構造を示す模式断面図。
【符号の説明】
1・・・・基板
2・・・・バッファ層
3・・・・n型コンタクト層
4・・・・n型クラッド層
5・・・・活性層
6・・・・p型クラッド層
72・・・・第二のp型コンタクト層
71・・・・第一のp型コンタクト層
8・・・・負電極
9・・・・正電極
[0001]
[Industrial application fields]
The present invention consists of a light emitting diode (LED), a nitride semiconductor used in the laser diode (LD), etc. (In a Al b Ga 1- a-b N, 0 ≦ a, 0 ≦ b, a + b ≦ 1) light emitting In particular, the present invention relates to a double heterostructure nitride semiconductor light emitting device having an active layer between an n-type nitride semiconductor layer and a p-type nitride semiconductor layer.
[0002]
[Prior art]
Nitride semiconductors (In a Al b Ga 1-ab N, 0 ≦ a, 0 ≦ b, a + b ≦ 1) are known as materials for light-emitting elements such as LEDs and LDs that emit ultraviolet to red light. Using this semiconductor material, we announced a blue LED with a luminous intensity of 1 cd in November 1993, a blue-green LED with a luminous intensity of 2 cd in April 1994, and a blue LED with a luminous intensity of 2 cd in October 1994. Announced. All of these LEDs have been commercialized and are now in practical use such as displays and road signals.
[0003]
FIG. 2 shows the structure of a conventional blue and blue-green LED light-emitting chip made of a nitride semiconductor. Basically, on the substrate 21, a buffer layer 22 made of GaN, an n-type contact layer 23 made of n-type GaN, an n-type cladding layer 24 made of n-type AlGaN, and an active layer 25 made of n-type InGaN. And a p-type cladding layer 26 made of p-type AlGaN and a p-type contact layer 27 made of p-type GaN in this order. The n-type InGaN of the active layer 25 is doped with donor impurities such as Si and Ge and / or acceptor impurities such as Zn and Mg, and the emission wavelength of the LED element changes the In composition ratio of InGaN of the active layer By changing the kind of impurities doped in the active layer, it is possible to change from ultraviolet to red. Currently, LEDs having an emission wavelength of 510 nm or less in which an active layer is doped with a donor impurity and an acceptor impurity at the same time have been put into practical use.
[0004]
[Problems to be solved by the invention]
A conventional blue LED has a forward current (If) of 20 mA, a forward voltage (Vf) of 3.6 V to 3.8 V, a light emission output of nearly 3 mW, and a light emission output more than 20 times that of a blue LED made of SiC. have. The forward voltage is low because a pn junction is formed, and the light emission output is high because a double hetero structure is realized. Thus, although LEDs currently in practical use have very high performance, light emitting elements such as LEDs and LDs with higher performance are demanded. For example, the Vf of the LED achieves a low value of 3.6 V to 3.8 V as described above. However, in order to realize a light emitting element with a small electrode width and electrode area like the LD, the Vf is further reduced. It is necessary to let
[0005]
Accordingly, the present invention has been made in view of such circumstances, and an object of the present invention is to further improve the performance of a light-emitting element made of a nitride semiconductor having a double hetero structure. The object of the present invention is to provide an element having excellent luminous efficiency by further reducing the Vf of the light emitting element.
[0006]
[Means for Solving the Problems]
The present invention provides a double heterostructure nitridation having an active layer that emits light between an n-type nitride semiconductor layer and a p-type nitride semiconductor layer, and a positive electrode formed on the surface of the p-type nitride semiconductor layer. In the semiconductor light emitting device, the active layer may be a single quantum well structure having only a well layer made of In x Ga 1-x N (0 < X <1) , or In x Ga 1-x N (0 < X ≦ 1) an active layer containing In having a multiple quantum well structure including a well layer made of 1) and a barrier layer made of In Y Ga 1-Y N (0 ≦ Y <1, Y <X), and the p-type nitride semiconductor The layers are, in order from the side in contact with the positive electrode, a first p-type nitride semiconductor layer having a higher acceptor impurity concentration and a second p-type nitride having a lower acceptor impurity concentration than the first p-type nitride semiconductor layer. Semiconductor layer and p selected for composition of GaN, AlGaN or InAlGaN And a cladding layer, wherein the thickness of the first p-type nitride semiconductor layer is 500Å or less.
[0007]
Further, in the light emitting element, the thickness of the first p-type nitride semiconductor is adjusted to 0.1 μm or less, more preferably 500 angstroms or less, and most preferably 200 angstroms or less. If it is thicker than 0.1 μm, crystal defects due to impurities increase in the crystal itself, and Vf tends to increase.
[0008]
[Action]
p layer of high carrier concentration of p + -type and p-type and technology of low carrier concentration JP 6-151964, JP-A-6-151965, disclosed in JP-A 6-151966 Patent like. The light emitting devices disclosed in these publications emit light by homojunction of GaN. Therefore, with reference to the pn junction interface, the n-type GaN layer is made n-type with a low carrier concentration and n + -type with a high carrier concentration in a direction away from the junction interface, and p-type GaN is made p-type with a low carrier concentration. P + type with high carrier concentration. By combining the n layer and the p layer having these two-stage carrier concentrations, the long life of the light emitting element and the light emission luminance are improved.
[0009]
On the other hand, the light-emitting element of the present invention differs from the above publication in that the p-type layer of the light-emitting element having a double hetero structure is composed of a second p-type layer having a low acceptor impurity concentration and a first p-type having a high acceptor impurity concentration. It is the point which is made into a layer. A light emitting element having a double hetero structure has a light emission output that is 10 times higher than that of a homojunction light emitting element. Therefore, even if the p-type layer is a combination of the p + type and the p type as in the above publication, there is almost no increase in output. Rather, the present invention is different from the conventional technique in that the Vf of the double hetero structure is lowered and the luminous efficiency is improved rather than the luminous output. Regarding the acceptor impurity, the carrier concentration is generally proportional to the acceptor impurity concentration. However, in the case of a nitride semiconductor, the semiconductor layer is doped with the acceptor impurity and then annealed at 400 ° C. or higher to complete p Acts as a mold. For this reason, the hole carrier concentration often varies depending on the annealing state, annealing temperature, etc., and it is difficult to measure the exact carrier concentration when the device structure is used. Therefore, in the present invention, the light emitting device is characterized by the acceptor impurity concentration. It is attached.
[0010]
Next, the light emitting device of the present invention is not based on the pn junction interface as in the prior art, but the contact surface of the positive electrode is used as a reference, and the surface in contact with the positive electrode is the first p having a high impurity concentration. The difference is that the second p-type layer has a low impurity concentration in contact with the first p-type layer. By configuring the p layer with reference to the layer in contact with the positive electrode, Vf can be lowered.
[0011]
Furthermore, the most different point between the light emitting element disclosed in the publication and the light emitting element of the present invention is the thickness of the p + layer. That is, in the above publication, the light emission output of the light emitting element is lowered unless the film thickness of the p + type semiconductor layer having a high carrier concentration is 0.2 μm or more. However, in the light emitting element of the present invention, the first p type having a high impurity concentration is reduced. When the film thickness of the layer is 0.2 μm or more, Vf increases. This is due to deterioration of crystallinity due to impurity doping. Conversely, in the light emitting device of the present invention, the thickness of the first p-type layer having a high impurity concentration is preferably 0.1 μm or less. By setting the thickness to 0.1 μm or less, Vf of the light emitting element can be effectively reduced.
[0012]
【Example】
[Example 1]
Hereinafter, the light emitting device of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic cross-sectional view showing the structure of a light emitting device according to an embodiment of the present invention. The light emitting device includes a buffer layer 2, an n-type contact layer 3, an n-type cladding layer 4, an active layer 5, a p-type cladding layer 6, a second p-type contact layer 72 having a low acceptor impurity concentration, and an acceptor. A structure in which first p-type contact layers 71 having a high impurity concentration are sequentially stacked is shown. Further, a positive electrode 9 is formed on the first p-type contact layer 71, and a negative electrode 8 is formed on the n-type contact layer 3.
[0013]
In addition to sapphire (including A-plane, C-plane, and R-plane), the substrate 1 includes a substrate that is lattice-mismatched with a nitride semiconductor such as SiC (including 6H and 4H), ZnO, Si, and GaAs, and NGO ( A substrate having a lattice constant close to that of a nitride semiconductor made of an oxide single crystal such as (neodymium gallium oxide) can be used.
[0014]
The buffer layer 2 is preferably grown by growing GaN, AlN, GaAlN or the like at a film thickness of, for example, 50 Å to 0.1 μm. For example, the buffer layer 2 can be formed by growing at a low temperature of 400 ° C. to 600 ° C. according to the MOVPE method. The buffer layer 2 is provided to alleviate the lattice mismatch between the substrate 1 and the nitride semiconductor, but a substrate having a lattice constant close to that of a nitride semiconductor such as SiC or ZnO, or a substrate lattice-matched to the nitride semiconductor is used. In doing so, the buffer layer may not be formed.
[0015]
The n-type contact layer 3 is a layer for forming the negative electrode 8, and it is preferable to grow GaN, AlGaN, InAlGaN or the like with a film thickness of, for example, 1 μm to 10 μm. Among them, the material of the negative electrode can be selected by selecting GaN. A preferred ohmic contact can be obtained. As the material of the negative electrode 8, for example, Ti and Al, Ti and Au, or the like can be preferably used.
[0016]
The n-type cladding layer 4 is preferably grown from GaN, AlGaN, InAlGaN or the like with a film thickness of, for example, 500 angstroms to 0.5 μm. Among them, a layer with good crystallinity can be obtained by selecting GaN or AlGaN. Further, either the n-type cladding layer 4 or the n-type contact layer 3 can be omitted. If either one is omitted, the remaining layers act as an n-type cladding layer and an n-type contact layer.
[0017]
The active layer 5 may be a nitride semiconductor such as InGaN, InAlGaN, or AlGaN having a band gap energy smaller than that of the cladding layer, and is preferably InGaN in which the composition ratio of indium is appropriately changed depending on the desired band gap. The active layer 5 may have a multiple quantum well structure in which, for example, a combination of InGaN / GaN, InGaN / InGaN (having different compositions), and the like, and respective thin films are stacked. In any active layer of single quantum well structure or multiple quantum well structure, the active layer may be either n-type or p-type. In particular, non-doped (non-added) narrow band-to-band emission and excitons. Light emission or quantum well level light emission is obtained, which is particularly preferable for realizing an LED element or an LD element. When the active layer has a single quantum well (SQW) structure or a multi quantum well (MQW) structure, a light-emitting element having a very high output can be obtained. SQW and MQW indicate the structure of an active layer that can emit light between quantum levels of non-doped InGaN. For example, in SQW, the active layer is made of In X Ga 1-X N (0 ≦ X <1) having a single composition. When the film thickness of the In X Ga 1-X N is 100 angstroms or less, more preferably 70 angstroms or less, strong light emission between quantum levels can be obtained. MQW is a multilayer film in which a plurality of thin films of In X Ga 1-X N (including X = 0 and X = 1 in this case) having different composition ratios are stacked. In this way, by setting the active layer to SQW and MQW, light emission of about 365 nm to 660 nm can be obtained by light emission between quantum levels. As described above, the thickness of the quantum well layer is preferably 70 angstroms or less. In the multiple quantum well structure, it is desirable that the well layer is composed of In X Ga 1-X N, and the barrier layer is also composed of In Y Ga 1-Y N (Y <X, including Y = 0 in this case). Particularly preferably, when the well layer and the barrier layer are formed of InGaN, the active layer having good crystallinity can be obtained because it can be grown at the same temperature. When the thickness of the barrier layer is 150 angstroms or less, more preferably 120 angstroms or less, a light-emitting element with high output can be obtained. Further, the active layer 5 may be doped with donor impurities and / or acceptor impurities. If the crystallinity of the active layer doped with impurities is the same as that of non-doped, doping with donor impurities can further increase the emission intensity between bands as compared with non-doped ones. When the acceptor impurity is doped, the peak wavelength can be brought to the lower energy side by about 0.5 eV than the peak wavelength of the interband light emission, but the half width is widened. When the acceptor impurity and the donor impurity are doped at the same time, the emission intensity of the active layer doped with only the acceptor impurity can be further increased. In particular, when realizing an active layer doped with an acceptor impurity, the conductivity type of the active layer is preferably n-type by simultaneously doping a donor impurity such as Si. The active layer 5 can be grown with a film thickness of, for example, several angstroms to 0.5 μm. However, when the active layer has a single quantum well structure or a multiple quantum well structure and the thickness of the nitride semiconductor layer constituting the active layer is reduced, In is included between the n-type cladding layer 4 and the active layer 5. It is desirable to form the second n-type cladding layer 40 made of an n-type nitride semiconductor.
[0018]
The p-type cladding layer 6 is preferably grown from GaN, AlGaN, InAlGaN or the like with a film thickness of, for example, 500 Å to 0.5 μm. Among them, a layer with good crystallinity can be obtained by selecting GaN or AlGaN. The p-type cladding layer 6 can be omitted.
[0019]
Next, the contact layers 71 and 72 that characterize the present invention will be described. The contact layers 71 and 72 form the positive electrode 9 and obtain a preferable ohmic contact with the positive electrode 9. The closer to the complete ohmic, the lower the Vf of the light emitting element. Therefore, this contact layer is composed of a first p-type contact layer 71 which is a first nitride semiconductor layer having a high acceptor impurity concentration in the layer in contact with the positive electrode 9, and acceptor impurities than the first p-type contact layer. The second p-type contact layer 72 is a second nitride semiconductor having a low concentration.
[0020]
The first p-type contact layer 71 and the second p-type contact layer 72 are preferably formed of a nitride semiconductor having the same composition, and for example, GaN, AlGaN, InAlGaN or the like can be grown. Among them, by selecting GaN, preferable ohmic contact with the material of the positive electrode 9 can be obtained.
[0021]
The acceptor impurity concentration of the high concentration first p-type contact layer 71 is desirably adjusted to 1 × 10 17 to 5 × 10 21 / cm 3 . If it is lower than 1 × 10 17 / cm 3 , it is difficult to obtain ohmic contact with the electrode, and if it is higher than 5 × 10 21 / cm 3 , the crystallinity of the nitride semiconductor tends to deteriorate due to impurities, and Vf tends to increase. It is in.
[0022]
On the other hand, the acceptor impurity concentration of the low-concentration second p-type contact layer 72 is desirably adjusted to a range of 2 × 10 15 to 5 × 10 20 / cm 3 . When it is lower than 2 × 10 15 / cm 3 , the resistance as a p-type is increased, so that Vf tends to increase. If it is higher than 5 × 10 20 / cm 3, it is difficult to achieve a balance with the high-concentration first p-type contact layer 71, and Vf tends to be hardly improved.
