JPH06260680A - Gallium nitride compound semiconductor light emitting element - Google Patents

Gallium nitride compound semiconductor light emitting element

Info

Publication number
JPH06260680A
JPH06260680A JP7087393A JP7087393A JPH06260680A JP H06260680 A JPH06260680 A JP H06260680A JP 7087393 A JP7087393 A JP 7087393A JP 7087393 A JP7087393 A JP 7087393A JP H06260680 A JPH06260680 A JP H06260680A
Authority
JP
Japan
Prior art keywords
type
light emitting
gallium nitride
compound semiconductor
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7087393A
Other languages
Japanese (ja)
Other versions
JP2560963B2 (en
Inventor
Shuji Nakamura
修二 中村
Shigeto Iwasa
成人 岩佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13444114&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH06260680(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP7087393A priority Critical patent/JP2560963B2/en
Priority to US08/153,153 priority patent/US5578839A/en
Priority to EP98100538A priority patent/EP0844675B1/en
Priority to TW082109713A priority patent/TW231376B/zh
Priority to DE69333829T priority patent/DE69333829T2/en
Priority to KR1019930024797A priority patent/KR970007135B1/en
Priority to EP93118670A priority patent/EP0599224B2/en
Priority to DE69319854T priority patent/DE69319854T2/en
Publication of JPH06260680A publication Critical patent/JPH06260680A/en
Priority to US08/661,157 priority patent/US5734182A/en
Priority to US08/661,138 priority patent/US5747832A/en
Priority to US08/705,972 priority patent/US5880486A/en
Application granted granted Critical
Publication of JP2560963B2 publication Critical patent/JP2560963B2/en
Priority to KR1019980015415A priority patent/KR100406200B1/en
Priority to KR1019980015416A priority patent/KR100406201B1/en
Priority to US09/145,972 priority patent/US6078063A/en
Priority to US09/300,788 priority patent/US6215133B1/en
Priority to KR1019990033018A priority patent/KR100445524B1/en
Priority to KR1019990033017A priority patent/KR100289626B1/en
Priority to US09/516,193 priority patent/US6469323B1/en
Priority to US10/227,834 priority patent/US6791103B2/en
Priority to US10/456,475 priority patent/US20030216011A1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve luminance and light emitting output of a light emitting element by using a p-n junction gallium nitride compound semiconductor. CONSTITUTION:An n-type InxGa1-x (N (where X is set to a range of 0<X<1) doped with Si and Zn is provided as a light emitting layer between an n-type gallium nitride compound semiconductor layer and a p-type gallium nitride compound semiconductor layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は窒化ガリウム系化合物半
導体を用いた発光素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light emitting device using a gallium nitride compound semiconductor.

【0002】[0002]

【従来の技術】GaN、GaAlN、InGaN、In
AlGaN等の窒化ガリウム系化合物半導体は直接遷移
を有し、バンドギャップが1.95eV〜6eVまで変
化するため、発光ダイオード、レーザダイオード等、発
光素子の材料として有望視されている。現在、この材料
を用いた発光素子には、n型窒化ガリウム系化合物半導
体の上に、p型ドーパントをドープした高抵抗なi型の
窒化ガリウム系化合物半導体を積層したいわゆるMIS
構造の青色発光ダイオードが知られている。
2. Description of the Related Art GaN, GaAlN, InGaN, In
Since gallium nitride-based compound semiconductors such as AlGaN have a direct transition and the bandgap changes from 1.95 eV to 6 eV, they are regarded as promising materials for light emitting devices such as light emitting diodes and laser diodes. At present, a light emitting device using this material is a so-called MIS in which a high-resistance i-type gallium nitride compound semiconductor doped with a p-type dopant is stacked on an n-type gallium nitride compound semiconductor.
Blue light emitting diodes with a structure are known.

【0003】MIS構造の発光素子として、例えば特開
平4−10665号公報、特開平4−10666号公
報、特開平4−10667号公報において、n型GaY
Al1-YNの上に、SiおよびZnをドープしたi型G
YAl1-YNを積層する技術が開示されている。これら
の技術によると、Si、ZnをGaAl1-YNにドープ
してi型の発光層とすることにより発光素子の発光色を
白色にすることができる。
As a light-emitting element having a MIS structure, for example, in JP-A-4-10665, JP-A-4-10666, and JP-A-4-10667, n-type Ga Y is disclosed.
I- type G doped with Si and Zn on Al 1-Y N
technique of laminating a Y Al 1-Y N is disclosed. According to these techniques, the emission color of the light emitting device can be made white by doping GaAl 1 -YN with Si and Zn to form an i-type light emitting layer.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記技
術のように、p型ドーパントであるZnをドープし、さ
らにn型ドーパントであるSiをドープした高抵抗なi
型GaYAl1-YN層を発光層とするMIS構造の発光素
子は輝度、発光出力共低く、発光素子として実用化する
には未だ不十分であった。
However, as in the technique described above, a high resistance i is obtained by doping Zn, which is a p-type dopant, and Si, which is an n-type dopant.
Emitting element of the MIS structure type Ga Y Al 1-Y N layer and the light emitting layer is luminance, luminous output both low, the practical application as a light emitting device was still insufficient.

【0005】従って本発明はこのような事情を鑑みて成
されたものであり、その目的とするところはp−n接合
の窒化ガリウム系化合物半導体を用いて発光素子の輝
度、および発光出力を向上させようとするものである。
Therefore, the present invention has been made in view of such circumstances, and an object thereof is to improve the brightness and the light emission output of a light emitting device by using a gallium nitride-based compound semiconductor having a pn junction. It is the one to try.

【0006】[0006]

【課題を解決するための手段】我々は、窒化ガリウム系
化合物半導体の中でも特にInGaNに着目し、InG
aNにZnとSiをドープしても従来のように高抵抗な
i型とせず、抵抗率を10Ω・cm以下の低抵抗なn型と
し、このn型InGaNを発光層としたp−n接合のダ
ブルへテロ構造の発光素子を実現することにより上記課
題を解決するに至った。即ち、本発明の窒化ガリウム系
化合物半導体発光素子はn型窒化ガリウム系化合物半導
体層とp型窒化ガリウム系化合物半導体層との間に、S
iおよびZnがドープされたn型InXGa1-XN(但
し、Xは0<X<1の範囲である。)を発光層として具備
することを特徴とする。
Among the gallium nitride-based compound semiconductors, we have focused on InGaN,
Even if Zn and Si are doped into aN, it is not a high-resistance i-type as in the past, but a low-resistance n-type having a resistivity of 10 Ω · cm or less, and a pn junction using this n-type InGaN as a light emitting layer. The above problem has been solved by realizing a light emitting device having a double hetero structure. That is, in the gallium nitride-based compound semiconductor light emitting device of the present invention, an S-type semiconductor layer is provided between the n-type gallium nitride-based compound semiconductor layer and the p-type gallium nitride-based compound semiconductor layer.
An i-type and Zn-doped n-type In X Ga 1-X N (where X is in the range of 0 <X <1) is provided as a light emitting layer.

【0007】本発明の窒化ガリウム系化合物半導体発光
素子において、n型およびp型窒化ガリウム系化合物半
導体層とはGaN、GaAlN、InGaN、InAl
GaN等、窒化ガリウムを含む窒化ガリウム系化合物半
導体に、n型であれば例えばSi、Ge、Se、Te等
のn型ドーパントをドープして、n型特性を示すように
成長した層をいい、p型であれば例えばZn、Mg、C
d、Be、Ca等のp型ドーパントをドープして、p型
特性を示すように成長した層をいう。n型窒化ガリウム
系化合物半導体の場合はノンドープでもn型になる性質
がある。また、p型窒化ガリウム系化合物半導体層の場
合、p型窒化ガリウム系化合物半導体層をさらに低抵抗
化する手段として、我々が先に出願した特願平3−35
7046号に開示するアニーリング処理を行ってもよ
い。
In the gallium nitride-based compound semiconductor light emitting device of the present invention, the n-type and p-type gallium nitride-based compound semiconductor layers are GaN, GaAlN, InGaN and InAl.
A gallium nitride-based compound semiconductor containing gallium nitride, such as GaN, is a layer grown to show n-type characteristics by doping an n-type dopant such as Si, Ge, Se, or Te if it is n-type, If p-type, for example, Zn, Mg, C
A layer grown by doping with a p-type dopant such as d, Be, or Ca to exhibit p-type characteristics. In the case of an n-type gallium nitride-based compound semiconductor, even if it is not doped, it has a property of becoming an n-type. Further, in the case of a p-type gallium nitride compound semiconductor layer, as a means for further reducing the resistance of the p-type gallium nitride compound semiconductor layer, Japanese Patent Application No. 3-35 previously filed by us has been proposed.
The annealing treatment disclosed in No. 7046 may be performed.

【0008】また、ZnおよびSiをドープしたn型I
XGa1-XNのX値は0<X<0.5の範囲に調整するこ
とが好ましい。X値を0より多くすることにより、発光
色はおよそ紫色領域となる。X値を増加するに従い発光
色は短波長側から長波長側に移行し、X値が1付近で赤
色にまで変化させることができる。しかしながら、X値
が0.5以上では結晶性に優れたInGaNが得られに
くく、発光効率に優れた発光素子が得られにくくなるた
め、X値は0.5未満が好ましい。
Also, n-type I doped with Zn and Si
The X value of n X Ga 1 -X N is preferably adjusted within the range of 0 <X <0.5. By setting the X value to be greater than 0, the emission color will be in the purple region. As the X value increases, the emission color shifts from the short wavelength side to the long wavelength side, and can be changed to red when the X value is around 1. However, if the X value is 0.5 or more, it is difficult to obtain InGaN having excellent crystallinity, and it becomes difficult to obtain a light emitting element having excellent light emitting efficiency. Therefore, the X value is preferably less than 0.5.

【0009】また、n型InGaN中のZnおよびSi
の濃度は両者とも1×1017/cm3〜1×1021/cm3
範囲に調整することが好ましい。1×1017/cm3より
も少ないと十分な発光強度が得られにくく、1×1021
/cm3よりも多いと、同じく発光強度が減少する傾向に
ある。さらに、Zn濃度よりもSi濃度の方を多くする
ことによりInGaNを好ましくn型とすることができ
る。
Zn and Si in n-type InGaN
It is preferable to adjust the concentration of both to within the range of 1 × 10 17 / cm 3 to 1 × 10 21 / cm 3 . If it is less than 1 × 10 17 / cm 3, it is difficult to obtain a sufficient emission intensity and 1 × 10 21
If it is more than / cm 3 , the emission intensity tends to decrease. Further, by making the Si concentration higher than the Zn concentration, InGaN can be preferably made to be n-type.

【0010】[0010]

【作用】図1に、Znを1×1018/cm3ドープしたn
型In0.15Ga0.85N層と、Znを1×1019/cm3
よびSiを5×1019/cm3ドープしたn型In0.15G
a0.85N層とにHe−Cdレーザーを照射して、室温で
フォトルミネッセンス(PL)を測定し、それらの発光
強度を比較して示す。なお、ZnのみをドープしたIn
GaN層のスペクトル強度は実際の強度を10倍に拡大
して示している。この図に示すように、Znのみをドー
プしたn型InGaNのPLスペクトル(b)、Siお
よびZnをドープしたn型InGaNのPLスペクトル
(a)はいずれも490nmにその主発光ピークを有す
る。しかしながら、その発光強度は(a)の方が10倍
以上大きい。これは、ZnをドープしたInGaNに、
さらにSiをドープすることによりドナー濃度が増え、
ドナー・アクセプタのペア発光により発光強度が増大し
ていると推察される。なぜなら、ノンドープのInGa
Nは成長条件により電子キャリア濃度が、およそ1×1
17/cm3〜1×1022/cm3ぐらいのn型を示す。これ
は、ある程度の数のドナーがノンドープの状態でInG
aN中に残留していることを示している。そこで、この
ノンドープのInGaNにZnをドープすると、前記残
留ドナーと、ドープしたZnアクセプターとのドナー・
アクセプターのペア発光が青色発光となって現れる。し
かしながら、前記のように、残留ドナーによる電子キャ
リア濃度は1×1017〜1×1022/cm3ぐらいまで成
長条件によりばらつき、再現性よく一定のドナー濃度の
InGaNを得ることは困難であった。そこで、新たに
Siをドープしてこのドナー濃度を多くすると共に、安
定して再現性よく一定のドナー濃度を得るのが、Siド
ープの効果である。実際、Siをドープすることによ
り、電子キャリア濃度がおよそ1×1018/cm3のもの
が2×1019/cm3まで1桁増加し、ドナー濃度が増加
していることが判明した。従って、ドナーが増加した分
だけドープするZnの量も増やすことができ、ドナー・
アクセプタのペア発光の数が増加することにより青色発
光強度が増大すると推察される。
In FIG. 1, n doped with 1 × 10 18 / cm 3 of Zn is shown.
-Type In0.15Ga0.85N layer and n-type In0.15G doped with Zn at 1 × 10 19 / cm 3 and Si at 5 × 10 19 / cm 3
The photoluminescence (PL) was measured at room temperature by irradiating the a0.85N layer with a He-Cd laser, and the emission intensities thereof are compared and shown. Note that In doped only with Zn
The spectral intensity of the GaN layer is shown by magnifying the actual intensity ten times. As shown in this figure, the PL spectrum (n) of n-type InGaN doped with only Zn and the PL spectrum (a) of n-type InGaN doped with Si and Zn all have their main emission peaks at 490 nm. However, the emission intensity of (a) is 10 times or more higher. This is the Zn-doped InGaN
By further doping Si, the donor concentration increases,
It is estimated that the emission intensity is increased by the pair emission of the donor and the acceptor. Because undoped InGa
N has an electron carrier concentration of about 1 × 1 depending on the growth conditions.
It exhibits an n-type of about 0 17 / cm 3 to 1 × 10 22 / cm 3 . This is because InG with a certain number of donors being undoped
It shows that it remains in aN. Therefore, when Zn is doped into this non-doped InGaN, the donor donor of the residual donor and the doped Zn acceptor
The pair emission of the acceptor appears as blue emission. However, as described above, the electron carrier concentration due to the residual donor varies up to about 1 × 10 17 to 1 × 10 22 / cm 3 depending on the growth conditions, and it is difficult to obtain InGaN having a constant donor concentration with good reproducibility. . Therefore, the effect of Si doping is to newly dope Si to increase the donor concentration and stably obtain a constant donor concentration with good reproducibility. In fact, it was found that by doping Si, the electron carrier concentration increased from 1 × 10 18 / cm 3 to 2 × 10 19 / cm 3 by one digit, and the donor concentration increased. Therefore, the amount of Zn to be doped can be increased by the amount of increased donors.
It is estimated that the blue emission intensity increases as the number of acceptor pair emissions increases.

【0011】本発明の窒化ガリウム系化合物半導体発光
素子は、このSiとZnをドープしたn型InGaNを
発光層としたダブルへテロ構造とすることにより、従来
のSiとZnをドープしたi型GaAlNを発光層とす
るMIS構造の発光素子に比して発光効率、および発光
強度を格段に向上させることができる。
The gallium nitride-based compound semiconductor light-emitting device of the present invention has a double hetero structure having n-type InGaN doped with Si and Zn as a light-emitting layer to obtain a conventional i-type GaAlN doped with Si and Zn. The light emission efficiency and the light emission intensity can be remarkably improved as compared with the light emitting element having the MIS structure having the light emitting layer.

【0012】[0012]

【実施例】以下有機金属気相成長法により、本発明の発
光素子を製造する方法を述べる。
EXAMPLES A method of manufacturing the light emitting device of the present invention by the metal organic chemical vapor deposition method will be described below.

【0013】[実施例1]よく洗浄したサファイア基板
を反応容器内にセットし、反応容器内を水素で十分置換
した後、水素を流しながら、基板の温度を1050℃ま
で上昇させサファイア基板のクリーニングを行う。
Example 1 A well-cleaned sapphire substrate was set in a reaction vessel, the inside of the reaction vessel was sufficiently replaced with hydrogen, and then the temperature of the substrate was raised to 1050 ° C. while flowing hydrogen to clean the sapphire substrate. I do.

【0014】続いて、温度を510℃まで下げ、キャリ
アガスとして水素、原料ガスとしてアンモニアとTMG
(トリメチルガリウム)とを用い、サファイア基板上に
GaNよりなるバッファ層を約200オングストローム
の膜厚で成長させる。
Then, the temperature is lowered to 510 ° C., hydrogen is used as a carrier gas, and ammonia and TMG are used as a source gas.
(Trimethylgallium), a buffer layer made of GaN is grown on the sapphire substrate to a thickness of about 200 Å.

【0015】バッファ層成長後、TMGのみ止めて、温
度を1030℃まで上昇させる。1030℃になった
ら、同じく原料ガスにTMGとアンモニアガス、ドーパ
ントガスにシランガスを用い、Siを1×1020/cm3
ドープしたn型GaN層を4μm成長させる。
After the growth of the buffer layer, only TMG is stopped and the temperature is raised to 1030.degree. When the temperature reached 1030 ° C., TMG and ammonia gas were used as the source gas, and silane gas was used as the dopant gas. Si was added at 1 × 10 20 / cm 3.
A doped n-type GaN layer is grown to 4 μm.

【0016】n型GaN層成長後、原料ガス、ドーパン
トガスを止め、温度を800℃にして、キャリアガスを
窒素に切り替え、原料ガスとしてTMGとTMI(トリ
メチルインジウム)とアンモニア、ドーパントガスとし
てシランガスとDEZ(ジエチルジンク)とを用い、S
iを5×1019/cm3、Znを1×1019/cm3ドープし
たn型In0.15Ga0.85N層を100オングストローム
成長させる。
After the growth of the n-type GaN layer, the source gas and the dopant gas are stopped, the temperature is set to 800 ° C., the carrier gas is switched to nitrogen, TMG, TMI (trimethylindium) and ammonia are used as the source gas, and silane gas is used as the dopant gas. Using DEZ (diethyl zinc), S
An n-type In0.15Ga0.85N layer doped with i of 5 × 10 19 / cm 3 and Zn of 1 × 10 19 / cm 3 is grown to 100 angstrom.

【0017】次に、原料ガス、ドーパントガスを止め、
再び温度を1020℃まで上昇させ、原料ガスとしてT
MGとアンモニア、ドーパントガスとしてCp2Mg
(シクロペンタジエニルマグネシウム)とを用い、Mg
を2×1020/cm3ドープしたp型GaN層を0.8μ
m成長させる。
Next, stop the source gas and the dopant gas,
The temperature is again raised to 1020 ° C. and T is used as a source gas.
MG and ammonia, Cp2Mg as dopant gas
(Cyclopentadienyl magnesium) and Mg
0.8 μ of p-type GaN layer doped with 2 × 10 20 / cm 3
m to grow.

【0018】p型GaN層成長後、基板を反応容器から
取り出し、アニーリング装置にて窒素雰囲気中、700
℃で20分間アニーリングを行い、最上層のp型GaN
層をさらに低抵抗化する。
After the growth of the p-type GaN layer, the substrate was taken out of the reaction container and then annealed at 700 in a nitrogen atmosphere.
Anneal at 20 ° C for 20 minutes to obtain the top p-type GaN
The resistance of the layer is further reduced.

【0019】以上のようにして得られたウエハーのp型
GaN層、およびn型In0.15Ga0.85N層の一部をエ
ッチングにより取り除き、n型GaN層を露出させ、p
型GaN層と、n型GaN層とにオーミック電極を設
け、500μm角のチップにカットした後、常法に従い
発光ダイオードとしたところ、発光出力は20mAにお
いて300μW、輝度900mcd(ミリカンデラ)、
発光波長490nmであった。
A part of the p-type GaN layer and the n-type In0.15Ga0.85N layer of the wafer thus obtained is removed by etching to expose the n-type GaN layer, and p
After forming ohmic electrodes on the n-type GaN layer and the n-type GaN layer and cutting into chips of 500 μm square, a light emitting diode was formed by a conventional method. The light emission output was 300 μW at 20 mA, and the luminance was 900 mcd (millicandela).
The emission wavelength was 490 nm.

【0020】[実施例2]実施例1において、n型In
0.15Ga0.85N層のSi濃度を2×1020/cm3、Zn
濃度を5×1019/cm3とする他は、同様にして青色発
光ダイオードを得たところ、20mAにおいて発光出力
300μW、輝度920mcd、発光波長490nmで
あった。
[Embodiment 2] In Embodiment 1, the n-type In
Si concentration of 0.15Ga0.85N layer is 2 × 10 20 / cm 3 , Zn
A blue light emitting diode was similarly obtained except that the concentration was set to 5 × 10 19 / cm 3, and the emission output was 300 μW at 20 mA, the luminance was 920 mcd, and the emission wavelength was 490 nm.

【0021】[実施例3]実施例1において、n型In
0.15Ga0.85N層のSi濃度を5×1018/cm3、Zn
濃度を1×1018/cm3とする他は、同様にして青色発
光ダイオードを得たところ、20mAにおいて発光出力
280μW、輝度850mcd、発光波長490nmで
あった。
[Third Embodiment] In the first embodiment, the n-type In
The Si concentration of the 0.15Ga0.85N layer is 5 × 10 18 / cm 3 , Zn
A blue light emitting diode was similarly obtained except that the concentration was set to 1 × 10 18 / cm 3, and the emission output was 280 μW at 20 mA, the luminance was 850 mcd, and the emission wavelength was 490 nm.

【0022】[実施例4]実施例1において、n型In
GaNのInのモル比をIn0.25Ga0.75Nとする他
は、同様にして青色発光ダイオードを得たところ、20
mAにおいて発光出力250μW、輝度1000mc
d、発光波長510nmであった。
[Embodiment 4] In Embodiment 1, the n-type In
A blue light emitting diode was obtained in the same manner except that the In molar ratio of GaN was In0.25Ga0.75N.
Luminous output power of 250 μW at mA, brightness of 1000 mc
The emission wavelength was 510 nm.

【0023】[比較例1]実施例1において、Siをド
ープせず、Zn濃度1×1018/cm3のZnドープIn
0.15Ga0.85Nを成長させる他は同様にして発光ダイオ
ードとしたところ、20mAにおいて、発光出力180
μW、輝度400mcdでしかなく、発光波長は490
nmであった。
Comparative Example 1 In Example 1, Zn was not doped with Si and Zn-doped In with a Zn concentration of 1 × 10 18 / cm 3 was used.
When a light emitting diode was made in the same manner except that 0.15 Ga0.85 N was grown, a light emission output of 180 mA was obtained at 20 mA.
Only μW, brightness 400 mcd, emission wavelength 490
was nm.

【0024】[比較例2]実施例1のSi、Znドープ
n型In0.15Ga0.85N層を成長させる工程において、
原料ガスにTMG、アンモニア、ドーパントガスにシラ
ンガス、DEZを用いて、Siを1×1018/cm3とZ
nを1×1020/cm3ドープしたi型GaN層を成長さ
せる。i型GaN層成長後、同様にしてi型GaN層の
一部をエッチングし、n型GaN層を露出させ、n型G
aN層とi型GaN層とに電極を設けて、MIS構造の
発光ダイオードところ、発光出力は20mAにおいて1
μW、輝度0.1mcdしかなかった。
Comparative Example 2 In the step of growing the Si, Zn-doped n-type In0.15Ga0.85N layer of Example 1,
Using TMG and ammonia as a source gas, silane gas and DEZ as a dopant gas, Si is 1 × 10 18 / cm 3 and Z.
An i-type GaN layer doped with n of 1 × 10 20 / cm 3 is grown. After the growth of the i-type GaN layer, a part of the i-type GaN layer is similarly etched to expose the n-type GaN layer, and the n-type G
An electrode is provided on the aN layer and the i-type GaN layer, and a light emitting diode having a MIS structure is used. The light emission output is 1 at 20 mA.
It had only μW and a brightness of 0.1 mcd.

【0025】[0025]

【発明の効果】以上説明したように、本発明の窒化ガリ
ウム系化合物半導体発光素子は、SiおよびZnをドー
プしたn型InGaNを発光層とするダブルへテロ構造
としているため、従来のMIS構造の発光素子に比し
て、格段に発光効率、発光強度が増大する。しかも、主
発光波長はInGaN中のInのモル比を変えることに
よって赤色から紫色まで自由に調節することができ、そ
の産業上の利用価値は大きい。
As described above, the gallium nitride-based compound semiconductor light-emitting device of the present invention has a double hetero structure having n-type InGaN doped with Si and Zn as a light-emitting layer, and therefore has a conventional MIS structure. The luminous efficiency and the luminous intensity are significantly increased as compared with the light emitting element. Moreover, the main emission wavelength can be freely adjusted from red to purple by changing the molar ratio of In in InGaN, and its industrial utility value is great.

【0026】[0026]

【図面の簡単な説明】[Brief description of drawings]

【図1】 ZnのみをドープしたInGaN層(b)
と、ZnおよびSiをドープしたInGaN層(a)と
の室温でのフォトルミネッセンス強度を比較して示す
図。
FIG. 1 InGaN layer doped only with Zn (b)
3A and 3B are diagrams showing a comparison of photoluminescence intensity at room temperature between InGaN layer (a) doped with Zn and Si.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 n型窒化ガリウム系化合物半導体層とp
型窒化ガリウム系化合物半導体層との間に、Siおよび
Znがドープされたn型InXGa1-XN(但し、Xは0
<X<1の範囲である。)を発光層として具備すること
を特徴とする窒化ガリウム系化合物半導体発光素子。
1. An n-type gallium nitride-based compound semiconductor layer and p
N - type In X Ga 1-X N (where X is 0
It is a range of <X <1. ) As a light emitting layer, a gallium nitride-based compound semiconductor light emitting device.
JP7087393A 1992-11-19 1993-03-05 Gallium nitride compound semiconductor light emitting device Expired - Fee Related JP2560963B2 (en)

Priority Applications (20)

Application Number Priority Date Filing Date Title
JP7087393A JP2560963B2 (en) 1993-03-05 1993-03-05 Gallium nitride compound semiconductor light emitting device
US08/153,153 US5578839A (en) 1992-11-20 1993-11-17 Light-emitting gallium nitride-based compound semiconductor device
DE69319854T DE69319854T2 (en) 1992-11-20 1993-11-19 Light-emitting device based on a gallium nitride semiconductor compound
TW082109713A TW231376B (en) 1992-11-20 1993-11-19
EP98100538A EP0844675B1 (en) 1992-11-20 1993-11-19 Light-emitting gallium nitride-based compound semiconductor device
DE69333829T DE69333829T2 (en) 1992-11-20 1993-11-19 Light-emitting device based on a gallium nitride semiconductor compound
KR1019930024797A KR970007135B1 (en) 1992-11-19 1993-11-19 Light-emitting gallium nitride-based compound semiconductor device
EP93118670A EP0599224B2 (en) 1992-11-20 1993-11-19 Light-emitting gallium nitride-based compound semiconductor device
US08/661,157 US5734182A (en) 1992-11-20 1996-06-10 Light-emitting gallium nitride-based compound semiconducor device
US08/661,138 US5747832A (en) 1992-11-20 1996-06-10 Light-emitting gallium nitride-based compound semiconductor device
US08/705,972 US5880486A (en) 1992-11-20 1996-08-30 Light-emitting gallium nitride-based compound semiconductor device
KR1019980015415A KR100406200B1 (en) 1992-11-20 1998-04-29 Light-emitting gallium nitride-based compound semiconductor device
KR1019980015416A KR100406201B1 (en) 1992-11-20 1998-04-29 Light-emitting gallium nitride-based compound semiconductor device
US09/145,972 US6078063A (en) 1992-11-20 1998-09-03 Light-emitting gallium nitride-based compound semiconductor device
US09/300,788 US6215133B1 (en) 1992-11-20 1999-04-28 Light-emitting gallium nitride-based compound semiconductor device
KR1019990033018A KR100445524B1 (en) 1992-11-20 1999-08-12 Light-Emitting Gallium Nitride-Based Compound Semiconductor Device
KR1019990033017A KR100289626B1 (en) 1992-11-20 1999-08-12 Light-Emitting Gallium Nitride-Based Compound Semiconductor Device
US09/516,193 US6469323B1 (en) 1992-11-20 2000-03-01 Light-emitting gallium nitride-based compound semiconductor device
US10/227,834 US6791103B2 (en) 1992-11-20 2002-08-27 Light-emitting gallium nitride-based compound semiconductor device
US10/456,475 US20030216011A1 (en) 1992-11-20 2003-06-09 Light-emitting gallium nitride-based compound semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7087393A JP2560963B2 (en) 1993-03-05 1993-03-05 Gallium nitride compound semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH06260680A true JPH06260680A (en) 1994-09-16
JP2560963B2 JP2560963B2 (en) 1996-12-04

Family

ID=13444114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7087393A Expired - Fee Related JP2560963B2 (en) 1992-11-19 1993-03-05 Gallium nitride compound semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP2560963B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07312445A (en) * 1994-03-22 1995-11-28 Toyoda Gosei Co Ltd Iii group nitride semiconductor light emitting element
US5945689A (en) * 1995-03-17 1999-08-31 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using group III nitride compound
JPH11251687A (en) * 1998-03-06 1999-09-17 Matsushita Electric Ind Co Ltd Manufacture of semiconductor and semiconductor device
US6081540A (en) * 1996-12-20 2000-06-27 Sharp Kabushiki Kaisha Semiconductor light emitting device with high light emission efficiency
US6133058A (en) * 1994-07-21 2000-10-17 Matsushita Electric Industrial Co., Ltd. Fabrication of semiconductor light-emitting device
US6136626A (en) * 1994-06-09 2000-10-24 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device and production method thereof
US6413627B1 (en) 1998-06-18 2002-07-02 Sumitomo Electric Industries, Ltd. GaN single crystal substrate and method of producing same
US6445127B1 (en) 1998-02-17 2002-09-03 Matsushita Electric Industrial Co., Ltd. Light-emitting device comprising gallium-nitride-group compound-semiconductor and method of manufacturing the same
US6608332B2 (en) 1996-07-29 2003-08-19 Nichia Kagaku Kogyo Kabushiki Kaisha Light emitting device and display
US6614179B1 (en) 1996-07-29 2003-09-02 Nichia Kagaku Kogyo Kabushiki Kaisha Light emitting device with blue light LED and phosphor components
US6831304B2 (en) 2002-02-25 2004-12-14 Showa Denko Kabushiki Kaisha P-n junction type boron phosphide-based semiconductor light-emitting device and production method thereof
US6936863B2 (en) 2002-11-18 2005-08-30 Showa Denko K.K. Boron phosphide-based semiconductor light-emitting device, production method thereof and light-emitting diode
US7001790B2 (en) 1994-03-22 2006-02-21 Toyoda Gosei Co., Ltd. Light-emitting aluminum gallium indium nitride compound semiconductor device having an improved luminous intensity
JP2007096330A (en) * 2005-09-27 2007-04-12 Philips Lumileds Lightng Co Llc Group iii-v light-emitting device
JP2009239294A (en) * 1997-08-29 2009-10-15 Cree Inc Robust group iii nitride light emitting diode for high reliability in standard packaging application
WO2010018933A3 (en) * 2008-08-14 2010-05-14 주식회사 세미콘라이트 Method for manufacturing a high‑concentration n-type nitride semiconductor and nitride light‑emitting device based on same
US8934513B2 (en) 1994-09-14 2015-01-13 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0410665A (en) * 1990-04-27 1992-01-14 Toyoda Gosei Co Ltd Light-emitting element of gallium nitride-based compound semiconductor
JPH0468579A (en) * 1990-07-09 1992-03-04 Sharp Corp Compound semiconductor light emitting element
JPH04236477A (en) * 1991-01-21 1992-08-25 Pioneer Electron Corp Semiconductor light emitting element
JPH04299876A (en) * 1991-03-28 1992-10-23 Asahi Chem Ind Co Ltd Semiconductor light emitting element material
JPH04323880A (en) * 1991-04-23 1992-11-13 Asahi Chem Ind Co Ltd Material for gallium nitride-based semiconductor light emitting element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0410665A (en) * 1990-04-27 1992-01-14 Toyoda Gosei Co Ltd Light-emitting element of gallium nitride-based compound semiconductor
JPH0468579A (en) * 1990-07-09 1992-03-04 Sharp Corp Compound semiconductor light emitting element
JPH04236477A (en) * 1991-01-21 1992-08-25 Pioneer Electron Corp Semiconductor light emitting element
JPH04299876A (en) * 1991-03-28 1992-10-23 Asahi Chem Ind Co Ltd Semiconductor light emitting element material
JPH04323880A (en) * 1991-04-23 1992-11-13 Asahi Chem Ind Co Ltd Material for gallium nitride-based semiconductor light emitting element

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7867800B2 (en) 1994-03-22 2011-01-11 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using group III nitrogen compound
US7332366B2 (en) 1994-03-22 2008-02-19 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using group III nitrogen compound
JPH07312445A (en) * 1994-03-22 1995-11-28 Toyoda Gosei Co Ltd Iii group nitride semiconductor light emitting element
US7138286B2 (en) 1994-03-22 2006-11-21 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using group III nitrogen compound
US7001790B2 (en) 1994-03-22 2006-02-21 Toyoda Gosei Co., Ltd. Light-emitting aluminum gallium indium nitride compound semiconductor device having an improved luminous intensity
US6136626A (en) * 1994-06-09 2000-10-24 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device and production method thereof
US6133058A (en) * 1994-07-21 2000-10-17 Matsushita Electric Industrial Co., Ltd. Fabrication of semiconductor light-emitting device
US8934513B2 (en) 1994-09-14 2015-01-13 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor
US6645785B2 (en) 1995-03-17 2003-11-11 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using group III nitride compound
US5945689A (en) * 1995-03-17 1999-08-31 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using group III nitride compound
US6288416B1 (en) 1995-03-17 2001-09-11 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using group III nitride compound
US7329988B2 (en) 1996-07-29 2008-02-12 Nichia Corporation Light emitting device with blue light LED and phosphor components
US7215074B2 (en) 1996-07-29 2007-05-08 Nichia Corporation Light emitting device with blue light led and phosphor components
US9130130B2 (en) 1996-07-29 2015-09-08 Nichia Corporation Light emitting device and display comprising a plurality of light emitting components on mount
US6614179B1 (en) 1996-07-29 2003-09-02 Nichia Kagaku Kogyo Kabushiki Kaisha Light emitting device with blue light LED and phosphor components
US7026756B2 (en) 1996-07-29 2006-04-11 Nichia Kagaku Kogyo Kabushiki Kaisha Light emitting device with blue light LED and phosphor components
US7071616B2 (en) 1996-07-29 2006-07-04 Nichia Kagaku Kogyo Kabushiki Kaisha Light emitting device with blue light led and phosphor components
US7126274B2 (en) 1996-07-29 2006-10-24 Nichia Corporation Light emitting device with blue light LED and phosphor components
US6608332B2 (en) 1996-07-29 2003-08-19 Nichia Kagaku Kogyo Kabushiki Kaisha Light emitting device and display
US7531960B2 (en) 1996-07-29 2009-05-12 Nichia Corporation Light emitting device with blue light LED and phosphor components
US7362048B2 (en) 1996-07-29 2008-04-22 Nichia Kagaku Kogyo Kabushiki Kaisha Light emitting device with blue light led and phosphor components
US6081540A (en) * 1996-12-20 2000-06-27 Sharp Kabushiki Kaisha Semiconductor light emitting device with high light emission efficiency
JP2009239294A (en) * 1997-08-29 2009-10-15 Cree Inc Robust group iii nitride light emitting diode for high reliability in standard packaging application
US6445127B1 (en) 1998-02-17 2002-09-03 Matsushita Electric Industrial Co., Ltd. Light-emitting device comprising gallium-nitride-group compound-semiconductor and method of manufacturing the same
JPH11251687A (en) * 1998-03-06 1999-09-17 Matsushita Electric Ind Co Ltd Manufacture of semiconductor and semiconductor device
US6413627B1 (en) 1998-06-18 2002-07-02 Sumitomo Electric Industries, Ltd. GaN single crystal substrate and method of producing same
US6831304B2 (en) 2002-02-25 2004-12-14 Showa Denko Kabushiki Kaisha P-n junction type boron phosphide-based semiconductor light-emitting device and production method thereof
US6936863B2 (en) 2002-11-18 2005-08-30 Showa Denko K.K. Boron phosphide-based semiconductor light-emitting device, production method thereof and light-emitting diode
JP2007096330A (en) * 2005-09-27 2007-04-12 Philips Lumileds Lightng Co Llc Group iii-v light-emitting device
WO2010018933A3 (en) * 2008-08-14 2010-05-14 주식회사 세미콘라이트 Method for manufacturing a high‑concentration n-type nitride semiconductor and nitride light‑emitting device based on same

Also Published As

Publication number Publication date
JP2560963B2 (en) 1996-12-04

Similar Documents

Publication Publication Date Title
KR970007135B1 (en) Light-emitting gallium nitride-based compound semiconductor device
JP2778405B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2785254B2 (en) Gallium nitride based compound semiconductor light emitting device
US6881602B2 (en) Gallium nitride-based semiconductor light emitting device and method
JP2890396B2 (en) Nitride semiconductor light emitting device
JP3890930B2 (en) Nitride semiconductor light emitting device
JP2560963B2 (en) Gallium nitride compound semiconductor light emitting device
JPH06177423A (en) Blue light emitting element
JP2713095B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP3658892B2 (en) Method for growing p-type nitride semiconductor and nitride semiconductor device
JP2918139B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2713094B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP3458007B2 (en) Semiconductor light emitting device
JPH10144960A (en) Method for manufacturing p-type nitride semiconductor and nitride semiconductor element
JPH08162671A (en) Nitride semiconductor light emitting diode
JP2560964B2 (en) Gallium nitride compound semiconductor light emitting device
JP2809045B2 (en) Nitride semiconductor light emitting device
JP3216596B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2576819B1 (en) Gallium nitride based compound semiconductor light emitting device
JP3267250B2 (en) Nitride semiconductor light emitting device
JP2560963C (en)
JP2576819C (en)
JP2713095C (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960730

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees