JPH10178201A - Manufacture of semiconductor light-emitting element - Google Patents

Manufacture of semiconductor light-emitting element

Info

Publication number
JPH10178201A
JPH10178201A JP33844396A JP33844396A JPH10178201A JP H10178201 A JPH10178201 A JP H10178201A JP 33844396 A JP33844396 A JP 33844396A JP 33844396 A JP33844396 A JP 33844396A JP H10178201 A JPH10178201 A JP H10178201A
Authority
JP
Japan
Prior art keywords
layer
substrate
light
light emitting
gan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33844396A
Other languages
Japanese (ja)
Other versions
JP3566476B2 (en
Inventor
Hiroaki Okagawa
広明 岡川
Keiji Miyashita
啓二 宮下
Yoichiro Ouchi
洋一郎 大内
Kazuyuki Tadatomo
一行 只友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP33844396A priority Critical patent/JP3566476B2/en
Publication of JPH10178201A publication Critical patent/JPH10178201A/en
Application granted granted Critical
Publication of JP3566476B2 publication Critical patent/JP3566476B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a high-luminance LED or LD by a method wherein, in a semiconductor light-emitting element, a light-emitting part and a layer for a substrate whose composition is expressed by a formula are laminated on a seed substrate in this order. SOLUTION: As a seed substrate, a substrate which is composed of various materials such as sapphire, SiC, MnO and the like can be used. A light-emitting part and a layer for the substrate are constituted of at least one kind out of various semiconductor compounds expressed by a formula of InXGaYAlZN (wherein 0<=X<=1, 0<=Y<=1, 0<=Z<=1, and X+Y+Z=1). As the shape of the light-emitting part, a homojunction structure, a heterostructure such as a single heterostructure, a double heterostructure or the like, a multiple quantum well structure, a single quantum well structure and the like are enumerated, but the double heterostructure is particularly preferable. The light- emitting part is composed of a multilayer of two or more layers. A first layer of it may be laminated directly on the seed substrate, a buffer layer which relaxes a lattice mismatch is first formed on the seed substrate as required, and the first layer may be laminated on it. The thickness of the layer for the substrate is set at about 10 to 1000μm, but it is set particularly preferably at about 50 to 300μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、GaN系半導体発
光素子の製造方法に関する。
The present invention relates to a method for manufacturing a GaN-based semiconductor light emitting device.

【0002】[0002]

【従来の技術】発光ディスプレイ等における多色化の要
求や、通信・記録等におけるデータ密度を向上させると
の要求から、近時、高輝度の青色発光が可能な半導体素
子を製造することが強く要求されている。青色発光する
半導体素子の製造に用いられる材料として、GaN系の
化合物が注目されている。GaN系化合物は、直接遷移
型バンド構造を有するため高効率の発光が可能であり、
かつ室温でのバンドギャップが大きいため、上記の要求
に応え得る青色発光素子用に好適な材料である。しかし
GaN系化合物は融点が高く、また融点付近での窒素の
蒸気圧が高いため、融液からバルク結晶を成長させるこ
とは極めて困難である。このためGaN系化合物の製造
は、サファイア基板上、または該サファイア基板上にA
lN、ZnOのようなGaN系物質との格子整合性の良
好な物質からなるバッファー層を形成し、その上にGa
N系化合物の結晶薄膜を成長させているのが現状であ
る。
2. Description of the Related Art In recent years, there has been a strong demand for a semiconductor device capable of emitting high-intensity blue light due to a demand for multicolor display in a light-emitting display and a demand for improving data density in communication and recording. Has been requested. As a material used for manufacturing a semiconductor element that emits blue light, a GaN-based compound has attracted attention. GaN-based compounds have a direct transition-type band structure, and can emit light with high efficiency.
Further, since it has a large band gap at room temperature, it is a material suitable for a blue light-emitting element capable of meeting the above requirements. However, since the GaN-based compound has a high melting point and a high vapor pressure of nitrogen near the melting point, it is extremely difficult to grow a bulk crystal from the melt. For this reason, the production of the GaN-based compound is performed on the sapphire substrate or on the sapphire substrate.
A buffer layer made of a material having good lattice matching with a GaN-based material such as 1N or ZnO is formed, and Ga
At present, a crystal thin film of an N-based compound is grown.

【0003】ところが、サファイア基板は絶縁体である
ために、電極の設置が特定の位置に限定され、つぎに説
明するように発光素子の構造設計上の自由度が制限され
るという問題がある。図1は、GaNを用いた従来のL
EDの断面構造図例である。同図において、1はp側電
極、2はn側電極、4はn型GaN系半導体、6はp型
GaN系半導体である。p側電極1とn側電極2とは、
サファイア基板Sが絶縁体であるために導電性の基板を
用いたLEDのように基板を挟んで互いに対向設置する
ことができない。このため図示するように、両電極は、
共にサファイア基板Sの同一面側に設けざるを得なくな
っている。この両電極の形成構造は、発光素子の製造面
や実装面において種々の問題があり、また発光面積の点
で不利でもある。またGaN系のLDを製造する場合に
おいても、電極形成位置において上記LEDと同様の問
題があり、またサファイアは劈開性がないために劈開に
よる共振器面が作製できない不利もある。
However, since the sapphire substrate is an insulator, the placement of the electrodes is limited to a specific position, and there is a problem that the degree of freedom in the structural design of the light emitting element is limited as described below. FIG. 1 shows a conventional L using GaN.
It is an example of a sectional structure figure of ED. In the figure, 1 is a p-side electrode, 2 is an n-side electrode, 4 is an n-type GaN-based semiconductor, and 6 is a p-type GaN-based semiconductor. The p-side electrode 1 and the n-side electrode 2
Since the sapphire substrate S is an insulator, the sapphire substrates S cannot be opposed to each other with the substrate interposed therebetween like an LED using a conductive substrate. Thus, as shown, both electrodes are
Both have to be provided on the same surface side of the sapphire substrate S. The structure for forming these electrodes has various problems in terms of manufacturing and mounting of the light emitting element, and is disadvantageous in terms of the light emitting area. Also, in the case of manufacturing a GaN-based LD, there is a problem similar to that of the LED at the electrode formation position, and there is a disadvantage that sapphire has no cleavage property, so that a resonator surface cannot be formed by cleavage.

【0004】[0004]

【発明が解決しようとする課題】上記に鑑みて、本発明
の課題は、サファイア基板を用いた従来のGaN系半導
体発光素子が有する上記の諸問題、特に小発光面積や劈
開による共振器面作製不可の問題など、が解決されたG
aN系半導体発光素子の製造方法を提供することにあ
る。
In view of the above, an object of the present invention is to solve the above-mentioned problems of the conventional GaN-based semiconductor light emitting device using a sapphire substrate, in particular, a small light emitting area and fabrication of a resonator surface by cleavage. G that the impossible problem was solved
An object of the present invention is to provide a method for manufacturing an aN-based semiconductor light emitting device.

【0005】[0005]

【課題を解決するための手段】本発明は、つぎの特徴を
有する。 (1) 種基板の上にInX GaY AlZ N(ここに0≦X
≦1、0≦Y≦1、0≦Z≦1、X+Y+Z=1)から
なる発光部が積層される発光部積層工程、発光部の上に
InX GaY AlZ N(ここに0≦X≦1、0≦Y≦
1、0≦Z≦1、X+Y+Z=1)からなる基板用層を
形成する基板積層工程、および種基板を除去する種基板
除去工程とからなることを特徴とする半導体発光素子の
製造方法。 (2) 発光部のn層がp層より先に積層される上記(1) 記
載の半導体発光素子の製造方法。 (3) バッファー層が周期律表の第二族元素の酸化物にて
構成されており、且つ発光部のp層がn層より先に積層
される上記(1) 記載の半導体発光素子の製造方法。 (4) 種基板がサファイアまたはSiCからなるものであ
る上記(1) 〜(3) のいずれかに記載の半導体発光素子の
製造方法。
The present invention has the following features. (1) an In on a seed substrate X Ga Y Al Z N (here 0 ≦ X
≦ 1, 0 ≦ Y ≦ 1, 0 ≦ Z ≦ 1, X + Y + Z = 1), a light emitting unit laminating step of stacking a light emitting unit, and In X Ga Y Al Z N (where 0 ≦ X ≦ 1, 0 ≦ Y ≦
1. A method for manufacturing a semiconductor light emitting device, comprising: a substrate laminating step of forming a substrate layer consisting of 1, 0 ≦ Z ≦ 1, X + Y + Z = 1) and a seed substrate removing step of removing a seed substrate. (2) The method for manufacturing a semiconductor light-emitting device according to (1), wherein the n-layer of the light-emitting portion is stacked before the p-layer. (3) The production of the semiconductor light emitting device according to the above (1), wherein the buffer layer is composed of an oxide of an element of Group 2 of the periodic table, and the p layer of the light emitting section is stacked before the n layer. Method. (4) The method for manufacturing a semiconductor light emitting device according to any one of (1) to (3), wherein the seed substrate is made of sapphire or SiC.

【0006】[0006]

【作用】発光部と基板用層は、共に良導電性のInX
Y AlZ Nから構成されているので格子不整合の問題
がなく、しかして発光部の上に結晶性の良好な導電性の
基板用層を積層形成することができる。ついで種基板除
去工程において最初に用いた種基板を除去すると、上記
した導電性基板を有するGaN系半導体発光素子が得ら
れる。
The light emitting portion and the substrate layer are made of In X G having good conductivity.
a Y Al Z no lattice mismatch problem because it is constituted from N, can Thus laminated form crystalline good conductivity substrate layer on top of the light emitting portion. Next, when the seed substrate used first in the seed substrate removing step is removed, a GaN-based semiconductor light emitting device having the above-described conductive substrate is obtained.

【0007】[0007]

【発明の実施の形態】種基板としては、サファイア、S
iC、GaAs、Si、MgAl2 4 、ZnO、Mn
O、CaO、MgO、LiGaO3 、LiAlO3
ど、種々の材料からなる基板を用いることができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Sapphire, S
iC, GaAs, Si, MgAl 2 O 4 , ZnO, Mn
Substrates made of various materials such as O, CaO, MgO, LiGaO 3 and LiAlO 3 can be used.

【0008】本発明において発光部と基板用層とは、共
に下記の一般式(1)で示される各種半導体化合物の少
なくとも1種にて構成される。以下において、一般式
(1)で示される各種半導体化合物をGaN系化合物と
略称する。 InX GaY AlZ N (1) (ここに0≦X≦1、0≦Y≦1、0≦Z≦1、X+Y
+Z=1)。GaN系化合物の例を示すと、GaN、G
aAlN、InGaAlNなどである。
In the present invention, the light emitting portion and the substrate layer are both composed of at least one of various semiconductor compounds represented by the following general formula (1). Hereinafter, various semiconductor compounds represented by the general formula (1) are abbreviated as GaN-based compounds. In X Ga Y Al Z N (1) (where 0 ≦ X ≦ 1, 0 ≦ Y ≦ 1, 0 ≦ Z ≦ 1, X + Y
+ Z = 1). Examples of GaN compounds include GaN, G
aAlN, InGaAlN and the like.

【0009】発光部の形態としては、ホモ接合型、シン
グルヘテロやダブルヘテロなどのヘテロ構造、多重量子
井戸構造(MQW)、あるいは単一量子井戸構造(SQ
W)などであってもよい。就中、ダブルヘテロ構造が特
に好ましい。発光部に含まれる各層並びに基板用層の各
構成材料は、GaN系化合物である限り、互いに同じ材
料であってもよく異なっていてもよい。
The light emitting portion may be formed in a homostructure, a heterostructure such as a single hetero or double hetero, a multiple quantum well structure (MQW), or a single quantum well structure (SQ).
W). Above all, a double hetero structure is particularly preferred. The constituent materials of each layer and the substrate layer included in the light emitting section may be the same or different from each other as long as they are GaN-based compounds.

【0010】本発明の発光部積層工程において、種基板
の上に発光部が積層される。上記したように発光部は、
通常、二層以上の多層からなるので、それらの多層が順
次、積層されて行くが、その第1層目の層は、可能であ
れば種基板上に直接積層してもよく、必要に応じて格子
不整合を緩和する適当なバッファー層を種基板上に先ず
設けてその上に積層してもよい。発光部の第二層目以降
から基板用層の積層に到るまで、いずれの層も既形成層
と格子不整合の問題がないのでバッファー層などを介す
ることなく既形成層上に積層することができる。
In the light emitting section laminating step of the present invention, the light emitting section is stacked on the seed substrate. As described above, the light emitting unit
Usually, since it is composed of two or more layers, these layers are sequentially laminated, but the first layer may be directly laminated on the seed substrate if possible. A suitable buffer layer to mitigate the lattice mismatch may be provided first on the seed substrate and laminated thereon. From the second layer of the light emitting part to the lamination of the substrate layer, all layers have no problem of lattice mismatch with the already-formed layer, so they should be stacked on the already-formed layer without passing through a buffer layer etc. Can be.

【0011】バッファー層、発光部の各層、および基板
用層の積層形成方法に関しては、いずれも特に制限はな
い。バッファー層の成長方法としては、例えばスパッタ
法、MOCVD法(有機金族気相成長法)、HVPE法
(ハイドライド気相成長法)、MBE法(分子エピタキ
シャル法)、P−CVD法(プラズマ−化学気相堆積
法)などが例示できる。発光部の各層および基板用層の
積層形成方法としては、HVPE法、MOCVD法、M
BE法などが例示でき、就中HVPE法が好ましい。
There are no particular restrictions on the method of forming the buffer layer, each layer of the light emitting section, and the layer for the substrate. Examples of the method for growing the buffer layer include sputtering, MOCVD (organic metal vapor phase epitaxy), HVPE (hydride vapor phase epitaxy), MBE (molecular epitaxy), and P-CVD (plasma-chemistry). Vapor deposition). As a method of forming the layers of the light emitting section and the layer for the substrate, HVPE, MOCVD, M
The BE method can be exemplified, and the HVPE method is particularly preferable.

【0012】種基板としてサファイア、SiC、GaA
s、Si、LiGaO3 、LiAlO3 などを用いた場
合、バッファー層の構成材料としては、従来周知のも
の、例えば周期律表第二族元素の酸化物類、AlN、G
aN、AlGaN、InGaNなどが例示できる。就
中、後記する種基板除去工程上から、エッチング除去の
容易な第二族元素酸化物類が好ましい。該第二族元素酸
化物類の例を挙げると、ZnO、MgO、MnO、Ca
Oのような酸化物、MgAlO、LiGaO3 、LiA
lO3 のような複乃至複合酸化物が示される。バッファ
ー層の厚みは、0.001〜5μm程度、特に0.01
〜0.5μm程度である。
Sapphire, SiC, GaAs as seed substrate
In the case where s, Si, LiGaO 3 , LiAlO 3, or the like is used, as a constituent material of the buffer layer, a conventionally well-known material, for example, oxides of Group II elements of the periodic table, AlN, G
Examples thereof include aN, AlGaN, and InGaN. Of these, Group 2 element oxides, which are easily removed by etching, from the seed substrate removing step described later are preferable. Examples of the Group 2 element oxides include ZnO, MgO, MnO, and Ca.
Oxides such as O, MgAlO, LiGaO 3 , LiA
A complex or complex oxide such as 10 3 is shown. The thickness of the buffer layer is about 0.001 to 5 μm, particularly 0.01
About 0.5 μm.

【0013】発光部を積層する場合、種基板上またはバ
ッファー層上にp型層、n型層のいずれの層から積層を
開始してもよいが、一般的にはn型層を先にp型層を後
とする順が好ましい。その理由は、n型層はp型層と比
較して一般に種基板上への形成が容易であること、およ
びp型層は層形成後に加熱や電子線照射処理などによる
活性化処理が必要であって、この処理上p型層は外部に
あった方が好都合となるためである。一方、バッファー
層が前記した第二族元素酸化物類である場合には、p型
層を先にn型層を後とする順が好ましい。その理由は、
n型層を先に該バッファー層上に成長させると、この成
長中の高温度により該酸化物が分解して第二族原子が遊
離し、これがn型層中に混入して同層のドーパントを補
償し、n型層のドーパント量を減少せしめる問題がある
ためである。これに対してp型層を先に該バッファー層
上に成長させると、たとえ第二族原子が遊離しても、n
型層は既成のp型層が防御の作用をなして第二族原子の
混入問題から保護される。しかも第二族原子のp型層中
への混入は、該層にとって少なくとも無害であり、一部
の二族原子特にMgやZnはp型層の主要なドーパント
であるので、寧ろ混入が歓迎される。発光部に続いて基
板用層を成長させる場合、厚膜の結晶性の良いものが得
られる点からは、p型層を先に成長させn型層をその後
とする方法が好ましい。
When laminating the light-emitting portion, lamination may be started from either the p-type layer or the n-type layer on the seed substrate or the buffer layer. The order in which the mold layer is later is preferred. The reason is that the n-type layer is generally easier to form on the seed substrate than the p-type layer, and the p-type layer requires activation treatment such as heating or electron beam irradiation after forming the layer. This is because it is more convenient for the p-type layer to be outside in this processing. On the other hand, when the buffer layer is made of the above-described Group II element oxides, it is preferable that the p-type layer be the first and the n-type layer be the second. The reason is,
When an n-type layer is first grown on the buffer layer, the high temperature during the growth decomposes the oxide to release Group II atoms, which are mixed into the n-type layer to form a dopant in the same layer. This is because there is a problem that the amount of dopant in the n-type layer is reduced. On the other hand, if a p-type layer is first grown on the buffer layer, n
The mold layer is protected from the problem of incorporation of Group II atoms with the existing p-type layer acting as a defense. Moreover, the incorporation of Group II atoms into the p-type layer is at least harmless to the layer, and some Group II atoms, particularly Mg and Zn, are the main dopants in the p-type layer, so the contamination is welcomed. You. When a substrate layer is grown subsequent to the light-emitting portion, a method in which a p-type layer is grown first and an n-type layer is thereafter is preferable from the viewpoint that a thick film having good crystallinity can be obtained.

【0014】発光部のp型層は、発光部全層の形成後に
おいて、後記する基板積層工程の前後、基板除去工程の
前後などの任意の段階で通常の方法により活性処理され
てよいが、特に基板除去工程の後にそれを行うことが好
ましい。
The p-type layer of the light emitting portion may be subjected to activation treatment by an ordinary method at any stage after the formation of all the light emitting portion layers, such as before and after a substrate laminating step and before and after a substrate removing step. In particular, it is preferable to perform it after the substrate removing step.

【0015】基板積層工程において、発光部の最上部の
層上に基板用層が形成される。基板用層の厚みは、該層
が種基板に代わって本発明の製造目的物たるGaN系半
導体発光素子の基板として機能し得る厚さとされる。例
えば10〜1000μm程度、特に50〜300μm程
度が適当である。
In the substrate laminating step, a substrate layer is formed on the uppermost layer of the light emitting section. The thickness of the substrate layer is set so that the layer can function as a substrate of the GaN-based semiconductor light-emitting device, which is the object to be manufactured according to the present invention, instead of the seed substrate. For example, about 10 to 1000 μm, particularly about 50 to 300 μm is suitable.

【0016】基板積層工程の後、種基板は除去される。
種基板の除去は、適当な方法で種基板を消去する、ある
いは発光部の最先積層層から分離するなどの方法で行わ
れる。消去方法としては、例えばダイアモンドペースト
による機械的研磨、種基板を溶解し得る化学薬剤による
エッチングなどが挙げられる。種基板と発光部との間に
バッファー層、特に前記二族酸化物からなるバッファー
層が介在している場合には、該バッファー層を化学的エ
ッチングにて除去して種基板を発光部から分離すること
が、除去能率並びに除去後の発光部面の清浄性や結晶状
態などから好ましい。その際のバッファー層のエッチン
グ除去は、例えば塩酸、硝酸、硫酸、などの酸によるウ
ェットエッチングなどの方法で行うことができる。
After the substrate laminating step, the seed substrate is removed.
The removal of the seed substrate is performed by an appropriate method such as erasing the seed substrate or separating the seed substrate from the first stacked layer of the light emitting portion. Examples of the erasing method include mechanical polishing with a diamond paste and etching with a chemical agent capable of dissolving a seed substrate. If a buffer layer, particularly a buffer layer made of the group II oxide, is interposed between the seed substrate and the light emitting part, the buffer layer is removed by chemical etching to separate the seed substrate from the light emitting part. This is preferable from the viewpoint of the removal efficiency, the cleanliness of the light emitting part surface after removal, the crystalline state, and the like. At this time, the removal of the buffer layer by etching can be performed by a method such as wet etching using an acid such as hydrochloric acid, nitric acid, sulfuric acid, or the like.

【0017】種基板を除去された後、新たに基板として
機能するGaN系化合物の基板の表面と種基板の除去に
よって露出した発光部の表面のそれぞれに、通常の方法
にて電極を形成することによりGaN系LEDを製造す
ることができる。またGaN系化合物基板を劈開して形
成した劈開面を利用してGaN系LDを製造することも
できる。
After the seed substrate is removed, electrodes are formed by a normal method on each of the surface of the GaN-based compound substrate that newly functions as a substrate and the surface of the light emitting portion exposed by removing the seed substrate. Thereby, a GaN-based LED can be manufactured. In addition, a GaN-based LD can be manufactured using a cleavage plane formed by cleaving a GaN-based compound substrate.

【0018】[0018]

【実施例】以下、本発明を実施例により一層詳細に説明
する。
The present invention will be described in more detail with reference to the following examples.

【0019】実施例1 2インチφのサファイアC面上に、スパッタ法によりバ
ッファー層としてのMgO膜を約0.05μm成長させ
た。この際、MgOの酸素欠損を少なくするために、通
常のアルゴンガス導入に加えて酸素ガスの導入も併せて
行った。MgO膜を有するサファイア種基板を通常のM
OCVD装置内に設置し、窒素を20SLMで流しなが
ら500℃まで昇温した。つぎにアンモニア10SL
M、水素10SLM、窒素10SLMを流しながら、そ
こへトリメチルガリウム50μモル/分、およびシクロ
ぺンタジエニルマグネシウム1μモル/分を流し、厚さ
0.1μmのp−GaN薄層を成長させた。この後10
00℃まで昇温し、上記と全く同じ材料につき各同流量
を流して厚さ1μmのp−GaNクラッド層を成長させ
た。つぎに、アンモニア10SLMと窒素10SLMと
を流した状態で800℃まで降温し、トリメチルガリウ
ム25μモル/分とトリメチルインジウム25μモル/
分とを流して厚さ0.2μmのInGaN活性層を成長
させた。つぎに、窒素10SLMとアンモニア10SL
Mとを流した状態で1000℃まで昇温し、トリメチル
ガリウム50μモル/分とシラン(SiH4 )20pp
mを5ccを流して厚さ2μmのn−GaNクラッド層
を成長させた。その後、窒素20SLMを流した状態で
700℃まで降温し、700℃で20分間保持し、p−
GaNクラッド層の活性化処理した。さらにこの発光部
を有するサファイア種基板を通常のHVPE装置内に設
置し、窒素10SLMとアンモニア10SLMとを流し
た状態で800℃まで昇温し、800℃において窒素と
アンモニアとを引き続き流した状態でさらに塩化水素2
0SCCMとシラン10SCCMとを流して厚さ100
μmのn−GaN基板用層を成長させた。かくして得た
発光部と基板用層とを有するサファイア種基板を塩酸中
に20分間浸漬してMgOバッファー層を完全に除去し
て、サファイア種基板をGaN薄層から分離した。最後
にGaN薄層の上にp側電極を、一方基板用層の上にn
側電極を、それぞれ通常の方法で形成し、かくして青色
LEDを製造した。
Example 1 An MgO film as a buffer layer was grown to a thickness of about 0.05 μm on a 2 inch φ sapphire C surface by sputtering. At this time, in order to reduce oxygen deficiency of MgO, oxygen gas was introduced in addition to ordinary argon gas introduction. Sapphire seed substrate having MgO film
The apparatus was set in an OCVD apparatus and heated to 500 ° C. while flowing nitrogen at 20 SLM. Next, ammonia 10SL
M, 10 SLM of hydrogen, and 10 SLM of nitrogen were flown therein, and 50 μmol / min of trimethylgallium and 1 μmol / min of cyclopentadienyl magnesium were flown therein to grow a p-GaN thin layer having a thickness of 0.1 μm. After this 10
The temperature was raised to 00 ° C., and the same flow rate was applied to the same material as above to grow a 1-μm-thick p-GaN cladding layer. Then, the temperature was lowered to 800 ° C. while flowing 10 SLM of ammonia and 10 SLM of nitrogen, and 25 μmol / min of trimethylgallium and 25 μmol / min of trimethylindium /
Then, an InGaN active layer having a thickness of 0.2 μm was grown. Next, 10SL of nitrogen and 10SL of ammonia
The temperature was raised to 1000 ° C. while flowing M and 50 μmol / min of trimethylgallium and 20 pp of silane (SiH 4 ).
By flowing 5 cc of m, an n-GaN cladding layer having a thickness of 2 μm was grown. Then, the temperature was lowered to 700 ° C. while flowing 20 SLM of nitrogen, kept at 700 ° C. for 20 minutes, and p-
The GaN cladding layer was activated. Further, the sapphire seed substrate having the light-emitting portion is placed in a normal HVPE apparatus, and the temperature is increased to 800 ° C. while flowing 10 SLM of nitrogen and 10 SLM of ammonia, and the nitrogen and ammonia are continuously flowed at 800 ° C. Further hydrogen chloride 2
0 SCCM and 10 SCCM of silane are flowed to a thickness of 100
A μm layer for an n-GaN substrate was grown. The sapphire seed substrate having the light emitting portion and the substrate layer thus obtained was immersed in hydrochloric acid for 20 minutes to completely remove the MgO buffer layer, thereby separating the sapphire seed substrate from the GaN thin layer. Finally, a p-side electrode is placed on the GaN thin layer, while n is placed on the substrate layer.
The side electrodes were each formed in the usual way, thus producing a blue LED.

【0020】実施例2 MgO膜に代えて、バッファー層として約0.05μm
厚のZnO膜をスパッタ法によりサファイア種基板上に
成長させた以外は、実施例1と同様にして青色LEDを
製造した。
Example 2 A buffer layer of about 0.05 μm was used instead of the MgO film.
A blue LED was manufactured in the same manner as in Example 1 except that a thick ZnO film was grown on a sapphire seed substrate by a sputtering method.

【0021】実施例3 実施例1で作製したn、p側両電極を有するウエハーを
そのa面に沿って劈開し、青色LDを製造した。上記ウ
エハーは、その全層がGaNにて形成されているので、
綺麗な劈開が高歩留りにて達成された。
Example 3 A wafer having both n-side and p-side electrodes prepared in Example 1 was cleaved along its a-plane to produce a blue LD. Since all the layers of the above wafer are formed of GaN,
Clean cleavage was achieved at high yield.

【0022】実施例4 実施例2で作製したn、p側両電極を有するウエハーを
そのa面に沿って劈開し、青色LDを製造した。上記ウ
エハーは、その全層がGaNにて形成されているので、
綺麗な劈開が高歩留りにて達成された。
Example 4 The wafer having both n-side and p-side electrodes prepared in Example 2 was cleaved along its a-plane to produce a blue LD. Since all the layers of the above wafer are formed of GaN,
Clean cleavage was achieved at high yield.

【0023】実施例5 実施例1とはp、n両クラッド層の成長順序を逆にし
て、n−GaNクラッド層を先にp−GaNクラッド層
を後にし、さらにこの発光部を有するサファイア種基板
を通常のHVPE装置内に設置し、窒素10SLMとア
ンモニア10SLMとを流した状態で800℃まで昇温
し、800℃において窒素とアンモニアとを引き続き流
した状態でさらに塩化水素20SCCMとシクロペンタ
ジエニルマグネシウム1μモル/分とを流して厚さ10
0μmのp−GaN基板用層を成長させ、その後700
℃で20分間熱処理を行った点のみ異なり、他は実施例
1と同様にして青色LEDを製造した。
Embodiment 5 The growth order of the p and n cladding layers is reversed from that of Embodiment 1, the n-GaN cladding layer is provided first, and then the p-GaN cladding layer is provided. The substrate was placed in a normal HVPE apparatus, the temperature was raised to 800 ° C. with 10 SLM of nitrogen and 10 SLM of ammonia flowing, and 20 SCCM of hydrogen chloride and cyclopentadiene were further added with nitrogen and ammonia flowing at 800 ° C. 1 μmol / min of enylmagnesium is flowed to a thickness of 10
A 0 μm p-GaN substrate layer is grown,
A blue LED was manufactured in the same manner as in Example 1 except that the heat treatment was performed at 20 ° C. for 20 minutes.

【0024】[0024]

【発明の効果】本発明によれば、導電性のGaN系基板
を有するLED、LDが製造し得る。基板が導電性であ
るので、該基板を貫通して電流が流れるように基板の上
下面側にp、n両電極を対向形成することができ、この
ために発光面積を大きく取ることが可能となって高輝度
のLED、LDが得られる。またGaN系基板の劈開性
を利用して高性能のLDを容易に製造することもでき
る。
According to the present invention, LEDs and LDs having a conductive GaN-based substrate can be manufactured. Since the substrate is conductive, both the p and n electrodes can be formed on the upper and lower surfaces of the substrate so as to face each other so that a current flows through the substrate. Thus, a high-brightness LED or LD can be obtained. Also, a high-performance LD can be easily manufactured by utilizing the cleavage property of the GaN-based substrate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の青色LED構造の断面図例である。FIG. 1 is an example of a cross-sectional view of a conventional blue LED structure.

【符号の説明】[Explanation of symbols]

1 p側電極 2 n側電極 4 n型GaN系半導体 6 p型GaN系半導体 S サファイア基板 Reference Signs List 1 p-side electrode 2 n-side electrode 4 n-type GaN-based semiconductor 6 p-type GaN-based semiconductor S sapphire substrate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 只友 一行 兵庫県伊丹市池尻4丁目3番地 三菱電線 工業株式会社伊丹製作所内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Kazuyuki Tadomo 4-3 Ikejiri, Itami-shi, Hyogo Mitsubishi Electric Cable Industry Co., Ltd. Itami Works

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 種基板の上にInX GaY AlZ N(こ
こに0≦X≦1、0≦Y≦1、0≦Z≦1、X+Y+Z
=1)からなる発光部が積層される発光部積層工程、発
光部の上にInX GaY AlZ N(ここに0≦X≦1、
0≦Y≦1、0≦Z≦1、X+Y+Z=1)からなる基
板用層を形成する基板積層工程、および種基板を除去す
る種基板除去工程とからなることを特徴とする半導体発
光素子の製造方法。
An In X Ga on the 1. A seed substrate Y Al Z N (here 0 ≦ X ≦ 1,0 ≦ Y ≦ 1,0 ≦ Z ≦ 1, X + Y + Z
= 1-emitting portion laminating step the light emitting portion is laminated consisting of), In X Ga Y Al Z N ( here 0 ≦ X ≦ 1 on the light emitting portion,
A substrate laminating step of forming a substrate layer consisting of 0 ≦ Y ≦ 1, 0 ≦ Z ≦ 1, X + Y + Z = 1), and a seed substrate removing step of removing a seed substrate. Production method.
【請求項2】 発光部のn層がp層より先に積層される
請求項1記載の半導体発光素子の製造方法。
2. The method according to claim 1, wherein the n-layer of the light-emitting section is stacked before the p-layer.
【請求項3】 バッファー層が周期律表の第二族元素の
酸化物にて構成されており、且つ発光部のp層がn層よ
り先に積層される請求項1記載の半導体発光素子の製造
方法。
3. The semiconductor light-emitting device according to claim 1, wherein the buffer layer is made of an oxide of an element of Group 2 of the periodic table, and the p-layer of the light-emitting section is stacked before the n-layer. Production method.
【請求項4】 種基板がサファイアまたはSiCからな
るものである請求項1〜3のいずれかに記載の半導体発
光素子の製造方法。
4. The method for manufacturing a semiconductor light emitting device according to claim 1, wherein the seed substrate is made of sapphire or SiC.
JP33844396A 1996-12-18 1996-12-18 Method for manufacturing semiconductor light emitting device Expired - Fee Related JP3566476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33844396A JP3566476B2 (en) 1996-12-18 1996-12-18 Method for manufacturing semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33844396A JP3566476B2 (en) 1996-12-18 1996-12-18 Method for manufacturing semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH10178201A true JPH10178201A (en) 1998-06-30
JP3566476B2 JP3566476B2 (en) 2004-09-15

Family

ID=18318210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33844396A Expired - Fee Related JP3566476B2 (en) 1996-12-18 1996-12-18 Method for manufacturing semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3566476B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002021604A1 (en) * 2000-09-08 2002-03-14 Sharp Kabushiki Kaisha Nitride semiconductor light-emitting device and optical device including the same
US6608328B2 (en) * 2001-02-05 2003-08-19 Uni Light Technology Inc. Semiconductor light emitting diode on a misoriented substrate
JP2005228945A (en) * 2004-02-13 2005-08-25 Tsuyama National College Of Technology Three wavelength semiconductor laser array monolithically integrated on semiconductor substrate
JP2005228944A (en) * 2004-02-13 2005-08-25 Tsuyama National College Of Technology Optoelectronic integrated circuit monolithically integrated on semiconductor substrate
JP2009234914A (en) * 2001-04-12 2009-10-15 Sumitomo Electric Ind Ltd METHOD OF PRODUCING LIGHT-EMITTING DEVICE, LIGHT-EMITTING DEVICE, METHOD FOR PRODUCTION OF GaN SUBSTRATE, AND GaN SUBSTRATE
JP2011251877A (en) * 2010-06-02 2011-12-15 Shin Etsu Handotai Co Ltd Method for producing epitaxial wafer

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002021604A1 (en) * 2000-09-08 2002-03-14 Sharp Kabushiki Kaisha Nitride semiconductor light-emitting device and optical device including the same
US6858882B2 (en) 2000-09-08 2005-02-22 Sharp Kabushiki Kaisha Nitride semiconductor light-emitting device and optical device including the same
US6608328B2 (en) * 2001-02-05 2003-08-19 Uni Light Technology Inc. Semiconductor light emitting diode on a misoriented substrate
JP2009234914A (en) * 2001-04-12 2009-10-15 Sumitomo Electric Ind Ltd METHOD OF PRODUCING LIGHT-EMITTING DEVICE, LIGHT-EMITTING DEVICE, METHOD FOR PRODUCTION OF GaN SUBSTRATE, AND GaN SUBSTRATE
JP2005228945A (en) * 2004-02-13 2005-08-25 Tsuyama National College Of Technology Three wavelength semiconductor laser array monolithically integrated on semiconductor substrate
JP2005228944A (en) * 2004-02-13 2005-08-25 Tsuyama National College Of Technology Optoelectronic integrated circuit monolithically integrated on semiconductor substrate
JP4581080B2 (en) * 2004-02-13 2010-11-17 独立行政法人国立高等専門学校機構 Optoelectronic integrated circuit monolithically integrated on a semiconductor substrate
JP4604189B2 (en) * 2004-02-13 2010-12-22 独立行政法人国立高等専門学校機構 Three-wavelength semiconductor laser array device monolithically integrated on a semiconductor substrate
JP2011251877A (en) * 2010-06-02 2011-12-15 Shin Etsu Handotai Co Ltd Method for producing epitaxial wafer

Also Published As

Publication number Publication date
JP3566476B2 (en) 2004-09-15

Similar Documents

Publication Publication Date Title
US8513694B2 (en) Nitride semiconductor device and manufacturing method of the device
JP3606015B2 (en) Method for manufacturing group 3 nitride semiconductor device
JP5049659B2 (en) Group III nitride semiconductor manufacturing method, group III nitride semiconductor light emitting device manufacturing method, group III nitride semiconductor light emitting device, and lamp
KR101074178B1 (en) Method for manufacturing group ⅲ nitride compound semiconductor light-emitting device, group ⅲ nitride compound semiconductor light-emitting device, and lamp
JP2000323417A (en) Manufacture for iii group nitride semiconductor and light emitting element thereof
JPH07273367A (en) Manufacture of semiconductor substrate and light-emitting device
JP2006313845A (en) Nitride semiconductor element and its fabrication process
JPH1168157A (en) Semiconductor light-emitting element and manufacture thereof
JPH11274560A (en) Semiconductor element and manufacture thereof
JP2000114599A (en) Semiconductor light emitting element
KR101008856B1 (en) Production method of group ? nitride semiconductor element
JP3566476B2 (en) Method for manufacturing semiconductor light emitting device
JPH09283799A (en) Semiconductor light-emitting element
JP4313478B2 (en) AlGaInP light emitting diode
JP3589000B2 (en) Gallium nitride based compound semiconductor light emitting device
JP4841206B2 (en) Gallium nitride compound semiconductor light emitting device
JP2003209062A (en) Crystal growth method of compound semiconductor layer and semiconductor element
JP3642199B2 (en) Method for manufacturing gallium nitride compound semiconductor light emitting device
JP2006344930A (en) Manufacturing method of group iii nitride semiconductor device
JP2002289914A (en) Nitride semiconductor element
JP2002094113A (en) Method for fabricating iii-v nitride-based semiconductor light emitting device
JP3712789B2 (en) Group 3 nitride semiconductor substrate and device manufacturing method
JP2001024223A (en) Nitride semiconductor light emitting diode
JP2009155672A (en) Method for manufacturing group-iii nitride semiconductor, method for manufacturing light-emitting device of group-iii nitride semiconductor, apparatus for manufacturing group-iii nitride semiconductor, group-iii nitride semiconductor and light-emitting device of group-iii nitride semiconductor, and lamp
JP2003218468A (en) Semiconductor laser element and manufacturing method therefor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040610

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees