JP2560964B2 - Gallium nitride compound semiconductor light emitting device - Google Patents

Gallium nitride compound semiconductor light emitting device

Info

Publication number
JP2560964B2
JP2560964B2 JP7087493A JP7087493A JP2560964B2 JP 2560964 B2 JP2560964 B2 JP 2560964B2 JP 7087493 A JP7087493 A JP 7087493A JP 7087493 A JP7087493 A JP 7087493A JP 2560964 B2 JP2560964 B2 JP 2560964B2
Authority
JP
Japan
Prior art keywords
type
light emitting
layer
gallium nitride
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7087493A
Other languages
Japanese (ja)
Other versions
JPH06260681A (en
Inventor
修二 中村
成人 岩佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP7087493A priority Critical patent/JP2560964B2/en
Priority to US08/153,153 priority patent/US5578839A/en
Priority to DE69333829T priority patent/DE69333829T2/en
Priority to TW082109713A priority patent/TW231376B/zh
Priority to EP98100538A priority patent/EP0844675B1/en
Priority to KR1019930024797A priority patent/KR970007135B1/en
Priority to DE69319854T priority patent/DE69319854T2/en
Priority to EP93118670A priority patent/EP0599224B2/en
Publication of JPH06260681A publication Critical patent/JPH06260681A/en
Priority to US08/661,138 priority patent/US5747832A/en
Priority to US08/661,157 priority patent/US5734182A/en
Priority to US08/705,972 priority patent/US5880486A/en
Application granted granted Critical
Publication of JP2560964B2 publication Critical patent/JP2560964B2/en
Priority to KR1019980015416A priority patent/KR100406201B1/en
Priority to KR1019980015415A priority patent/KR100406200B1/en
Priority to US09/145,972 priority patent/US6078063A/en
Priority to US09/300,788 priority patent/US6215133B1/en
Priority to KR1019990033017A priority patent/KR100289626B1/en
Priority to KR1019990033018A priority patent/KR100445524B1/en
Priority to US09/516,193 priority patent/US6469323B1/en
Priority to US10/227,834 priority patent/US6791103B2/en
Priority to US10/456,475 priority patent/US20030216011A1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は窒化ガリウム系化合物半
導体を用いた発光素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light emitting device using a gallium nitride compound semiconductor.

【0002】[0002]

【従来の技術】GaN、GaAlN、InGaN、In
AlGaN等の窒化ガリウム系化合物半導体は直接遷移
を有し、バンドギャップが1.95eV〜6eVまで変
化するため、発光ダイオード、レーザダイオード等、発
光素子の材料として有望視されている。現在、この材料
を用いた発光素子には、n型窒化ガリウム系化合物半導
体の上に、p型ドーパントをドープした高抵抗なi型の
窒化ガリウム系化合物半導体を積層したいわゆるMIS
構造の青色発光ダイオードが知られている。
2. Description of the Related Art GaN, GaAlN, InGaN, In
Since gallium nitride-based compound semiconductors such as AlGaN have a direct transition and the bandgap changes from 1.95 eV to 6 eV, they are regarded as promising materials for light emitting devices such as light emitting diodes and laser diodes. At present, a light emitting device using this material is a so-called MIS in which a high-resistance i-type gallium nitride compound semiconductor doped with a p-type dopant is stacked on an n-type gallium nitride compound semiconductor.
Blue light emitting diodes with a structure are known.

【0003】MIS構造の発光素子として、例えば特開
平4−10665号公報、特開平4−10666号公
報、特開平4−10667号公報において、n型Ga
Al1−YNの上に、SiおよびZnをドープしたi型
GaAl1−YNを積層する技術が開示されている。
これらの技術によると、Si、ZnをGa Al1−Y
Nにドープしてi型の発光層とすることにより発光素子
の発光色を白色にすることができる。
As a light-emitting element having a MIS structure, for example, in JP-A-4-10665, JP-A-4-10666 and JP-A-4-10667, an n-type Ga Y is disclosed.
On the Al 1-Y N, technique of laminating an i-type Ga doped with Si and Zn Y Al 1-Y N is disclosed.
According to these techniques, Si and Zn are converted into Ga Y Al 1-Y.
By doping N to form an i-type light emitting layer, the emission color of the light emitting element can be made white.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記技
術のように、p型ドーパントであるZnをドープし、さ
らにn型ドーパントであるSiをドープした高抵抗なi
型GaAl1−YN層を発光層とするMIS構造の発
光素子は発光出力が低く、発光素子として実用化するに
は未だ不十分であった。
However, as in the above technique, a high-resistance i-type doped with Zn as a p-type dopant and further doped with Si as an n-type dopant.
A light emitting device having a MIS structure in which a type Ga Y Al 1 -YN layer is used as a light emitting layer has a low light emission output and is still insufficient for practical use as a light emitting device.

【0005】従って本発明はこのような事情を鑑みて成
されたものであり、その目的とするところはp−n接合
の窒化ガリウム系化合物半導体を用い、発光素子の発光
出力を向上させようとするものである。
Accordingly, the present invention has been made in view of such circumstances, and an object of the present invention is to improve the light emitting output of a light emitting device by using a gallium nitride compound semiconductor having a pn junction. Is what you do.

【0006】[0006]

【課題を解決するための手段】我々は、窒化ガリウム系
化合物半導体の中でも特にInGaNに着目し、InG
aNにp型ドーパントをドープしてn型とし、このn型
InGaNを発光層とした窒化ガリウム系化合物半導体
発光素子を実現することにより上記課題を解決するに至
った。即ち、本発明の窒化ガリウム系化合物半導体発光
素子はn型窒化ガリウム系化合物半導体層とp型窒化ガ
リウム系化合物半導体層との間に、p型ドーパントがド
ープされたn型InCa1−xN(但し、Xは0<X
<1の範囲である。)を発光層として具備することを特
徴とする。
Among the gallium nitride-based compound semiconductors, we have focused on InGaN,
doped with p-type dopant and n-type to aN, the n-type InGaN gallium nitride compound form a light emitting layer of a semiconductor
The above problems have been solved by realizing a light emitting device . That is, while the gallium nitride-based compound semiconductor light-emitting device of the present invention the n-type gallium nitride-based compound semiconductor layer and a p-type gallium nitride-based compound semiconductor layer, n-type p-type dopant is doped In x Ca 1-x N (however, X is 0 <X
It is a range of <1. ) Is provided as a light emitting layer.

【0007】本発明の窒化ガリウム系化合物半導体発光
素子において、n型およびp型窒化ガリウム系化合物半
導体層とは、GaN、GaAlN、InGaN、InA
lGaN等、窒化ガリウムを含む窒化ガリウム系化合物
半導体に、n型であれば例えばSi、Ge、Te、Se
等のn型ドーパントをドープしてn型特性を示すように
成長した層をいい、p型であれば例えばZn、Mg、C
d、Be、Ca等のp型ドーパントをドープしてp型特
性を示すように成長した層をいう。n型窒化ガリウム系
化合物半導体の場合はノンドープでもn型になる性質が
ある。また、p型窒化ガリウム系化合物半導体層の場
合、p型窒化ガリウム系化合物半導体層をさらに低抵抗
化する手段として、我々が先に出願した特願平3−35
7046号に開示するアニーリング処理を行ってもよ
い。低抵抗化することにより発光出力をさらに向上させ
ることができる。
In the gallium nitride-based compound semiconductor light emitting device of the present invention, the n-type and p-type gallium nitride-based compound semiconductor layers are GaN, GaAlN, InGaN and InA.
For a gallium nitride-based compound semiconductor containing gallium nitride such as lGaN, if it is n-type, for example, Si, Ge, Te, Se
Is a layer grown to show n-type characteristics by being doped with an n-type dopant such as Zn, Mg, C
A layer doped with a p-type dopant such as d, Be, or Ca to grow to exhibit p-type characteristics. In the case of an n-type gallium nitride-based compound semiconductor, even if it is not doped, it has a property of becoming an n-type. Further, in the case of a p-type gallium nitride compound semiconductor layer, as a means for further reducing the resistance of the p-type gallium nitride compound semiconductor layer, Japanese Patent Application No. 3-35 previously filed by us has been proposed.
The annealing treatment disclosed in No. 7046 may be performed. The light emission output can be further improved by lowering the resistance.

【0008】特に、n型InGaN層中の電子キャリア
濃度は1×1017/cm〜5×1021/cm
範囲に調整することが好ましい。電子キャリア濃度が1
×1017/cmより少ないか、または5×1021
/cmよりも多いと、実用的に十分な発光出力が得ら
れない傾向にある。また、電子キャリア濃度と抵抗率と
は反比例し、その濃度がおよそ1×1015/cm
下であると、InGaNは高抵抗なi型となる傾向にあ
り、電子キャリア濃度測定不能となる。電子キャリア濃
度は、例えば、InGaN中のp型ドーパント濃度を調
整する方法、またはInGaN中にp型ドーパントと同
時にn型ドーパントをドープする方法等によって前記範
囲に調整することができる。InGaNにドープするp
型ドーパント、およびn型ドーパントは特に変わるもの
ではなく、p型ドーパントとしては、前記したように例
えばZn、Mg、Cd、Be、Ca等、n型ドーパント
としてはSi、Ge、Te、Se等が使用できる。
In particular, the electron carrier concentration in the n-type InGaN layer is preferably adjusted within the range of 1 × 10 17 / cm 3 to 5 × 10 21 / cm 3 . Electron carrier concentration is 1
Less than × 10 17 / cm 3 or 5 × 10 21
If it is more than / cm 3 , there is a tendency that practically sufficient emission output cannot be obtained. Further, the electron carrier concentration and the resistivity are inversely proportional, and when the concentration is approximately 1 × 10 15 / cm 3 or less, InGaN tends to be a highly resistant i-type, which makes it impossible to measure the electron carrier concentration. The electron carrier concentration can be adjusted to the above range by, for example, a method of adjusting the p-type dopant concentration in InGaN, a method of doping the n-type dopant into InGaN at the same time as the p-type dopant, or the like. P doping InGaN
The type dopant and the n-type dopant are not particularly changed, and the p-type dopant is, for example, Zn, Mg, Cd, Be, Ca, etc., as described above, and the n-type dopant is Si, Ge, Te, Se, etc. Can be used.

【0009】また、n型InGa1−xNのX値は0
<X<0.5の範囲に調整することが好ましい。X値を
0より多くすることにより、発光色はおよそ紫色領域と
なる。X値を増加するに従い発光色は短波長側から長波
長側に移行し、X値が1付近で赤色にまで変化させるこ
とができる。しかしながら、X値が0.5以上では結晶
性に優れたInGaNが得られにくく、発光効率に優れ
た発光素子が得られにくくなるため、X値は0.5未満
が好ましい。
Further, the X value of n-type In x Ga 1-x N is 0.
It is preferable to adjust the range of <X <0.5. By setting the X value to be greater than 0, the emission color becomes approximately in the purple region. As the X value increases, the emission color shifts from the short wavelength side to the long wavelength side, and can be changed to red when the X value is around 1. However, when the X value is 0.5 or more, it is difficult to obtain InGaN having excellent crystallinity and it is difficult to obtain a light emitting device having excellent light emitting efficiency. Therefore, the X value is preferably less than 0.5.

【0010】[0010]

【作用】図1に、基坂上にまずSiをドープしたn型G
aN層を成長させ、次にn型In0.15Ga0.85
N層を成長させ、その次にMgをドープしたp型GaN
層を成長させてp−n接合のダブルヘテロ構造の発光素
子とし、それを発光ダイオードとして発光させた場合
に、前記n型In0.15Ga0.85Nの電子キャリ
ア濃度と、その発光ダイオードの相対発光出力との関係
を示す。なお、n型In0.15Ga0.85N層は、
p型ドーパントとしてZnをドープして成長した後、ホ
ール測定装置にてその層の電子キャリア濃度を測定し
た。図1の各点は左から順に1×1016、1×10
17、4×1017、1×1018、3×1018、1
×1019、4×1019、1×1020、3×10
20、1×1021、5×1021/cmの電子キャ
リア濃度を示している。
In FIG. 1, an n-type G doped with Si is first formed on the base plate.
Growing an aN layer, then n-type In0.15Ga0.85
P-type GaN with N layer grown and then Mg doped
When a layer is grown to form a light emitting device having a double hetero structure with a pn junction and emitting light as a light emitting diode, the electron carrier concentration of the n-type In0.15Ga0.85N and the relative light emission output of the light emitting diode. Shows the relationship with. The n-type In0.15Ga0.85N layer is
After growing by doping Zn as a p-type dopant, the electron carrier concentration of the layer was measured by a Hall measuring device. Each point in FIG. 1 is 1 × 10 16 , 1 × 10 in order from the left.
17 , 4 × 10 17 , 1 × 10 18 , 3 × 10 18 , 1
X10 19 , 4x10 19 , 1x10 20 , 3x10
20 shows the electron carrier concentration of 1 × 10 21 , 5 × 10 21 / cm 3 .

【0011】この図に示すように、本発明のn型InG
aNを発光層とした窒化ガリウム系化合物半導体発光素
子の場合、n型InGaNの電子キャリア濃度により発
光素子の発光出力が変化する。発光出力はn型InGa
N層の電子キャリア濃度が1016/cm付近より急
激に増加し、およそ1×1019/cm付近で最大と
なり、それを超えると再び急激に減少する傾向にある。
この図において、現在実用化されているn型GaNとi
型GaNよりなるMIS構造の発光素子の発光出力は、
本発明の発光素子の最大値の発光出力のおよそ1/10
0以下でしかなく、また実用範囲を考慮した結果、電子
キャリア濃度は1×1017/cm〜5×1021
cmの範囲が好ましい。このように、本発明の発光素
子において、発光層であるn型InGaN層の電子キャ
リア濃度の変化により、発光出力が変化するのは以下の
理由であると推察される。
As shown in this figure, the n-type InG of the present invention is used.
In the case of a gallium nitride compound semiconductor light emitting device using aN as a light emitting layer, the light emission output of the light emitting device changes depending on the electron carrier concentration of n-type InGaN. Light emission output is n-type InGa
The electron carrier concentration of the N layer sharply increases from around 10 16 / cm 3, reaches its maximum around 1 × 10 19 / cm 3 , and tends to sharply decrease again after that.
In this figure, n-type GaN and i
The light emission output of the MIS structure light emitting device made of type GaN is
About 1/10 of the maximum light emission output of the light emitting device of the present invention
As a result of considering the practical range, the electron carrier concentration is 1 × 10 17 / cm 3 to 5 × 10 21 /
A range of cm 3 is preferred. As described above, in the light emitting device of the present invention, it is presumed that the light emission output changes due to the change of the electron carrier concentration of the n-type InGaN layer which is the light emitting layer, for the following reason.

【0012】InGaNはノンドープ(無添加)で成長
すると、窒素空孔ができることによりn型を示すことは
知られている。このノンドープn型InGaNの残留電
子キャリア濃度は、成長条件によりおよそ1×1017
/cm〜1×1022/cmぐらいの値を示す。さ
らに、このn型InGaN層に発光中心となるp型ドー
パント(図1の場合はZn)をドープすることにより、
n型InGaN層中の電子キャリア濃度が減少する。こ
のため、p型ドーパントを電子キャリア濃度が極端に減
少するようにドープすると、n型InGaNは高抵抗な
i型となってしまう。この電子キャリア濃度を調整する
ことにより発光出力が変化するのは、p型ドーパントで
あるZnの発光中心がドナー不純物とペアを作って発光
するD−Aペア発光の可能性を示唆しているが、詳細な
メカニズムはよくわからない。重要なことは、ある程度
の電子キャリアを作るドナー不純物(例えばn型ドーパ
ント、ノンドープInGaN)、アクセプター不純物で
あるp型ドーパントとが両方存在するn型InGaNで
は、発光中心の強度が明らかに増大するということであ
る。
It is known that InGaN grows non-doped (without addition) and exhibits an n-type due to the formation of nitrogen vacancies. The residual electron carrier concentration of this non-doped n-type InGaN is about 1 × 10 17 depending on the growth conditions.
/ Cm 3 shows the value of about to 1 × 10 22 / cm 3. Further, by doping this n-type InGaN layer with a p-type dopant (Zn in the case of FIG. 1) which becomes an emission center,
The electron carrier concentration in the n-type InGaN layer is reduced. Therefore, if the p-type dopant is doped so that the electron carrier concentration is extremely reduced, the n-type InGaN becomes i-type with high resistance. The emission output changes by adjusting the electron carrier concentration, suggesting the possibility of DA pair emission in which the emission center of Zn, which is a p-type dopant, forms a pair with a donor impurity to emit light. , I'm not sure about the detailed mechanism. What is important is that the intensity of the emission center is clearly increased in n-type InGaN in which both a donor impurity (for example, an n-type dopant and a non-doped InGaN) that creates a certain amount of electron carriers and a p-type dopant that is an acceptor impurity are present. That is.

【0013】以上、ノンドープのn型InGaN層にp
型ドーパントをドープして電子キャリア濃度を変化させ
る方法について述べたが、n型InGaN層に電子キャ
リアを作る他のドナー不純物、即ちn型ドーパントをp
型ドーパントと同時にn型InGaN層にドープしても
よい。
As described above, p is added to the undoped n-type InGaN layer.
Although the method of doping the type dopant to change the electron carrier concentration has been described, another donor impurity that creates electron carriers in the n-type InGaN layer, that is, the n-type dopant, is added to the p-type dopant.
The n-type InGaN layer may be doped simultaneously with the type dopant.

【0014】[0014]

【実施例】以下有機金属気相成長法により、本発明の発
光素子を製造する方法を述べる。
EXAMPLES A method of manufacturing the light emitting device of the present invention by the metal organic chemical vapor deposition method will be described below.

【0015】[実施例1] よく洗浄したサファイア基板を反応容器内にセットし、
反応容器内を水素で十分置換した後、水素を流しなが
ら、基板の温度を1050℃まで上昇させサファイア基
板のクリーニングを行う。
Example 1 A well-cleaned sapphire substrate was set in a reaction vessel,
After sufficiently replacing the inside of the reaction vessel with hydrogen, the temperature of the substrate is raised to 1050 ° C. while flowing hydrogen to clean the sapphire substrate.

【0016】続いて、温度を510℃まで下げ、キャリ
アガスとして水素、原料ガスとしてアンモニアとTMG
(トリメチルガリウム)とを用い、サファイア基板上に
GaNよりなるバッファ層を約200オングストローム
の膜厚で成長させる。
Subsequently, the temperature is lowered to 510 ° C., and hydrogen is used as a carrier gas, and ammonia and TMG are used as source gases.
(Trimethylgallium), a buffer layer made of GaN is grown on the sapphire substrate to a thickness of about 200 Å.

【0017】バッファ層成長後、TMGのみ止めて、温
度を1030℃まで上昇させる。1030℃になった
ら、同じく原料ガスにTMGとアンモニアガス、ドーパ
ントガスにシランガスを用い、Siをドープしたn型G
aN層を4μm成長させる。
After the growth of the buffer layer, only TMG is stopped, and the temperature is increased to 1030 ° C. When the temperature reached 1030 ° C, n-type G doped with Si using TMG and ammonia gas as the source gas and silane gas as the dopant gas.
The aN layer is grown to 4 μm.

【0018】n型GaN層成長後、原料ガス、ドーパン
トガスを止め、温度を800℃にして、キャリアガスを
窒素に切り賛え、原科ガスとしてTMGとTM1(トリ
メチルインジウム)とアンモニア、ドーパントガスとし
てDEZ(ジエチルジンク)を用い、Znをドープした
n型In0.15Ga0.85N層を100オングスト
ローム成長させる。なお、このn型In0.15Ga
0.85N層の電子キャリア濃度は1×1019/cm
であった。
After the growth of the n-type GaN layer, the raw material gas and the dopant gas are stopped, the temperature is set to 800 ° C., nitrogen is used as the carrier gas, and TMG, TM1 (trimethylindium), ammonia and the dopant gas are used as the original gases. DEZ (diethyl zinc) is used as the n-type In0.15Ga0.85N layer doped with Zn to grow 100 angstroms. In addition, this n-type In0.15 Ga
The electron carrier concentration of the 0.85N layer is 1 × 10 19 / cm
It was 3 .

【0019】次に、原料ガス、ドーパントガスを止め、
再び温度を1020℃まで上昇させ、原料ガスとしてT
MGとアンモニア、ドーパントガスとしてCp2Mg
(シクロペンタジエニルマグネシウム)とを用い、Mg
をドープしたp型GaN層を0.8μm成長させる。
Next, the source gas and the dopant gas are stopped,
The temperature is again raised to 1020 ° C. and T
MG and ammonia, Cp2Mg as a dopant gas
(Cyclopentadienyl magnesium) and Mg
Is grown to a thickness of 0.8 μm.

【0020】p型GaN層成長後、基板を反応容器から
取り出し、アニーリング装置にて窒素雰囲気中、700
℃で20分間アニーリングを行い、最上層のp型GaN
層をさらに低抵抗化する。
After the growth of the p-type GaN layer, the substrate is taken out of the reaction vessel, and the substrate is placed in a nitrogen atmosphere by an annealing apparatus.
Anneal at 20 ° C for 20 minutes to obtain the top p-type GaN
The resistance of the layer is further reduced.

【0021】以上のようにして得られたウェハーのp型
GaN層、およびn型In0.15Ga0.85N層の
一部をエッチングにより取り除き、n型GaN層を露出
させ、p型GaN層と、n型GaN層とにオーミック電
極を設け、500μm角のチップにカットした後、常法
に従い発光ダイオードとしたところ、発光出力は20m
Aにおいて300μW、発光波長490nmであった。
A part of the p-type GaN layer and the n-type In0.15Ga0.85N layer of the wafer obtained as described above is removed by etching to expose the n-type GaN layer and the p-type GaN layer and the n-type GaN layer. After forming an ohmic electrode on the GaN layer and cutting it into chips of 500 μm square, a light emitting diode was produced by a conventional method.
In A, it was 300 μW and the emission wavelength was 490 nm.

【0022】[実施例2] 実施例1において、n型In0.15Ga0.85N層
を成長する際、DEZのガス流量を調整して、電子キャ
リア濃度を4×1017/cmとする他は、同様にし
て青色発光ダイオードを得たところ、20mAにおいて
発光出力30μW、発光波長490nmであった。
Example 2 In Example 1, except that the gas flow rate of DEZ is adjusted to grow the n-type In0.15Ga0.85N layer so that the electron carrier concentration is 4 × 10 17 / cm 3. When a blue light emitting diode was obtained in the same manner, the emission output was 30 μW and the emission wavelength was 490 nm at 20 mA.

【0023】[実施例3] 実施例1において、n型In0.15Ga0.85N層
を成長する際、電子キャリア濃度を1×1021/cm
とする他は、同様にして青色発光ダイオードを得たと
ころ、20mAにおいて発光出力30μW、発光波長4
90nmであった。
Example 3 In Example 1, when the n-type In0.15Ga0.85N layer was grown, the electron carrier concentration was 1 × 10 21 / cm 3.
A blue light emitting diode was obtained in the same manner except that the light emission output was 30 μW and the emission wavelength was 4 at 20 mA.
It was 90 nm.

【0024】[実施例4] 実施例1において、n型In0.15Ga0.85N層
を成長する際、電子キャリア濃度を1×1017/cm
とする他は、同様にして青色発光ダイオードを得たと
ころ、20mAにおいて発光出力5μW、発光波長49
0nmであった。
Example 4 In Example 1, when the n-type In0.15Ga0.85N layer was grown, the electron carrier concentration was 1 × 10 17 / cm 3.
A blue light emitting diode was obtained in the same manner except that the light emitting output was 5 μW at 20 mA and an emission wavelength of 49
It was 0 nm.

【0025】[実施例5] 実施例1において、n型In0.15Ga0.85N
成長する際、電子キャリア濃度を5×1021/cm
とする他は、同様にして青色発光ダイオードを得たと
ころ、20mAにおいて発光出力3μW、発光波長49
0nmであった。
[Example 5] The n-type In0.15Ga0.85N layer in Example 1
When growing, the electron carrier concentration is 5 × 10 21 / cm
A blue light emitting diode was obtained in the same manner except that the light emitting output was 3 μW and the emission wavelength was 49 nm at 20 mA.
It was 0 nm.

【0026】[実施例6] 実施例1において、n型In0.15Ga0.85N層
を成長する際、新たにドーパントガスとしてシランガス
を加え、ZnおよびSiをドープして、電子キャリア濃
度を1×1019/cmとする他は、同様にして青色
発光ダイオードを得たところ、20mAにおいて発光出
力300μW、発光波長490nmであった。
Example 6 In Example 1, when growing an n-type In0.15Ga0.85N layer, silane gas was newly added as a dopant gas and Zn and Si were doped to obtain an electron carrier concentration of 1 × 10. except that the 19 / cm 3, was obtained a blue light-emitting diodes in the same manner, the light emission output at 20 mA 300 [mu] W, and a light-emitting wavelength 490 nm.

【0027】[比較例1] 実施例1のZnドープn型In0.15Ga0.85N
層を成長させる工程において、原料ガスにTMG、アン
モニア、ドーパントガスにDEZを用いて、Znをドー
プした高抵抗なi型GaN層を成長させる。i型GaN
層成長後、同様にしてi型GaN層の一部をエッチング
し、n型GaN層を露出させ、n型GaN層とi型Ga
N層とに電極を設けて、MIS構造の発光ダイオードと
したところ、発光出力は20mAにおいて1μW、輝度
2mcdしかなかった。
Comparative Example 1 Zn-doped n-type In0.15Ga0.85N of Example 1
In the step of growing the layer, a high resistance i-type GaN layer doped with Zn is grown by using TMG, ammonia as a source gas and DEZ as a dopant gas. i-type GaN
After the layer growth, a portion of the i-type GaN layer is similarly etched to expose the n-type GaN layer, and the n-type GaN layer and the i-type Ga are exposed.
When an electrode was provided on the N layer to form a MIS structure light emitting diode, the light emission output was 1 μW at 20 mA and the brightness was only 2 mcd.

【0028】[0028]

【発明の効果】発明の窒化ガリウム系化合物半導体発
光素子は、p型窒化ガリウム系化合物半導体層とn型窒
化ガリウム系化合物半導体層の間に、p型ドーパントを
ドープしたn型InGaNを発光層として配設する独得
の構成により、従来のMIS構造の発光素子に比して、
格段に発光効率、発光強度が増大する。また、n型In
GaN層中の電子キャリア濃度を最適値にすることによ
って、従来の発光素子に比して、100倍以上の発光出
力、および発光輝度とすることもできる。
The gallium nitride-based compound semiconductor light-emitting device of the present invention comprises a p-type gallium nitride-based compound semiconductor layer and an n-type nitride-based compound semiconductor layer.
A p-type dopant is provided between the gallium nitride-based compound semiconductor layers.
Unique to disposing doped n-type InGaN as a light emitting layer
Due to the configuration, compared with the conventional MIS structure light emitting device,
Luminous efficiency and luminous intensity are significantly increased. In addition, n-type In
By setting the electron carrier concentration in the GaN layer to an optimum value, it is possible to achieve a light emission output and light emission brightness that are 100 times or more as compared with a conventional light emitting element .

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例に係る発光素子のn型In
GaN層の電子キャリア濃度と、相対発光出力との関係
を示す図。
FIG. 1 shows an n-type In of a light emitting device according to an embodiment of the present invention.
The figure which shows the relationship between the electron carrier concentration of a GaN layer, and relative light emission output.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−10665(JP,A) 特開 平4−10666(JP,A) 特開 平4−10667(JP,A) 特開 平3−252175(JP,A) 特開 平4−236477(JP,A) 特開 平4−236478(JP,A) 特開 平4−199752(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-4-10665 (JP, A) JP-A-4-10666 (JP, A) JP-A-4-10667 (JP, A) JP-A-3- 252175 (JP, A) JP-A-4-236477 (JP, A) JP-A-4-236478 (JP, A) JP-A-4-199752 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 n型窒化ガリウム系化合物半導体層と、
p型窒化ガリウム系化合物半導体層との間に、p型ドー
パントがドープされたn型InGa1−xN層(但
し、Xは0<X<1の範囲である。)を発光層として具
備する窒化ガリウム系化合物半導体発光素子。
1. An n-type gallium nitride-based compound semiconductor layer,
Between the p-type gallium nitride-based compound semiconductor layer, p-type dopant is n-type doped In x Ga 1-x N layer (where, X is in the range 0 <X <1 in.) as a light-emitting layer A gallium nitride-based compound semiconductor light emitting device.
【請求項2】 前記n型InGa1−xN層の電子キ
ャリア濃度は1×1017/cm〜5×1021/c
の範囲であることを特徴とする請求項1に記載の窒
化ガリウム系化合物半導体発光素子。
2. The electron carrier concentration of the n-type In x Ga 1-x N layer is 1 × 10 17 / cm 3 to 5 × 10 21 / c.
The gallium nitride-based compound semiconductor light emitting device according to claim 1, wherein the gallium nitride-based compound semiconductor light emitting device is in the range of m 3 .
JP7087493A 1992-11-19 1993-03-05 Gallium nitride compound semiconductor light emitting device Expired - Fee Related JP2560964B2 (en)

Priority Applications (20)

Application Number Priority Date Filing Date Title
JP7087493A JP2560964B2 (en) 1993-03-05 1993-03-05 Gallium nitride compound semiconductor light emitting device
US08/153,153 US5578839A (en) 1992-11-20 1993-11-17 Light-emitting gallium nitride-based compound semiconductor device
DE69333829T DE69333829T2 (en) 1992-11-20 1993-11-19 Light-emitting device based on a gallium nitride semiconductor compound
TW082109713A TW231376B (en) 1992-11-20 1993-11-19
EP98100538A EP0844675B1 (en) 1992-11-20 1993-11-19 Light-emitting gallium nitride-based compound semiconductor device
KR1019930024797A KR970007135B1 (en) 1992-11-19 1993-11-19 Light-emitting gallium nitride-based compound semiconductor device
DE69319854T DE69319854T2 (en) 1992-11-20 1993-11-19 Light-emitting device based on a gallium nitride semiconductor compound
EP93118670A EP0599224B2 (en) 1992-11-20 1993-11-19 Light-emitting gallium nitride-based compound semiconductor device
US08/661,138 US5747832A (en) 1992-11-20 1996-06-10 Light-emitting gallium nitride-based compound semiconductor device
US08/661,157 US5734182A (en) 1992-11-20 1996-06-10 Light-emitting gallium nitride-based compound semiconducor device
US08/705,972 US5880486A (en) 1992-11-20 1996-08-30 Light-emitting gallium nitride-based compound semiconductor device
KR1019980015415A KR100406200B1 (en) 1992-11-20 1998-04-29 Light-emitting gallium nitride-based compound semiconductor device
KR1019980015416A KR100406201B1 (en) 1992-11-20 1998-04-29 Light-emitting gallium nitride-based compound semiconductor device
US09/145,972 US6078063A (en) 1992-11-20 1998-09-03 Light-emitting gallium nitride-based compound semiconductor device
US09/300,788 US6215133B1 (en) 1992-11-20 1999-04-28 Light-emitting gallium nitride-based compound semiconductor device
KR1019990033018A KR100445524B1 (en) 1992-11-20 1999-08-12 Light-Emitting Gallium Nitride-Based Compound Semiconductor Device
KR1019990033017A KR100289626B1 (en) 1992-11-20 1999-08-12 Light-Emitting Gallium Nitride-Based Compound Semiconductor Device
US09/516,193 US6469323B1 (en) 1992-11-20 2000-03-01 Light-emitting gallium nitride-based compound semiconductor device
US10/227,834 US6791103B2 (en) 1992-11-20 2002-08-27 Light-emitting gallium nitride-based compound semiconductor device
US10/456,475 US20030216011A1 (en) 1992-11-20 2003-06-09 Light-emitting gallium nitride-based compound semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7087493A JP2560964B2 (en) 1993-03-05 1993-03-05 Gallium nitride compound semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH06260681A JPH06260681A (en) 1994-09-16
JP2560964B2 true JP2560964B2 (en) 1996-12-04

Family

ID=13444140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7087493A Expired - Fee Related JP2560964B2 (en) 1992-11-19 1993-03-05 Gallium nitride compound semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP2560964B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6996150B1 (en) 1994-09-14 2006-02-07 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor
JP4553457B2 (en) * 2000-08-02 2010-09-29 ローム株式会社 III-V compound semiconductor device having pn junction
US20070045638A1 (en) 2005-08-24 2007-03-01 Lumileds Lighting U.S., Llc III-nitride light emitting device with double heterostructure light emitting region
EP2540798A4 (en) 2010-02-26 2014-04-30 Mitsubishi Chem Corp Halophosphate phosphor and white light emitting device
JP4930649B1 (en) 2011-02-25 2012-05-16 三菱化学株式会社 Halophosphate phosphor and white light emitting device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59228776A (en) * 1983-06-10 1984-12-22 Nippon Telegr & Teleph Corp <Ntt> Semiconductor hetero-junction element
JPS61183977A (en) * 1985-02-08 1986-08-16 Toshiba Corp Light emitting element and manufacture thereof
JPH06101587B2 (en) * 1989-03-01 1994-12-12 日本電信電話株式会社 Semiconductor light emitting element
JP2564024B2 (en) * 1990-07-09 1996-12-18 シャープ株式会社 Compound semiconductor light emitting device
JP3026102B2 (en) * 1990-10-27 2000-03-27 豊田合成株式会社 Gallium nitride based compound semiconductor light emitting device
JPH04236477A (en) * 1991-01-21 1992-08-25 Pioneer Electron Corp Semiconductor light emitting element
JP2934337B2 (en) * 1991-04-23 1999-08-16 旭化成工業株式会社 Gallium nitride based semiconductor light emitting device materials
JP2791448B2 (en) * 1991-04-19 1998-08-27 日亜化学工業 株式会社 Light emitting diode

Also Published As

Publication number Publication date
JPH06260681A (en) 1994-09-16

Similar Documents

Publication Publication Date Title
KR100406200B1 (en) Light-emitting gallium nitride-based compound semiconductor device
JP2778405B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2785254B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2917742B2 (en) Gallium nitride based compound semiconductor light emitting device and method of manufacturing the same
JP2890396B2 (en) Nitride semiconductor light emitting device
JP3890930B2 (en) Nitride semiconductor light emitting device
JPH06232451A (en) Growing method of p-type gallium nitride
JP2560963B2 (en) Gallium nitride compound semiconductor light emitting device
US6191437B1 (en) Semiconductor light emitting device and method of manufacturing the same
JP2713095B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP3658892B2 (en) Method for growing p-type nitride semiconductor and nitride semiconductor device
JP2918139B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2713094B2 (en) Semiconductor light emitting device and method of manufacturing the same
US6429032B1 (en) Nitride semiconductor and a method thereof, a nitride semiconductor device and a method thereof
JP2790242B2 (en) Nitride semiconductor light emitting diode
JP3458007B2 (en) Semiconductor light emitting device
JP2560964B2 (en) Gallium nitride compound semiconductor light emitting device
JP2809045B2 (en) Nitride semiconductor light emitting device
JPH10144960A (en) Method for manufacturing p-type nitride semiconductor and nitride semiconductor element
JP3216596B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2576819B1 (en) Gallium nitride based compound semiconductor light emitting device
JP3267250B2 (en) Nitride semiconductor light emitting device
JPH05198841A (en) Forming method for p-type of gallium nitride compound semiconductor
JP2560963C (en)
JP2576819C (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960730

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees