JP2785254B2 - The gallium nitride-based compound semiconductor light-emitting device - Google Patents

The gallium nitride-based compound semiconductor light-emitting device

Info

Publication number
JP2785254B2
JP2785254B2 JP15721993A JP15721993A JP2785254B2 JP 2785254 B2 JP2785254 B2 JP 2785254B2 JP 15721993 A JP15721993 A JP 15721993A JP 15721993 A JP15721993 A JP 15721993A JP 2785254 B2 JP2785254 B2 JP 2785254B2
Authority
JP
Japan
Prior art keywords
layer
type
compound semiconductor
gallium nitride
based compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15721993A
Other languages
Japanese (ja)
Other versions
JPH0715041A (en
Inventor
修二 中村
孝志 向井
Original Assignee
日亜化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
Application filed by 日亜化学工業株式会社 filed Critical 日亜化学工業株式会社
Priority to JP15721993A priority Critical patent/JP2785254B2/en
Publication of JPH0715041A publication Critical patent/JPH0715041A/en
Application granted granted Critical
Publication of JP2785254B2 publication Critical patent/JP2785254B2/en
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15644829&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2785254(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Anticipated expiration legal-status Critical
Application status is Expired - Lifetime legal-status Critical

Links

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】本発明は窒化ガリウム系化合物半導体を用いた発光素子に係り、特に順方向電圧(Vf) The present invention relates relates to a light emitting device using a gallium nitride-based compound semiconductor, in particular a forward voltage (Vf)
が低く、さらに発光出力が高い窒化ガリウム系化合物半導体発光素子に関する。 Is low and further the light emitting output is about high gallium nitride-based compound semiconductor light-emitting device.

【従来の技術】GaN、GaAlN、InGaN、In BACKGROUND OF THE INVENTION GaN, GaAlN, InGaN, In
AlGaN等の窒化ガリウム系化合物半導体は直接遷移を有し、バンドギャップが1.95eV〜6eVまで変化するため、発光ダイオード、レーザダイオード等、発光素子の材料として有望視されている。 Has a direct semiconductor gallium nitride-based compound transitions AlGaN etc., since the band gap varying from 1.95EV~6eV, light emitting diodes, such as a laser diode, is promising as a material for the light emitting element. 現在、この材料を用いた発光素子には、n型窒化ガリウム系化合物半導体の上に、p型ドーパントをドープした高抵抗なi型の窒化ガリウム系化合物半導体を積層したいわゆるMIS Currently, the light emitting device using this material, n-type on the gallium-based compound semiconductor nitride, a so-called MIS formed by laminating a high-resistance i-type gallium nitride compound semiconductor doped with a p-type dopant
構造の青色発光ダイオードが知られている。 Blue light emitting diode structures are known.

【0002】MIS構造の発光素子の一例として、特開平3−252176号公報、特開平3−252177号公報、特開平3−252178号公報において、n型窒化ガリウム系化合物半導体層を、i層に近い順から低キャリア濃度のn層と、高キャリア濃度のn +層との2層構造とする技術、および/またはi層の不純物濃度をn [0002] As an example of a light-emitting element of the MIS structure, JP-A-3-252176, JP-A No. 3-252177 discloses, in Japanese Patent Laid-Open 3-252178 discloses the n-type gallium nitride-based compound semiconductor layer, the i layer and n layer of low carrier concentration from near the forward, technology and two-layer structure of n + layer of high carrier concentration, and / or the impurity concentration of the i layer n
層に近い順から低不純物濃度のi層と、高不純物濃度のi +層と2層構造とする技術が開示されている。 And the i-layer of low impurity concentration of the order of closeness to the layer, a technique for the high impurity concentration of i + layer and two-layer structure is disclosed. しかしながら、これらMIS構造の発光素子は発光強度、発光出力共非常に低く、さらに高抵抗なi層を発光層としているため順方向電圧(Vf)が20V以上と高いため発光効率が悪く、実用化するには不十分であった。 However, such a light-emitting element emitting intensity of the MIS structure, the emission output both very low, poor luminous efficiency for forward voltage (Vf) high and 20V or more since the further high-resistance i-layer and light emitting layer, practically It was insufficient to.

【0003】一方、p−n接合を有する窒化ガリウム系化合物半導体を利用した発光素子のアイデアとして、例えば、特開昭59−228776号公報では、GaAl On the other hand, as the idea of ​​the light-emitting device using a gallium nitride-based compound semiconductor having a p-n junction, for example, in JP-A-59-228776, GaAl
N層を発光層とするダブルへテロ構造のLEDが提案されており、また、特開平4−209577号公報では、 LED heterostructure the N layer to the double of the light-emitting layer have been proposed, and in JP-A 4-209577, JP-
ノンドープのInGaNを発光層とするダブルへテロ構造のLEDが提案されている。 LED heterostructure undoped InGaN a double to the light-emitting layer has been proposed. またこれら公報の他、従来p−n接合を用いたダブルヘテロ構造の発光素子は数々の構造が提案されている。 The addition to these publications, the light emitting device of double-hetero structure using a conventional p-n junction has been proposed a number of structures. しかしながら、これらの技術は、窒化ガリウム系化合物半導体層のp型化が困難であったため、実現されてはいなかった。 However, these techniques, since p-type gallium nitride-based compound semiconductor layer is difficult, had not been realized.

【0004】高抵抗なi型を低抵抗なp型とし、発光出力を向上させたp−n接合の発光素子を実現するための技術として、我々は特願平3−357046号で、i型窒化ガリウム系化合物半導体層を400℃以上でアニーリングすることにより低抵抗なp型とする技術を提案した。 [0004] The high-resistance i-type a low resistance p-type, as a technique for realizing a light emitting element of the p-n junction with improved light emission output, we in Japanese Patent Application No. Hei 3-357046, i-type gallium nitride-based compound semiconductor layer was proposed a technique that a low-resistance p-type by annealing at 400 ° C. or higher.

