JP3335974B2 - Gallium nitride based semiconductor light emitting device and method of manufacturing the same - Google Patents

Gallium nitride based semiconductor light emitting device and method of manufacturing the same

Info

Publication number
JP3335974B2
JP3335974B2 JP2000014392A JP2000014392A JP3335974B2 JP 3335974 B2 JP3335974 B2 JP 3335974B2 JP 2000014392 A JP2000014392 A JP 2000014392A JP 2000014392 A JP2000014392 A JP 2000014392A JP 3335974 B2 JP3335974 B2 JP 3335974B2
Authority
JP
Japan
Prior art keywords
layer
gallium nitride
light emitting
emitting device
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000014392A
Other languages
Japanese (ja)
Other versions
JP2001210861A (en
Inventor
重和 徳寺
幸治 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiwa Electric Mfg Co Ltd
Original Assignee
Seiwa Electric Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiwa Electric Mfg Co Ltd filed Critical Seiwa Electric Mfg Co Ltd
Priority to JP2000014392A priority Critical patent/JP3335974B2/en
Publication of JP2001210861A publication Critical patent/JP2001210861A/en
Application granted granted Critical
Publication of JP3335974B2 publication Critical patent/JP3335974B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)
  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、発光ダイオード、
レーザーダイオード等に利用される窒化ガリウム系半導
体発光素子及びその製造方法に関する。
The present invention relates to a light emitting diode,
The present invention relates to a gallium nitride based semiconductor light emitting device used for a laser diode or the like and a method for manufacturing the same.

【0002】[0002]

【従来の技術】窒化ガリウム系半導体(GaN系半導
体)は、かねてから困難であった青色発光を実現して発
光ダイオード素子に用いられるものである。この種の窒
化ガリウム系半導体では、活性層を形成した後にP型A
lGaN半導体層からなるキャップ層を形成し、その上
にP型GaN半導体層を形成していた。P型AlGaN
半導体層からなるキャップ層を形成することは、発光効
率の向上に資するものである。
2. Description of the Related Art Gallium nitride-based semiconductors (GaN-based semiconductors) are used for light-emitting diode devices by realizing blue light emission which has been difficult for a long time. In this type of gallium nitride-based semiconductor, a P-type A
A cap layer made of an lGaN semiconductor layer was formed, and a P-type GaN semiconductor layer was formed thereon. P-type AlGaN
Forming a cap layer made of a semiconductor layer contributes to improvement of luminous efficiency.

【0003】[0003]

【発明が解決しようとする課題】しかし、P型AlGa
N半導体層中のAl濃度を小さくするとリーク電流が増
加し、Al濃度を大きくするとく動作電圧が増大すると
いう傾向がある。
However, P-type AlGa
When the Al concentration in the N semiconductor layer is reduced, the leak current tends to increase, and when the Al concentration is increased, the operating voltage tends to increase.

【0004】また、活性層は通常In(インジウム)を
含み、700〜800℃の比較的低い温度で結晶成長す
る。このため、活性層は、自身の上に形成される半導体
層の結晶成長の温度が900〜950℃以上の高温にな
ると変質したり、発光効率が低下する等の弊害が生じる
ことが確認されている。
The active layer usually contains In (indium) and grows at a relatively low temperature of 700 to 800.degree. For this reason, it has been confirmed that when the temperature of crystal growth of the semiconductor layer formed thereon becomes higher than 900 to 950 ° C., the active layer is degraded and the luminous efficiency is reduced. I have.

【0005】しかし、P型AlGaN半導体層は、本来
は1000℃以上の高温での結晶成長が好ましいので、
それよりも低温で成長させると、キャリア濃度や移動度
等の基本的物性値も結晶成長のたびに変わり、再現性に
乏しくなる。再現性を確保する方策としては、成長速度
を極端に遅くする等があるが、量産には不向きである。
However, since the P-type AlGaN semiconductor layer is originally preferably grown at a high temperature of 1000 ° C. or higher,
If the crystal is grown at a lower temperature than that, the basic physical properties such as carrier concentration and mobility change each time the crystal grows, and the reproducibility becomes poor. As a measure for ensuring reproducibility, there is an extremely slow growth rate or the like, but it is not suitable for mass production.

【0006】本発明は、上記事情に鑑みて創案されたも
ので、リーク電流が小さく動作電圧が低く、かつ発光効
率に優れ、再現性の高い窒化ガリウム系半導体発光素子
及びその製造方法を提供することを目的としている。
The present invention has been made in view of the above circumstances, and provides a gallium nitride based semiconductor light emitting device having a small leakage current, a low operating voltage, excellent luminous efficiency, and high reproducibility, and a method of manufacturing the same. It is intended to be.

【0007】[0007]

【課題を解決するための手段】本発明に係る窒化ガリウ
ム系半導体発光素子は、N型GaN半導体層、活性層及
びP型GaN半導体層が順次積層された窒化ガリウム系
半導体発光素子であって、前記活性層とP型GaN半導
体層との間にドーピングが施されていないキャップ層が
形成されており、前記キャップ層は、AlNとGaNと
からなる超格子層である。
A gallium nitride based semiconductor light emitting device according to the present invention is a gallium nitride based semiconductor light emitting device in which an N-type GaN semiconductor layer, an active layer and a P-type GaN semiconductor layer are sequentially laminated. An undoped cap layer is formed between the active layer and the P-type GaN semiconductor layer, and the cap layer is a superlattice layer made of AlN and GaN.

【0008】[0008]

【発明の実施の形態】図1は本発明の実施の形態に係る
窒化ガリウム系半導体発光素子の概略的断面図、図2は
本発明に係る窒化ガリウム系半導体発光素子の要部の概
略的拡大断面図である。
FIG. 1 is a schematic sectional view of a gallium nitride based semiconductor light emitting device according to an embodiment of the present invention, and FIG. 2 is a schematic enlarged view of a main part of the gallium nitride based semiconductor light emitting device according to the present invention. It is sectional drawing.

【0009】本発明の実施の形態に係る窒化ガリウム系
半導体発光素子は、N型GaN半導体層としてのSiド
ープGaN半導体層300、活性層400及びP型Ga
N半導体層としてのMgドープGaN半導体層600が
順次積層された窒化ガリウム系半導体発光素子であっ
て、前記活性層400とMgドープGaN半導体層60
0との間にドーピングが施されていないキャップ層50
0が形成されており、前記キャップ層500は、AlN
とGaNとからなる超格子層である。
A gallium nitride-based semiconductor light emitting device according to an embodiment of the present invention includes a Si-doped GaN semiconductor layer 300 as an N-type GaN semiconductor layer, an active layer 400 and a P-type Ga
A gallium nitride-based semiconductor light emitting device in which an Mg-doped GaN semiconductor layer 600 as an N semiconductor layer is sequentially stacked, wherein the active layer 400 and the Mg-doped GaN semiconductor layer 60 are stacked.
0 and the cap layer 50 not doped
0 is formed, and the cap layer 500 is made of AlN
And a GaN superlattice layer.

【0010】かかる窒化ガリウム系半導体発光素子は、
以下のような製造工程で製造される。
The gallium nitride based semiconductor light emitting device is
It is manufactured by the following manufacturing process.

【0011】まず、サファイア基板100にサーマルク
リーニングを施す。すなわち、減圧MOCVD装置(減
圧気相成長装置)内で水素を供給しながら、サファイア
基板100を1050℃に加熱することでクリーニング
するのである。
First, the sapphire substrate 100 is subjected to thermal cleaning. That is, the cleaning is performed by heating the sapphire substrate 100 to 1050 ° C. while supplying hydrogen in a reduced pressure MOCVD apparatus (a reduced pressure vapor phase growth apparatus).

【0012】次に、サファイア基板100の温度を51
0℃にまで低下させ、窒素、水素をキャリアガスとして
アンモニア、トリメチルアルミニウムを供給してサファ
イア基板100の表面に低温AlNバッファ層200を
形成する。このAlNバッファ層200は約200Åで
ある。
Next, the temperature of the sapphire substrate 100 is set to 51
The temperature is lowered to 0 ° C., and ammonia and trimethylaluminum are supplied using nitrogen and hydrogen as carrier gases to form a low-temperature AlN buffer layer 200 on the surface of the sapphire substrate 100. This AlN buffer layer 200 is about 200 °.

【0013】次に、サファイア基板100の温度を10
00℃に上昇させて、前記キャリアガスを用いてアンモ
ニア、トリメチルガリウムを流す。この時、同時にN型
不純物としてのシリコンを用いてN型GaN半導体層と
してのSiドープGaN半導体層300を約1.2μm
成長させる。
Next, the temperature of the sapphire substrate 100 is set to 10
The temperature is raised to 00 ° C., and ammonia and trimethylgallium are flowed using the carrier gas. At this time, the silicon-doped GaN semiconductor layer 300 as the N-type GaN semiconductor layer was simultaneously formed using silicon as the N-type impurity to about 1.2 μm.
Let it grow.

【0014】次に、サファイア基板100の温度を約7
30℃に下降させ、トリメチルインジウムを断続的に流
しつつ、N型GaNとN型InGaNの多重量子井戸
(MQW)からなる活性層400をSiドープGaN層
300の上に約400Å成長させる。
Next, the temperature of the sapphire substrate 100 is set to about 7
The temperature is lowered to 30 ° C., and an active layer 400 composed of a multiple quantum well (MQW) of N-type GaN and N-type InGaN is grown on the Si-doped GaN layer 300 by about 400 ° while intermittently flowing trimethylindium.

【0015】さらに、サファイア基板100の温度を8
50℃に上昇させ、マグネシウムをドーピングしないG
aN半導体層であるキャップ層500を前記活性層40
0の上に成長させる。このキャップ層500は、マグネ
シウムをドーピングしないAlN510とGaN520
とからなる超格子層であり、AlNの膜厚を10Å、G
aNの膜厚を90Åとし、AlNとGaNとの4層(膜
厚合計400Å)となっている。
Further, the temperature of the sapphire substrate 100 is set to 8
G increased to 50 ° C. without magnesium doping
The cap layer 500, which is an aN semiconductor layer, is
Grow on zero. The cap layer 500 is made of AlN 510 and GaN 520 which are not doped with magnesium.
A superlattice layer consisting of
The thickness of the aN is 90 °, and four layers of AlN and GaN (total thickness of 400 °) are provided.

【0016】次に、キャリアガスに不純物としてマグネ
シウムを加え、P型GaN半導体層としてのMgドープ
GaN半導体層600を約0.2μm成長させる。
Next, magnesium is added as an impurity to the carrier gas to grow a Mg-doped GaN semiconductor layer 600 as a P-type GaN semiconductor layer by about 0.2 μm.

【0017】なお、上述の工程では、SiドープGaN
半導体層300の結晶成長時のサファイア基板100の
温度が1000℃、活性層400の結晶成長時のサファ
イア基板100の温度が730℃、キャップ層500A
の結晶成長時のサファイア基板100の温度が850℃
になっている。すなわち、キャップ層500Aの上に形
成されるP型GaN半導体層であるキャップ層500A
の結晶成長時の温度(850℃)が、活性層400の結
晶成長時の温度(730℃)よりも高くかつ、N型Ga
N半導体層であるSiドープGaN半導体層300の結
晶成長時の温度(1000℃)より低くなっている。
In the above-described process, the Si-doped GaN
The temperature of the sapphire substrate 100 during the crystal growth of the semiconductor layer 300 is 1000 ° C., the temperature of the sapphire substrate 100 during the crystal growth of the active layer 400 is 730 ° C., and the cap layer 500A
Temperature of sapphire substrate 100 at the time of crystal growth of 850 ° C.
It has become. That is, the cap layer 500A which is a P-type GaN semiconductor layer formed on the cap layer 500A
Temperature at the time of crystal growth (850 ° C.) of the active layer 400 is higher than the temperature at the time of crystal growth of the active layer 400 (730 ° C.), and N-type Ga
The temperature is lower than the temperature (1000 ° C.) at the time of crystal growth of the Si-doped GaN semiconductor layer 300 as the N semiconductor layer.

【0018】次に、サファイア基板100の温度を80
0℃にし、減圧MOCVD装置内の圧力を6650Pa
(50torr)とする。これと同時に、アンモニア等
の水素を含む混合ガスの雰囲気から、速やかに減圧MO
CVD装置内の雰囲気を不活性ガスである窒素ガスに切
り替える。
Next, the temperature of the sapphire substrate 100 is set to 80
0 ° C., and the pressure in the reduced pressure MOCVD apparatus was 6650 Pa
(50 torr). At the same time, the atmosphere of the mixed gas containing hydrogen such as ammonia is rapidly reduced in pressure
The atmosphere in the CVD apparatus is switched to nitrogen gas which is an inert gas.

【0019】そして、キャリアガスとして窒素ガスを用
い、トリメチルジンクを流して、膜厚が数十ÅのZn膜
700を形成する。そして、このままの状態、すなわち
窒素雰囲気下でサファイア基板100の温度を約100
℃以下にまで低下させる。
Then, using a nitrogen gas as a carrier gas and flowing trimethyl zinc, a Zn film 700 having a thickness of several tens of degrees is formed. Then, the temperature of the sapphire substrate 100 is set to about 100 in this state, that is, in a nitrogen atmosphere.
To below ℃.

【0020】この後、真空蒸着装置にZn膜700まで
が形成されたサファイア基板100を入れ、SnO2
10%のITOを電子銃で加熱、蒸発させて膜厚が約
0.5μmの電流拡散層としてのITO膜800をZn
膜700の上に形成する。この際のサファイア基板10
0の温度は200℃にした。
After that, the sapphire substrate 100 on which the Zn film 700 is formed is put into a vacuum evaporation apparatus, and ITO containing 10% of SnO 2 is heated and evaporated by an electron gun to obtain a current diffusion layer having a thickness of about 0.5 μm. The ITO film 800 as a layer is Zn
It is formed over the film 700. Sapphire substrate 10 at this time
The temperature of 0 was 200 ° C.

【0021】次に、ITO膜800の一部をドライエッ
チングし、SiドープGaN層300の一部を露出させ
る。この露出したSiドープGaN半導体層300にN
型電極910を、前記ITO膜800の一部にP型電極
920を形成する。この両電極910、920は、Ti
/Au薄膜を約500Å/5000Å程度蒸着したもの
である。
Next, a part of the ITO film 800 is dry-etched to expose a part of the Si-doped GaN layer 300. The exposed Si-doped GaN semiconductor layer 300
A P-type electrode 920 is formed on a part of the ITO film 800 as a P-type electrode 910. Both electrodes 910 and 920 are made of Ti
/ Au thin film deposited by about 500/5000 °.

【0022】このようにして製造された窒化ガリウム系
半導体発光素子は、20mAの電流で動作電圧が3.4
Vと非常に低く、発光効率もMgドープP型AlGaN
半導体層をキャップ層として使用した従来の窒化ガリウ
ム系半導体発光素子と遜色がないことが確認された。ま
た、リーク電流も5Vで10μA以下と実用上問題がな
いレベルになっていることが確認された。
The gallium nitride based semiconductor light emitting device manufactured in this way has an operating voltage of 3.4 at a current of 20 mA.
Very low V and luminous efficiency is Mg-doped P-type AlGaN
It was confirmed that there was no inferiority to a conventional gallium nitride based semiconductor light emitting device using a semiconductor layer as a cap layer. In addition, it was confirmed that the leak current was 10 μA or less at 5 V, which is a level having no practical problem.

【0023】[0023]

【0024】[0024]

【0025】[0025]

【0026】[0026]

【0027】[0027]

【0028】[0028]

【0029】[0029]

【0030】[0030]

【0031】[0031]

【0032】[0032]

【発明の効果】本発明に係る窒化ガリウム系半導体発光
素子は、N型GaN半導体層、活性層及びP型GaN半
導体層が順次積層された窒化ガリウム系半導体発光素子
であって、前記活性層とP型GaN半導体層との間にド
ーピングが施されていないキャップ層が形成されてお
り、前記キャップ層は、AlNとGaNとからなる超格
子層である。
The gallium nitride based semiconductor light emitting device according to the present invention is a gallium nitride based semiconductor light emitting device in which an N-type GaN semiconductor layer, an active layer and a P-type GaN semiconductor layer are sequentially laminated. An undoped cap layer is formed between the semiconductor layer and the P-type GaN semiconductor layer, and the cap layer is a superlattice layer made of AlN and GaN.

【0033】上述したように、キャップ層がAlNとG
aNとからなる超格子層である場合には、リーク電流が
小さく動作電圧が低く、かつ発光効率に優れ、再現性の
高い窒化ガリウム系半導体発光素子とすることができ
た。
As described above, the cap layer is made of AlN and G
In the case of a superlattice layer composed of aN, a gallium nitride-based semiconductor light-emitting device having low leakage current, low operating voltage, excellent luminous efficiency, and high reproducibility could be obtained.

【0034】特に、前記キャップ層の上に形成されるP
型GaN半導体層の結晶成長時の温度が、前記活性層の
結晶成長時の温度よりも高くかつ、N型GaN半導体層
の結晶成長時の温度より低いと、リーク電流が小さく動
作電圧が低く、しかも発光効率が低下することなく、再
現性の高い窒化ガリウム系半導体発光素子とすることが
確認できた。
In particular, the P formed on the cap layer
When the temperature at the time of crystal growth of the n-type GaN semiconductor layer is higher than the temperature at the time of crystal growth of the active layer and lower than the temperature at the time of crystal growth of the N-type GaN semiconductor layer, the leakage current is small and the operating voltage is low, In addition, it was confirmed that the gallium nitride-based semiconductor light emitting device had high reproducibility without lowering the luminous efficiency.

【0035】また、前記キャップ層の厚さが、100Å
以上1000Å以下であると、リーク電流が小さく、動
作電圧が低い窒化ガリウム系半導体発光素子を再現性よ
く製造できた。
The thickness of the cap layer is 100.degree.
When the temperature is 1000 ° C. or less, a gallium nitride based semiconductor light emitting device having a small leakage current and a low operating voltage can be manufactured with good reproducibility.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係る窒化ガリウム系半導
体発光素子の概略的断面図である。
FIG. 1 is a schematic sectional view of a gallium nitride based semiconductor light emitting device according to an embodiment of the present invention.

【図2】本発明に係る窒化ガリウム系半導体発光素子の
要部の概略的拡大断面図である。
FIG. 2 is a schematic enlarged sectional view of a main part of the gallium nitride based semiconductor light emitting device according to the present invention.

【符号の説明】[Explanation of symbols]

100 サファイア基板 200 AlNバッファ層 300 SiドープGaN層 400 活性層 500 キャップ層 600 MgドープGaN層 700 Zn層 800 N型電極 900 P型電極 Reference Signs List 100 sapphire substrate 200 AlN buffer layer 300 Si-doped GaN layer 400 active layer 500 cap layer 600 Mg-doped GaN layer 700 Zn layer 800 N-type electrode 900 P-type electrode

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平9−129926(JP,A) 特開 平11−330554(JP,A) 特開 平11−54847(JP,A) 特開 平11−68159(JP,A) 特開 平10−200214(JP,A) 特開 平11−354846(JP,A) 特開 平9−64419(JP,A) 特開 平10−12923(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 33/00 H01S 5/323 JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-9-129926 (JP, A) JP-A-11-330554 (JP, A) JP-A-11-54847 (JP, A) JP-A-11-548 68159 (JP, A) JP-A-10-200214 (JP, A) JP-A-11-354846 (JP, A) JP-A-9-64419 (JP, A) JP-A-10-12923 (JP, A) (58) Field surveyed (Int.Cl. 7 , DB name) H01L 33/00 H01S 5/323 JICST file (JOIS)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 N型GaN半導体層、活性層及びP型G
aN半導体層が順次積層された窒化ガリウム系半導体発
光素子において、前記活性層とP型GaN半導体層との
間にドーピングが施されていないキャップ層が形成され
ており、前記キャップ層は、AlNとGaNとからなる
超格子層であることを特徴とする窒化ガリウム系半導体
発光素子。
1. An N-type GaN semiconductor layer, an active layer, and a P-type G
In a gallium nitride based semiconductor light emitting device in which an aN semiconductor layer is sequentially stacked, an undoped cap layer is formed between the active layer and the P-type GaN semiconductor layer, and the cap layer is formed of AlN and A gallium nitride-based semiconductor light emitting device, which is a superlattice layer made of GaN.
【請求項2】 前記キャップ層の厚さが、100Å以上
1000Å以下であることを特徴とする請求項1記載の
窒化ガリウム系半導体発光素子。
2. The gallium nitride based semiconductor light emitting device according to claim 1, wherein the thickness of the cap layer is 100 ° or more and 1000 ° or less.
【請求項3】 前記キャップ層の上に形成されるP型G
aN半導体層の結晶成長時の温度が、前記活性層の結晶
成長時の温度よりも高くかつ、N型GaN半導体層の結
晶成長時の温度より低いことを特徴とする請求項1又は
2記載の窒化ガリウム系半導体発光素子。
3. A P-type G formed on the cap layer.
3. The temperature according to claim 1, wherein a temperature during the crystal growth of the aN semiconductor layer is higher than a temperature during the crystal growth of the active layer and lower than a temperature during the crystal growth of the N-type GaN semiconductor layer. Gallium nitride based semiconductor light emitting device.
【請求項4】 N型GaN半導体層、活性層及びP型G
aN半導体層が順次積層された窒化ガリウム系半導体発
光素子の製造方法において、前記活性層とP型GaN半
導体層との間にドーピングが施されていないキャップ層
が形成されており、前記キャップ層は、AlNとGaN
とからなる超格子層であり、前記キャップ層の上に形成
されるP型GaN半導体層の結晶成長時の温度が、前記
活性層の結晶成長時の温度よりも高くかつ、N型GaN
半導体層の結晶成長時の温度より低いことを特徴とする
窒化ガリウム系半導体発光素子の製造方法。
4. An N-type GaN semiconductor layer, an active layer, and a P-type G
In the method for manufacturing a gallium nitride based semiconductor light emitting device in which an aN semiconductor layer is sequentially stacked, an undoped cap layer is formed between the active layer and the P-type GaN semiconductor layer, and the cap layer is , AlN and GaN
Wherein the temperature at the time of crystal growth of the P-type GaN semiconductor layer formed on the cap layer is higher than the temperature at the time of crystal growth of the active layer, and the N-type GaN
A method for manufacturing a gallium nitride based semiconductor light emitting device, wherein the temperature is lower than the temperature at the time of crystal growth of a semiconductor layer.
JP2000014392A 2000-01-24 2000-01-24 Gallium nitride based semiconductor light emitting device and method of manufacturing the same Expired - Fee Related JP3335974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000014392A JP3335974B2 (en) 2000-01-24 2000-01-24 Gallium nitride based semiconductor light emitting device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000014392A JP3335974B2 (en) 2000-01-24 2000-01-24 Gallium nitride based semiconductor light emitting device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2001210861A JP2001210861A (en) 2001-08-03
JP3335974B2 true JP3335974B2 (en) 2002-10-21

Family

ID=18541855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000014392A Expired - Fee Related JP3335974B2 (en) 2000-01-24 2000-01-24 Gallium nitride based semiconductor light emitting device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3335974B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL374180A1 (en) 2001-10-26 2005-10-03 Ammono Sp.Z O.O. Nitride semiconductor laser element, and production method therefor
US20060138431A1 (en) 2002-05-17 2006-06-29 Robert Dwilinski Light emitting device structure having nitride bulk single crystal layer
KR20050054482A (en) * 2002-06-26 2005-06-10 암모노 에스피. 제트오. 오. Nitride semiconductor laser device and a method for improving its performance
AU2003285768A1 (en) 2002-12-11 2004-06-30 Ammono Sp. Z O.O. A template type substrate and a method of preparing the same
PL1769105T3 (en) 2004-06-11 2014-11-28 Ammono S A Bulk mono-crystalline gallium nitride and method for its preparation
PL371405A1 (en) 2004-11-26 2006-05-29 Ammono Sp.Z O.O. Method for manufacture of volumetric monocrystals by their growth on crystal nucleus
JP4861437B2 (en) * 2006-01-09 2012-01-25 ソウル オプト デバイス カンパニー リミテッド Light emitting diode having ITO layer and method for manufacturing the same
KR101936312B1 (en) * 2012-10-09 2019-01-08 엘지이노텍 주식회사 Light emitting device
KR102042181B1 (en) 2012-10-22 2019-11-07 엘지이노텍 주식회사 Light emitting device

Also Published As

Publication number Publication date
JP2001210861A (en) 2001-08-03

Similar Documents

Publication Publication Date Title
JP4135550B2 (en) Semiconductor light emitting device
JP3909811B2 (en) Nitride semiconductor device and manufacturing method thereof
US6881602B2 (en) Gallium nitride-based semiconductor light emitting device and method
US8716048B2 (en) Light emitting device and method for manufacturing the same
JP3394488B2 (en) Gallium nitride based semiconductor light emitting device and method of manufacturing the same
JP4119501B2 (en) Semiconductor light emitting device
JP3612985B2 (en) Gallium nitride compound semiconductor device and manufacturing method thereof
JPH07263748A (en) Iii group nitride semiconductor light emitting element and manufacture of it
JP3335974B2 (en) Gallium nitride based semiconductor light emitting device and method of manufacturing the same
JP3741528B2 (en) Method for manufacturing gallium nitride based semiconductor device
JP3683560B2 (en) Gallium nitride semiconductor light emitting device and method of manufacturing the same
JPH11354843A (en) Fabrication of group iii nitride quantum dot structure and use thereof
JPH09266326A (en) Iii group nitride compound semiconductor light emitting device
JP2001156003A (en) Method of manufacturing p-type gallium nitride semiconductor, and light-emitting element using p-type gallium nitride semiconductor
JP3763701B2 (en) Gallium nitride semiconductor light emitting device
JP3403665B2 (en) Gallium nitride based compound semiconductor light emitting device
JP3543628B2 (en) Method for growing nitride III-V compound semiconductor and method for manufacturing semiconductor light emitting device
JPH11346035A (en) Manufacture of gallium nitride family compound semiconductor light emitting device
JP3335975B2 (en) Gallium nitride based semiconductor light emitting device
JP2003008059A (en) Nitride-family semiconductor light-emitting element
JP3978581B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP2950316B2 (en) Gallium nitride based compound semiconductor light emitting device and method of manufacturing the same
JP3727091B2 (en) Group 3 nitride semiconductor device
JP2737053B2 (en) Gallium nitride based compound semiconductor light emitting device
JP3776536B2 (en) Semiconductor light emitting device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080802

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110802

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110802

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120802

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130802

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees