JP2778405B2 - The gallium nitride-based compound semiconductor light-emitting device - Google Patents

The gallium nitride-based compound semiconductor light-emitting device

Info

Publication number
JP2778405B2
JP2778405B2 JP7904693A JP7904693A JP2778405B2 JP 2778405 B2 JP2778405 B2 JP 2778405B2 JP 7904693 A JP7904693 A JP 7904693A JP 7904693 A JP7904693 A JP 7904693A JP 2778405 B2 JP2778405 B2 JP 2778405B2
Authority
JP
Grant status
Grant
Patent type
Prior art keywords
type
layer
gallium nitride
compound semiconductor
based compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7904693A
Other languages
Japanese (ja)
Other versions
JPH06268259A (en )
Inventor
修二 中村
Original Assignee
日亜化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date
Family has litigation

Links

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】本発明は窒化ガリウム系化合物半導体を用いた発光素子に係り、特に順方向電圧(Vf) The present invention relates relates to a light emitting device using a gallium nitride-based compound semiconductor, in particular a forward voltage (Vf)
が低く、さらに発光出力が高い窒化ガリウム系化合物半導体発光素子に関する。 Is low and further the light emitting output is about high gallium nitride-based compound semiconductor light-emitting device.

【0002】 [0002]

【従来の技術】GaN、GaAlN、InGaN、In BACKGROUND OF THE INVENTION GaN, GaAlN, InGaN, In
AlGaN等の窒化ガリウム系化合物半導体は直接遷移を有し、バンドギャップが1.95eV〜6eVまで変化するため、発光ダイオード、レーザダイオード等、発光素子の材料として有望視されている。 Has a direct semiconductor gallium nitride-based compound transitions AlGaN etc., since the band gap varying from 1.95EV~6eV, light emitting diodes, such as a laser diode, is promising as a material for the light emitting element. 現在、この材料を用いた発光素子には、n型窒化ガリウム系化合物半導体の上に、p型ドーパントをドープした高抵抗なi型の窒化ガリウム系化合物半導体を積層したいわゆるMIS Currently, the light emitting device using this material, n-type on the gallium-based compound semiconductor nitride, a so-called MIS formed by laminating a high-resistance i-type gallium nitride compound semiconductor doped with a p-type dopant
構造の青色発光ダイオードが知られている。 Blue light emitting diode structures are known.

【0003】MIS構造の発光素子は、一般に発光出力が非常に低く、実用化するには未だ不十分であった。 [0003] A light-emitting element of the MIS structure is generally light output is very low, the practical application was still insufficient. 高抵抗なi型を低抵抗なp型とし、発光出力を向上させたp−n接合の発光素子を実現するための技術として、例えば特開平3−218325号公報において、i型窒化ガリウム系化合物半導体層に電子線照射する技術が開示されている。 The high-resistance i-type a low resistance p-type, as a technique for realizing a light emitting element of the p-n junction with improved light emission output, for example, in JP-A-3-218325 discloses, i-type gallium nitride compound technique of electron beam irradiation is disclosed in the semiconductor layer. また、我々は、特願平3−357046号でi型窒化ガリウム系化合物半導体層を400℃以上でアニーリングすることにより低抵抗なp型とする技術を提案した。 Also, we have proposed a technique to low resistance p-type by annealing in the i-type gallium nitride compound semiconductor layer in Japanese Patent Application No. Hei 3-357046 400 ℃ or higher.

【0004】p−n接合の窒化ガリウム系化合物半導体を利用した発光素子として、例えば特開平4−2429 [0004] As light-emitting elements using a p-n gallium nitride-based compound semiconductor junctions, for example, JP-A-4-2429
85号公報において、ダブルへテロ構造のレーザー素子が提案されており、また特開平4−209577号公報ではInGaAlNを発光層とするダブルへテロ構造の発光ダイオードが提案されている。 In 85 JP, it has been proposed laser device heterostructure, also the light emitting diode of a double heterostructure in which a light emitting layer InGaAlN in JP-A 4-209577 JP been proposed a double.

【0005】 [0005]

【発明が解決しようとする課題】p−n接合の半導体発光素子は、ホモ構造よりもダブルへテロ構造の方が発光出力が大きく、またレーザー素子は少なくともへテロ構造でなければ実現できないことは知られている。 The semiconductor light-emitting device of the p-n junction [0005] is it is large emission output of the double heterostructure than homo structure, also the laser element can not be realized unless a heterostructure at least to Are known. しかしながら、ダブルヘテロ構造の窒化ガリウム系化合物半導体発光素子を実現した場合、用いられる窒化ガリウム系化合物半導体の種類、組成比等の要因により、窒化ガリウム系化合物半導体の結晶性が著しく異なってくるので発光出力に大きな差が現れる。 However, when realizing the gallium nitride compound semiconductor light-emitting device of double heterostructure type gallium nitride-based compound semiconductor used, due to factors such as composition ratio, since the crystallinity of the gallium nitride-based compound semiconductor varies considerably emission a large difference in output appears. 極端な場合には全く発光を示さない素子ができてしまうのが現実である。 Is a reality that she can not at all show light emitting element in an extreme case. しかも、実際に電極を設けて素子構造とした場合、窒化ガリウム系化合物半導体のp型結晶と、そのp型結晶に形成する電極とがオーミック接触していないため、定められた順方向電流に対し、順方向電圧(Vf)が高くなり、 Moreover, when the element structure actually providing the electrode, and the p-type crystals of gallium nitride compound semiconductor, since the electrodes formed on the p-type crystal is not in ohmic contact with respect to forward current defined , the forward voltage (Vf) is increased,
発光効率が低下するという問題がある。 There is a problem that emission efficiency is reduced. このため、未だ窒化ガリウム系化合物半導体発光素子では、ヘテロ構造の発光ダイオードは製品化されておらず、レーザー素子に至っては発振さえしていないのが実状である。 Therefore, in yet a gallium nitride-based compound semiconductor light emitting device, the light emitting diode heterostructure has not been commercialized, is led to the laser element which is actual circumstances that not even oscillate.

【0006】従って、本発明の第1の目的は、p型結晶とオーミック接触が得られる窒化ガリウム系化合物半導体の構造を提供することによりVfを低下させ、発光効率を向上させることにある。 Accordingly, a first object of the present invention reduces the Vf by providing a p-type crystal and ohmic contact of the gallium-based compound semiconductor nitride obtained structure is to improve the luminous efficiency. また、第2の目的はその窒化ガリウム系化合物半導体を用いて、新規なダブルヘテロ構造の発光素子の構造を提供することにより、発光素子の発光出力を向上させることにある。 A second object by using the gallium nitride-based compound semiconductor, by providing a structure of a light-emitting element of the new double heterostructure, is to improve the light output of the light emitting element.

【0007】 [0007]

【課題を解決するための手段】我々は、特定のp型窒化ガリウム系化合物半導体の上に積層したp型窒化ガリウムに電極を形成することにより、電極とp型窒化ガリウム層とのオーミック接触が得られ、発光効率が向上することを新たに見いだした。 Means for Solving the Problems] We, by forming the electrodes on the p-type gallium nitride laminated on the specific p-type gallium nitride-based compound semiconductor, ohmic contact between the electrode and the p-type gallium nitride layer the resulting, newly found that luminous efficiency is improved. さらにそのp型窒化ガリウム系化合物半導体層を用いた発光素子を特定のダブルヘテロ構造とし、ダブルヘテロ構造を構成する窒化ガリウム系化合物半導体の種類を限定することにより、最も結晶性に優れた窒化ガリウム系化合物半導体を積層した素子が得られ、発光出力が向上することを見いだした。 Furthermore the light emitting device using the p-type gallium nitride-based compound semiconductor layer with a specific double heterostructure, by limiting the type of structure to the gallium nitride-based compound semiconductor double heterostructure, most excellent in crystallizability gallium nitride element obtained by laminating a system compound semiconductor can be obtained, the light emission output was found to increase. 即ち、本発明の窒化ガリウム系化合物半導体発光素子は、 That is, the gallium nitride-based compound semiconductor light-emitting device of the present invention,
p−n接合を有するダブルヘテロ構造の窒化ガリウム系化合物半導体発光素子において、Mgがドープされたp In the gallium nitride-based compound semiconductor light emitting device of double heterostructure having a p-n junction, p Mg-doped
型Ga 1-X Al X N(但し、Xは0<X<0.5)クラッド層の上に、電極が形成されるべき層として、Mgがドープされたp型GaNコンタクト層を具備することを特徴とし、さらに特定のダブルヘテロ構造の発光素子は、n Type Ga 1-X Al X N (where, X is 0 <X <0.5) on the cladding layer, as a layer to the electrode is formed, the Mg is provided with a p-type GaN contact layer doped the features, further light-emitting element of the particular double heterostructure, n
型窒化ガリウム系化合物半導体層の上に、n型Ga 1-Y On the type gallium nitride-based compound semiconductor layer, n-type Ga 1-Y
Al Y Nクラッド層(但し、Yは0<Y<1)と、n型I Al Y N cladding layer (where, Y is 0 <Y <1) and, n-type I
Z Ga 1-Z N活性層(但し、Zは0<Z<1)と、前記p n Z Ga 1-Z N active layer (where, Z is 0 <Z <1) and the p
型Ga 1-X Al X Nクラッド層と、前記p型GaNコンタクト層とが積層されていることを特徴とする。 And type Ga 1-X Al X N cladding layer, said p-type GaN contact layer, characterized in that it is laminated.

【0008】本発明の窒化ガリウム系化合物半導体発光素子の構造を示す断面図を図1に示す。 [0008] The cross-sectional view showing a structure of a gallium nitride-based compound semiconductor light-emitting device of the present invention shown in FIG. 下から順に、基板1の上に、バッファ層2と、n型窒化ガリウム系化合物半導体層3と、n型Ga 1-Y Al Y Nクラッド層4(0 In order from the bottom, on a substrate 1, a buffer layer 2, an n-type gallium nitride-based compound semiconductor layer 3, n-type Ga 1-Y Al Y N cladding layer 4 (0
<Y<1)と、n型In Z Ga <And Y <1), n-type an In Z Ga 1-Z N(0<Z<1)活性層5と、Mgドープp型Ga 1-X Al X N(0<X<0. 1-Z N (0 <Z <1) and the active layer 5, Mg-doped p-type Ga 1-X Al X N ( 0 <X <0.
5)クラッド層6と、Mgドープp型GaNコンタクト層7とが順に積層された構造を有する。 5) having a cladding layer 6, a structure in which a Mg-doped p-type GaN contact layer 7 are sequentially stacked. なお、8はMg In addition, 8 Mg
ドープp型GaNコンタクト層7に設けられた電極、9 Electrodes provided on the doped p-type GaN contact layer 7, 9
はn型窒化ガリウム系化合物半導体層3に設けられた電極である。 Is an electrode provided on the n-type gallium nitride-based compound semiconductor layer 3. 基板1にはサファイア、ZnO、SiC、S Sapphire substrate 1, ZnO, SiC, S
i等が使用される。 i like are used. バッファ層2にはAlN、GaN、 The buffer layer 2 AlN, GaN,
GaAlN等が使用される。 GaAlN and the like are used.

【0009】前記、窒化ガリウム系化合物半導体発光素子において、n型窒化ガリウム系化合物半導体層3の種類は特に限定するものなく、GaN、GaAlN、In [0009] The, in a gallium-based compound semiconductor light-emitting device nitride, type of n-type gallium nitride-based compound semiconductor layer 3 is not particularly limited, GaN, GaAlN, an In
GaN、InAlGaN等、ノンドープ(無添加)の窒化ガリウム系化合物半導体、またはノンドープの窒化ガリウム系化合物半導体に、例えばSi、Ge、Te、S GaN, InAlGaN or the like, a non-doped gallium nitride compound semiconductor (no addition) or gallium nitride compound semiconductor of undoped, e.g. Si, Ge, Te, S
e等のn型ドーパントをドープしてn型特性を示すように成長した層を用いることができる。 By doping the n-type dopant of e such as it can be a layer grown as an n-type characteristics.

【0010】次に、n型Ga 1-Y Al Y Nクラッド層4 [0010] Then, n-type Ga 1-Y Al Y N cladding layer 4
は、その組成をInを含まない三元混晶の窒化ガリウムアルミニウムとする必要がある。 Has to its composition and gallium nitride aluminum ternary mixed crystal containing no In. なぜなら、n型Ga This is because, n-type Ga
1-Y Al Y Nクラッド層4に新たにインジウムを含有させると、クラッド層4の結晶性が悪くなり、発光出力が低下するからである。 1-Y Al Y N When newly to contain indium cladding layer 4, because the crystallinity of the cladding layer 4 is poor, the light emitting output decreases. また、n型Ga 1-Y Al Y Nクラッド層のY値を0<Y<1の範囲とすることにより、n型クラッド層として作用し好ましいダブルヘテロ構造とすることができる。 Further, the Y value of the n-type Ga 1-Y Al Y N cladding layer by a range of 0 <Y <1, can preferably double heterostructure act as n-type cladding layer. さらに好ましくは、Y値を0.5以下とすることにより格子欠陥が少なく結晶性のよいn型クラッド層4が得られる。 More preferably, it is n-type cladding layer 4 of lattice defects less crystallinity can be obtained by the Y value of 0.5 or less. n型Ga 1-Y Al Y Nクラッド層4には、前記したように、ノンドープのGa 1-Y Al Y N、またはn型ドーパントをドープしてn型特性を示すように成長したGa 1-Y Al Y Nを用いることができる。 The n-type Ga 1-Y Al Y N cladding layer 4, as described above, were grown to indicate the non-doped Ga 1-Y Al Y N or n-type dopant by doping n-type characteristics, Ga 1- it can be used Y Al Y N.

【0011】次に、n型In Z Ga 1-Z N活性層5は、その組成をAlを含まない三元混晶の窒化インジウムガリウムとする必要がある。 [0011] Then, n-type In Z Ga 1-Z N active layer 5, it is necessary to its composition and indium gallium nitride ternary mixed crystal containing no Al. なぜなら、活性層は発光層であり、この発光層にAlを含有させると深い準位の発光が現れ、InGaNのバンド間発光を阻害する傾向にあるため、活性層として使用することは好ましくない。 Because the active layer is a light-emitting layer, the light-emitting layer emitting the the deep level to contain Al in appears, tends to be inhibited the interband emission of InGaN, be used as an active layer is not preferable. n型In Z Ga 1-Z N活性層5は、そのZ値を0<Z<1の範囲にすることにより、発光波長を紫色から赤色にまで変換させることができるため、非常に有利である。 n-type In Z Ga 1-Z N active layer 5, by the range and the Z value 0 <Z <1, and for the emission wavelengths can be converted from purple to red is highly advantageous . n型In n-type In
Z Ga 1-Z N活性層は、前記したように、ノンドープのI Z Ga 1-Z N active layer, as described above, non-doped I
Z Ga 1-Z N層、またはn型ドーパントをドープしてn n Z Ga 1-Z N layer, or by doping an n-type dopant n
型特性を示すように成長したIn Z Ga 1-Z層が使用できる。 In Z Ga 1-Z layer grown as indicating the type characteristic may be used. また、発光中心としてMg、Zn、Cd、Be、C Further, Mg as a luminescent center, Zn, Cd, Be, C
a等のp型ドーパントをドープしてn型特性を示すように成長したIn Z Ga 1-Z N層を使用することもできる。 It is also possible to use In Z Ga 1-Z N layer grown as an n-type characteristics by doping p-type dopant in a like.
さらにn型ドーパント、およびp型ドーパントをドープしてn型特性を示すように成長したIn Z Ga 1-Z層も使用できる。 Further n-type dopant, and In Z Ga 1-Z layer grown as a p-type dopant by doping an n-type characteristics can be used. これらのドーパントをドープしてn型とすることにより、発光色の色純度をよくし、発光出力を向上させることができる。 With n-type by doping these dopants, to improve the color purity of the luminescent color, it is possible to improve the light emission output.

【0012】次に、Mgドープp型Ga 1-X Al X Nクラッド層6は、n型Ga 1-Y Al Y Nクラッド層4と同じく、その組成をInを含まない三元混晶の窒化ガリウムアルミニウムとする必要がある。 [0012] Then, Mg-doped p-type Ga 1-X Al X N cladding layer 6, as well as the n-type Ga 1-Y Al Y N cladding layer 4, nitride ternary mixed crystal of the composition containing no In it is necessary to make the gallium aluminum. なぜなら、前記したようにインジウムを含有させることにより、p型クラッド層6の結晶性が悪くなり、p型特性を示しにくくなるからである。 This is because, by containing indium as described above, the crystallinity of the p-type cladding layer 6 is deteriorated, because hardly showed a p-type characteristics. また、p型Ga 1-X Al X Nクラッド層6のX Further, p-type Ga 1-X Al X N X of the cladding layer 6
値は0<X<0.5の範囲にする必要がある。 The value must be in the range of 0 <X <0.5. 0より大きくすることにより、p型クラッド層として作用し好ましいダブルヘテロ構造とすることができ、0.5より小さくすることにより格子欠陥が少なく結晶性のよいp型クラッド層6が得られる。 By greater than 0, it is possible to preferably double heterostructure act as p-type cladding layer, p-type cladding layer 6 good lattice defects less crystallinity can be obtained by less than 0.5. 逆に0.5以上であると、p If it is 0.5 or more conversely, p
型クラッド層6の上に積層するp型GaNコンタクト層7の結晶性が悪くなり、コンタクト層7と電極8とのオーミック接触が得られないため、0.5未満を限定値とした。 Type crystalline p-type GaN contact layer 7 to be laminated on the cladding layer 6 is degraded, because the ohmic contact with the contact layer 7 and the electrode 8 can not be obtained, and a limit value of less than 0.5. またさらに、このMgドープp型Ga 1-X Al X Furthermore, the Mg-doped p-type Ga 1-X Al X N
クラッド層6の膜厚は、10オングストローム以上、 Thickness of the cladding layer 6, 10 angstroms,
0.2μm以下の範囲にすることが好ましい。 It is preferable that the following range 0.2 [mu] m. 10オングストロームより薄いと、その下に積層するn型In Z When thinner than 10 Å, n-type In Z to be stacked thereunder
Ga 1-Z N活性層5と電気的に短絡しやすくなり、クラッド層として作用しにくい。 Ga 1-Z N active layer 5 and the electrically likely to short-circuit, it is difficult to act as a cladding layer. 逆に0.2μmよりも厚いと結晶にクラックが入りやすくなり結晶性が悪くなる傾向にある。 And the crystal thicker than 0.2μm in the opposite tends to crystalline will crack easily enter becomes worse. さらに、このp型Ga 1-X Al X Nクラッド層において、重要なことはp型ドーパントをMgとして、 Further, in the p-type Ga 1-X Al X N cladding layer, the important thing is p-type dopant as Mg,
このMgによりp型特性を得ていることである。 It is that they obtain a p-type characteristics by the Mg. このM This M
gのかわりに他のp型ドーパント、例えばZn、Cd、 g other p-type dopant in place of, for example, Zn, Cd,
Be、Ca等のp型ドーパントをドープするとp型特性が得られにくくなり、発光出力が低下する傾向にある。 Be, a p-type dopant p-type characteristics are difficult to obtain when doped with such Ca, emission output tends to decrease.

【0013】次に、Mgドープp型GaNコンタクト層7は、その組成をIn、Alを含まない二元混晶の窒化ガリウムとする必要がある。 [0013] Then, Mg-doped p-type GaN contact layer 7, it is necessary to its composition In, gallium nitride binary mixed crystal containing no Al. なぜなら、インジウム、アルミニウムを含有させることにより、電極8とオーミック接触が得られにくくなり、発光効率が低下するからである。 This is because, indium, by containing aluminum, ohmic contact with the electrode 8 becomes difficult to obtain, because the luminous efficiency is decreased. 特に、そのp型GaNコンタクト層の膜厚は10 In particular, the thickness of the p-type GaN contact layer 10
オングストローム以上、0.5μm以下に調整することが好ましい。 Angstroms is preferably adjusted to 0.5μm or less. 10オングストロームよりも薄いと、p型GaAlNクラッド層6と電気的に短絡しやすくなり、 When thinner than 10 angstroms, p-type GaAlN cladding layer 6 and electrically likely to short-circuit,
コンタクト層として作用しにくい。 Difficult to act as a contact layer. また、三元混晶のG In addition, the ternary mixed crystal G
aAlNクラッド層6の上に、組成の異なる二元混晶のGaNコンタクト層を積層するため、逆にその膜厚を0.5μmよりも厚くすると、結晶間のミスフィットによる格子欠陥がGaNコンタクト層7中に発生しやすく、結晶性が低下する傾向にある。 On the aAlN cladding layer 6, for laminating GaN contact layer of different two yuan mixed crystal compositions, when thicker than 0.5μm thickness thereof reversed, lattice defects GaN contact layer by misfit between the crystal likely to occur during the 7, crystallinity tends to decrease. なお、コンタクト層7の膜厚は薄いほどVfを低下させ発光効率を向上させることができる。 The thickness of the contact layer 7 can enhance the light emission efficiency lowers the thinner Vf. また、このp型GaNコンタクト層7 Further, the p-type GaN contact layer 7
のp型ドーパントはMgである必要がある。 A p-type dopant is required to be Mg. Mgのかわりに他のp型ドーパントをドープするとp型特性が得られにくくなる傾向にあり、またオーミック接触が得られにくい傾向にある。 There other p-type dopant when doped p-type characteristics are difficult to obtain trends instead of Mg, also tends to hardly ohmic contact is obtained.

【0014】また、p型Ga 1-X Al X Nクラッド層6、 Further, p-type Ga 1-X Al X N cladding layer 6,
p型GaN層をさらに低抵抗化する手段として、上記した特願平3−357046号に開示する400℃以上のアニーリング処理を行ってもよい。 As a means to further reduce the resistance of the p-type GaN layer may be performed 400 ° C. or more annealing disclosed in Japanese Patent Application No. 3-357046 described above. アニーリングを行うとp型クラッド層、およびp型コンタクト層、両方が抵抗化し、発光出力をより向上させることができる。 p-type cladding layer when annealed, and the p-type contact layer, both to the resistance of, it is possible to further improve the light emission output.

【0015】 [0015]

【作用】p−n接合を用いたダブルへテロ構造の窒化ガリウム系化合物半導体発光素子において、Mgドープp In the gallium nitride-based compound semiconductor light emitting device of double heterostructure using [action] p-n junction, Mg-doped p
型Ga 1-X Al X Nクラッド層6の上に、Mgドープp型GaNコンタクト層7を形成し、そのGaNコンタクト層の上に電極8を形成することによりオーミック接触が得られ、発光効率が向上する。 On the type Ga 1-X Al X N cladding layer 6, to form a Mg-doped p-type GaN contact layer 7, an ohmic contact is obtained by forming an electrode 8 on the GaN contact layer, luminous efficiency improves. 詳しい原理は不明であるが、我々がそれらの層のホールキャリア濃度を測定した結果、p型Ga 1- Although detailed principle is not known, results we measured the hole carrier concentration of the layers, p-type Ga 1- X Al X N層はおよそ10 16 /cm 3であり、p型GaN層はおよそ10 17 /cm 3と一桁高かった。 X Al X N layer is approximately 10 16 / cm 3, p-type GaN layer was an order of magnitude as high as about 10 17 / cm 3. つまり、ホールキャリア濃度の大きい層の方に電極を形成する方がオーミック接触が得られやすいのではないかと推察する。 In other words, to infer that it would be easy to ohmic contact is obtained is better to form the electrode towards the layer with the greater hole carrier concentration. また、p型GaAlNクラッド層6の上に組成の異なるp型GaNコンタクト層7を形成することにより、p型GaN層にミスフィットによる格子欠陥が生じやすくなり、結晶性が低下する。 Further, by forming the p-type GaN contact layer 7 having different compositions on a p-type GaAlN cladding layer 6, p-type GaN layer lattice defects likely to occur due to the misfit, the crystallinity is lowered. ミスフィットを少なくするには、p型GaAlNクラッド層6のAl To reduce the misfit, Al of the p-type cladding layer 6 GaAlN
混晶比は少ない方がよい。 Mixed crystal ratio is less is better. 従って、p型GaNコンタクト層7の結晶性がよく、電極8とオーミックコンタクトが得られる限界値、即ち、X値0.5未満を限定値とした。 Therefore, crystallinity of the p-type GaN contact layer 7 is good, limits electrode 8 and the ohmic contact is obtained, i.e., set to limit value of less than X value 0.5.

【0016】 [0016]

【実施例】以下有機金属気相成長法により、本発明の窒化ガリウム系化合物半導体発光素子を製造する方法を述べる。 The EXAMPLES The following metal organic chemical vapor deposition method, describes a method for producing a gallium nitride-based compound semiconductor light-emitting device of the present invention.

【0017】[実施例1]サファイア基板1を反応容器内に配置し、サファイア基板1のクリーニングを行った後、成長温度を510℃にセットし、キャリアガスとして水素、原料ガスとしてアンモニアとTMG(トリメチルガリウム)とを用い、サファイア基板上にGaNバッファ層2を約200オングストロームの膜厚で成長させる。 [0017] Placing the [Example 1] sapphire substrate 1 in the reaction vessel, after the cleaning of the sapphire substrate 1, to set the growth temperature to 510 ° C., ammonia as a carrier gas of hydrogen as the raw material gas and TMG ( using trimethyl gallium), growing a GaN buffer layer 2 in a thickness of about 200 Å on the sapphire substrate.

【0018】バッファ層2成長後、TMGのみ止めて、 [0018] After the buffer layer 2 growth, it stopped only TMG,
温度を1030℃まで上昇させる。 Raising the temperature to 1030 ° C.. 1030℃になったら、同じく原料ガスにTMGとアンモニアガス、ドーパントガスにシランガスを用い、Siをドープしたn型G When turned 1030 ° C., likewise TMG and ammonia gas as the raw material gas, a silane gas as a dopant gas, doped with Si n-type G
aN層3を4μm成長させる。 The aN layer 3 to 4μm growth.

【0019】n型GaN層3成長後、原料ガス、ドーパントガスを止め、温度を800℃にして、原料ガスとしてTMGとTMA(トリメチルアルミニウム)とアンモニア、ドーパントガスとしてシランガスを用い、n型クラッド層4としてSiドープGa0.86Al0.14N層を0.15μm成長させる。 [0019] n-type GaN layer 3 after growth, stop the material gas, a dopant gas, and a temperature of 800 ° C., TMG and TMA (trimethyl aluminum) and ammonia as a raw material gas, a silane gas as a dopant gas, n-type clad layer 4 Si-doped Ga0.86Al0.14N layer is 0.15μm grown as.

【0020】次に、原料ガス、ドーパントガスを止め、 [0020] Next, stop the raw material gas, a dopant gas,
温度を800℃にして、キャリアガスを窒素に切り替え、原料ガスとしてTMGとTMI(トリメチルインジウム)とアンモニア、ドーパントガスとしてシランガスを用い、n型活性層5としてSiドープIn0.01Ga0. The temperature is brought 800 ° C., the carrier gas is switched to nitrogen, the raw material gas as TMG and TMI (trimethyl indium) and ammonia, using a silane as a dopant gas, Si doped as n-type active layer 5 In0.01Ga0.
99N層を100オングストローム成長させる。 The 99N layer is grown 100 angstroms.

【0021】次に、原料ガス、ドーパントガスを止め、 [0021] Next, stop the raw material gas, a dopant gas,
再び温度を1020℃まで上昇させ、原料ガスとしてT The temperature was raised to 1020 ° C. Again, T as a material gas
MGと、TMAと、アンモニア、ドーパントガスとしてCp2Mg(シクロペンタジエニルマグネシウム)とを用い、p型クラッド層6として、Mgをドープしたp型Ga0.86Al0.14N層を0.15μm成長させる。 And MG, using the TMA, ammonia, as a dopant gas and Cp2Mg (cyclopentadienyl magnesium), a p-type cladding layer 6, a p-type Ga0.86Al0.14N layer doped with Mg to 0.15μm grown.

【0022】次に、TMAのみ止めて、p型コンタクト層7として、Mgドープp型GaN層を0.4μm成長させる。 Next, stop TMA only, as a p-type contact layer 7, to 0.4μm growth of the Mg-doped p-type GaN layer.

【0023】成長後、基板を反応容器から取り出し、アニーリング装置にて窒素雰囲気中、700℃で20分間アニーリングを行い、p型Ga0.86Al0.14N層、p型GaNコンタクト層をさらに低抵抗化する。 [0023] After the growth, the substrate is taken out of the reaction vessel in a nitrogen atmosphere at an annealing apparatus, for 20 minutes annealing at 700 ° C., p-type Ga0.86Al0.14N layer, to further reduce the resistance of the p-type GaN contact layer .

【0024】以上のようにして得られたウエハーを図1 [0024] The wafer was obtained as described above Fig. 1
に示すようにエッチングして、n型GaN層3を露出させ、p型GaNコンタクト層7にはAuよりなる電極8、n型GaN層3にはAlよりなる電極9を設け、5 By etching as shown in, to expose the n-type GaN layer 3, the p-type GaN contact layer 7 is provided an electrode 9 made of Al in the electrode 8, the n-type GaN layer 3 made of Au, 5
00℃で再度アニーリングを行い電極と窒化ガリウム系化合物半導体とをなじませる。 00 ° C. In adapt the electrode and the gallium nitride compound semiconductor is performed again annealed. 後は、常法に従い500 After, according to a conventional method 500
μm角のチップにカットした後、発光ダイオードとしたところ、順方向電流20mAにおいて、Vfは5V、発光波長370nmで発光出力は700μW、発光効率0.7%と優れた特性を示した。 After cutting into chips μm square, was a light-emitting diode, in a forward current 20 mA, Vf is 5V, emission output at the emission wavelength 370nm showed 700MyuW, the luminous efficiency of 0.7% and excellent characteristics.

【0025】[実施例2]実施例1において、Mgドープp型GaNコンタクト層の膜厚を0.1μmにする他は実施例1と同様にして発光ダイオードを得たところ、 [0025] In Example 2 Example 1, where the addition of the thickness of the Mg-doped p-type GaN contact layer to 0.1μm was obtained a light-emitting diode in the same manner as in Example 1,
順方向電流20mAにおいて、発光波長、発光出力は同一であったが、Vfが4Vにまで下がり、発光効率が0.88%と向上した。 Forward current 20 mA, emission wavelength, emission output was identical, Vf decreases down to 4V, the light emission efficiency was improved 0.88%.

【0026】[実施例2]実施例1において、p型Mg [0026] In Example 2 Example 1, p-type Mg
ドープp型GaNコンタクト層の膜厚を0.1μmにする他は実施例1と同様にして発光ダイオードを得たところ、順方向電流20mAにおいて、発光波長、発光出力は同一であったが、Vfが4Vにまで下がり、発光効率が0.88%と向上した。 Where addition to the thickness of the doped p-type GaN contact layer to 0.1μm was obtained a light-emitting diode in the same manner as in Example 1, the forward current 20 mA, the emission wavelength, but the emission output was the same, Vf but down to the 4V, the light-emitting efficiency was improved 0.88%.

【0027】[実施例3]実施例1において、TMAの流量を多くして、p型クラッド層6のAl混晶比をGa [0027] In Example 3 Example 1, by increasing the flow rate of TMA, the Al content of the p-type cladding layer 6 Ga
0.55Al0.45Nとする他は、同様にして発光ダイオードを得たところ、順方向電流20mAにおいて、Vfは6 Addition to the 0.55Al0.45N is where to obtain a light-emitting diode in the same manner, in a forward current 20 mA, Vf 6
Vとオーミック接触が得られているほぼ限界値を示し、 Showed almost limit value V and ohmic contact is obtained,
発光波長は同一で、発光出力は400μW、発光効率0.2%であった。 Emission wavelength identical, light emission output was 400 W, the luminous efficiency of 0.2%.

【0028】[実施例4]実施例1において、n型クラッド層4を成長しない他は実施例1と同様にして発光ダイオードを得たところ、順方向電流20mAにおいて、 [0028] In Example 4 Example 1 was obtained a light-emitting diode except that no growth of the n-type cladding layer 4 in the same manner as in Example 1, in a forward current 20 mA,
Vfは5Vであったが、発光出力は200μW、発光効率0.2%であった。 Vf is was 5V, emission output was 200MyuW, luminous efficiency of 0.2%.

【0029】[比較例1]実施例1において、TMAの流量を多くして、p型クラッド層6のAl混晶比をGa [0029] In Comparative Example 1 Example 1, by increasing the flow rate of TMA, the Al content of the p-type cladding layer 6 Ga
0.5Al0.5Nとする他は、同様にして発光ダイオードを得たところ、順方向電流20mAにおいて、Vfは30 Addition to the 0.5Al0.5N is where to obtain a light-emitting diode in the same manner, in a forward current 20 mA, Vf is 30
Vにまで上昇しオーミック接触は得られていないことが確認された。 Elevated ohmic contact to the V may be not obtained was confirmed. なお、この素子はVfが大きいため、すぐに発光しなくなった。 Note that this element because Vf is large, no longer immediately emission.

【0030】[比較例2]実施例1において、p型コンタクト層7を形成せず、p型クラッド層6に直接電極を形成する他は、同様にして発光ダイオードを得たところ、順方向電流20mAにおいて、Vfは30Vにまで上昇し、オーミック接触が得られていないため、比較例1と同様にすぐに発光しなくなった。 [0030] In Comparative Example 2 Example 1, without forming the p-type contact layer 7, other forming the electrodes directly on the p-type cladding layer 6, was obtained a light-emitting diode in the same manner, the forward current in 20 mA, Vf is increased to 30 V, since the ohmic contact is not obtained, no longer Similarly immediately emission Comparative example 1.

【0031】[比較例3]実施例1において、p型クラッド層6を成長する際、原料ガスに新たにTMIを加え、キャリアガスを窒素に切り替え、成長温度を800 [0031] In Comparative Example 3 Example 1, when the growth of the p-type cladding layer 6, a new and TMI was added to the raw material gas, the carrier gas is switched to nitrogen, the growth temperature of 800
℃にしてMgドープp型In0.01Al0.14Ga0.85Nクラッド層を成長させる他は、同様にして発光ダイオードを得たところ、順方向電流20mA流すとすぐに発光しなくなった。 ℃ To other to grow a Mg-doped p-type In0.01Al0.14Ga0.85N cladding layer is, where to obtain a light-emitting diode in the same manner, no longer emission as soon as flow forward current 20mA.

【0032】 [0032]

【発明の効果】以上説明したように、本発明の窒化ガリウム系化合物半導体発光素子は、p型GaAlNクラッド層の上に、コンタクト層としてp型GaN層を具備しているため、Vfが低く発光効率に優れた素子とすることができる。 As described above, according to the present invention, a gallium nitride-based compound semiconductor light-emitting device of the present invention, on the p-type GaAlN cladding layer, because it includes a p-type GaN layer as a contact layer, Vf is low emission it can be an excellent device efficiency. しかもp型GaAlN層のAl混晶比を限定することにより結晶性に優れた前記p型クラッド層、 Moreover the p-type cladding layer having excellent crystallinity by limiting the Al content of the p-type GaAlN layer,
前記p型コンタクト層を得ることができ、Vf低下に大きく寄与している。 The p-type contact layer can be obtained, which contributes significantly to Vf decreases.

【0033】さらに、n型窒化ガリウム系化合物半導体層、n型GaAlNクラッド層、n型InGaN層を積層し、前記p型GaAlNクラッド層、前記p型GaN Furthermore, n-type gallium nitride-based compound semiconductor layer, n-type GaAlN cladding layer, laminating a n-type InGaN layer, the p-type GaAlN cladding layer, the p-type GaN
コンタクト層を積層することにより発光出力、発光効率に優れた発光素子を実現でき、るため、未だ実現されていないレーザー素子の構造のヒントとして、その産業上の利用価値は大きい。 Emission output by laminating a contact layer, can be realized a light emitting device excellent in luminous efficiency, because, as a hint of the structure of the laser device which has not yet been realized, is great utility value on that industry.

【0034】 [0034]

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】 本発明の一実施例に係る発光素子の構造を示す模式断面図。 Schematic cross-sectional view showing the structure of a light emitting device according to an embodiment of the present invention; FIG.

【符号の説明】 DESCRIPTION OF SYMBOLS

1 ・・・・・サファイア基板 2 ・・・・・GaNバッファ層 3 ・・・・・n型窒化ガリウム系化合物半導体層 4 ・・・・・n型Ga 1-Y Al Y Nクラッド層 5 ・・・・・n型In Z Ga 1-Z N活性層 6 ・・・・・p型Ga 1-X Al X Nクラッド層 7 ・・・・・p型GaNコンタクト層 8、9 ・・・電極 1 ..... sapphire substrate 2 ----- GaN buffer layer 3 ----- n-type gallium nitride compound semiconductor layer 4 ..... n-type Ga 1-Y Al Y N cladding layer 5, · · · · n-type In Z Ga 1-Z n active layer 6 · · · · · p-type Ga 1-X Al X n cladding layer 7 · · · · · p-type GaN contact layer 8, 9 ... electrode

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl. 6 ,DB名) H01L 33/00 ────────────────────────────────────────────────── ─── of the front page continued (58) investigated the field (Int.Cl. 6, DB name) H01L 33/00

Claims (4)

    (57)【特許請求の範囲】 (57) [the claims]
  1. 【請求項1】 p−n接合を有するダブルヘテロ構造の窒化ガリウム系化合物半導体発光素子において、Mgがドープされたp型Ga 1-X Al X N(但し、Xは0<X< 1. A p-n gallium nitride-based compound semiconductor light emitting device of double-hetero structure having a junction, Mg p-type Ga doped is 1-X Al X N (where, X is 0 <X <
    0.5)クラッド層の上に、電極が形成されるべき層として、Mgがドープされたp型GaNコンタクト層を具備することを特徴とする窒化ガリウム系化合物半導体発光素子。 0.5) on the cladding layer, as a layer to the electrode is formed, Mg-doped p-type gallium nitride-based compound characterized by including a GaN contact layer semiconductor light emitting element.
  2. 【請求項2】 前記p型Ga 1-X Al X Nクラッド層の膜厚は10オングストローム以上、0.2μm以下であることを特徴とする請求項1に記載の窒化ガリウム系化合物半導体発光素子。 Wherein said p-type Ga 1-X Al X N film thickness of the cladding layer 10 angstroms, gallium nitride-based compound semiconductor light-emitting device according to claim 1, characterized in that at 0.2μm or less.
  3. 【請求項3】 前記p型GaNコンタクト層の膜厚は1 Wherein the thickness of the p-type GaN contact layer is 1
    0オングストローム以上、0.5μm以下であることを特徴とする請求項1に記載の窒化ガリウム系化合物半導体発光素子。 0 angstroms, gallium nitride-based compound semiconductor light-emitting device according to claim 1, characterized in that at 0.5μm or less.
  4. 【請求項4】 n型窒化ガリウム系化合物半導体層の上に、n型Ga 1-Y Al Y Nクラッド層(但し、Yは0<Y< On the 4. n-type gallium nitride-based compound semiconductor layer, n-type Ga 1-Y Al Y N cladding layer (where, Y is 0 <Y <
    1)と、n型In Z Ga 1-Z N活性層(但し、Zは0<Z< And 1), n-type In Z Ga 1-Z N active layer (where, Z is 0 <Z <
    1)とが順に積層されており、そのn型In Z Ga 1-Z 1) and are layered in this order, the n-type In Z Ga 1-Z N
    活性層の上に、前記p型Ga 1-X Al X Nクラッド層が積層されていることを特徴とする請求項1に記載の窒化ガリウム系化合物半導体発光素子。 On the active layer, the p-type Ga 1-X Al X N gallium nitride compound semiconductor light-emitting device according to claim 1, the cladding layer is characterized in that it is laminated.
JP7904693A 1993-03-12 1993-03-12 The gallium nitride-based compound semiconductor light-emitting device Expired - Lifetime JP2778405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7904693A JP2778405B2 (en) 1993-03-12 1993-03-12 The gallium nitride-based compound semiconductor light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7904693A JP2778405B2 (en) 1993-03-12 1993-03-12 The gallium nitride-based compound semiconductor light-emitting device

Publications (2)

Publication Number Publication Date
JPH06268259A true JPH06268259A (en) 1994-09-22
JP2778405B2 true JP2778405B2 (en) 1998-07-23

Family

ID=13678969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7904693A Expired - Lifetime JP2778405B2 (en) 1993-03-12 1993-03-12 The gallium nitride-based compound semiconductor light-emitting device

Country Status (1)

Country Link
JP (1) JP2778405B2 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1296314A2 (en) 2001-09-20 2003-03-26 Victor Company Of Japan, Ltd. Information recording carrier
US7012860B2 (en) 2001-10-15 2006-03-14 Victor Company Of Japan, Limited Information recording medium having a wobbling groove structure
US7133331B2 (en) 2000-12-28 2006-11-07 Victor Company Of Japan, Limited Recording medium having a substrate containing microscopic pattern of parallel groove and land sections and recording/reproducing equipment therefor
US7177262B2 (en) 2002-04-19 2007-02-13 Victor Company Of Japan, Ltd. Reproducing system and corresponding information recording medium having wobbled land portions
WO2007138658A1 (en) 2006-05-26 2007-12-06 Rohm Co., Ltd. Nitride semiconductor light-emitting device
WO2007138656A1 (en) 2006-05-26 2007-12-06 Rohm Co., Ltd. Nitride semiconductor light emitting element
EP2267194A2 (en) 2003-02-24 2010-12-29 Waseda University Thin-film single crystal growing method
US8395165B2 (en) 2011-07-08 2013-03-12 Bridelux, Inc. Laterally contacted blue LED with superlattice current spreading layer
US8525221B2 (en) 2009-11-25 2013-09-03 Toshiba Techno Center, Inc. LED with improved injection efficiency
US8536601B2 (en) 2009-06-10 2013-09-17 Toshiba Techno Center, Inc. Thin-film LED with P and N contacts electrically isolated from the substrate
US8564010B2 (en) 2011-08-04 2013-10-22 Toshiba Techno Center Inc. Distributed current blocking structures for light emitting diodes
US8581267B2 (en) 2011-11-09 2013-11-12 Toshiba Techno Center Inc. Series connected segmented LED
US8624482B2 (en) 2011-09-01 2014-01-07 Toshiba Techno Center Inc. Distributed bragg reflector for reflecting light of multiple wavelengths from an LED
US8664679B2 (en) 2011-09-29 2014-03-04 Toshiba Techno Center Inc. Light emitting devices having light coupling layers with recessed electrodes
US8686430B2 (en) 2011-09-07 2014-04-01 Toshiba Techno Center Inc. Buffer layer for GaN-on-Si LED
US8698163B2 (en) 2011-09-29 2014-04-15 Toshiba Techno Center Inc. P-type doping layers for use with light emitting devices
US8865565B2 (en) 2011-08-02 2014-10-21 Kabushiki Kaisha Toshiba LED having a low defect N-type layer that has grown on a silicon substrate
US8916906B2 (en) 2011-07-29 2014-12-23 Kabushiki Kaisha Toshiba Boron-containing buffer layer for growing gallium nitride on silicon
US8994064B2 (en) 2011-09-03 2015-03-31 Kabushiki Kaisha Toshiba Led that has bounding silicon-doped regions on either side of a strain release layer
US9012921B2 (en) 2011-09-29 2015-04-21 Kabushiki Kaisha Toshiba Light emitting devices having light coupling layers
US9012939B2 (en) 2011-08-02 2015-04-21 Kabushiki Kaisha Toshiba N-type gallium-nitride layer having multiple conductive intervening layers
US9018643B2 (en) 2011-09-06 2015-04-28 Kabushiki Kaisha Toshiba GaN LEDs with improved area and method for making the same
US9130068B2 (en) 2011-09-29 2015-09-08 Manutius Ip, Inc. Light emitting devices having dislocation density maintaining buffer layers
US9142743B2 (en) 2011-08-02 2015-09-22 Kabushiki Kaisha Toshiba High temperature gold-free wafer bonding for light emitting diodes
US9159869B2 (en) 2011-08-03 2015-10-13 Kabushiki Kaisha Toshiba LED on silicon substrate using zinc-sulfide as buffer layer
US9178114B2 (en) 2011-09-29 2015-11-03 Manutius Ip, Inc. P-type doping layers for use with light emitting devices
US9343641B2 (en) 2011-08-02 2016-05-17 Manutius Ip, Inc. Non-reactive barrier metal for eutectic bonding process
US9617656B2 (en) 2011-07-25 2017-04-11 Toshiba Corporation Nucleation of aluminum nitride on a silicon substrate using an ammonia preflow

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6136626A (en) * 1994-06-09 2000-10-24 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device and production method thereof
US6005258A (en) 1994-03-22 1999-12-21 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using group III Nitrogen compound having emission layer doped with donor and acceptor impurities
EP0678945B1 (en) * 1994-04-20 1998-07-08 Isamu Akasaki Gallium nitride group compound semiconductor laser diode and method of manufacturing the same
WO1996003776A1 (en) * 1994-07-21 1996-02-08 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device and production method thereof
US6996150B1 (en) 1994-09-14 2006-02-07 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor
JP2666237B2 (en) * 1994-09-20 1997-10-22 株式会社豊田中央研究所 3-nitride semiconductor light emitting device
US6900465B2 (en) 1994-12-02 2005-05-31 Nichia Corporation Nitride semiconductor light-emitting device
US5777350A (en) 1994-12-02 1998-07-07 Nichia Chemical Industries, Ltd. Nitride semiconductor light-emitting device
EP0742622A3 (en) * 1995-03-27 1997-02-19 Mitsubishi Cable Ind Ltd Laser diode
CN100350641C (en) 1995-11-06 2007-11-21 日亚化学工业株式会社 The nitride semiconductor device
US6165812A (en) * 1996-01-19 2000-12-26 Matsushita Electric Industrial Co., Ltd. Gallium nitride compound semiconductor light emitting device and process for producing gallium nitride compound semiconductor
CN100530719C (en) * 1997-01-09 2009-08-19 日亚化学工业株式会社 Nitride semiconductor device
US6677619B1 (en) 1997-01-09 2004-01-13 Nichia Chemical Industries, Ltd. Nitride semiconductor device
US6069021A (en) * 1997-05-14 2000-05-30 Showa Denko K.K. Method of growing group III nitride semiconductor crystal layer and semiconductor device incorporating group III nitride semiconductor crystal layer
US6194744B1 (en) 1998-03-17 2001-02-27 Showa Denko Kabushiki Kaisha Method of growing group III nitride semiconductor crystal layer and semiconductor device incorporating group III nitride semiconductor crystal layer
US6841800B2 (en) 1997-12-26 2005-01-11 Matsushita Electric Industrial Co., Ltd. Light-emitting device comprising a gallium-nitride-group compound-semiconductor
JP3589000B2 (en) 1997-12-26 2004-11-17 松下電器産業株式会社 The gallium nitride-based compound semiconductor light-emitting device
JPH11340505A (en) 1998-05-25 1999-12-10 Matsushita Electric Ind Co Ltd Gallium nitride-based compound semiconductor light emitting element
CN1292493C (en) * 1999-12-03 2006-12-27 美商克立股份有限公司 Enhanced light extration in LEDs through the use of internal and external optical elements
US6410942B1 (en) * 1999-12-03 2002-06-25 Cree Lighting Company Enhanced light extraction through the use of micro-LED arrays
US7277379B2 (en) 2001-09-26 2007-10-02 Victor Company Of Japan, Limited Information recording carrier
US6881983B2 (en) 2002-02-25 2005-04-19 Kopin Corporation Efficient light emitting diodes and lasers
US6911079B2 (en) 2002-04-19 2005-06-28 Kopin Corporation Method for reducing the resistivity of p-type II-VI and III-V semiconductors
US6734091B2 (en) 2002-06-28 2004-05-11 Kopin Corporation Electrode for p-type gallium nitride-based semiconductors
US7498612B2 (en) 2003-10-31 2009-03-03 Showa Denko K.K. Compound semiconductor light-emitting device having pn-junction type hetero structure and forming method thereof
JP2009021424A (en) 2007-07-12 2009-01-29 Opnext Japan Inc Nitride semiconductor light emitting element, and manufacturing method thereof
JP2009177219A (en) * 2009-05-15 2009-08-06 Mitsubishi Chemicals Corp METHOD FOR MANUFACTURING GaN-BASED SEMICONDUCTOR DEVICE
CN105655456B (en) * 2016-04-08 2017-12-08 湘能华磊光电股份有限公司 An epitaxial led increasing light extraction efficiency bottom roughening method of growing

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5235999B2 (en) * 1974-08-26 1977-09-12
JPS609355B2 (en) * 1975-08-30 1985-03-09 Fujitsu Ltd
JPS579714B2 (en) * 1977-12-30 1982-02-23
JPH06101587B2 (en) 1989-03-01 1994-12-12 日本電信電話株式会社 Semiconductor light-emitting element
JP2681094B2 (en) 1990-02-28 1997-11-19 名古屋大学長 The gallium nitride-based compound semiconductor light-emitting device
JP3193981B2 (en) 1990-02-28 2001-07-30 名古屋大学長 The gallium nitride-based compound semiconductor light-emitting device
JP3160914B2 (en) 1990-12-26 2001-04-25 浩 天野 Gallium nitride-based compound semiconductor laser diode
JP2791448B2 (en) 1991-04-19 1998-08-27 日亜化学工業 株式会社 Light emitting diode
JPH0529653A (en) 1991-07-19 1993-02-05 Toshiba Corp Semiconductor device
JP3251046B2 (en) 1992-03-03 2002-01-28 シャープ株式会社 The method of growing a compound semiconductor, a compound semiconductor light emitting device and a manufacturing method thereof
JP2681733B2 (en) 1992-10-29 1997-11-26 浩 天野 Nitrogen -3 group element compound semiconductor light-emitting device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JAN.J.APPL.PHYS,VOL.32 (1993),PP.L8−L11,PART2

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7457207B2 (en) 2000-12-28 2008-11-25 Victor Company Of Japan, Limited Recording medium having a substrate containing microscopic pattern of parallel groove and land sections and recording/reproducing equipment therefor
US8238205B2 (en) 2000-12-28 2012-08-07 JVC Kenwood Corporation Recording medium having a substrate containing microscopic pattern of parallel groove and land sections and recording/reproducing equipment therefor
US7133331B2 (en) 2000-12-28 2006-11-07 Victor Company Of Japan, Limited Recording medium having a substrate containing microscopic pattern of parallel groove and land sections and recording/reproducing equipment therefor
US8228767B2 (en) 2000-12-28 2012-07-24 JVC Kenwood Corporation Recording medium having a substrate containing microscopic pattern of parallel groove and land sections and recording/reproducing equipment therefor
US7729211B2 (en) 2000-12-28 2010-06-01 Victor Company Of Japan, Limited Recording medium having a substrate containing microscopic pattern of parallel groove and land sections and recording/reproducing equipment therefor
US7729210B2 (en) 2000-12-28 2010-06-01 Victor Company Of Japan, Limited Recording medium having a substrate containing microscopic pattern of parallel groove and land sections and recording/reproducing equipment therefor
US7411873B2 (en) 2000-12-28 2008-08-12 Victor Company Of Japan, Limited Recording medium having a substrate containing microscopic pattern of parallel groove and land sections and recording/reproducing equipment therefor
EP2117000A1 (en) 2001-09-20 2009-11-11 Victor Company of Japan Limited Information recording carrier
EP1296314A2 (en) 2001-09-20 2003-03-26 Victor Company Of Japan, Ltd. Information recording carrier
US7688688B2 (en) 2001-10-15 2010-03-30 Victor Company Of Japan, Limited Information recording medium having a wobbling groove structure
US7391681B2 (en) 2001-10-15 2008-06-24 Victor Company Of Japan, Ltd. Information recording medium having a wobbling groove structure
US7391678B2 (en) 2001-10-15 2008-06-24 Victor Company Of Japan, Ltd. Information recording medium having a wobbling groove structure
US7391679B2 (en) 2001-10-15 2008-06-24 Victor Company Of Japan Ltd. Information recording medium having a wobbling groove structure
US7400559B2 (en) 2001-10-15 2008-07-15 Victor Company Of Japan, Limited Information recording medium having a wobbling groove structure
US7012860B2 (en) 2001-10-15 2006-03-14 Victor Company Of Japan, Limited Information recording medium having a wobbling groove structure
US7688707B2 (en) 2001-10-15 2010-03-30 Victor Company Of Japan, Limited Information recording medium having a wobbling groove structure
US7170830B2 (en) 2001-10-15 2007-01-30 Victor Company Of Japan, Ltd. Information recording medium having a wobbling groove structure
US7193938B2 (en) 2001-10-15 2007-03-20 Victor Company Of Japan, Limited Information recording medium having a wobbling groove structure
US7706232B2 (en) 2001-10-15 2010-04-27 Victor Company Of Japan, Limited Information recording medium having a wobbling groove structure
US7675839B2 (en) 2001-10-15 2010-03-09 Victor Compay of Japan, Limited Information recording medium having a wobbling groove structure
US8179773B2 (en) 2002-04-19 2012-05-15 JVC Kenwood Corporation Optical recording medium having auxiliary information and reference clock
US7349324B2 (en) 2002-04-19 2008-03-25 Victor Company Of Japan, Limited Reproducing system and corresponding information recording medium having wobbled land portions
US7668072B2 (en) 2002-04-19 2010-02-23 Victor Company Of Japan, Limited Producing system and corresponding information recording medium having wobbled land portions
US7656781B2 (en) 2002-04-19 2010-02-02 Victor Company Of Japan, Limited Reproducing system and corresponding information recording medium having wobbled land portions
US7177262B2 (en) 2002-04-19 2007-02-13 Victor Company Of Japan, Ltd. Reproducing system and corresponding information recording medium having wobbled land portions
US8189451B2 (en) 2002-04-19 2012-05-29 JVC Kenwood Corporation Optical recording medium having auxiliary information and reference clock
US7336595B2 (en) 2002-04-19 2008-02-26 Victor Company Of Japan, Ltd. Reproducing system and corresponding information recording medium having wobbled land portions
EP2273569A2 (en) 2003-02-24 2011-01-12 Waseda University Beta-Ga203 light-emitting device and its manufacturing method
EP2267194A2 (en) 2003-02-24 2010-12-29 Waseda University Thin-film single crystal growing method
US8053756B2 (en) 2006-05-26 2011-11-08 Rohm Co., Ltd. Nitride semiconductor light emitting element
WO2007138658A1 (en) 2006-05-26 2007-12-06 Rohm Co., Ltd. Nitride semiconductor light-emitting device
WO2007138656A1 (en) 2006-05-26 2007-12-06 Rohm Co., Ltd. Nitride semiconductor light emitting element
US9142742B2 (en) 2009-06-10 2015-09-22 Kabushiki Kaisha Toshiba Thin-film LED with P and N contacts electrically isolated from the substrate
US8536601B2 (en) 2009-06-10 2013-09-17 Toshiba Techno Center, Inc. Thin-film LED with P and N contacts electrically isolated from the substrate
US8871539B2 (en) 2009-06-10 2014-10-28 Kabushiki Kaisha Toshiba Thin-film LED with P and N contacts electrically isolated from the substrate
US8525221B2 (en) 2009-11-25 2013-09-03 Toshiba Techno Center, Inc. LED with improved injection efficiency
US8684749B2 (en) 2009-11-25 2014-04-01 Toshiba Techno Center Inc. LED with improved injection efficiency
US9012953B2 (en) 2009-11-25 2015-04-21 Kabushiki Kaisha Toshiba LED with improved injection efficiency
US8395165B2 (en) 2011-07-08 2013-03-12 Bridelux, Inc. Laterally contacted blue LED with superlattice current spreading layer
US9617656B2 (en) 2011-07-25 2017-04-11 Toshiba Corporation Nucleation of aluminum nitride on a silicon substrate using an ammonia preflow
US8916906B2 (en) 2011-07-29 2014-12-23 Kabushiki Kaisha Toshiba Boron-containing buffer layer for growing gallium nitride on silicon
US9343641B2 (en) 2011-08-02 2016-05-17 Manutius Ip, Inc. Non-reactive barrier metal for eutectic bonding process
US9142743B2 (en) 2011-08-02 2015-09-22 Kabushiki Kaisha Toshiba High temperature gold-free wafer bonding for light emitting diodes
US9012939B2 (en) 2011-08-02 2015-04-21 Kabushiki Kaisha Toshiba N-type gallium-nitride layer having multiple conductive intervening layers
US8865565B2 (en) 2011-08-02 2014-10-21 Kabushiki Kaisha Toshiba LED having a low defect N-type layer that has grown on a silicon substrate
US9159869B2 (en) 2011-08-03 2015-10-13 Kabushiki Kaisha Toshiba LED on silicon substrate using zinc-sulfide as buffer layer
US9070833B2 (en) 2011-08-04 2015-06-30 Kabushiki Kaisha Toshiba Distributed current blocking structures for light emitting diodes
US8564010B2 (en) 2011-08-04 2013-10-22 Toshiba Techno Center Inc. Distributed current blocking structures for light emitting diodes
US8624482B2 (en) 2011-09-01 2014-01-07 Toshiba Techno Center Inc. Distributed bragg reflector for reflecting light of multiple wavelengths from an LED
US8981410B1 (en) 2011-09-01 2015-03-17 Kabushiki Kaisha Toshiba Distributed bragg reflector for reflecting light of multiple wavelengths from an LED
US8994064B2 (en) 2011-09-03 2015-03-31 Kabushiki Kaisha Toshiba Led that has bounding silicon-doped regions on either side of a strain release layer
US9018643B2 (en) 2011-09-06 2015-04-28 Kabushiki Kaisha Toshiba GaN LEDs with improved area and method for making the same
US8686430B2 (en) 2011-09-07 2014-04-01 Toshiba Techno Center Inc. Buffer layer for GaN-on-Si LED
US9130068B2 (en) 2011-09-29 2015-09-08 Manutius Ip, Inc. Light emitting devices having dislocation density maintaining buffer layers
US9012921B2 (en) 2011-09-29 2015-04-21 Kabushiki Kaisha Toshiba Light emitting devices having light coupling layers
US8664679B2 (en) 2011-09-29 2014-03-04 Toshiba Techno Center Inc. Light emitting devices having light coupling layers with recessed electrodes
US9178114B2 (en) 2011-09-29 2015-11-03 Manutius Ip, Inc. P-type doping layers for use with light emitting devices
US9299881B2 (en) 2011-09-29 2016-03-29 Kabishiki Kaisha Toshiba Light emitting devices having light coupling layers
US8698163B2 (en) 2011-09-29 2014-04-15 Toshiba Techno Center Inc. P-type doping layers for use with light emitting devices
US9490392B2 (en) 2011-09-29 2016-11-08 Toshiba Corporation P-type doping layers for use with light emitting devices
US9123853B2 (en) 2011-11-09 2015-09-01 Manutius Ip, Inc. Series connected segmented LED
US9391234B2 (en) 2011-11-09 2016-07-12 Toshiba Corporation Series connected segmented LED
US8581267B2 (en) 2011-11-09 2013-11-12 Toshiba Techno Center Inc. Series connected segmented LED

Also Published As

Publication number Publication date Type
JPH06268259A (en) 1994-09-22 application

Similar Documents

Publication Publication Date Title
US7402838B2 (en) Nitride semiconductor device
US6580099B2 (en) Nitride semiconductor light-emitting devices
US6215133B1 (en) Light-emitting gallium nitride-based compound semiconductor device
US5959307A (en) Nitride semiconductor device
US6479836B1 (en) Semiconductor light emitting device
US5804834A (en) Semiconductor device having contact resistance reducing layer
US6359292B1 (en) Semiconductor light emitting element
US6849472B2 (en) Nitride semiconductor device with reduced polarization fields
US6958497B2 (en) Group III nitride based light emitting diode structures with a quantum well and superlattice, group III nitride based quantum well structures and group III nitride based superlattice structures
US20020093020A1 (en) Group III nitride LED with undoped cladding layer (5000.137)
US6906352B2 (en) Group III nitride LED with undoped cladding layer and multiple quantum well
US6337493B1 (en) Nitride semiconductor device
US20030164507A1 (en) Group III nitride light emitting devices with progressively graded layers
US20070122994A1 (en) Nitride semiconductor light emitting element
US5990496A (en) Light emitting device with cap layer
US6900465B2 (en) Nitride semiconductor light-emitting device
JP3646649B2 (en) The gallium nitride-based compound semiconductor light-emitting device
JP3424629B2 (en) Nitride semiconductor device
JP3427265B2 (en) Nitride semiconductor device
US20060049417A1 (en) III-nitride based on semiconductor device with low-resistance ohmic contacts
US6346720B1 (en) Layered group III-V compound semiconductor, method of manufacturing the same, and light emitting element
JP4629178B2 (en) Nitride semiconductor device
JP3551101B2 (en) Nitride semiconductor device
JP2735057B2 (en) The nitride semiconductor light emitting device
JP3314666B2 (en) Nitride semiconductor device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080508

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090508

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090508

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090508

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090508

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090508

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100508

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100508

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110508

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120508

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120508

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120508

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130508

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130508

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130508

Year of fee payment: 15

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130508

Year of fee payment: 15

EXPY Cancellation because of completion of term