JPH04299876A - Semiconductor light emitting element material - Google Patents

Semiconductor light emitting element material

Info

Publication number
JPH04299876A
JPH04299876A JP3064963A JP6496391A JPH04299876A JP H04299876 A JPH04299876 A JP H04299876A JP 3064963 A JP3064963 A JP 3064963A JP 6496391 A JP6496391 A JP 6496391A JP H04299876 A JPH04299876 A JP H04299876A
Authority
JP
Japan
Prior art keywords
film
light emitting
gas
crucible
semiconductor light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3064963A
Other languages
Japanese (ja)
Inventor
Masahiko Hirai
匡彦 平井
Hideaki Imai
秀秋 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP3064963A priority Critical patent/JPH04299876A/en
Publication of JPH04299876A publication Critical patent/JPH04299876A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PURPOSE:To obtain semiconductor light emitting element material which has high efficiency for light output and is suitable to devices for display and optical communication. CONSTITUTION:The title material has a structure wherein gallium nitride based compounds are laminated on a sapphire R face (>>1, -1, 0, 2] face) whose off-angle is smaller than or equal to 0.8, and is formed by a CBE method or the like, without using an AlN buffer layer. This semiconductor light emitting element is thin, flat, and excellent in single-crystallinity, so that high efficiency for light output is obtained. Hence this material is suitable to devices for display and optical communication use.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、特にディスプレー用、
光通信用に最適な半導体発光素子材料に関するものであ
る。
[Industrial Application Field] The present invention is particularly applicable to displays,
The present invention relates to semiconductor light emitting device materials that are optimal for optical communications.

【0002】0002

【従来の技術】半導体発光素子、特に可視域発光ダイオ
ード(LED)は、あらゆる分野において機能表示素子
として使用されているが、紫外域〜青色半導体発光素子
は未だ実用化されておらず、開発が急がれている。紫外
域〜青色半導体発光素子としては、ZnSe、GaN、
SiCなどを用いたのが研究対象とされている。
[Prior Art] Semiconductor light-emitting devices, particularly visible light-emitting diodes (LEDs), are used as functional display devices in all fields, but ultraviolet to blue semiconductor light-emitting devices have not yet been put to practical use and development is still slow. It's urgent. As ultraviolet to blue semiconductor light emitting devices, ZnSe, GaN,
Research is focused on materials such as SiC.

【0003】窒化ガリウム(GaN)は、多くはサファ
イアC面上にMOCVD法、VPE法により成膜される
〔Journal  of  Applied  Ph
ysics,56  P.2367−2368(198
4)〕。 しかしながら平坦な表面を得るためには、一般に20〜
30μm以上の膜厚を要し、AlNバッファ層を用いて
も少なくとも約4μm以上の膜厚が必要とされている〔
Applied  Physics  Letter,
48  P.353−355(1986)〕。
[0003] Gallium nitride (GaN) is often deposited on the C-plane of sapphire by the MOCVD method or the VPE method [Journal of Applied Ph.D.
ysics, 56 P. 2367-2368 (198
4)]. However, to obtain a flat surface, generally 20 to
A film thickness of 30 μm or more is required, and even if an AlN buffer layer is used, a film thickness of at least about 4 μm or more is required [
Applied Physics Letter,
48 P. 353-355 (1986)].

【0004】GaN半導体発光素子は、基板側からの採
光が一般的であり、〔National  Techn
ical  Report,28  P.83−92(
1982)〕、厚い膜厚を必要とする半導体発光素子で
は、光の取り出し効率低下は避けられない。このように
従来の半導体発光素子用GaN系薄膜は4μm以上の膜
厚を必要とし、また、AlNバッファ層を設けるなどの
操作により、GaN薄膜の平坦化を図る必要がある〔日
本結晶学会誌,15  P.334−342(1988
)〕ことから、光の取り出し効率の低下が避けられなか
った。
[0004] GaN semiconductor light emitting devices generally receive light from the substrate side.
ical Report, 28 P. 83-92(
1982)], in semiconductor light emitting devices that require a thick film, a decrease in light extraction efficiency is inevitable. As described above, conventional GaN-based thin films for semiconductor light emitting devices require a film thickness of 4 μm or more, and it is also necessary to planarize the GaN thin film by operations such as providing an AlN buffer layer [Journal of the Japanese Society of Crystallography, 15 P. 334-342 (1988
)], a decrease in light extraction efficiency was unavoidable.

【0005】[0005]

【発明が解決しようとする課題】本発明は、光の取り出
し効率を増加させるために、薄い膜厚で平坦なGaN系
単結晶薄膜を得ることを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to obtain a thin and flat GaN-based single crystal thin film in order to increase light extraction efficiency.

【0006】[0006]

【課題を解決するための手段】本発明者らは、前記課題
を解決するため鋭意研究を重ねた結果、AlNバッファ
層を設けるなどの操作をしなくとも、薄い膜厚でGaN
系薄膜の平坦化を実現しうることを見出し、本発明を完
成した。すなわち本発明は、オフ角0.8°以下のサフ
ァイアR面上に、少なくとも1種のn型窒化ガリウム系
化合物層、および、少なくとも1種の窒化ガリウム系化
合物発光層が積層した構造をもつことを特徴とする半導
体発光素子材料を提供するものである。
[Means for Solving the Problems] As a result of extensive research to solve the above problems, the present inventors have discovered that GaN can be used with a thin film thickness without the need for operations such as providing an AlN buffer layer.
The present invention was completed based on the discovery that planarization of thin films based on the system can be realized. That is, the present invention has a structure in which at least one n-type gallium nitride compound layer and at least one gallium nitride compound light-emitting layer are laminated on a sapphire R surface with an off angle of 0.8° or less. The present invention provides a semiconductor light emitting device material characterized by the following.

【0007】以下、本発明についてさらに詳細に説明す
る。本発明における、オフ角0.8°以下のサファイア
R面とは、単結晶サファイア(α−Al2 O3 )に
おいて[1−102]面(R面)がプラスマイナス0.
8°以下の精度で基板面となっている研磨表面のことで
ある。また、このオフ角は、X線回折法によって確認す
ることができる。オフ角が0.8°を超えるサファイア
R面を基板として用いると、膜厚1μm以下では平坦な
GaN表面は得られなくなり、GaNの単結晶性も低下
する。したがって、膜厚1μm以下で平坦なGaN表面
を得るためには、オフ角0.8°以下のサファイアR面
を基板として用いる必要がある。好ましくは0.5°以
下、さらに好ましくは0.3°以下のサファイアR面を
用いると良い。さらに、RHEED(反射高速電子線回
折)においてストリークパターンが観測できる基板表面
であるとより好ましい。
The present invention will be explained in more detail below. In the present invention, a sapphire R-plane with an off angle of 0.8° or less means that the [1-102] plane (R-plane) of single crystal sapphire (α-Al2O3) has an off angle of plus or minus 0.
A polished surface that is the substrate surface with an accuracy of 8 degrees or less. Moreover, this off-angle can be confirmed by X-ray diffraction method. When a sapphire R-plane with an off-angle exceeding 0.8° is used as a substrate, a flat GaN surface cannot be obtained with a film thickness of 1 μm or less, and the single crystallinity of GaN also deteriorates. Therefore, in order to obtain a flat GaN surface with a film thickness of 1 μm or less, it is necessary to use a sapphire R surface with an off angle of 0.8° or less as a substrate. It is preferable to use a sapphire R surface with an angle of preferably 0.5° or less, more preferably 0.3° or less. Furthermore, it is more preferable that the substrate surface has a streak pattern that can be observed in RHEED (reflection high-speed electron diffraction).

【0008】また、本発明における少なくとも1種のn
型窒化ガリウム系化合物層とは、例えば、GaNの他G
a1−x Alx N、Ga1−x Inx N、Ga
1−x BxNなどのGaNを主とした混晶化合物、ま
たはこれらの化合物にZn、Mg、Be、Cd、Si、
Ge、C、Sn、Hg等を不純物として極く少量添加し
たもので、n型キャリア数を制御したn型伝導特性を示
すもののことであり、必要に応じて、異なる種類のn型
窒化ガリウム系化合物を積層させたり、膜厚に依存して
液晶比をかえたり、膜表面の位置によって異なるn型窒
化ガリウム系化合物で構成したりすることも可能である
[0008] Furthermore, at least one type of n in the present invention
The type gallium nitride compound layer is, for example, GaN or G
a1-x Alx N, Ga1-x Inx N, Ga
1-x Mixed crystal compounds mainly composed of GaN such as BxN, or these compounds containing Zn, Mg, Be, Cd, Si,
It is a substance to which a very small amount of Ge, C, Sn, Hg, etc. is added as an impurity, and exhibits n-type conductivity characteristics with a controlled number of n-type carriers. It is also possible to stack compounds, to change the liquid crystal ratio depending on the film thickness, or to use different n-type gallium nitride compounds depending on the position on the film surface.

【0009】また、本発明における、少なくとも1種の
窒化ガリウム系化合物発光層とは、例えば、GaNの他
Ga1−x Alx N、Ga1−x Inx N、G
a1−x BxNなどのGaNを主とした混晶化合物に
、Zn、Mg、Be、Cd等を不純物として添加し、p
型もしくはi型の伝導性を示すもので、前記のn型窒化
ガリウム系化合物との間に、pn接合(p型、n型半導
体接合)、mis構造(絶縁体、半導体接合構造)など
を形成し、発光層として動作するものである。
In the present invention, the at least one gallium nitride compound light-emitting layer includes, for example, Ga1-x Alx N, Ga1-x Inx N, G
a1-x Zn, Mg, Be, Cd, etc. are added as impurities to a mixed crystal compound mainly composed of GaN such as BxN, and p
It exhibits type or i-type conductivity, and forms a pn junction (p-type, n-type semiconductor junction), mis structure (insulator, semiconductor junction structure), etc. with the n-type gallium nitride-based compound. However, it operates as a light emitting layer.

【0010】これらの接合を用いて、ダブルヘテロ構造
、量子井戸構造、超格子構造等の複雑な構造をもった素
子を製作することも可能である。また、これらの積層膜
の膜厚は2μm以下、さらに好ましくは1μm以下に抑
えることができ、光の取り出し効率の向上にきわめて有
効である。一例として、図1にmis型発光素子の構造
を示す。オフ角0.8°以下のサファイアR面(1)上
にn型GaN単結晶膜(2)を膜厚0.8μmまで積層
し、さらにMgドープGaN単結晶高抵抗膜(3)を膜
厚0.05μm積層したものである。また電極(4)、
(5)にはAlを使用した。
[0010] Using these junctions, it is also possible to fabricate elements with complex structures such as double heterostructures, quantum well structures, and superlattice structures. Furthermore, the thickness of these laminated films can be kept to 2 μm or less, more preferably 1 μm or less, which is extremely effective in improving light extraction efficiency. As an example, FIG. 1 shows the structure of a mis-type light emitting device. An n-type GaN single crystal film (2) is laminated to a thickness of 0.8 μm on the sapphire R plane (1) with an off angle of 0.8° or less, and an Mg-doped GaN single crystal high resistance film (3) is further layered to a thickness of 0.8 μm. It is a 0.05 μm laminated layer. Also, the electrode (4),
Al was used for (5).

【0011】成膜法としては、一般的に知られている、
例えばCBE法、CVD法、MOCVD法、真空蒸着法
、スパッタリング法等を用いることができるが、中でも
CBE法が最も好ましい。以下一例として、CBE法に
より窒化ガリウムmis型積層膜を成膜した例について
説明する。
[0011] The film forming method is generally known as
For example, CBE method, CVD method, MOCVD method, vacuum evaporation method, sputtering method, etc. can be used, and among them, CBE method is most preferable. As an example, an example in which a gallium nitride mis-type stacked film is formed by the CBE method will be described below.

【0012】装置には、図2に示すような真空容器(6
)内に、蒸発用坩堝(クヌードセンセル)(7)、(8
)、(9)、ガス導入用ガスセル(10)、基板加熱ホ
ルダー(11)を備えたCBE装置を使用した。蒸発用
坩堝(7)にはGa金属、(8)にはMg金属を入れ、
それぞれ1020℃、270℃に加熱した。ガスの導入
にはガスセル(10)を用い、ガスを直接基板(12)
に吹き付けるように設置した。導入ガスにはNH3 を
使用し、導入量を5cc/minとした。
The apparatus includes a vacuum container (6
), the evaporation crucible (Knudsen cell) (7), (8
), (9), a CBE apparatus equipped with a gas cell for introducing gas (10), and a substrate heating holder (11) was used. Put Ga metal into the evaporation crucible (7), put Mg metal into the evaporation crucible (8),
They were heated to 1020°C and 270°C, respectively. A gas cell (10) is used to introduce the gas, and the gas is directly introduced into the substrate (12).
It was set up so that it would spray on the air. NH3 was used as the introduced gas, and the amount introduced was 5 cc/min.

【0013】真空容器内の真空度は、成膜時で1〜5×
10−6Torr程度であった。基板にはオフ角0.5
°以下のサファイアR面([1−102]面)を使用し
800℃に加熱した。オフ角は、X線回折法によるX線
ロッキングカーブから測定することができ、この場合、
Cu−Kα線を用いて測定した。まず、NH3 ガスを
供給しながらGaの坩堝のシャッタを開け成膜を行ない
、膜厚0.8μmのGaN薄膜を形成させ、つづいてM
gの坩堝のシャッタを開けドーピングを行いながらさら
に膜厚0.2μm積層させた。
The degree of vacuum in the vacuum container is 1 to 5× during film formation.
The pressure was about 10-6 Torr. Off angle 0.5 for the board
A sapphire R plane ([1-102] plane) with a radius of 10°C or less was used and heated to 800°C. The off angle can be measured from an X-ray rocking curve by X-ray diffraction method, and in this case,
It was measured using Cu-Kα radiation. First, film formation was performed by opening the shutter of the Ga crucible while supplying NH3 gas to form a GaN thin film with a film thickness of 0.8 μm.
The shutter of the crucible (g) was opened and while doping was being carried out, a further film thickness of 0.2 μm was laminated.

【0014】この積層膜に励起光としてHe−Cdレー
ザーを照射し、室温においてフォトルミネッセンス(P
L)を観測したところ、図3に示すような波長約0.4
7μm付近にピークをもつ青色発光が得られた。また、
図1に示すような発光素子を試作し、電流電圧特性を測
定したところ、図4に示すようなダイオード特性を示し
た。
[0014] This laminated film is irradiated with a He-Cd laser as excitation light, and photoluminescence (P
When observing L), the wavelength was approximately 0.4 as shown in Figure 3.
Blue light emission with a peak around 7 μm was obtained. Also,
When a light emitting element as shown in FIG. 1 was prototyped and its current-voltage characteristics were measured, it exhibited diode characteristics as shown in FIG. 4.

【0015】なお、成膜方法は、これに限定されるもの
ではない。
Note that the film forming method is not limited to this.

【0016】[0016]

【実施例】【Example】

【0017】[0017]

【実施例1】以下、CBE法により窒化ガリウムmis
型積層膜を成膜した具体例について説明する。装置には
、図2に示すような真空容器(6)内に、蒸発用坩堝(
クヌードセンセル)(7)、(8)、(9)、ガス導入
用ガスセル(10)、基板加熱ホルダー(11)を備え
たCBE装置を使用した。
[Example 1] Hereinafter, gallium nitride mis
A specific example of forming a mold laminated film will be described. The apparatus includes an evaporation crucible (
A CBE apparatus equipped with a gas cell (10) for introducing gas, and a substrate heating holder (11) was used.

【0018】蒸発用坩堝(7)にはGa金属、(8)に
はMg金属を入れ、それぞれ1020℃、270℃に加
熱した。ガスの導入にはガスセル(10)を用い、ガス
を直接基板(12)に吹き付けるように設置した。導入
ガスにはNH3 を使用し、導入量を5cc/minと
した。真空容器内の真空度は、成膜時で1〜5×10−
6Torr程度であった。
Ga metal was placed in the evaporation crucible (7), and Mg metal was placed in the evaporation crucible (8), which were heated to 1020°C and 270°C, respectively. A gas cell (10) was used to introduce the gas, and was installed so as to spray the gas directly onto the substrate (12). NH3 was used as the introduced gas, and the amount introduced was 5 cc/min. The degree of vacuum in the vacuum container is 1 to 5 x 10- during film formation.
The pressure was about 6 Torr.

【0019】基板にはオフ角0.5°のサファイアR面
([1−102]面)を使用し800℃に加熱した。オ
フ角は、X線回折法によるX線ロッキングカーブから測
定することができ、この場合、Cu−Kα線を用いて測
定した。まず、NH3 ガスを供給しながらGaの坩堝
のシャッタを開け成膜を行い、膜厚約0.8μmのGa
N薄膜を形成させ、つづいてMgの坩堝のシャッタを開
けドーピングを行いながらさらに膜厚0.05μm積層
させた。
A sapphire R plane ([1-102] plane) with an off angle of 0.5° was used as the substrate and heated to 800°C. The off-angle can be measured from an X-ray rocking curve by X-ray diffraction, and in this case, it was measured using Cu-Kα radiation. First, while supplying NH3 gas, the shutter of the Ga crucible was opened to form a film, and a Ga crucible with a thickness of about 0.8 μm was formed.
A thin N film was formed, and then the shutter of the Mg crucible was opened to perform doping while further layering the film to a thickness of 0.05 μm.

【0020】この積層膜に、励起光としてHe−Cdレ
ーザーを照射し、フォトルミネッセンス(PL)を観測
したところ、図3に示すような波長約0.47μm付近
にピークをもつ青色発光が得られた。また、図1に示す
ような発光素子を試作し、電流電圧特性を測定したとこ
ろ、図4に示すようなダイオード特性を示した。
When this laminated film was irradiated with a He-Cd laser as excitation light and photoluminescence (PL) was observed, blue light emission with a peak around a wavelength of about 0.47 μm was obtained as shown in FIG. Ta. Furthermore, when a light emitting element as shown in FIG. 1 was prototyped and its current-voltage characteristics were measured, it showed diode characteristics as shown in FIG. 4.

【0021】[0021]

【比較例1】基板にオフ角1°のサファイアR面([1
,−102]面)を使用し、実施例1と同様の積層膜を
作成した例について説明する。まず、Gaの坩堝のシャ
ッタを開け成膜を行い、膜厚約0.8μmのGaN薄膜
を形成させ、つづいてMgの坩堝のシャッタを開けドー
ピングを行いながらさらに膜厚0.05μm積層させた
[Comparative Example 1] The substrate has a sapphire R surface with an off angle of 1° ([1
, -102] plane) to create a laminated film similar to that in Example 1 will be described. First, the shutter of the Ga crucible was opened and film formation was performed to form a GaN thin film with a thickness of about 0.8 μm, and then the shutter of the Mg crucible was opened and doping was performed while further layering with a thickness of 0.05 μm was performed.

【0022】この積層膜に、励起光としてHe−Cdレ
ーザーを照射し、フォトルミネッセンス(PL)を観測
したところ、ほとんど発光を示さなかった。
When this laminated film was irradiated with a He--Cd laser as excitation light and photoluminescence (PL) was observed, almost no light was emitted.

【0023】[0023]

【実施例2】以下、CBE法によりGa1−x Inx
 N混晶mis型積層膜を成膜した例について説明する
。装置には、図2に示すような真空容器(6)内に蒸発
用坩堝(クヌードセンセル)(7)、(8)、(9)、
ガス導入用ガスセル(10)、基板加熱ホルダー(11
)を備えたCBE装置を使用した。
[Example 2] Hereinafter, Ga1-x Inx was prepared by CBE method.
An example in which an N mixed crystal mis-type stacked film is formed will be described. The apparatus includes evaporation crucibles (Knudsen cell) (7), (8), (9),
Gas cell for gas introduction (10), substrate heating holder (11)
) was used.

【0024】蒸発用坩堝(7)にはGa金属、(8)に
はMg金属、(9)にはIn金属を入れ、それぞれ10
20℃、270℃、680℃に加熱した。ガスの導入に
はガスセル(10)を用い、ガスを直接基板(12)に
吹き付けるように設置した。導入ガスにはNH3 を使
用し、導入量を5cc/minとした。真空容器内の真
空度は、成膜時で1〜5×10−6Torr程度であっ
た。
Ga metal was placed in the evaporation crucible (7), Mg metal was placed in (8), and In metal was placed in (9).
It was heated to 20°C, 270°C, and 680°C. A gas cell (10) was used to introduce the gas, and was installed so as to spray the gas directly onto the substrate (12). NH3 was used as the introduced gas, and the amount introduced was 5 cc/min. The degree of vacuum in the vacuum container was approximately 1 to 5×10 −6 Torr during film formation.

【0025】基板にはオフ角0.5°のサファイアR面
([1−102]面)を使用し800℃に加熱した。オ
フ角は、X線回折法によるX線ロッキングカーブから測
定することができ、この場合、Cu−Kα線を用いて測
定した。まず、NH3 ガスを供給しながらGa、In
の坩堝のシャッタを開け成膜を行い、膜厚約0.8μm
のGa1−x Inx N薄膜(x=0.2)を形成さ
せ、つづいてMgの坩堝のシャッタを開けドーピングを
行いながらさらに膜厚0.05μm積層させた。
A sapphire R plane ([1-102] plane) with an off angle of 0.5° was used as the substrate and heated to 800°C. The off-angle can be measured from an X-ray rocking curve by X-ray diffraction, and in this case, it was measured using Cu-Kα radiation. First, while supplying NH3 gas, Ga, In
The shutter of the crucible was opened to form a film, and the film thickness was approximately 0.8 μm.
A Ga1-x Inx N thin film (x=0.2) was formed, and then the shutter of the Mg crucible was opened and doping was performed while further layering was performed to a thickness of 0.05 μm.

【0026】この積層膜に、励起光としてHe−Cdレ
ーザーを照射し、フォトルミネッセンス(PL)を観測
したところ、波長約0.51μm付近にピークをもつ発
光が得られた。
When this laminated film was irradiated with a He--Cd laser as excitation light and photoluminescence (PL) was observed, light emission having a peak around a wavelength of about 0.51 μm was obtained.

【0027】[0027]

【実施例3】以下、CBE法により窒化ガリウムmis
型多層積層膜を成膜した例について説明する。装置には
、図2に示すような真空容器(6)内に、蒸発用坩堝(
クヌードセンセル)(7)、(8)、(9)、ガス導入
用ガスセル(10)、基板加熱ホルダー(11)を備え
たCBE装置を使用した。
[Example 3] Hereinafter, gallium nitride mis
An example in which a type multilayer laminated film is formed will be described. The apparatus includes an evaporation crucible (
A CBE apparatus equipped with a gas cell (10) for introducing gas, and a substrate heating holder (11) was used.

【0028】蒸発用坩堝(7)にはGa金属、(8)に
はMg金属を入れ、それぞれ1020℃、270℃に加
熱した。ガスの導入にはガスセル(10)を用い、ガス
を直接基板(12)に吹き付けるように設置した、導入
ガスにはNH3 を使用し、導入量を5cc/minと
した。真空容器内の真空度は、成膜時で1〜5×10−
6Torr程度であった。
Ga metal was placed in the evaporation crucible (7), and Mg metal was placed in the evaporation crucible (8), and the crucibles were heated to 1020°C and 270°C, respectively. A gas cell (10) was used to introduce the gas, and was installed so as to spray the gas directly onto the substrate (12). NH3 was used as the introduced gas, and the amount introduced was 5 cc/min. The degree of vacuum in the vacuum container is 1 to 5 x 10- during film formation.
The pressure was about 6 Torr.

【0029】基板にはオフ角0.5°のサファイアR面
([1−102]面)を使用し800℃に加熱した。オ
フ角は、X線回折法によるX線ロッキングカーブから測
定することができ、この場合、Cu−Kα線を用いて測
定した。まず、NH3 ガスを供給しながらGaの坩堝
のシャッタを開け、成膜を行い膜厚約0.8μmのGa
N薄膜を形成させ、つづいてMgの坩堝のシャッタを開
けドーピングを行いながらさらに膜厚0.05μm積層
させた。つぎに再びMgの坩堝のシャッタを閉じ、Ga
Nを0.5μm積層させ、つづいてMgの坩堝のシャッ
タを開けドーピングを行いながらさらに膜厚0.05μ
m積層させ、さらに、同様にMgの坩堝のシャッタを閉
じ、GaNを0.5μm積層させ、つづいてMgの坩堝
のシャッタを開けドーピングを行いながらさらに膜厚0
.05μm積層させた。このようにして、3層の窒化ガ
リウムmis型多層積層膜を成膜した。
A sapphire R plane ([1-102] plane) with an off angle of 0.5° was used as the substrate and heated to 800°C. The off-angle can be measured from an X-ray rocking curve by X-ray diffraction, and in this case, it was measured using Cu-Kα radiation. First, while supplying NH3 gas, the shutter of the Ga crucible was opened and a film was formed to form a Ga crucible with a thickness of approximately 0.8 μm.
A thin N film was formed, and then the shutter of the Mg crucible was opened to perform doping while further layering the film to a thickness of 0.05 μm. Next, close the shutter of the Mg crucible again, and
N was deposited to a thickness of 0.5 μm, and then the shutter of the Mg crucible was opened to perform doping while further increasing the film thickness to 0.05 μm.
Then, the shutter of the Mg crucible was similarly closed, GaN was deposited to a thickness of 0.5 μm, and then the shutter of the Mg crucible was opened and doping was carried out while the film thickness was further increased to 0.
.. The layers were laminated to a thickness of 0.05 μm. In this way, a three-layer gallium nitride mis-type multilayer laminate film was formed.

【0030】この積層膜に、励起光としてHe−Cdレ
ーザーを照射し、フォトルミネッセンス(PL)を観測
したところ、波長約0.47μm付近にピークをもつ青
色発光が得られた。
When this laminated film was irradiated with a He-Cd laser as excitation light and photoluminescence (PL) was observed, blue light emission with a peak around a wavelength of about 0.47 μm was obtained.

【0031】[0031]

【実施例4】以下、CBE法によりGa1−x Inx
 N混晶mis型積層膜を成膜した例について説明する
。装置には、図2に示すような真空容器(6)内に、蒸
発用坩堝(クヌードセンセル)(7)、(8)、(9)
、ガス導入用ガスセル(10)、基板加熱ホルダー(1
1)を備えたCBE装置を使用した。
[Example 4] Hereinafter, Ga1-x Inx was prepared by CBE method.
An example in which an N mixed crystal mis-type stacked film is formed will be described. The device includes evaporation crucibles (Knudsen cells) (7), (8), (9) in a vacuum container (6) as shown in Figure 2.
, gas cell for gas introduction (10), substrate heating holder (1
A CBE apparatus equipped with 1) was used.

【0032】蒸発用坩堝(7)にはGa金属、(8)に
はMg金属、(9)にはIn金属を入れ、それぞれ10
20℃、270℃、680℃に加熱した。ガスの導入に
はガスセル(10)を用い、ガスを直接基板(12)に
吹き付けるように設置した。導入ガスにはNH3 を使
用し、導入量を5cc/minとした。真空容器内の真
空度は、成膜時で1〜5×10−6Torr程度であっ
た。
Ga metal was placed in the evaporation crucible (7), Mg metal was placed in (8), and In metal was placed in (9).
It was heated to 20°C, 270°C, and 680°C. A gas cell (10) was used to introduce the gas, and was installed so as to spray the gas directly onto the substrate (12). NH3 was used as the introduced gas, and the amount introduced was 5 cc/min. The degree of vacuum in the vacuum container was approximately 1 to 5×10 −6 Torr during film formation.

【0033】基板にはオフ角0.5°のサファイアR面
([1,−102]面)を使用し800℃に加熱した。 オフ角は、X線回折法によるX線ロッキングカーブから
測定することができ、この場合、Cu−Kα線を用いて
測定した。まず、NH3 ガスを供給しながらGaの坩
堝のシャッタを開け、成膜を行い膜厚約0.8μmのG
aN薄膜を形成させ、つづいてInの坩堝のシャッタを
開け成膜を行い、膜厚約0.5μmのGa1−x In
x N薄膜(x=0.2)を形成させ、さらにつづいて
、Mgの坩堝のシャッタを開けドーピングを行いながら
さらに膜厚0.05μm積層させた。
A sapphire R plane ([1, -102] plane) with an off angle of 0.5° was used as the substrate and heated to 800°C. The off-angle can be measured from an X-ray rocking curve by X-ray diffraction, and in this case, it was measured using Cu-Kα radiation. First, while supplying NH3 gas, the shutter of the Ga crucible was opened and a film was formed to form a G film with a thickness of approximately 0.8 μm.
After forming an aN thin film, the shutter of the In crucible was opened to form a film, and Ga1-x In with a film thickness of about 0.5 μm was formed.
A xN thin film (x=0.2) was formed, and then the shutter of the Mg crucible was opened to perform doping while further stacking the film to a thickness of 0.05 μm.

【0034】この積層膜に、励起光としてHe−Cdレ
ーザーを照射しフォトルミネッセンス(PL)を観測し
たところ、波長約0.5μm付近にピークをもつ発光が
得られた。
When this laminated film was irradiated with a He--Cd laser as excitation light and photoluminescence (PL) was observed, light emission having a peak around a wavelength of about 0.5 μm was obtained.

【0035】[0035]

【発明の効果】本発明による半導体発光素子材料は、従
来技術では成し得ない薄い積層薄膜であることから、半
導体発光素子作成において、光の取り出し効率の向上、
パターニング工程の容易化等に大いに寄与することがで
きる。
Effects of the Invention Since the semiconductor light emitting device material according to the present invention is a thin laminated thin film that cannot be achieved using conventional techniques, it can improve the light extraction efficiency in the production of semiconductor light emitting devices.
This can greatly contribute to facilitating the patterning process.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】試作した半導体発光素子の一例を示す構造の概
略図である。
FIG. 1 is a schematic diagram of the structure of an example of a prototype semiconductor light emitting device.

【図2】実施例を行う際に用いた、実験装置の概略図で
ある。
FIG. 2 is a schematic diagram of an experimental apparatus used in carrying out Examples.

【図3】実施例1で得られた積層膜のフォトルミネッセ
ンス測定結果を示すスペクトル図である。
FIG. 3 is a spectrum diagram showing the photoluminescence measurement results of the laminated film obtained in Example 1.

【図4】実施例1で得られた半導体発光素子の電圧電流
測定結果を示すグラフである。
4 is a graph showing the voltage and current measurement results of the semiconductor light emitting device obtained in Example 1. FIG.

【符号の説明】[Explanation of symbols]

1  オフ角0.8°以下のサファイアR面基板2  
n型GaN単結晶膜 3  MgドープGaN単結晶膜 4  Al電極 5  Al電極 6  真空容器 7  蒸発用坩堝 8  蒸発用坩堝 9  蒸発用坩堝 10  ガス導入用ガスセル 11  基板加熱ホルダー 12  基板 13  クライオパネル 14  弁 15  液体窒素トラップ 16  油拡散ポンプ 17  油回転ポンプ 18  シャッタ 19  シャッタ 20  シャッタ
1 Sapphire R-plane substrate with an off angle of 0.8° or less 2
N-type GaN single crystal film 3 Mg-doped GaN single crystal film 4 Al electrode 5 Al electrode 6 Vacuum vessel 7 Evaporation crucible 8 Evaporation crucible 9 Evaporation crucible 10 Gas introduction gas cell 11 Substrate heating holder 12 Substrate 13 Cryopanel 14 Valve 15 Liquid nitrogen trap 16 Oil diffusion pump 17 Oil rotary pump 18 Shutter 19 Shutter 20 Shutter

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  オフ角0.8°以下のサファイアR面
上に、少なくとも1種のn型窒化ガリウム系化合物層、
および、少なくとも1種の窒化ガリウム系化合物発光層
が積層した構造をもつことを特徴とする半導体発光素子
材料。
1. At least one n-type gallium nitride compound layer on the sapphire R-face with an off angle of 0.8° or less,
and a semiconductor light emitting device material characterized by having a structure in which at least one type of gallium nitride compound light emitting layer is laminated.
JP3064963A 1991-03-28 1991-03-28 Semiconductor light emitting element material Withdrawn JPH04299876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3064963A JPH04299876A (en) 1991-03-28 1991-03-28 Semiconductor light emitting element material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3064963A JPH04299876A (en) 1991-03-28 1991-03-28 Semiconductor light emitting element material

Publications (1)

Publication Number Publication Date
JPH04299876A true JPH04299876A (en) 1992-10-23

Family

ID=13273212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3064963A Withdrawn JPH04299876A (en) 1991-03-28 1991-03-28 Semiconductor light emitting element material

Country Status (1)

Country Link
JP (1) JPH04299876A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06260680A (en) * 1993-03-05 1994-09-16 Nichia Chem Ind Ltd Gallium nitride compound semiconductor light emitting element
JPH09270569A (en) * 1996-01-25 1997-10-14 Matsushita Electric Ind Co Ltd Semiconductor laser device
JP2002094111A (en) * 2001-07-27 2002-03-29 Toyoda Gosei Co Ltd Method for fabricating nitrogen-group iii element compound semiconductor light emitting device
US6576932B2 (en) 2001-03-01 2003-06-10 Lumileds Lighting, U.S., Llc Increasing the brightness of III-nitride light emitting devices
US8242513B2 (en) 2007-05-18 2012-08-14 Sony Corporation Method for growing semiconductor layer, method for producing semiconductor light-emitting element, semiconductor light-emitting element, and electronic device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06260680A (en) * 1993-03-05 1994-09-16 Nichia Chem Ind Ltd Gallium nitride compound semiconductor light emitting element
JPH09270569A (en) * 1996-01-25 1997-10-14 Matsushita Electric Ind Co Ltd Semiconductor laser device
US6576932B2 (en) 2001-03-01 2003-06-10 Lumileds Lighting, U.S., Llc Increasing the brightness of III-nitride light emitting devices
JP2002094111A (en) * 2001-07-27 2002-03-29 Toyoda Gosei Co Ltd Method for fabricating nitrogen-group iii element compound semiconductor light emitting device
US8242513B2 (en) 2007-05-18 2012-08-14 Sony Corporation Method for growing semiconductor layer, method for producing semiconductor light-emitting element, semiconductor light-emitting element, and electronic device

Similar Documents

Publication Publication Date Title
US5237182A (en) Electroluminescent device of compound semiconductor with buffer layer
EP0607435B1 (en) Nitride based semiconductor device and manufacture thereof
US6423983B1 (en) Optoelectronic and microelectronic devices including cubic ZnMgO and/or CdMgO alloys
TWI413279B (en) Group iii nitride semiconductor light emitting device, process for producing the same, and lamp
EP0551721B1 (en) Gallium nitride base semiconductor device and method of fabricating the same
JP2809692B2 (en) Semiconductor light emitting device and method of manufacturing the same
US6064078A (en) Formation of group III-V nitride films on sapphire substrates with reduced dislocation densities
KR101066135B1 (en) ? nitride compound semiconductor laminated structure
JP2564024B2 (en) Compound semiconductor light emitting device
JPH02275682A (en) Compound semiconductor material and semiconductor element using same and manufacture thereof
US20110001163A1 (en) Method for producing group iii nitride semiconductor light-emitting device, group iii nitride semiconductor light-emitting device, and lamp
US7002179B2 (en) ZnO system semiconductor device
JPH05335622A (en) Semiconductor light-emitting device
JPH0268968A (en) Compound semiconductor light-emitting device
JP5034035B2 (en) Manufacturing method of semiconductor light emitting device
US7732832B2 (en) Compound semiconductor light-emitting device including p-type undoped boron-phosphide-based semiconductor layer joined to thin-film layer composed of an undoped hexagonal group III nitride semiconductor
JPH04299876A (en) Semiconductor light emitting element material
WO2005109531A1 (en) P-n junction-type compoud semiconductor light-emitting diode
JPH04323880A (en) Material for gallium nitride-based semiconductor light emitting element
GB2250635A (en) Light emitting semiconductor device
JP2001119065A (en) P-type nitride semiconductor and producing method thereof
JPH05190903A (en) Semiconductor light-emitting element and manufacture thereof
JPH0555631A (en) Thin semiconductor laminate film and its manufacture
JP2995186B1 (en) Semiconductor light emitting device
KR100801372B1 (en) Compound semiconductor device, production mehtod of compound semiconductor device and diode

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514