[0023]
As described above, the hole carrier concentration of the contact layers 71 and 72 is changed by changing the concentration of the acceptor impurity doped in the nitride semiconductor, or the contact layers 71 and 72 doped with the acceptor impurity at 400 ° C. or higher. Although it can be adjusted by annealing, it is difficult to measure an accurate value. As an approximate value, the first p-type contact layer 71 having, for example, a hole carrier concentration of about 1 × 10 16 to 5 × 10 19 / cm 3 is obtained by annealing at 400 ° C. or more with the acceptor impurity concentration. Similarly, the second p-type contact layer 72 having a hole carrier concentration of about 1 × 10 15 to 1 × 10 19 / cm 3 is obtained.
[0024]
As a material of the positive electrode 9 from which the first p-type contact layer 71 and a preferable ohmic can be obtained, a metal containing Ni and Au can be used. A positive electrode containing Ni and Au can obtain a preferable ohmic particularly with p-type GaN.
[0025]
Light-emitting element of the present invention are, for example MOVPE (metal organic vapor phase epitaxy), MBE (molecular beam vapor deposition), HDVPE by a vapor deposition method (hydride vapor phase epitaxy) or the like, an In a on a substrate It is obtained by stacking Al b Ga 1-ab N (0 ≦ a, 0 ≦ b, a + b ≦ 1) with a conductivity type such as n-type or p-type. Although an n-type nitride semiconductor can be obtained in a non-doped state, it can be obtained by introducing donor impurities such as Si, Ge, and S into the semiconductor layer during crystal growth.
[0026]
On the other hand, the p-type nitride semiconductor layer can be obtained by introducing acceptor impurities such as Mg, Zn, Cd, Ca, Be, and C into the semiconductor layer during crystal growth as well. More preferable p-type can be obtained by annealing at 400 ° C. or higher after introduction of acceptor impurities.
[0027]
Next, the light-emitting element of FIG. 1 will be specifically described. The following examples show growth methods by the MOVPE method.
[0028]
First, using TMG (trimethylgallium) and NH 3 , a buffer layer 2 made of GaN is grown to a thickness of 500 angstroms at 500 ° C. on the C surface of the sapphire substrate 1 set in the reaction vessel.
[0029]
Next, the temperature is raised to 1050 ° C., and an n-type contact layer 23 made of Si-doped n-type GaN is grown to a thickness of 4 μm using silane gas in addition to TMG and NH 3 .
[0030]
Subsequently, TMA (trimethylaluminum) is added to the source gas, and an n-type cladding layer 4 made of Si-doped n-type Al 0.3 Ga 0.7 n phase is grown at a thickness of 0.1 μm at 1050 ° C.
[0031]
Next, the temperature is lowered to 800 ° C., and TMG, TMI (trimethylindium), NH 3, silane gas, and DEZ (diethyl zinc) are used, and the active layer 5 made of Si + Zn doped n-type In 0.05 Ga 0.95 N is reduced to 0.00. Growing with a film thickness of 1 μm.
[0032]
Next, the temperature is raised to 1050 ° C., TMG, TMA, NH 3 , Cp 2 Mg (cyclopentadienyl magnesium) is used, and the p-type cladding layer 6 made of Mg-doped p-type Al 0.3 Ga 0.7 N is formed. The film is grown to a thickness of 0.1 μm.
[0033]
Next, a second p-type contact layer 72 made of Mg-doped p-type GaN is grown to a thickness of 0.5 μm using TMG, NH 3 , and Cp 2 Mg at 1050 ° C. The Mg concentration of the second p-type contact layer was 1 × 10 18 / cm 3 .
[0034]
Subsequently, the flow rate of Cp 2 Mg is increased at 1050 ° C., and the first p-type contact layer 71 made of Mg-doped p-type GaN is grown to a thickness of 200 Å. The Mg concentration of the first p-type contact layer 71 was 2 × 10 19 / cm 3 .
[0035]
After completion of the reaction, the temperature is lowered to room temperature, the wafer is taken out of the reaction vessel, and the wafer is annealed at 700 ° C. to further reduce the resistance of the p-type layer. Next, a mask having a predetermined shape is formed on the surface of the uppermost p-type contact layer 7 and etching is performed until the surface of the n-type contact layer 3 is exposed. After the etching, a negative electrode 8 made of Ti and Al is formed on the surface of the n-type contact layer 3, and a positive electrode 9 made of Ni and Au is formed on the surface of the first p-type contact layer 71. After the electrodes were formed, the wafer was separated into 350 μm square chips to obtain LED elements. This LED element had If20 mA, Vf 3.1 V, emission peak wavelength 450 nm, half-value width 70 nm, blue emission, and emission output 3 mW.
[0036]
[Example 2]
A light emitting device was obtained in the same manner as in Example 1 except that the film thickness of the first p-type contact layer 71 was changed to 500 angstroms. As a result, at If20 mA, Vf was 3.2 V and the light emission output was almost the same.
[0037]
[Example 3]
A light emitting device was obtained in the same manner as in Example 1 except that the film thickness of the first p-type contact layer 71 was set to 0.1 μm. At If mA, Vf was 3.3 V and the light emission output was 2.9 mW. .
[0038]
[Example 4]
A light emitting device was obtained in the same manner as in Example 1 except that the thickness of the first p-type contact layer 71 was set to 0.3 μm. At If mA, Vf was 3.7 V, and the light emission output was 2.8 mW. It was.
[0039]
[Example 5]
In Example 1, except that the Mg concentration of the second p-type contact layer 72 is 5 × 10 17 / cm 3 and the Mg concentration of the first p-type contact layer 71 is 1 × 10 19 / cm 3 , When an LED element was obtained in the same manner, it showed almost the same characteristics as Example 1.
[0040]
[Example 6]
FIG. 3 is a schematic cross-sectional view showing the structure of the light-emitting element according to Example 5. This light-emitting element is different from the light-emitting element of FIG. 1 in that a second n-type cladding layer made of an n-type nitride semiconductor containing In as a new buffer layer between the n-type cladding layer 4 and the active layer 5. 40 is being formed. The second cladding layer 40 is preferably formed with a film thickness of 10 angstroms or more and 0.1 μm or less. Further, when the film thicknesses of the second n-type cladding layer 40 and the active layer 5 are 300 angstroms or more, In The first n-type clad layer 40 containing In and the active layer 5 containing In act as a buffer layer, and the n-type clad layer 4 and the p-type clad layer 6 can be grown with good crystallinity without cracks. Further, by growing the second n-type cladding layer 40, an active layer having a quantum structure that is not doped with impurities can be realized, and the half-value width is narrow and light emission with high output can be obtained. The second n-type cladding layer 40 may be GaN.
[0041]
The second n-type cladding layer 40 functions as a buffer layer between the active layer 5 and the n-type cladding layer 4 containing Al and Ga. That is, since the second n-type cladding layer 40 containing In and Ga has a soft nature as a crystal property, the lattice constant irregularity between the n-type cladding layer 4 containing Al and Ga and the active layer 5 is reduced. It works to absorb strain caused by the difference in thermal expansion coefficient. Therefore, even if the active layer has a single quantum well structure or a multiple quantum well structure and the nitride semiconductor layer constituting the active layer is made thin, the active layer 5 and the n-type cladding layer 4 are not cracked. The active layer is elastically deformed, and crystal defects in the active layer are reduced. That is, by making the active layer a quantum well structure, the crystallinity of the active layer is improved, so that the light emission output is increased. Furthermore, when the active layer has a quantum well structure, the light emission output increases due to the quantum effect and the exciton effect. In other words, in the conventional light emitting device, the thickness of the active layer is increased to, for example, 1000 angstroms or more to prevent cracks in the cladding layer and the active layer. However, the active layer always has a difference in thermal expansion coefficient and distortion due to lattice irregularity. In the conventional light emitting device, the thickness of the active layer exceeds the critical thickness that can be elastically deformed. It cannot be deformed, causes many crystal defects in the active layer, and does not emit much light by interband light emission. By forming the second n-type cladding layer 40, it is possible to dramatically improve the light emission output of the light emitting element when the active layer has a quantum structure.
[0042]
Specifically, after growing the n-type cladding layer 4 in Example 1, the temperature is lowered to 800 ° C., and TMG, TMI (trimethylindium), NH 3 , and silane gas are used, and Si-doped n-type In 0.01 A second n-type cladding layer 40 made of Ga 0.99 N is grown to a thickness of 500 angstroms.
[0043]
Subsequently, an active layer 5 made of non-doped n-type In 0.05 Ga 0.95 N is grown to a thickness of 80 Å at 800 ° C. using TMG, TMI, and NH 3 . Thereafter, in the same manner as in Example 1, the p-type cladding layer 6, the second p-type contact layer 72, and the first p-type contact layer 71 were grown to form an LED element. This LED element had an If of 20 mA. Blue light emission of Vf 3.1 V, emission peak wavelength of 400 nm was exhibited, and the light emission output was 12 mW. Further, the half-value width of the emission spectrum was 20 nm, and light emission with very good color purity was exhibited.
[0044]
[Example 7]
In Example 6, the composition of the active layer 5 is 25 Å for the well layer made of non-doped In 0.05 Ga 0.95 N and 50 Å for the barrier layer made of non-doped In 0.01 Ga 0.99 N. Grow in. This operation was repeated 26 times. Finally, a well layer was stacked to grow an active layer 6 having a total thickness of about 2000 angstroms. Thereafter, an LED element was formed in the same manner as in Example 6. This LED element also showed blue light emission with Vf of 3.1 V and emission peak wavelength of 400 nm at If20 mA, and the light emission output was 12 mW. Further, the half-value width of the emission spectrum was 20 nm, and light emission with very good color purity was exhibited.
[0045]
【The invention's effect】
As described above, the light-emitting element of the present invention is a double-heterostructure light-emitting element in which the p-type layer forming the positive electrode is divided into the first p-type layer having a high acceptor impurity concentration and the second p-type layer having a low impurity concentration. By using a p-type layer, Vf can be lowered, so that the light emission efficiency is improved. Therefore, when realizing a large display, an outdoor advertising board, etc. using a large amount of LEDs, a device with low power consumption can be realized, and its industrial utility value is great.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing a structure of a light-emitting element according to an embodiment of the present invention.
FIG. 2 is a schematic cross-sectional view showing the structure of a conventional light emitting element.
FIG. 3 is a schematic cross-sectional view showing the structure of a light emitting device according to another embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... substrate 2 ... buffer layer 3 ... n-type contact layer 4 ... n-type cladding layer 5 ... active layer 6 ... p-type cladding layer 72 ... .... Second p-type contact layer 71 ... First p-type contact layer 8 ... Negative electrode 9 ... Positive electrode

Claims (6)

n型窒化物半導体層とp型窒化物半導体層の間に発光する活性層を有し、p型窒化物半導体層の表面に正電極が形成されてなるダブルへテロ構造の窒化物半導体発光素子において、
前記活性層は、InGa1−x(0< X <1)よりなる井戸層のみの単一量子井戸構造、若しくはInGa1−x(0< X ≦1)よりなる井戸層とInGa1−YN(0≦Y<1、Y<X)よりなる障壁層との多重量子井戸構造のInを含む活性層であり、
前記p型窒化物半導体層は、正電極と接する側から順に、アクセプター不純物濃度の高い第一のp型窒化物半導体層と、第一のp型窒化物半導体層よりもアクセプター不純物濃度の低い第二のp型窒化物半導体層と、GaN、AlGaN又はInAlGaNを組成に選択したp型クラッド層とを有し、
前記第一のp型窒化物半導体層の膜厚が500Å以下であることを特徴とする窒化物半導体発光素子。
A nitride semiconductor light emitting device having a double hetero structure having an active layer that emits light between an n-type nitride semiconductor layer and a p-type nitride semiconductor layer and having a positive electrode formed on the surface of the p-type nitride semiconductor layer In
The active layer is a single quantum well structure having only a well layer made of In x Ga 1-x N (0 < X <1) , or a well layer made of In x Ga 1-x N (0 < X ≦ 1). And an active layer containing In having a multiple quantum well structure with a barrier layer made of In Y Ga 1-Y N (0 ≦ Y <1, Y <X),
The p-type nitride semiconductor layer has a first p-type nitride semiconductor layer having a higher acceptor impurity concentration and a lower acceptor impurity concentration than the first p-type nitride semiconductor layer in order from the side in contact with the positive electrode. Two p-type nitride semiconductor layers, and a p-type cladding layer selected from a composition of GaN, AlGaN or InAlGaN,
The nitride semiconductor light-emitting element, wherein the first p-type nitride semiconductor layer has a thickness of 500 mm or less .
前記p型クラッド層は、AlGaNを組成に選択してなることを特徴とする請求項1に記載の窒化物半導体発光素子。  The nitride semiconductor light emitting device according to claim 1, wherein the p-type cladding layer is made of AlGaN as a composition. 前記n型窒化物半導体層は、GaN、AlGaN又はInAlGaNを組成に選択したn型クラッド層を有することを特徴とする請求項1又は2に記載の窒化物半導体発光素子。  3. The nitride semiconductor light emitting device according to claim 1, wherein the n-type nitride semiconductor layer has an n-type cladding layer selected from GaN, AlGaN, or InAlGaN as a composition. 4. 前記n型クラッド層と前記活性層との間に、Inを含むn型の窒化物半導体よりなる第二のn型クラッド層を形成したことを特徴とする請求項3に記載の窒化物半導体発光素子。4. The nitride semiconductor light emitting device according to claim 3, wherein a second n-type cladding layer made of an n-type nitride semiconductor containing In is formed between the n-type cladding layer and the active layer. element. 前記正電極が、ニッケル及び金を含むことを特徴とする請求項1乃至のいずれか1項に記載の窒化物半導体発光素子。The positive electrode is, the nitride semiconductor light-emitting device according to any one of claims 1 to 4, characterized in that it comprises nickel and gold. 前記第一のp型窒化物半導体層のアクセプター不純物は、1×1017〜5×1021/cm濃度のMgであり、前記第二のp型窒化物半導体層のアクセプター不純物は2×1015〜5×1020/cm濃度のMgである請求項1乃至のいずれか1項に記載の窒化物半導体発光素子。The acceptor impurity of the first p-type nitride semiconductor layer is Mg having a concentration of 1 × 10 17 to 5 × 10 21 / cm 3 , and the acceptor impurity of the second p-type nitride semiconductor layer is 2 × 10 15 ~5 × 10 20 / cm 3 density of the nitride semiconductor light-emitting device according to any one of claims 1 to 5 is Mg.
JP2001238146A 1995-03-29 2001-08-06 Nitride semiconductor light emitting device Expired - Lifetime JP3890930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001238146A JP3890930B2 (en) 1995-03-29 2001-08-06 Nitride semiconductor light emitting device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-70989 1995-03-29
JP7098995 1995-03-29
JP2001238146A JP3890930B2 (en) 1995-03-29 2001-08-06 Nitride semiconductor light emitting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP31784495A Division JP3250438B2 (en) 1995-03-29 1995-12-06 Nitride semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2002134786A JP2002134786A (en) 2002-05-10
JP3890930B2 true JP3890930B2 (en) 2007-03-07

Family

ID=26412101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001238146A Expired - Lifetime JP3890930B2 (en) 1995-03-29 2001-08-06 Nitride semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3890930B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8395165B2 (en) 2011-07-08 2013-03-12 Bridelux, Inc. Laterally contacted blue LED with superlattice current spreading layer
US8525221B2 (en) 2009-11-25 2013-09-03 Toshiba Techno Center, Inc. LED with improved injection efficiency
US8536601B2 (en) 2009-06-10 2013-09-17 Toshiba Techno Center, Inc. Thin-film LED with P and N contacts electrically isolated from the substrate
US8564010B2 (en) 2011-08-04 2013-10-22 Toshiba Techno Center Inc. Distributed current blocking structures for light emitting diodes
US8581267B2 (en) 2011-11-09 2013-11-12 Toshiba Techno Center Inc. Series connected segmented LED
US8624482B2 (en) 2011-09-01 2014-01-07 Toshiba Techno Center Inc. Distributed bragg reflector for reflecting light of multiple wavelengths from an LED
US8664679B2 (en) 2011-09-29 2014-03-04 Toshiba Techno Center Inc. Light emitting devices having light coupling layers with recessed electrodes
US8686430B2 (en) 2011-09-07 2014-04-01 Toshiba Techno Center Inc. Buffer layer for GaN-on-Si LED
US8698163B2 (en) 2011-09-29 2014-04-15 Toshiba Techno Center Inc. P-type doping layers for use with light emitting devices
US8865565B2 (en) 2011-08-02 2014-10-21 Kabushiki Kaisha Toshiba LED having a low defect N-type layer that has grown on a silicon substrate
US8916906B2 (en) 2011-07-29 2014-12-23 Kabushiki Kaisha Toshiba Boron-containing buffer layer for growing gallium nitride on silicon
US8994064B2 (en) 2011-09-03 2015-03-31 Kabushiki Kaisha Toshiba Led that has bounding silicon-doped regions on either side of a strain release layer
US9012939B2 (en) 2011-08-02 2015-04-21 Kabushiki Kaisha Toshiba N-type gallium-nitride layer having multiple conductive intervening layers
US9012921B2 (en) 2011-09-29 2015-04-21 Kabushiki Kaisha Toshiba Light emitting devices having light coupling layers
US9018643B2 (en) 2011-09-06 2015-04-28 Kabushiki Kaisha Toshiba GaN LEDs with improved area and method for making the same
US9130068B2 (en) 2011-09-29 2015-09-08 Manutius Ip, Inc. Light emitting devices having dislocation density maintaining buffer layers
US9142743B2 (en) 2011-08-02 2015-09-22 Kabushiki Kaisha Toshiba High temperature gold-free wafer bonding for light emitting diodes
US9159869B2 (en) 2011-08-03 2015-10-13 Kabushiki Kaisha Toshiba LED on silicon substrate using zinc-sulfide as buffer layer
US9178114B2 (en) 2011-09-29 2015-11-03 Manutius Ip, Inc. P-type doping layers for use with light emitting devices
US9343641B2 (en) 2011-08-02 2016-05-17 Manutius Ip, Inc. Non-reactive barrier metal for eutectic bonding process
US10174439B2 (en) 2011-07-25 2019-01-08 Samsung Electronics Co., Ltd. Nucleation of aluminum nitride on a silicon substrate using an ammonia preflow

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3679097B2 (en) 2002-05-31 2005-08-03 株式会社光波 Light emitting element
JP2005203520A (en) * 2004-01-14 2005-07-28 Sumitomo Electric Ind Ltd Semiconductor light emitting element
US7759149B2 (en) 2004-06-09 2010-07-20 Showa Denko K.K. Gallium nitride-based semiconductor stacked structure
JP4960621B2 (en) * 2005-11-09 2012-06-27 株式会社光波 Nitride semiconductor growth substrate and manufacturing method thereof
KR100990646B1 (en) * 2008-12-19 2010-10-29 삼성엘이디 주식회사 Nitride Semiconductor Device
KR100999771B1 (en) 2010-02-25 2010-12-08 엘지이노텍 주식회사 Light emitting device, method for fabricating the light emitting device and light emitting device package

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8871539B2 (en) 2009-06-10 2014-10-28 Kabushiki Kaisha Toshiba Thin-film LED with P and N contacts electrically isolated from the substrate
US8536601B2 (en) 2009-06-10 2013-09-17 Toshiba Techno Center, Inc. Thin-film LED with P and N contacts electrically isolated from the substrate
US9142742B2 (en) 2009-06-10 2015-09-22 Kabushiki Kaisha Toshiba Thin-film LED with P and N contacts electrically isolated from the substrate
US8525221B2 (en) 2009-11-25 2013-09-03 Toshiba Techno Center, Inc. LED with improved injection efficiency
US9012953B2 (en) 2009-11-25 2015-04-21 Kabushiki Kaisha Toshiba LED with improved injection efficiency
US8684749B2 (en) 2009-11-25 2014-04-01 Toshiba Techno Center Inc. LED with improved injection efficiency
US8395165B2 (en) 2011-07-08 2013-03-12 Bridelux, Inc. Laterally contacted blue LED with superlattice current spreading layer
US10174439B2 (en) 2011-07-25 2019-01-08 Samsung Electronics Co., Ltd. Nucleation of aluminum nitride on a silicon substrate using an ammonia preflow
US8916906B2 (en) 2011-07-29 2014-12-23 Kabushiki Kaisha Toshiba Boron-containing buffer layer for growing gallium nitride on silicon
US8865565B2 (en) 2011-08-02 2014-10-21 Kabushiki Kaisha Toshiba LED having a low defect N-type layer that has grown on a silicon substrate
US9142743B2 (en) 2011-08-02 2015-09-22 Kabushiki Kaisha Toshiba High temperature gold-free wafer bonding for light emitting diodes
US9343641B2 (en) 2011-08-02 2016-05-17 Manutius Ip, Inc. Non-reactive barrier metal for eutectic bonding process
US9012939B2 (en) 2011-08-02 2015-04-21 Kabushiki Kaisha Toshiba N-type gallium-nitride layer having multiple conductive intervening layers
US9159869B2 (en) 2011-08-03 2015-10-13 Kabushiki Kaisha Toshiba LED on silicon substrate using zinc-sulfide as buffer layer
US8564010B2 (en) 2011-08-04 2013-10-22 Toshiba Techno Center Inc. Distributed current blocking structures for light emitting diodes
US9070833B2 (en) 2011-08-04 2015-06-30 Kabushiki Kaisha Toshiba Distributed current blocking structures for light emitting diodes
US8981410B1 (en) 2011-09-01 2015-03-17 Kabushiki Kaisha Toshiba Distributed bragg reflector for reflecting light of multiple wavelengths from an LED
US8624482B2 (en) 2011-09-01 2014-01-07 Toshiba Techno Center Inc. Distributed bragg reflector for reflecting light of multiple wavelengths from an LED
US8994064B2 (en) 2011-09-03 2015-03-31 Kabushiki Kaisha Toshiba Led that has bounding silicon-doped regions on either side of a strain release layer
US9018643B2 (en) 2011-09-06 2015-04-28 Kabushiki Kaisha Toshiba GaN LEDs with improved area and method for making the same
US8686430B2 (en) 2011-09-07 2014-04-01 Toshiba Techno Center Inc. Buffer layer for GaN-on-Si LED
US9130068B2 (en) 2011-09-29 2015-09-08 Manutius Ip, Inc. Light emitting devices having dislocation density maintaining buffer layers
US9012921B2 (en) 2011-09-29 2015-04-21 Kabushiki Kaisha Toshiba Light emitting devices having light coupling layers
US8698163B2 (en) 2011-09-29 2014-04-15 Toshiba Techno Center Inc. P-type doping layers for use with light emitting devices
US9178114B2 (en) 2011-09-29 2015-11-03 Manutius Ip, Inc. P-type doping layers for use with light emitting devices
US9299881B2 (en) 2011-09-29 2016-03-29 Kabishiki Kaisha Toshiba Light emitting devices having light coupling layers
US8664679B2 (en) 2011-09-29 2014-03-04 Toshiba Techno Center Inc. Light emitting devices having light coupling layers with recessed electrodes
US9490392B2 (en) 2011-09-29 2016-11-08 Toshiba Corporation P-type doping layers for use with light emitting devices
US9123853B2 (en) 2011-11-09 2015-09-01 Manutius Ip, Inc. Series connected segmented LED
US9391234B2 (en) 2011-11-09 2016-07-12 Toshiba Corporation Series connected segmented LED
US8581267B2 (en) 2011-11-09 2013-11-12 Toshiba Techno Center Inc. Series connected segmented LED

Also Published As

Publication number Publication date
JP2002134786A (en) 2002-05-10

Similar Documents

Publication Publication Date Title
JP3250438B2 (en) Nitride semiconductor light emitting device
JP3890930B2 (en) Nitride semiconductor light emitting device
JP2890396B2 (en) Nitride semiconductor light emitting device
JP3551101B2 (en) Nitride semiconductor device
JP3656456B2 (en) Nitride semiconductor device
JP2778405B2 (en) Gallium nitride based compound semiconductor light emitting device
JP3868136B2 (en) Gallium nitride compound semiconductor light emitting device
JP2785254B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2735057B2 (en) Nitride semiconductor light emitting device
JP3135041B2 (en) Nitride semiconductor light emitting device
JP2890390B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2780691B2 (en) Nitride semiconductor light emitting device
JPH06177423A (en) Blue light emitting element
JPH06268257A (en) Gallium nitride compound semiconductor light emitting element
JP3835225B2 (en) Nitride semiconductor light emitting device
JPH11340509A (en) Nitride semiconductor element
JPH07162038A (en) Gallium nitride compound semiconductor light emitting diode
JP3620292B2 (en) Nitride semiconductor device
JP4815732B2 (en) Nitride semiconductor device
JP2918139B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2713094B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP2976951B2 (en) Display device with nitride semiconductor light emitting diode
JP2004014587A (en) Nitride compound semiconductor epitaxial wafer and light emitting element
JP3484997B2 (en) Gallium nitride based compound semiconductor light emitting device
JP3924973B2 (en) Nitride semiconductor light emitting device manufacturing method and nitride semiconductor light emitting device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060126

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060126

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061127

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term