JP2995186B1 - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device

Info

Publication number
JP2995186B1
JP2995186B1 JP37346598A JP37346598A JP2995186B1 JP 2995186 B1 JP2995186 B1 JP 2995186B1 JP 37346598 A JP37346598 A JP 37346598A JP 37346598 A JP37346598 A JP 37346598A JP 2995186 B1 JP2995186 B1 JP 2995186B1
Authority
JP
Japan
Prior art keywords
layer
emitting device
active layer
conductivity type
inn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP37346598A
Other languages
Japanese (ja)
Other versions
JP2000196146A (en
Inventor
栄雄 山口
勇 赤▲崎▼
浩 天野
Original Assignee
日本学術振興会
学校法人 名城大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本学術振興会, 学校法人 名城大学 filed Critical 日本学術振興会
Priority to JP37346598A priority Critical patent/JP2995186B1/en
Application granted granted Critical
Publication of JP2995186B1 publication Critical patent/JP2995186B1/en
Publication of JP2000196146A publication Critical patent/JP2000196146A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

【要約】 【課題】 III 族窒化物半導体を用いて紫外および可視
短波長領域から赤外領域で発光する発光素子を実現する
ための素子構造を提供することにある。 【解決手段】 本発明による発光素子は、絶縁性基板を
サファイア基板で構成し、このサファイア基板の層形成
させるべき面を(0001)c面とし、このサファイア
基板のc面上に第1導電型のAlNの緩衝層を介して第
1導電型のGaNSi層の第1のクラッド層をエピタキ
シャル成長し、形成された際1のクラッド層上に単結晶
の{InNまたは(およびGa1-x Inx NまたはAl
1-x InxN)}の真性活性層InNをMOVPE法に
より形成し、また第1のクラッド層上に金属電極を形成
し、この真性活性層上に第2導電型のキャップ層を形成
し、このキャップ層上にMgを添加した第2導電型のA
lGaN層を光閉じ込め層として形成し、この層上にM
gを添加した第2導電型の第2のクラッド層、GaN層
を形成し、この半導体層上に金属電極を形成することを
特徴とする。これにより、燐および砒素等の有毒元素を
含まない長波長発光素子が可能となる。
An object of the present invention is to provide a device structure for realizing a light-emitting device that emits light in a short wavelength region from ultraviolet and visible light to an infrared region using a group III nitride semiconductor. SOLUTION: In the light emitting device according to the present invention, the insulating substrate is constituted by a sapphire substrate, the surface of the sapphire substrate on which a layer is to be formed is a (0001) c plane, and the first conductivity type is formed on the c plane of the sapphire substrate. A first cladding layer of a GaNSi layer of the first conductivity type is epitaxially grown through an AlN buffer layer of a single crystal. When the first cladding layer is formed, a single crystal ΔInN or (and Ga 1-x In x N Or Al
An intrinsic active layer InN of 1-x In x N)} is formed by the MOVPE method, a metal electrode is formed on the first clad layer, and a cap layer of the second conductivity type is formed on the intrinsic active layer. A of the second conductivity type with Mg added on the cap layer
An lGaN layer is formed as an optical confinement layer, and M
A second conductive type second clad layer to which g is added and a GaN layer are formed, and a metal electrode is formed on the semiconductor layer. As a result, a long-wavelength light-emitting element that does not contain toxic elements such as phosphorus and arsenic can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体層としてII
I 族窒化物半導体を用いた高効率発光素子に関するもの
であり、半導体レーザやLEDのようなデバイスに使用
する発光素子に関するものである。
[0001] The present invention relates to a semiconductor device comprising
The present invention relates to a high-efficiency light emitting device using a group I nitride semiconductor, and to a light emitting device used for a device such as a semiconductor laser or an LED.

【0002】[0002]

【従来の技術】従来、III 族窒化物半導体を用いた発光
素子は紫色から緑色まで実用化している。長波長の黄色
から橙色までは、効率が不十分であり実用化には至って
いない。さらに長波長の赤色から赤外にかけては、V族
元素として燐や砒素を用いた例を除けば実現した例はな
い。
2. Description of the Related Art Conventionally, light emitting devices using a group III nitride semiconductor have been put to practical use from purple to green. The efficiency from long wavelength yellow to orange is insufficient and has not yet been put to practical use. Furthermore, there is no example realized in the long wavelength range from red to infrared, except for an example using phosphorus or arsenic as a group V element.

【0003】しかしながら、よく知られているように、
燐や砒素を含む原料ガスは猛毒の物が多く危険であり、
またその処理や廃棄に関しても有害物質が生成され問題
が多い。一方、窒素は空気の主成分であり、窒素を含む
原料ガス、主にアンモニアは燐や砒素を含む原料ガスと
比較すると毒性は極めて低い。さらに処理方法に関して
も、触媒を用いた分解等により、毒性の無い窒素と水素
に分解することができる。即ち、III 族窒化物半導体を
用いた発光素子は、その作成方法まで含めて考えると、
「地球環境にやさしい半導体デバイス」ということがで
きる。その意味において、燐や砒素を含まないIII 族窒
化物半導体だけで構成される発光素子の実現が強く望ま
れている。
[0003] However, as is well known,
Source gas containing phosphorus and arsenic is dangerous because many poisonous substances
In addition, harmful substances are generated in the treatment and disposal, and there are many problems. On the other hand, nitrogen is a main component of air, and the toxicity of a raw material gas containing nitrogen, mainly ammonia, is extremely lower than that of a raw material gas containing phosphorus or arsenic. Furthermore, regarding the treatment method, it can be decomposed into non-toxic nitrogen and hydrogen by decomposition using a catalyst or the like. In other words, a light emitting device using a group III nitride semiconductor is considered including its manufacturing method.
It can be called "a semiconductor device that is friendly to the global environment." In that sense, it is strongly desired to realize a light emitting device composed only of a group III nitride semiconductor that does not contain phosphorus or arsenic.

【0004】[0004]

【発明が解決しようとする課題】上述したように、窒化
物半導体材料は人体に対する有害性が他の半導体材料に
比べて低い利点がある。しかしながら、全ての半導体層
を窒化物半導体材料で構成する場合、クラッド層及び活
性層を構成する半導体材料の選択範囲が極めて狭い範囲
に制限される不都合がある。例えば、クラッド層として
窒化ガリウムを用い活性層の材料として窒化インジウム
を用いる発光デバイスは、適切な長波長の発光波長が得
られるが、表1に示すように、窒化ガリウムと窒化イン
ジウムとの間の格子定数差が大きい不具合があった。
As described above, the nitride semiconductor material has an advantage that it is less harmful to the human body than other semiconductor materials. However, when all the semiconductor layers are made of a nitride semiconductor material, there is a disadvantage that the selection range of the semiconductor materials forming the cladding layer and the active layer is limited to an extremely narrow range. For example, a light emitting device using gallium nitride as the cladding layer and using indium nitride as the material of the active layer can obtain an appropriate long-wavelength emission wavelength. However, as shown in Table 1, the light emitting device has a gap between gallium nitride and indium nitride. There was a problem with a large lattice constant difference.

【0005】即ち、例えばGaNとInNは表1に示す
ように格子定数差が11%存在し、活性層中のInN分
率が高くなるほど格子定数の整合性が低くなる。そのた
め転位による欠陥の発生頻度が高くなり、活性層として
必要な高品質結晶の作製は困難になる。また、InNの
分解温度が他のGaNやAlNと比較して低く、InN
自身の作製が容易でないことも、活性層への応用が困難
な理由の一つであった。
That is, for example, GaN and InN have a lattice constant difference of 11% as shown in Table 1, and the higher the fraction of InN in the active layer, the lower the lattice constant consistency. Therefore, the frequency of occurrence of defects due to dislocations increases, and it becomes difficult to produce a high-quality crystal required as an active layer. Further, the decomposition temperature of InN is lower than that of other GaN and AlN,
The fact that it is not easy to fabricate itself was also one of the reasons that application to the active layer is difficult.

【0006】[0006]

【表1】 [Table 1]

【0007】従って、本発明の目的は、従来のような燐
や砒素の化合物を使用せずに、III族窒化物半導体を用
いて紫外および可視短波長領域から赤外領域で発光する
発光素子を製造するに当たり、活性層とクラッド層との
間の格子定数差が大きくても転位等の欠陥が生じない半
導体発光デバイス及びその製造方法を実現することにあ
る。
Accordingly, an object of the present invention is to provide a light emitting device which emits light in the ultraviolet and visible short wavelength regions to the infrared region using a group III nitride semiconductor without using a conventional compound of phosphorus or arsenic. An object of the present invention is to realize a semiconductor light emitting device in which defects such as dislocations do not occur even when a difference in lattice constant between an active layer and a cladding layer is large, and a method for manufacturing the same.

【0008】[0008]

【課題を解決するための手段】本発明は、このような目
的を達成するために、単結晶構造の絶縁性基板と、この
絶縁性基板の上側に形成した第1導電型のGaNの第1
のクラッド層と、この第1のクラッド層の上側に形成し
た活性層と、この活性層の上側に形成され、第2導電型
のGaNの第2のクラッド層と、前記第1及び第2のク
ラッド層にそれぞれ電気的に結合した第1及び第2の電
極とを具え、前記活性層をInNで構成し、このInN
層の厚さを、5分子のInNの層の厚さ以下の厚さとし
たことを特徴とする。このように、デバイスを構成する
全ての半導体材料を窒化物で構成することにより、人体
に有害な材料を用いることなく半導体発光素子を実現す
ることができる。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides an insulating substrate having a single crystal structure and a first conductive type GaN formed on the insulating substrate.
A first cladding layer, an active layer formed above the first cladding layer, a second cladding layer of GaN of the second conductivity type formed above the active layer, and the first and second cladding layers. A first electrode and a second electrode electrically coupled to the cladding layer, wherein the active layer is made of InN;
The thickness of the layer is equal to or less than the thickness of the layer of five molecules of InN. As described above, by configuring all the semiconductor materials constituting the device with nitride, a semiconductor light emitting device can be realized without using materials harmful to the human body.

【0009】本発明者が、クラッド層としてGaNを用
い活性層の材料としてInNを用いた発光素子につい
て、活性層の厚さと発光効率の関係について種々の実験
及び解析を行った結果、活性層の膜厚を薄くする程格子
定数差の影響が小さくなり、実験によれば活性層の層厚
が2〜5分子の場合良好な発光効率を得ることができる
ことが判明した。特に、5分子層の場合極めて良好な発
光効率を得ることができ、5分子層を超えると急激に発
光効率が低下することが判明した。このような観点よ
り、本発明では活性層の厚さを5分子層のInNNの厚
さ以下の厚さとし、格子定数差の課題を解決する。
The present inventor conducted various experiments and analyzes on the relationship between the thickness of the active layer and the luminous efficiency of the light emitting device using GaN as the cladding layer and InN as the material of the active layer. The effect of the lattice constant difference becomes smaller as the film thickness becomes smaller. According to the experiment, it was found that good luminous efficiency can be obtained when the thickness of the active layer is 2 to 5 molecules. In particular, it has been found that an extremely good luminous efficiency can be obtained in the case of a five-molecule layer, and the luminous efficiency sharply decreases when the number of the five-molecular layer is exceeded. From such a viewpoint, in the present invention, the thickness of the active layer is set to be equal to or less than the thickness of five molecular layers of InNN, and the problem of the lattice constant difference is solved.

【0010】さらに、本発明者が活性層の成長温度と発
光効率との間の関係について種々の実験を行った結果、
重要な関係があることが判明した。すなわち、300°
C以下の温度でInNを成長させると、発光効率が著し
く低下してしま。一方、700°C以上の温度でInN
を成長させると、良質なInN膜を成長させることがで
きないことが判明した。この実験結果より、本発明では
活性層を300〜700°Cの温度域で成長させる。
Further, the present inventor conducted various experiments on the relationship between the growth temperature of the active layer and the luminous efficiency.
It turns out that there is an important relationship. That is, 300 °
If InN is grown at a temperature below C, the luminous efficiency will be significantly reduced. On the other hand, at a temperature of 700 ° C. or more, InN
It has been found that growing a high-quality InN film cannot grow a high-quality InN film. From this experimental result, in the present invention, the active layer is grown in a temperature range of 300 to 700 ° C.

【0011】尚、InNの分解温度が比較的低いことに
起因する課題については、InNの活性層を成長させた
後、その上にGaNのキャップ層を堆積することにより
活性層の分解を抑制することができる。
As for the problem caused by the relatively low decomposition temperature of InN, the decomposition of the active layer is suppressed by growing an InN active layer and then depositing a GaN cap layer thereon. be able to.

【0012】本発明は、半導体レーザやLEDのような
光放出半導体デバイスだけではなく、太陽電池や光セン
サのように絶縁性基板に金属層又は半導体層を積層して
構成される種々の半導体デバイスにも適用することがで
きる。半導体層をエピタキシャル成長させる方法として
は、有機金属気相成長法、液相エピタキシャル成長法、
気相エピタキシャル成長法、分子線エピタキシャル製造
法等の種々のエピタキシャル成長法を用いることができ
る。
The present invention is applicable not only to light emitting semiconductor devices such as semiconductor lasers and LEDs, but also to various semiconductor devices such as solar cells and optical sensors which are formed by laminating a metal layer or a semiconductor layer on an insulating substrate. Can also be applied. As a method for epitaxially growing a semiconductor layer, metal organic chemical vapor deposition, liquid phase epitaxial growth,
Various epitaxial growth methods such as a vapor phase epitaxial growth method and a molecular beam epitaxial manufacturing method can be used.

【0013】また、電極形成については、反応性イオン
エッチングによりp型層および活性層の一部を除去して
n型層を表面に出し、Ti、Alのような低仕事関数の
金属を蒸着してn型用の電極を作製し、正極用の電極
は、p型層にAu、Pt、Ni等の高仕事関数金属を蒸
着して作製することができる。
For forming an electrode, a part of the p-type layer and the active layer is removed by reactive ion etching to expose an n-type layer on the surface, and a low work function metal such as Ti or Al is deposited. Thus, an n-type electrode can be manufactured, and a positive electrode can be manufactured by depositing a high work function metal such as Au, Pt, or Ni on a p-type layer.

【0014】また、上述した2つの電極は各々スパッタ
リング処理により堆積させたが、電極となる金属の堆積
方法としては、液相エピタキシーのような平衡で一層熱
的に安定な状態でエピタキシャル成長が行われる堆積方
法も利用することができる。
Although the above-mentioned two electrodes are deposited by a sputtering process, the metal to be an electrode is deposited by an epitaxial growth in a more thermally stable state in an equilibrium state such as liquid phase epitaxy. Deposition methods can also be used.

【0015】単結晶基板としてサファイア基板を用いる
ことができ、このサファイア基板とSiを添加した第1
導電型の(この場合はn型の)GaN層との間に、第1
導電型の緩衝層を介在させることが有益である。この緩
衝層としては、例えば基板を1000℃付近まで昇温し
てSiを微量添加した第1導電型(本例ではn型)のA
lNを5 nm成長させることができる。この緩衝層の材
料としては上側に堆積されるGaN層と格子定数差が小
さい材料が好ましい。
A sapphire substrate can be used as a single crystal substrate.
A first (n-type in this case) GaN layer is provided between
It is advantageous to interpose a conductive type buffer layer. As the buffer layer, for example, a first conductivity type (in this example, n-type) A in which the substrate is heated to around 1000 ° C. and a small amount of Si is added.
InN can be grown by 5 nm. As a material of the buffer layer, a material having a small lattice constant difference from the GaN layer deposited on the upper side is preferable.

【0016】本発明による方法の好適な実施例では、有
機金属気相成長工程において、{InNまたは(Ga
1-x Inx NまたはAl1-x Inx N)}層を数分子層
n型GaN上に成長させた。この成長工程について種々
の実験を行った結果、二元系InNを成長させた場合に
は300℃から700℃の温度範囲に基板を維持しなが
ら有機金属気相成長法により堆積を行った場合、良好に
エピタキシャル成長した真性の活性層が形成できること
を見いだした。基板温度がそれより低いと発光効率の低
いInNが成長し、基板温度がそれより高いとInNが
成長しなかったからである。二元系InNを堆積させる
場合には、膜厚は、2〜3分子層で最も効率が高くなっ
た。
In a preferred embodiment of the method according to the present invention, the metalorganic vapor phase epitaxy step involves the use of ΔInN or (Ga
A 1-x In x N or Al 1-x In x N)} layer was grown on several molecular layers n-type GaN. As a result of performing various experiments on this growth process, when binary InN was grown, deposition was performed by metal organic chemical vapor deposition while maintaining the substrate in a temperature range of 300 ° C. to 700 ° C. It has been found that a genuine active layer that has been successfully epitaxially grown can be formed. This is because if the substrate temperature is lower than that, InN with low luminous efficiency grows, and if the substrate temperature is higher than that, InN does not grow. In the case of depositing binary InN, the efficiency was highest when the film thickness was 2 to 3 molecular layers.

【0017】三元系{InNまたは(Ga1-x Inx
またはAl1-x Inx N(但しXは0.5以上))}の
場合には、GaNおよびInNの分率が高いほど、より
多い分子層数で発光効率が最大となる傾向があり、Ga
0.5 In0.5 NまたはAl0.5 In0.5 Nでは共に分子
層数5で発光効率が最大となり、これよりも厚くすると
発光効率は急激に低下した。
The ternary {InN or (Ga 1 -x In x N)
Alternatively, in the case of Al 1-x In x N (where X is 0.5 or more)), the higher the fraction of GaN and InN, the more the luminous efficiency tends to be maximized with a larger number of molecular layers, Ga
For both 0.5 In 0.5 N and Al 0.5 In 0.5 N, the luminous efficiency was maximized when the number of molecular layers was 5, and when the thickness was larger than this, the luminous efficiency sharply decreased.

【0018】[0018]

【発明の実施の形態】図1は、本発明による発光素子の
構造を示す線図的な断面図である。本例では、InNを
活性層のベース材料とする発光素子を製造するための層
構造を形成する場合について説明する。絶縁性基板とし
て単結晶構造を有するサファイア基板10を用いる。こ
のサファイア基板10は、層構造体を形成すべき表面1
0aを有し、この表面10a上にGaNの第1導電型
(この場合はn型)の第1のクラッド層、活性層および
第2の導電型(この場合はp型の)第2のクラッド層を
順次形成する。本例では、層構造を形成すべき表面10
aとして(0001)c面を用いる。尚、サファイア基
板10の層形成すべき面10aは、通常の鏡面研磨した
表面でもよく、又は高温アニール処理により超平坦化処
理をした平面でもよく、いずれの表面でも上側に半導体
層をエピタキシャル成長させることができる。
FIG. 1 is a schematic sectional view showing the structure of a light emitting device according to the present invention. In this example, a case will be described in which a layer structure for manufacturing a light emitting element using InN as a base material of an active layer is formed. A sapphire substrate 10 having a single crystal structure is used as an insulating substrate. This sapphire substrate 10 has a surface 1 on which a layer structure is to be formed.
A first cladding layer of GaN of the first conductivity type (n-type in this case), an active layer and a second cladding of the second conductivity type (p-type in this case) on the surface 10a. The layers are formed sequentially. In this example, the surface 10 on which the layer structure is to be formed is
The (0001) c plane is used as a. The surface 10a of the sapphire substrate 10 on which a layer is to be formed may be a normal mirror-polished surface or a flat surface that has been subjected to a super-flattening process by a high-temperature annealing process. Can be.

【0019】先ず、サファイア基板を反応管内のサセプ
タにセットした後、水素気流中で基板温度を約1000
℃にて数分間保持し、基板表面の洗浄化を行った。次に
基板を降温し、サファイア基板のc面を層構造を形成す
べき面とし、この面上にAlNの緩衝層11を数十nm堆
積する。本例では、MOCVD法により緩衝層を堆積さ
せ、結晶方位の揃ったAlN層11を形成する。
First, after setting a sapphire substrate on a susceptor in a reaction tube, the substrate temperature is set to about 1000 in a hydrogen stream.
C. for several minutes to clean the substrate surface. Next, the temperature of the substrate is lowered, and the c-plane of the sapphire substrate is used as a surface on which a layer structure is to be formed, and a buffer layer 11 of AlN is deposited on this surface by several tens nm. In this example, a buffer layer is deposited by the MOCVD method, and the AlN layer 11 having a uniform crystal orientation is formed.

【0020】次に、緩衝層11の上側に、Siを添加し
た第1導電型のGaNの第1のクラッド層12をエピタ
キシャル成長させる。この場合には基板10を1000
℃付近まで昇温するのが好適である。このSiを添加し
たn型のGaNの第1のクラッド層12は、3×1018
(原子/cm3)で5 μm成長させた。
Next, a first cladding layer 12 of GaN of the first conductivity type to which Si is added is epitaxially grown on the buffer layer 11. In this case, the substrate 10 is 1000
It is preferable to raise the temperature to around ℃. The first cladding layer 12 of n-type GaN to which Si is added is 3 × 10 18
(Atoms / cm 3 ) and 5 μm.

【0021】次に、基板温度を降温して{InNまたは
(Ga1-x Inx NまたはAl1-xInx N)}の活性
層13を数分子層第1導電型( この場合はn型) のGa
N半導体12の上に有機金属化合物気相成長装置よって
堆積させた。図2は、本発明による半導体発光素子の作
製に用いた結晶成長装置の概略図である。この工程に
は、原料ガスとしては、加熱により分解し易いという観
点から、トリメチルガリウム(TMG)トリメチルアル
ミニウム(TMA)、トリメチルインジウム(TMI)
およびアンモニアを用いた。
Next, the temperature of the substrate is lowered to form an active layer 13 of {InN or (Ga 1 -x In x N or Al 1 -x In x N)} of several molecular layers of the first conductivity type (in this case, n Ga)
It was deposited on the N semiconductor 12 by an organic metal compound vapor phase epitaxy apparatus. FIG. 2 is a schematic view of a crystal growth apparatus used for manufacturing a semiconductor light emitting device according to the present invention. In this step, trimethyl gallium (TMG) trimethyl aluminum (TMA), trimethyl indium (TMI)
And ammonia.

【0022】活性層の作製に関し、本発明による実施例
においては、活性層材料を二元系(InN)および三元
系(Ga1-x Inx NまたはAl1-x Inx N)}の場
合について実験を行った。
Regarding the preparation of the active layer, in the embodiment according to the present invention, the active layer material is made of binary (InN) and ternary (Ga 1-x In x N or Al 1-x In x N)}. An experiment was performed on the case.

【0023】第1に、2元系のInNを成長させる場合
には、基板温度を300℃から700℃の範囲に維持し
ながら,InN層を数分子層第1導電型( 本例の場合に
はn型) のGaN上に成長させた。この成長工程につい
て種々の実験を行った結果、300℃から700℃の温
度範囲に基板を維持しながら有機金属気相成長法により
堆積を行った場合、良好にエピタキシャル成長した活性
層が形成できることを見いだした。基板温度がそれより
低いと発光効率の低いInNが成長し、基板温度がそれ
より高いとInNが成長しなかったからである。また、
二元系InNを堆積させる場合には、膜厚は、2〜3分
子層で最も効率が高くなった。
First, when growing binary InN, while maintaining the substrate temperature in the range of 300 ° C. to 700 ° C., the InN layer is formed of several molecular layers of the first conductivity type (in the case of this example). Was grown on n-type) GaN. As a result of conducting various experiments on this growth process, it was found that when deposition was performed by metal organic chemical vapor deposition while maintaining the substrate at a temperature in the range of 300 ° C. to 700 ° C., a well-epitaxially grown active layer could be formed. Was. This is because if the substrate temperature is lower than that, InN with low luminous efficiency grows, and if the substrate temperature is higher than that, InN does not grow. Also,
In the case of depositing binary InN, the efficiency was highest when the film thickness was 2 to 3 molecular layers.

【0024】第2に、三元系(Ga1-x Inx Nまたは
Al1-x Inx N(但しXは0.5以上))を成長させ
る場合には、(Ga1-x Inx NまたはAl1-x Inx
N(但しXは0.5以上))の層を有機金属気相法によ
り堆積させ、GaNおよびAlNの分率が高いほど、基
板温度は高くすることができた。これは、InNの分解
温度に比べてGaNおよびAlNの分解温度が高いから
である。また、層厚はGaNおよびAlNの分率が高い
ほど、より多い分子層数で発光効率が最大となる傾向が
があり、Ga0.5 In0.5 NまたはAl0.5 In0.5
では共に分子層数5で発光効率が最大となった。
[0024] Second, when ternary (Ga 1-x In x N or Al 1-x In x N (where X is 0.5 or more)) to grow in, (Ga 1-x In x N or Al 1-x In x
A layer of N (where X is 0.5 or more) was deposited by metal organic chemical vapor deposition, and the higher the fraction of GaN and AlN, the higher the substrate temperature. This is because the decomposition temperature of GaN and AlN is higher than the decomposition temperature of InN. In addition, as for the layer thickness, the higher the fraction of GaN and AlN, the more the luminous efficiency tends to be maximized with a larger number of molecular layers, and Ga 0.5 In 0.5 N or Al 0.5 In 0.5 N
In each case, the luminous efficiency was maximized with 5 molecular layers.

【0025】活性層13を形成した後に、活性層の分解
を防止するために、第2導電型(本例ではp型)のGa
Nのキャップ層14を活性層13上に形成し、このキャ
ップ層14上に光閉じ込め層としてMgを添加した第2
導電型のAlGaN層15を1×1018(原子/cm3)で
0.1nmの厚さにエピタキシャル成長し、さらにこのA
lGaN層15上にMgを添加した第2導電型のGaN
層の第2のクラッド層16を5 ×1017(原子/cm3)で
0.5nmエピタキシャル成長法により形成した。
After the active layer 13 is formed, the second conductive type (p-type in this example) Ga is used to prevent the active layer 13 from being decomposed.
An N cap layer 14 is formed on the active layer 13, and Mg is added on the cap layer 14 as a light confinement layer.
A conductive AlGaN layer 15 is epitaxially grown to a thickness of 0.1 nm at 1 × 10 18 (atoms / cm 3 ).
Second conductivity type GaN doped with Mg on lGaN layer 15
The second cladding layer 16 was formed at 5 × 10 17 (atoms / cm 3 ) by a 0.5 nm epitaxial growth method.

【0026】最後に反応性イオンエッチングにより第2
のクラッド層16、光閉じ込め層15、キャップ層1
4、活性層13、及び第1のクラッド層12の一部を除
去して第1のクラッド層12の一部を露出させ、この第
1のクラッド層12上に負極用お電極18としてをT
i、Alのような低仕事関数金属を蒸着して作製し、正
極用の電極17として第2のクラッド層上にAu、P
t、Ni等の高仕事関数金属を蒸着して作製した。これ
ら2つの電極17,18はスパッタリング処理により堆
積させた。
Finally, the second ion is formed by reactive ion etching.
Layer 16, optical confinement layer 15, cap layer 1
4. The active layer 13 and a part of the first clad layer 12 are removed to expose a part of the first clad layer 12, and a negative electrode 18 is formed on the first clad layer 12 as a negative electrode 18.
i, a low work function metal such as Al is deposited, and Au, P is formed on the second cladding layer as a positive electrode 17.
High work function metals such as t and Ni were formed by vapor deposition. These two electrodes 17, 18 were deposited by a sputtering process.

【0027】次に、このようにして製造した半導体発光
素子の特性について説明する。本発明による発光素子を
P型層を正、N型層を負となるように直流電流を印加し
て駆動させたところ、2.5 V付近から発光が観測され、
電圧3 V及び電流20mAでPLと同様の強い発光が観測
された。これにより、従来III 族窒化物半導体では困難
であった紫外もしくは可視短波長および赤外の発光が可
能であることが実証された。
Next, the characteristics of the semiconductor light emitting device manufactured as described above will be described. When the light emitting device according to the present invention was driven by applying a direct current so that the P-type layer was positive and the N-type layer was negative, light emission was observed from around 2.5 V,
At a voltage of 3 V and a current of 20 mA, strong light emission similar to that of PL was observed. As a result, it has been demonstrated that ultraviolet or visible short-wavelength and infrared light emission, which has conventionally been difficult with a group III nitride semiconductor, is possible.

【0028】図3は、活性層としてInNを2分子層
(下図)および3分子層(上図)用いた場合の室温での
フォトルミネッセンススペクトル(PL)を示したもの
である。分子数2では紫色、分子数3では青緑色の強い
PLが観測された。InNのバンドギャップは赤色の
1.9eVであるが、実際の発光はそれより光子のエネ
ルギーが大きかった。これは、量子サイズ効果又は変形
ポテンシャルによる影響であると考えられる。
FIG. 3 shows a photoluminescence spectrum (PL) at room temperature when two molecular layers of InN (lower figure) and three molecular layers (upper figure) are used as the active layer. A strong PL of purple was observed with a molecular number of 2 and a bluish green with a molecular number of 3. InN has a band gap of 1.9 eV in red, but actual light emission has higher photon energy. This is thought to be due to the quantum size effect or the deformation potential.

【0029】この発明により燐および砒素等の有毒元素
を含まない発光素子が可能となる。また本発明の実施例
は、あくまで具体例を示したものであり、本発明の請求
範囲を限定するものではなく、明らかに当業者によって
好適に改良等がなされるものである。
According to the present invention, a light emitting element free of toxic elements such as phosphorus and arsenic can be obtained. The embodiments of the present invention are only specific examples, do not limit the scope of the present invention, and are clearly improved by those skilled in the art.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明により作製した発光素子の断面概略図
である。
FIG. 1 is a schematic sectional view of a light emitting device manufactured according to the present invention.

【図2】 本発明による半導体発光素子作製に用いた結
晶成長装置の概略図である。
FIG. 2 is a schematic view of a crystal growth apparatus used for manufacturing a semiconductor light emitting device according to the present invention.

【図3】 本発明により作製する活性層としてInNを
2分子層(下図)および3分子層(上図)用いた場合の
室温でのフォトルミネッセンススペクトル(PL)を示
したものである。
FIG. 3 shows a photoluminescence spectrum (PL) at room temperature in the case of using two molecular layers (lower figure) and three molecular layers (upper figure) of InN as an active layer produced according to the present invention.

【符号の説明】[Explanation of symbols]

10 サファイア(0001)基板 10a 層形成されるべき(0001)c面 11 AlN緩衝層 12 Siを添加したn型のGaN層 13 本発明による活性層 14 キャップ層 15 Mgを添加したp型のAlGaN層 16 Mgを添加したp型のGaN層 17 p電極 18 n電極 Reference Signs List 10 sapphire (0001) substrate 10a (0001) c-plane to be formed layer 11 AlN buffer layer 12 n-type GaN layer added with Si 13 active layer according to the present invention 14 cap layer 15 p-type AlGaN layer added with Mg 16 p-type GaN layer doped with Mg 17 p-electrode 18 n-electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 天野 浩 愛知県名古屋市名東区山の手2丁目104 宝マンション山の手508 (58)調査した分野(Int.Cl.6,DB名) H01L 33/00 H01S 3/18 ────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Hiroshi Amano 2-104 Yamanote, Naito-ku, Nagoya-shi, Aichi 508 Takara Mansion Yamanote 508 (58) Field surveyed (Int. Cl. 6 , DB name) H01L 33/00 H01S 3 / 18

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 単結晶構造の絶縁性基板と、この絶縁性
基板の上側に形成した第1導電型のGaNの第1のクラ
ッド層と、この第1のクラッド層の上側に形成した活性
層と、この活性層の上側に形成され、第2導電型のGa
Nの第2のクラッド層と、前記第1及び第2のクラッド
層にそれぞれ電気的に結合した第1及び第2の電極とを
具え、前記活性層をInNで構成し、このInN層の厚
さを、5分子のInNの層の厚さ以下の厚さとしたこと
を特徴とする半導体発光素子。
1. An insulating substrate having a single crystal structure, a first cladding layer of GaN of a first conductivity type formed above the insulating substrate, and an active layer formed above the first cladding layer. And a second conductivity type Ga formed above the active layer.
A second cladding layer of N, and first and second electrodes electrically coupled to the first and second cladding layers, respectively, wherein the active layer is made of InN; A semiconductor light-emitting device, wherein the thickness is equal to or less than the thickness of a layer of five molecules of InN.
【請求項2】 前記活性層と第2のクラッド層との間
に、活性層のInNの分解を抑制するための第2導電型
のGaNのキャップ層が介在することを特徴とする請求
項1に記載の半導体発光素子。
2. A cap layer of a second conductivity type GaN for suppressing the decomposition of InN in the active layer is interposed between the active layer and the second cladding layer. 3. The semiconductor light emitting device according to item 1.
【請求項3】 前記キャップ層と第2のクラッド層との
間にAlGaAsの光閉じ込め層が介在することを特徴
とする請求項2に記載の半導体発光素子。
3. The semiconductor light emitting device according to claim 2, wherein an AlGaAs light confinement layer is interposed between the cap layer and the second cladding layer.
【請求項4】 単結晶構造の絶縁性基板と、この絶縁性
基板の上側に形成した第1導電型のGaNの第1のクラ
ッド層と、この第1のクラッド層の上側に形成したIn
Nの活性層と、この活性層の上側に形成され、第2導電
型のGaNの第2のクラッド層と、前記第1及び第2の
クラッド層にそれぞれ電気的に結合した第1及び第2の
電極とを具える半導体発光素子を製造するに際し、前記
活性層を、有機金属気相成長法により300〜700°
Cの温度範囲で成長させることを特徴とする半導体発光
素子の製造方法。
4. An insulating substrate having a single crystal structure, a first cladding layer of GaN of a first conductivity type formed above the insulating substrate, and an In layer formed above the first cladding layer.
An active layer of N, a second cladding layer of GaN of a second conductivity type formed above the active layer, and first and second electrically conductive layers respectively coupled to the first and second cladding layers. In manufacturing a semiconductor light-emitting device having the above-mentioned electrodes, the active layer is formed by metalorganic vapor phase epitaxy at 300 to 700 °.
A method for manufacturing a semiconductor light emitting device, wherein the semiconductor light emitting device is grown in a temperature range of C.
【請求項5】 前記活性層の厚さを、5分子のInNの
層の厚さ以下の厚さとしたことを特徴とする請求項4に
記載の半導体発光素子の製造方法。
5. The method according to claim 4, wherein the thickness of the active layer is equal to or less than the thickness of a layer of five molecules of InN.
JP37346598A 1998-12-28 1998-12-28 Semiconductor light emitting device Expired - Lifetime JP2995186B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37346598A JP2995186B1 (en) 1998-12-28 1998-12-28 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37346598A JP2995186B1 (en) 1998-12-28 1998-12-28 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2995186B1 true JP2995186B1 (en) 1999-12-27
JP2000196146A JP2000196146A (en) 2000-07-14

Family

ID=18502210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37346598A Expired - Lifetime JP2995186B1 (en) 1998-12-28 1998-12-28 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP2995186B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280673A (en) * 2001-03-15 2002-09-27 Sony Corp Semiconductor light emitting device
JP2004022970A (en) * 2002-06-19 2004-01-22 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light-emitting device
JP2004047763A (en) * 2002-07-12 2004-02-12 Hitachi Cable Ltd Method for manufacturing nitride semiconductor, semiconductor wafer, and semiconductor device
JP4333092B2 (en) * 2002-07-12 2009-09-16 日立電線株式会社 Manufacturing method of nitride semiconductor
WO2012157198A1 (en) * 2011-05-18 2012-11-22 パナソニック株式会社 Nitride semiconductor light-emitting element and manufacturing method therefor

Also Published As

Publication number Publication date
JP2000196146A (en) 2000-07-14

Similar Documents

Publication Publication Date Title
US8304756B2 (en) Deep ultraviolet light emitting device and method for fabricating same
US6720570B2 (en) Gallium nitride-based semiconductor light emitting device
JPH07202265A (en) Manufacture of group iii nitride semiconductor
JP2010205988A (en) Nitride semiconductor element and method for manufacturing the same
JP2000286448A (en) Iii group nitride compound semiconductor luminous element
JPH09293897A (en) Semiconductor element and manufacture thereof
JP3233139B2 (en) Nitride semiconductor light emitting device and method of manufacturing the same
JP3718329B2 (en) GaN compound semiconductor light emitting device
JPH11112030A (en) Production of iii-v compound semiconductor
JPH0936427A (en) Semiconductor device and fabrication thereof
JP2713094B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP2995186B1 (en) Semiconductor light emitting device
JP3335974B2 (en) Gallium nitride based semiconductor light emitting device and method of manufacturing the same
JPH10144960A (en) Method for manufacturing p-type nitride semiconductor and nitride semiconductor element
JP4705384B2 (en) Gallium nitride semiconductor device
JP2004014587A (en) Nitride compound semiconductor epitaxial wafer and light emitting element
JP3763701B2 (en) Gallium nitride semiconductor light emitting device
JP2001119065A (en) P-type nitride semiconductor and producing method thereof
JPH09116130A (en) Iii-v compound semiconductor and its manufacture and light emitting device
JP2999435B2 (en) Semiconductor manufacturing method and semiconductor light emitting device
JP2006013463A (en) Group iii nitride semiconductor light emitting element
JP2000058916A (en) Gallium nitride-based compound semiconductor light emitting element
JPH10178201A (en) Manufacture of semiconductor light-emitting element
JPH09129920A (en) Iii-v compound semiconductor for light emitting device and light emitting device
JP2003218468A (en) Semiconductor laser element and manufacturing method therefor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990921

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313631

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071022

Year of fee payment: 8

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111022

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111022

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121022

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121022

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term