【0005】 [0005]

【発明が解決しようとする課題】我々は、上記技術により窒化ガリウム系化合物半導体のp型化を行い、初めてp−n接合を用いたダブルヘテロ構造の発光素子を実現したところ、従来提案されていたダブルヘテロ構造では、n型層とp型層との間に電流が均一に流れず、窒化ガリウム系化合物半導体が面内均一に発光しないことを発見した。 [Problems that the Invention is to Solve] We performed a p-type gallium nitride-based compound semiconductor by the above technique, was realized a light emitting element of the double heterostructure with the first p-n junction, it has been conventionally proposed the double hetero structure, a current between the n-type layer and the p-type layer does not flow uniformly, gallium nitride-based compound semiconductor was found not to emit light in a plane uniformly. また、我々の実験によると、積層する窒化ガリウム系化合物半導体の組み合わせ、組成比等の要因で発光出力に大きな差が現れた。 Further, according to our experiments, a combination of laminated gallium nitride-based compound semiconductor, a large difference in the luminous output due to factors such as the composition ratio appeared. しかも、p型窒化ガリウム系化合物半導体に形成する電極のオーミック性が、そのp型層の結晶性、種類等の要因によって左右され、定められた順方向電流に対し、順方向電圧(Vf)が高くなり、発光効率が低下するという問題があった。 Moreover, ohmic electrodes formed on a p-type gallium nitride-based compound semiconductor, crystallinity of the p-type layer, is affected by factors such as the type, relative to the forward current that is determined, forward voltage (Vf) higher becomes luminous efficiency is lowered.

【0006】従って、本発明は上記問題点を解決することを目的として成されたものであり第1の目的は、新規なダブルヘテロ構造の発光素子の構造を提供することにより、窒化ガリウム系化合物半導体層を面内均一に発光させ、発光素子の発光出力を向上させることにあり、第2の目的は、窒化ガリウム系化合物半導体発光素子のV Accordingly, the present invention has been made in order to solve the above problem first object by providing a structure of a light emitting element of the new double heterostructure, a gallium nitride-based compound the semiconductor layer plane uniformly emit light, it is to improve the light emission output of the light emitting element, the second object, V the gallium nitride-based compound semiconductor light-emitting device
fを低下させ、発光効率を向上させることにある。 f lowers the is to improve the luminous efficiency.

【0007】 [0007]

【課題を解決するための手段】我々は特定の窒化ガリウム系化合物半導体を発光層とするダブルヘテロ構造の発光素子をさらに改良し、その発光層を挟むn型クラッド層および/またはpクラッド層のキャリア濃度を調整することにより、上記問題を解決できることを見いだした。 Means for Solving the Problems] We further improved the light-emitting element of the double heterostructure to a particular gallium nitride compound semiconductor light-emitting layer, the n-type cladding layer and / or the p-cladding layers sandwiching the light-emitting layer by adjusting the carrier concentration was found to be able to solve the above problems. 即ち、本発明の窒化ガリウム系化合物半導体発光素子は、n型窒化ガリウム系化合物半導体層とp型窒化ガリウム系化合物半導体層との間に、 n型In X Ga 1-X That is, the gallium nitride-based compound semiconductor light-emitting device of the present invention, between the n-type gallium nitride-based compound semiconductor layer and a p-type gallium nitride-based compound semiconductor layer, n-type In X Ga 1-X N
(0<X<1)層を発光層として具備するダブルへテロ構造の窒化ガリウム系化合物半導体発光素子であって、 (0 <X <1) layer a gallium nitride compound semiconductor light-emitting device of double heterostructure comprising a light-emitting layer,
前記n型窒化ガリウム系化合物半導体層、および/または前記p型窒化ガリウム系化合物半導体層のキャリア濃度が、前記In X Ga 1-X N層に接近するにつれて小さくなるように調整されており、 前記p型窒化ガリウム系化 The n-type gallium nitride-based compound semiconductor layer, and / or the carrier concentration of the p-type gallium nitride-based compound semiconductor layer, is adjusted to become smaller as it approaches the In X Ga 1-X N layer, wherein the p-type gallium nitride-based reduction
合物半導体層は、キャリア濃度の大きいp + 型GaN層 Compound semiconductor layer is greater p + -type GaN layer having a carrier concentration
と、p + 型GaN層よりもキャリア濃度の小さいp型G When, p + -type GaN layer having a small carrier concentration than the p-type G
1-Z Al Z N(0<Z<1)層とからなることを特徴とする。 characterized in that consisting of a 1-Z Al Z N ( 0 <Z <1) layer. なお本発明では後に記載してあるように、特にこ Incidentally, as in the present invention are described later, usually incorporates
のp型窒化ガリウム系化合物半導体層を前記2層構造の The p-type gallium nitride-based compound semiconductor layer of the two-layer structure
みとする必要はなく、3層以上積層した多層膜層構造と Need not be the only, and the multilayer film structure obtained by stacking three or more layers
しても良い。 It may be.

【0008】図1は本発明の一実施例の発光素子の構造を示す模式断面図であり、基板1の上に、n型窒化ガリウム系化合物半導体層(以下、nクラッド層という。) [0008] Figure 1 is a schematic sectional view showing a structure of a light-emitting element of one embodiment of the present invention, on a substrate 1, n-type gallium nitride-based compound semiconductor layer (hereinafter, n-cladding layer called.)
として、n +型GaN層2と、n + GaN層2よりもキャリア濃度の小さいn型Ga 1-Y Al Y N層3とを積層し、 As an n + -type GaN layer 2, and a small n-type carrier concentration than n + GaN layer 2 Ga 1-Y Al Y N layer 3 are laminated,
その上に発光層としてIn X Ga 1-X N層4を積層し、その上にp型窒化ガリウム系化合物半導体層(以下、pクラッド層という。)として、p型Ga 1-Z Al Z N層5 The In X Ga 1-X N layer 4 is laminated as a light-emitting layer thereon, the p-type gallium nitride-based compound semiconductor layer on a (hereinafter, referred to as p-cladding layer.), P-type Ga 1-Z Al Z N layer 5
と、p型Ga 1-Z Al Z N層よりもキャリア濃度の大きいp +型GaN層6とを順に積層したダブルヘテロ構造としている。 When, and a p-type Ga 1-Z Al Z N double heterostructure formed by laminating a large p + -type GaN layer 6 of the carrier concentration in the order than the layer.

【0009】基板1にはサファイア、SiC、Si、Z [0009] The substrate 1 sapphire, SiC, Si, Z
nO等の材料が使用されるが、通常はサファイアが用いられる。 Although materials such nO is used, usually a sapphire is used. また、n + GaN層2を成長させる前に、基板1の上にGaN、AlN等からなるバッファ層を成長させてもよい。 Also, before growing the n + GaN layer 2 may GaN, be grown a buffer layer of AlN or the like on the substrate 1.

【0010】図1では、nクラッド層はn +型GaN層2と、n型Ga 1-Y Al Y N層3とを積層した2層構造としているが、特にこの層を2層構造とする必要はなく、 [0010] In Figure 1, n cladding layer and the n + -type GaN layer 2, although the n-type Ga 1-Y Al Y N layer 3 and the two-layer structure of the, in particular the layer and two-layer structure need not,
このnクラッド層のキャリア濃度を発光層4に接近するほど小さく調整してあれば、nクラッド層を3層以上積層した多層膜層構造としてもよいことはいうまでもない。 If the carrier concentration of the n-clad layer is adjusted smaller approaches the light emitting layer 4, of course also be possible as a multilayer film structure formed by laminating the n-clad layer 3 or more layers. 好ましくは、最初に成長する層をキャリア濃度の最も大きいn +型GaNとすることにより、結晶性が最も良くなるため、そのn +型GaN層の上に成長するn型Ga 1-Y Al Y N層の結晶性も良くなり発光素子の発光出力が向上する。 Preferably, by the layer which grows initially the largest n + -type GaN of carrier concentration, the crystallinity is best, n-type Ga 1-Y Al Y grown on the n + -type GaN layer emission output of crystallinity is good it becomes the light emitting element of the N layer is improved. nクラッド層のキャリア濃度は、窒化ガリウム系化合物半導体にドープするSi、Ge、Se、 The carrier concentration of the n-clad layer, Si is doped gallium nitride compound semiconductor, Ge, Se,
Te、C等のn型ドーパントのドープ量を適宜変更することにより変化させることができ、前記ドーパントをドープして、キャリア濃度を1×10 16 /cm 3 〜1×10 Te, can be changed by appropriately changing the doping amount of n-type dopant of C or the like, by doping the dopant, the carrier concentration of 1 × 10 16 / cm 3 ~1 × 10
22 /cm 3の範囲に調整することが好ましい。 It is preferably adjusted to a range of 22 / cm 3.

【0011】発光層4はn型In X Ga 1-X Nとし、 X値は0より大きければ特に限定しないが、0<X<0.5 [0011] emitting layer 4 is an n-type In X Ga 1-X N, the X value is not particularly limited as greater than 0, 0 <X <0.5
の範囲に調整することが好ましい。 It is preferably adjusted to a range of. X値を増加するに従い発光色は短波長側から長波長側に移行し、X値が1付近で赤色にまで変化させることができる。 Emission color in accordance with increasing X value shifted from the short wavelength side to the long wavelength side, the X value can be changed to red in the vicinity of 1. しかしながら、X値が0.5以上では結晶性に優れたInGaNが得られにくくなり、発光効率に優れた発光素子が得られにくくなるため、X値は0.5未満が好ましい。 However, X value is difficult to obtain excellent InGaN crystallinity is 0.5 or more, the light-emitting device excellent in luminous efficiency is hardly obtained, X value is preferably less than 0.5.

【0012】また、n型In X Ga 1-X N層3はノンドープでもn型となる性質があるが、前記したn型ドーパント、またはn型ドーパントと、Zn、Mg、Be、C Furthermore, although n-type In X Ga 1-X N layer 3 has a property to be n-type in non-doped, the n-type dopant or an n-type dopant,, Zn, Mg, Be, C
a、Sr、Ba等のp型ドーパントとをドープしてn型とする方がさらに好ましい。 a, Sr, it is further preferable that the n-type doped with a p-type dopant such as Ba. 図2は、Znを1×10 18 2, 1 Zn × 10 18
/cm 3ドープしたn型In0.15Ga0.85N層と、Znを1×10 19 /cm 3およびSiを5×10 19 /cm 3ドープしたn型In0.15Ga0.85N層とにHe−Cdレーザーを照射して、室温でフォトルミネッセンス(PL)を測定し、それらの発光強度を比較して示す図である。 / Cm 3 and doped n-type In0.15Ga0.85N layer, the He-Cd laser of Zn to 1 × 10 19 / cm 3 and Si in a 5 × 10 19 / cm 3 doped with n-type In0.15Ga0.85N layer by irradiating and measuring photoluminescence (PL) at room temperature, it is a graph showing by comparison their emission intensity. ZnのみをドープしたInGaN層のスペクトル強度は実際の強度を10倍に拡大して示している。 Spectral intensity of only Zn-doped InGaN layer is an enlarged view of the actual intensity 10 times. この図に示すように、Znのみをドープしたn型InGaNのPLスペクトル(b)よりも、SiおよびZnをドープしたn型I As shown in this figure, than PL spectrum (b) of the n-type InGaN doped with Zn alone, n-type doped with Si and Zn I
nGaNのPLスペクトル(a)の方がその発光強度は(a)の方が10倍以上大きくなり、n型ドーパントとp型ドーパントとを同時にドープしてn型としたInG The emission intensity towards the PL spectrum (a) of nGaN was n-type and doped at the same time it is increased 10 times or more, an n-type dopant and a p-type dopant (a) InG
aN層を発光層とする素子が最も発光出力に優れている。 Element for the aN layer and the light-emitting layer excellent in most emission output. なおSiのみを1×10 19 /cm 3ドープしたIn0.1 Note Si only 1 × 10 19 / cm 3 doped In0.1
5Ga0.85N層の発光スペクトルは410nm付近に発光ピークがあり、その発光強度は(a)のおよそ1/2 Emission spectra of 5Ga0.85N layer has a light emission peak around 410 nm, approximately 1/2 the emission intensity of the (a)
であった。 Met.

【0013】図1において、pクラッド層はp型Ga [0013] In FIG 1, p cladding layer is p-type Ga
1-Z Al Z N層4と、p +型GaN層5とを積層した2層構造としているが、nクラッド層と同じく、特にこの層を2層構造とする必要はなく、このpクラッド層のキャリア濃度を発光層4に接近するほど小さく調整してあれば、pクラッド層を3層以上積層した多層膜層構造としてもよい。 A 1-Z Al Z N layer 4, although a two-layer structure of a p + -type GaN layer 5, similarly to the n-cladding layer is not particularly necessary to make this layer a two-layer structure, the p-cladding layer if the carrier concentration was about small adjustments approaches the light emitting layer 4 may be a multilayer film structure formed by laminating a p-cladding layer 3 or more layers. 好ましくは、電極を形成する層をキャリア濃度の最も大きいp +型GaNとすることにより、電極材料と好ましいオーミックコンタクトが得られ、発光素子のVfを低下させて、発光効率を向上させることができる。 Preferably, by the layer forming the electrode and the largest p + -type GaN of carrier concentration, preferably ohmic contact is obtained between the electrode material, by lowering the Vf of the light emitting element, it is possible to improve the luminous efficiency . また、pクラッド層のキャリア濃度を変化させるには、前記したp型ドーパントのドープ量を適宜変更することにより実現でき、キャリア濃度を1×10 16 /cm 3 Also, p in order to change the carrier concentration of the cladding layer, the doping amount of p-type dopant described above can be realized by appropriately changing the carrier concentration of 1 × 10 16 / cm 3
〜1×10 22 /cm 3の範囲に調整することが好ましい。 It is preferably adjusted to a range of ~1 × 10 22 / cm 3.

【0014】さらに、前記pクラッド層は、前にも述べたように我々が先に出願した特願平3−357046号に開示するように、400℃以上でアニーリングすることにより、さらに低抵抗なp型を得ることができ、発光素子の発光出力を向上させることができる。 Furthermore, the p-cladding layer, as As mentioned before we disclosed in Japanese Patent Application No. 3-357046 filed previously by annealing at 400 ° C. or higher, further it low-resistance it is possible to obtain a p-type, it is possible to improve the light output of the light emitting element.

【0015】 [0015]

【作用】図1を元に本発明の発光素子の作用を説明する。 Describing the operation of the light emitting device of the present invention based on the [action] FIG. 正電極8と、負電極7とに通電すると、電流は高キャリア濃度のp +型GaN層6で面内均一に広がる。 The positive electrode 8 and energizing the negative electrodes 7, current spreads plane uniformity in the p + -type GaN layer 6 having a high carrier concentration. 電流値を増加させ、ある程度の電界がかかると、p +型G Increasing the current value, if it takes some of the electric field, p + -type G
aN層6に広がった電流は低キャリア濃度のp型Ga The spread current to aN layer 6 of the low carrier concentration p-type Ga
1-Z Al Z N層にも均一に広がり、In X Ga 1-X N層3を均一に発光させることができる。 1-Z Al Z N layer is also uniformly spread on, In X Ga 1-X N layer 3 can uniformly emit light. nクラッド層についても同様の作用があり、nクラッド層をn +型GaN層2 there is a similar effect also for n cladding layer, an n-cladding layer n + -type GaN layer 2
とn型Ga 1-Y Al Y N層3とに分けることにより、In By the divided into a n-type Ga 1-Y Al Y N layer 3, an In
X Ga 1-X N層3に均一に電流が流れて均一な発光が得られ、発光出力を増大させることができる。 Uniform light emission can be obtained by uniformly current flows in the X Ga 1-X N layer 3, it is possible to increase the emission output.

【0016】さらに、nクラッド層で最もキャリア濃度の大きい層をGaNと限定することにより、その上に積層するn型Ga 1-Y Al Y N層の結晶性が向上し、結晶性が向上することにより、発光出力を増大させることができる。 Furthermore, by limiting the layer with the greater most carrier concentration GaN with n-cladding layer, to improve the crystallinity of the n-type Ga 1-Y Al Y N layer stacked thereon, for crystallinity improvement it is thus possible to increase the emission output.

【0017】また、pクラッド層で最もキャリア濃度の大きい層をGaNと限定することにより、そのp +型G Further, by limiting the GaN large layer of most carrier concentration p-cladding layer, the p + -type G
aN層の上に形成する正電極とのオーミック性が良くなり、Vfを低下させて発光効率を向上させることができる。 aN layer becomes good ohmic contact with the positive electrode to be formed on the can improve the luminous efficiency by lowering the Vf.

【0018】 [0018]

【実施例】以下有機金属気相成長法により、本発明の発光素子を製造する方法を述べる。 The EXAMPLES The following metal organic chemical vapor deposition method, describes a method for manufacturing a light emitting device of the present invention.

【0019】[実施例1] よく洗浄したサファイア基板を反応容器内にセットし、 [0019] was set in the reaction vessel [Example 1] well-washed sapphire substrate,
反応容器内を水素で十分置換した後、水素を流しながら、基板の温度を1050℃まで上昇させサファイア基板のクリーニングを行う。 After sufficiently replacing the reaction vessel with hydrogen, while flowing hydrogen, to clean the sapphire substrate to raise the temperature of the substrate to 1050 ° C..

【0020】続いて、温度を510℃まで下げ、キャリアガスとして水素、原料ガスとしてアンモニアとTMG [0020] Subsequently, the temperature was lowered to 510 ° C., ammonia and TMG as a carrier gas of hydrogen as the source gas
(トリメチルガリウム)とを用い、サファイア基板上にGaNよりなるバッファ層を約200オングストロームの膜厚で成長させる。 Using a (trimethyl gallium), growing a buffer layer of GaN on a sapphire substrate at a thickness of about 200 angstroms.

【0021】バッファ層成長後、TMGのみ止めて、温度を1030℃まで上昇させる。 [0021] The buffer layer after growth, stopped TMG only to raise the temperature up to 1030 ℃. 1030℃になったら、同じく原料ガスにTMGとアンモニアガス、ドーパントガスにシランガスを用い、Siをドープしたn +型GaN層を3.5μm成長させる。 When turned 1030 ° C., likewise TMG and ammonia gas, a silane gas as a dopant gas used as a raw material gas, the n + -type GaN layer doped with Si to 3.5μm growth. なお、このSiドープn + GaN層のキャリア濃度は1×10 19 /cm 3であった。 The carrier concentration of the Si-doped n + GaN layer was 1 × 10 19 / cm 3.

【0022】続いて、シランガスの流量を少なくして、 [0022] Then, by reducing the flow rate of the silane gas,
キャリア濃度1×10 18 /cm 3のn型GaN層を0.5 The n-type GaN layer having a carrier concentration 1 × 10 18 / cm 3 0.5
μm成長させる。 To μm growth. このようにして、nクラッド層をキャリア濃度の異なる2層構造とする。 In this manner, the n-cladding layer and two-layer structure having different carrier concentrations.

【0023】n型GaN層成長後、原料ガス、ドーパントガスを止め、温度を800℃にして、キャリアガスを窒素に切り替え、原料ガスとしてTMGとTMI(トリメチルインジウム)とアンモニア、ドーパントガスとしてDEZ(ジエチルジンク)とシランガスとを用い、Z [0023] n-type GaN layer after the growth, stop the material gas, a dopant gas, and a temperature of 800 ° C., the carrier gas is switched to nitrogen, TMG and TMI (trimethyl indium) as a source gas with ammonia, as a dopant gas DEZ ( diethyl zinc) and using a silane gas, Z
nおよびSiをドープしたn型In0.15Ga0.85N層を100オングストローム成長させる。 The n-type In0.15Ga0.85N layer doped with n and Si grow 100 Å.

【0024】次に、原料ガス、ドーパントガスを止め、 Next, stop the raw material gas, a dopant gas,
再び温度を1020℃まで上昇させ、原料ガスとしてT The temperature was raised to 1020 ° C. Again, T as a material gas
MGとアンモニア、ドーパントガスとしてCp2Mg MG and ammonia, Cp2Mg as a dopant gas
(シクロペンタジエニルマグネシウム)とを用い、Mg Using (cyclopentadienyl magnesium) and, Mg
をドープしたp型GaN層を0.2μm成長させる。 To 0.2μm grow a p-type GaN layer doped with.

【0025】続いてCp2Mgガスの流量を多くして、 [0025] followed by increasing the flow rate of Cp2Mg gas,
Mgをp型GaN層よりも多くドープしたp +型GaN P + -type GaN the Mg was more doped than the p-type GaN layer
層を0.3μm成長させる。 The layer to be 0.3μm growth. このようにしてpクラッド層をキャリア濃度の異なる2層構造とする。 Such a p-clad layer a two-layer structure having different carrier concentrations in the.

【0026】p +型GaN層成長後、基板を反応容器から取り出し、アニーリング装置にて窒素雰囲気中、70 The p + -type GaN layer was grown, the substrate is taken out of the reaction vessel in a nitrogen atmosphere at an annealing device, 70
0℃で20分間アニーリングを行い、p型GaN層、およびp +型GaN層をさらに低抵抗化する。 For 20 min annealing at 0 ° C., p-type GaN layer, and further reduce the resistance of the p + -type GaN layer. なお、p型GaN層のキャリア濃度は1×10 16 /cm3、p + GaN The carrier concentration of the p-type GaN layer is 1 × 10 16 / cm3, p + GaN
層のキャリア濃度は1×10 17 /cm 3であった。 Carrier concentration of the layer was 1 × 10 17 / cm 3.

【0027】以上のようにして得られたウエハーのpクラッド層、n型In0.15Ga0.85N層、およびn型Ga The above p-cladding layer of the wafer obtained as a, n-type In0.15Ga0.85N layer, and the n-type Ga
N層の一部をエッチングにより取り除き、n +型GaN A portion of the N layer removed by etching, n + -type GaN
層を露出させ、p +型GaN層と、n +型GaN層とにオーミック電極を設け、500μm角のチップにカットした後、常法に従い発光ダイオードとしたところ、サファイア基板面から観測して全面に均一な発光が得られ、2 Exposing the layer, and the p + -type GaN layer, an ohmic electrode provided on the n + -type GaN layer was cut into chips of 500μm square, it was a conventional manner emitting diodes, and observed from the sapphire substrate surface entire uniform light emission is obtained, 2
0mAにおいてVf4.0V、発光出力700μW、発光波長490nm、輝度1.1cdが得られた。 Vf4.0V In 0 mA, the light output 700MyuW, emission wavelength 490 nm, the luminance 1.1cd obtained.

【0028】[実施例2] 実施例1において、n型GaN層を成長する際、新たに原料ガスにTMA(トリメチルアルミニウム)を加え、 [0028] In Example 2 Example 1, when the growth of the n-type GaN layer, a new TMA the (trimethylaluminum) was added to the raw material gas,
同じくキャリア濃度1×10 18 /cm 3のSiドープn型Ga0.9Al0.1N層を3.5μm成長させる。 Also the Si-doped n-type Ga0.9Al0.1N layer having a carrier concentration 1 × 10 18 / cm 3 to 3.5μm growth.

【0029】さらに、p型GaN層を成長する際、新たに原料ガスにTMA(トリメチルアルミニウム)を加え、同じくキャリア濃度1×10 16 /cm 3のMgドープp型Ga0.9Al0.1N層を0.2μm成長させる。 Furthermore, when the growth of the p-type GaN layer, a new TMA the (trimethylaluminum) was added to the raw material gas, also the Mg-doped p-type Ga0.9Al0.1N layer having a carrier concentration 1 × 10 16 / cm 3 0 to .2μm growth.

【0030】以上の他は実施例1と同様にして青色発光ダイオードを得たところ、同じく均一な全面発光が得られ、20mAにおいてVf4.0V、発光出力700μ The more other Where obtain a blue light-emitting diodes in the same manner as in Example 1, also uniform over the entire surface light emission is obtained, Vf4.0V at 20 mA, the emission output 700μ
W、発光波長490nm、輝度1.1cdであった。 W, emission wavelength 490 nm, was luminance 1.1 cd.

【0031】[実施例3] 実施例1において、nクラッド層をキャリア濃度1×1 [0031] [Example 3] In Example 1, the carrier concentration of the n-clad layer 1 × 1
18 /cm 3 、膜厚4μmのSiドープn型GaN層1層とする他は、同様にして青色発光ダイオードを得たところ、同じく均一な全面発光が得られ、20mAにおいてVf4.2V、発光出力500μW、発光波長490n 0 18 / cm 3, except that a Si-doped n-type GaN layer 1 layer thickness 4μm is where to obtain a blue light-emitting diodes in the same manner, also uniform over the entire surface light emission is obtained, Vf4.2V at 20 mA, emission output 500μW, emission wavelength 490n
m、輝度1cdであった。 m, was brightness 1cd.

【0032】[実施例4] 実施例1において、pクラッド層をキャリア濃度1×1 [0032] [Example 4] In Example 1, the carrier concentration of the p-cladding layer 1 × 1
17 /cm 3 、膜厚0.5μmのMgドープp +型GaN層1層とする他は、同様にして青色発光ダイオードを得たところ、同じく均一な全面発光が得られ、20mAにおいてVf4.2V、発光出力500μW、発光波長49 0 17 / cm 3, except that the Mg-doped p + -type GaN layer one layer of thickness 0.5μm can was to obtain a blue light-emitting diodes in the same manner, also uniform over the entire surface light emission is obtained, Vf4 in 20mA. 2V, light output 500 W, the emission wavelength 49
0nm、輝度1cdであった。 0nm, it was brightness 1cd.

【0033】[実施例5] 実施例1において、pクラッド層をキャリア濃度1×1 [0033] [Example 5] In Example 1, the carrier concentration of the p-cladding layer 1 × 1
16 /cm 3 、膜厚0.2μmのMgドープp型Ga0.9A 0 16 / cm 3, with a thickness of 0.2μm Mg-doped p-type Ga0.9A
l0.1N層1層とする他は同様にして青色発光ダイオードを得たところ、同じく均一な全面発光が得られ、20 Was to obtain a blue light-emitting diodes other in the same manner to l0.1N layer 1 layer, also uniform over the entire surface light emission is obtained, 20
mAにおいてVf10V、発光出力500μW、発光波長490nm、輝度1cdであった。 Vf10V in mA, the light output 500 W, emission wavelength 490 nm, was luminance 1 cd. Vfが増加したのは、pクラッド層をGaAlNとしたためにオーミック性が悪くなったからである。 The Vf is increased, the ohmic resistance of the p-cladding layer in order was GaAlN is because worsened.

【0034】 [0034]

【発明の効果】以上説明したように、本発明の窒化ガリウム系化合物半導体発光素子は、n型InGaNを発光層とするp−n接合のダブルへテロ構造としているため、従来のMIS構造の発光素子に比して、格段に発光効率、発光出力が増大する。 As described above, according to the present invention, a gallium nitride-based compound semiconductor light-emitting device of the present invention, since the a double heterostructure of p-n junction of the n-type InGaN light-emitting layer, light emission of the conventional MIS structure than the elements, much luminous efficiency, light emission output is increased. また好ましくはn型InG Also preferably, the n-type InG
aN層は、p型ドーパントおよびn型ドーパントがドープされたn型であれば、さらに発光出力が増大する。 aN layer, p-type dopant and n-type dopant as long as n-type doped, further emission output increases.

【0035】さらに本発明の発光素子は、InGaN層を挟むnクラッド層、および/またはpクラッド層のキャリア濃度を活性層であるInGaNに接近するほど小さくしているため、活性層全体に均一に電流が流れ、均一な発光が得られる。 Furthermore the light emitting element of the present invention, n clad layers sandwiching the InGaN layer, and / or p because of the more reduced to approach the carrier concentration of the clad layer to the InGaN as an active layer, uniformly throughout the active layer current flows, uniform light emission can be obtained. 発光素子の発光出力を最大にするためには、nクラッド層、pクラッド層とも前記構造とすることが好ましいが、いずれか一方でもよい。 In order to maximize the light output of the light-emitting element, n cladding layer, it is preferred that both the p-cladding layer and the structure, may be either one. このようにクラッド層を変化させることにより、発光素子の発光出力を格段に向上させることができる。 By thus changing the cladding layer, the light emission output of the light emitting device can be remarkably improved. また、好ましくpクラッド層の電極形成層をp+GaN層とすることにより、電極とのオーミック性が良くなりVfを低下させて発光効率を向上させることができる。 Further, an electrode forming layer of the p-cladding layer by a p + GaN layer preferably can improve luminous efficiency by reducing ohmic resistance becomes better Vf between electrodes.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】 本発明の一実施例の窒化ガリウム系化合物半導体発光素子の構造を示す模式断面図。 Figure 1 is a schematic sectional view showing a structure of a gallium nitride-based compound semiconductor light-emitting element of one embodiment of the present invention.

【図2】 ドーパントの違いによるn型InGaN層のフォトルミネッセンス強度を比較して示す図。 Figure 2 is a graph showing a comparison of the photoluminescence intensity of the n-type InGaN layer due to dopant difference.

【符号の説明】 DESCRIPTION OF SYMBOLS

1・・・・ 基板 2・・・・ n 1 ... substrate 2 ···· n
+型GaN層 3・・・・ n型Ga 1-Y Al Y N層 4・・・・ n + -Type GaN layer 3 · · · · n-type Ga 1-Y Al Y N layer 4 · · · · n
型In X Ga 1-X N層 5・・・・ p型Ga 1-Z Al Z N層 6・・・・ p Type In X Ga 1-X N layer 5 · · · · p-type Ga 1-Z Al Z N layer 6 · · · · p
+型GaN層 7、8・・ 電極 + -Type GaN layer 7, 8 ... electrode

Claims (4)

    (57)【特許請求の範囲】 (57) [the claims]
  1. 【請求項1】 n型窒化ガリウム系化合物半導体層とp 1. A n-type gallium nitride-based compound semiconductor layer and the p
    型窒化ガリウム系化合物半導体層との間に、 n型In X Between the mold gallium nitride-based compound semiconductor layer, n-type In X
    Ga 1-X N(0<X<1)層を発光層として具備するダブルへテロ構造の窒化ガリウム系化合物半導体発光素子であって、前記n型窒化ガリウム系化合物半導体層、および/または前記p型窒化ガリウム系化合物半導体層のキャリア濃度が、 前記In X Ga 1-X 層に接近するにつれて小さくなるように調整されており、前記p型窒化ガリ Ga 1-X N (0 < X <1) layer a gallium nitride-based compound semiconductor light emitting device of double heterostructure comprising a light emitting layer, the n-type gallium nitride-based compound semiconductor layer, and / or the p the carrier concentration of the type gallium nitride-based compound semiconductor layer, is adjusted to become smaller as it approaches the in X Ga 1-X N layer, the p-type nitride gully
    ウム系化合物半導体層は、キャリア濃度の大きいp + Um-based compound semiconductor layer is greater p + -type carrier concentration
    GaN層と、p + 型GaN層よりもキャリア濃度の小さ And the GaN layer, a small carrier concentration than the p + -type GaN layer
    いp型Ga 1-Z Al Z N(0<Z<1)層とからなることを特徴とする窒化ガリウム系化合物半導体発光素子。 There p-type Ga 1-Z Al Z N ( 0 <Z <1) gallium nitride, characterized in that it consists of a layer compound semiconductor light-emitting device.
  2. 【請求項2】 前記n型窒化ガリウム系化合物半導体層は、キャリア濃度の大きいn +型GaN層と、n +型Ga Wherein said n-type gallium nitride-based compound semiconductor layer includes a large n + -type GaN layer having a carrier concentration, n + -type Ga
    N層よりもキャリア濃度の小さいn型Ga 1-Y Al Y Small n-type Ga carrier concentration than the N layer 1-Y Al Y N
    (0≦Y<1)層とからなることを特徴とする請求項1 Claim 1, characterized in that it consists of a (0 ≦ Y <1) layer
    に記載の窒化ガリウム系化合物半導体発光素子。 The gallium nitride-based compound semiconductor light emitting device according to.
  3. 【請求項3】 前記n型In X Ga 1-X N層は、n型ドーパントとp型ドーパントとがドープされてn型とされていることを特徴とする請求項1に記載の窒化ガリウム系化合物半導体発光素子。 Wherein the n-type In X Ga 1-X N layer, gallium nitride according to claim 1 in which an n-type dopant and a p-type dopant, characterized in that there is a doped n-type compound semiconductor light-emitting device.
  4. 【請求項4】 前記p型窒化ガリウム系化合物半導体層は400℃以上でアニーリングされてp型とされていることを特徴とする請求項1に記載の窒化ガリウム系化合物半導体発光素子。 Wherein said p-type gallium nitride compound semiconductor light-emitting device according to claim 1 gallium nitride-based compound semiconductor layer, characterized in that there is a p-type is annealed at 400 ° C. or higher.
JP15721993A 1993-06-28 1993-06-28 The gallium nitride-based compound semiconductor light-emitting device Expired - Lifetime JP2785254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15721993A JP2785254B2 (en) 1993-06-28 1993-06-28 The gallium nitride-based compound semiconductor light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15721993A JP2785254B2 (en) 1993-06-28 1993-06-28 The gallium nitride-based compound semiconductor light-emitting device

Publications (2)

Publication Number Publication Date
JPH0715041A JPH0715041A (en) 1995-01-17
JP2785254B2 true JP2785254B2 (en) 1998-08-13

Family

ID=15644829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15721993A Expired - Lifetime JP2785254B2 (en) 1993-06-28 1993-06-28 The gallium nitride-based compound semiconductor light-emitting device

Country Status (1)

Country Link
JP (1) JP2785254B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8044430B2 (en) 2006-01-18 2011-10-25 Panasonic Corporation Nitride semiconductor light-emitting device comprising multiple semiconductor layers having substantially uniform N-type dopant concentration
US8395165B2 (en) 2011-07-08 2013-03-12 Bridelux, Inc. Laterally contacted blue LED with superlattice current spreading layer
US8525221B2 (en) 2009-11-25 2013-09-03 Toshiba Techno Center, Inc. LED with improved injection efficiency
US8536601B2 (en) 2009-06-10 2013-09-17 Toshiba Techno Center, Inc. Thin-film LED with P and N contacts electrically isolated from the substrate
US8564010B2 (en) 2011-08-04 2013-10-22 Toshiba Techno Center Inc. Distributed current blocking structures for light emitting diodes
US8581267B2 (en) 2011-11-09 2013-11-12 Toshiba Techno Center Inc. Series connected segmented LED
US8624482B2 (en) 2011-09-01 2014-01-07 Toshiba Techno Center Inc. Distributed bragg reflector for reflecting light of multiple wavelengths from an LED
US8664679B2 (en) 2011-09-29 2014-03-04 Toshiba Techno Center Inc. Light emitting devices having light coupling layers with recessed electrodes
US8686430B2 (en) 2011-09-07 2014-04-01 Toshiba Techno Center Inc. Buffer layer for GaN-on-Si LED
US8698163B2 (en) 2011-09-29 2014-04-15 Toshiba Techno Center Inc. P-type doping layers for use with light emitting devices
US8865565B2 (en) 2011-08-02 2014-10-21 Kabushiki Kaisha Toshiba LED having a low defect N-type layer that has grown on a silicon substrate
US8916906B2 (en) 2011-07-29 2014-12-23 Kabushiki Kaisha Toshiba Boron-containing buffer layer for growing gallium nitride on silicon
US8994064B2 (en) 2011-09-03 2015-03-31 Kabushiki Kaisha Toshiba Led that has bounding silicon-doped regions on either side of a strain release layer
US9012921B2 (en) 2011-09-29 2015-04-21 Kabushiki Kaisha Toshiba Light emitting devices having light coupling layers
US9012939B2 (en) 2011-08-02 2015-04-21 Kabushiki Kaisha Toshiba N-type gallium-nitride layer having multiple conductive intervening layers
US9018643B2 (en) 2011-09-06 2015-04-28 Kabushiki Kaisha Toshiba GaN LEDs with improved area and method for making the same
US9130068B2 (en) 2011-09-29 2015-09-08 Manutius Ip, Inc. Light emitting devices having dislocation density maintaining buffer layers
US9142743B2 (en) 2011-08-02 2015-09-22 Kabushiki Kaisha Toshiba High temperature gold-free wafer bonding for light emitting diodes
US9159869B2 (en) 2011-08-03 2015-10-13 Kabushiki Kaisha Toshiba LED on silicon substrate using zinc-sulfide as buffer layer
US9178114B2 (en) 2011-09-29 2015-11-03 Manutius Ip, Inc. P-type doping layers for use with light emitting devices
US9343641B2 (en) 2011-08-02 2016-05-17 Manutius Ip, Inc. Non-reactive barrier metal for eutectic bonding process
US9617656B2 (en) 2011-07-25 2017-04-11 Toshiba Corporation Nucleation of aluminum nitride on a silicon substrate using an ammonia preflow

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996003776A1 (en) * 1994-07-21 1996-02-08 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device and production method thereof
US6996150B1 (en) 1994-09-14 2006-02-07 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor
US6900465B2 (en) 1994-12-02 2005-05-31 Nichia Corporation Nitride semiconductor light-emitting device
US5777350A (en) 1994-12-02 1998-07-07 Nichia Chemical Industries, Ltd. Nitride semiconductor light-emitting device
JP3448450B2 (en) 1996-04-26 2003-09-22 三洋電機株式会社 Light emitting device and the fabrication method thereof
SG115549A1 (en) 2002-07-08 2005-10-28 Sumitomo Chemical Co Epitaxial substrate for compound semiconductor light emitting device, method for producing the same and light emitting device
US7897993B2 (en) 2004-08-31 2011-03-01 Sumitomo Chemical Company, Limited GaN based luminescent device on a metal substrate
EP2889922B1 (en) 2012-08-21 2018-03-07 Oji Holdings Corporation Method for producing substrate for semiconductor light emitting element and method for manufacturing semiconductor light emitting element

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3160914B2 (en) * 1990-12-26 2001-04-25 浩 天野 Gallium nitride-based compound semiconductor laser diode

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8044430B2 (en) 2006-01-18 2011-10-25 Panasonic Corporation Nitride semiconductor light-emitting device comprising multiple semiconductor layers having substantially uniform N-type dopant concentration
US9142742B2 (en) 2009-06-10 2015-09-22 Kabushiki Kaisha Toshiba Thin-film LED with P and N contacts electrically isolated from the substrate
US8536601B2 (en) 2009-06-10 2013-09-17 Toshiba Techno Center, Inc. Thin-film LED with P and N contacts electrically isolated from the substrate
US8871539B2 (en) 2009-06-10 2014-10-28 Kabushiki Kaisha Toshiba Thin-film LED with P and N contacts electrically isolated from the substrate
US8684749B2 (en) 2009-11-25 2014-04-01 Toshiba Techno Center Inc. LED with improved injection efficiency
US8525221B2 (en) 2009-11-25 2013-09-03 Toshiba Techno Center, Inc. LED with improved injection efficiency
US9012953B2 (en) 2009-11-25 2015-04-21 Kabushiki Kaisha Toshiba LED with improved injection efficiency
US8395165B2 (en) 2011-07-08 2013-03-12 Bridelux, Inc. Laterally contacted blue LED with superlattice current spreading layer
US9617656B2 (en) 2011-07-25 2017-04-11 Toshiba Corporation Nucleation of aluminum nitride on a silicon substrate using an ammonia preflow
US10174439B2 (en) 2011-07-25 2019-01-08 Samsung Electronics Co., Ltd. Nucleation of aluminum nitride on a silicon substrate using an ammonia preflow
US8916906B2 (en) 2011-07-29 2014-12-23 Kabushiki Kaisha Toshiba Boron-containing buffer layer for growing gallium nitride on silicon
US8865565B2 (en) 2011-08-02 2014-10-21 Kabushiki Kaisha Toshiba LED having a low defect N-type layer that has grown on a silicon substrate
US9012939B2 (en) 2011-08-02 2015-04-21 Kabushiki Kaisha Toshiba N-type gallium-nitride layer having multiple conductive intervening layers
US9142743B2 (en) 2011-08-02 2015-09-22 Kabushiki Kaisha Toshiba High temperature gold-free wafer bonding for light emitting diodes
US9343641B2 (en) 2011-08-02 2016-05-17 Manutius Ip, Inc. Non-reactive barrier metal for eutectic bonding process
US9159869B2 (en) 2011-08-03 2015-10-13 Kabushiki Kaisha Toshiba LED on silicon substrate using zinc-sulfide as buffer layer
US8564010B2 (en) 2011-08-04 2013-10-22 Toshiba Techno Center Inc. Distributed current blocking structures for light emitting diodes
US9070833B2 (en) 2011-08-04 2015-06-30 Kabushiki Kaisha Toshiba Distributed current blocking structures for light emitting diodes
US8981410B1 (en) 2011-09-01 2015-03-17 Kabushiki Kaisha Toshiba Distributed bragg reflector for reflecting light of multiple wavelengths from an LED
US8624482B2 (en) 2011-09-01 2014-01-07 Toshiba Techno Center Inc. Distributed bragg reflector for reflecting light of multiple wavelengths from an LED
US8994064B2 (en) 2011-09-03 2015-03-31 Kabushiki Kaisha Toshiba Led that has bounding silicon-doped regions on either side of a strain release layer
US9018643B2 (en) 2011-09-06 2015-04-28 Kabushiki Kaisha Toshiba GaN LEDs with improved area and method for making the same
US8686430B2 (en) 2011-09-07 2014-04-01 Toshiba Techno Center Inc. Buffer layer for GaN-on-Si LED
US9012921B2 (en) 2011-09-29 2015-04-21 Kabushiki Kaisha Toshiba Light emitting devices having light coupling layers
US9490392B2 (en) 2011-09-29 2016-11-08 Toshiba Corporation P-type doping layers for use with light emitting devices
US8698163B2 (en) 2011-09-29 2014-04-15 Toshiba Techno Center Inc. P-type doping layers for use with light emitting devices
US9178114B2 (en) 2011-09-29 2015-11-03 Manutius Ip, Inc. P-type doping layers for use with light emitting devices
US9299881B2 (en) 2011-09-29 2016-03-29 Kabishiki Kaisha Toshiba Light emitting devices having light coupling layers
US9130068B2 (en) 2011-09-29 2015-09-08 Manutius Ip, Inc. Light emitting devices having dislocation density maintaining buffer layers
US8664679B2 (en) 2011-09-29 2014-03-04 Toshiba Techno Center Inc. Light emitting devices having light coupling layers with recessed electrodes
US9391234B2 (en) 2011-11-09 2016-07-12 Toshiba Corporation Series connected segmented LED
US8581267B2 (en) 2011-11-09 2013-11-12 Toshiba Techno Center Inc. Series connected segmented LED
US9123853B2 (en) 2011-11-09 2015-09-01 Manutius Ip, Inc. Series connected segmented LED

Also Published As

Publication number Publication date
JPH0715041A (en) 1995-01-17

Similar Documents

Publication Publication Date Title
KR100688240B1 (en) Nitride Semiconductor Device
EP1514313B1 (en) Group iii nitride light emitting diode with undoped cladding layer and multiple quantum well
EP0844675B1 (en) Light-emitting gallium nitride-based compound semiconductor device
EP0732754B1 (en) Light-emitting semiconductor device using group III nitride compound
EP1063711B1 (en) Nitride semiconductor device
EP2309556B1 (en) Nitride semiconductor device
US6285696B1 (en) Algainn pendeoepitaxy led and laser diode structures for pure blue or green emission
US6738175B2 (en) Light emitting device
JP3622562B2 (en) Nitride semiconductor light emitting diode
EP0772249B1 (en) Nitride semiconductor device
DE69835216T2 (en) Semiconductor device of a nitride connection
JP3374737B2 (en) Nitride semiconductor device
JP3304787B2 (en) The semiconductor light emitting device and a manufacturing method thereof
CN1312784C (en) Nitride semiconductor device
EP0703631B1 (en) Light-emitting semiconductor device using group III nitride compound
US20010030318A1 (en) Nitride semiconductor light-emitting device
US20100289056A1 (en) Semiconductor light-emitting devices
JP3063756B1 (en) Nitride semiconductor device
EP0716457A2 (en) Nitride semiconductor light-emitting device
US6479836B1 (en) Semiconductor light emitting device
JP3538275B2 (en) Nitride semiconductor light emitting device
US6337493B1 (en) Nitride semiconductor device
JP4629178B2 (en) Nitride semiconductor device
KR20100023960A (en) Nitride semiconductor light emitting element and method for manufacturing nitride semiconductor
US5804834A (en) Semiconductor device having contact resistance reducing layer

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080529

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090529

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090529

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090529

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100529

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100529

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110529

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110529

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140529

Year of fee payment: 16

EXPY Cancellation because of completion of term