JP2560963B2 - Gallium nitride compound semiconductor light emitting device - Google Patents

Gallium nitride compound semiconductor light emitting device

Info

Publication number
JP2560963B2
JP2560963B2 JP7087393A JP7087393A JP2560963B2 JP 2560963 B2 JP2560963 B2 JP 2560963B2 JP 7087393 A JP7087393 A JP 7087393A JP 7087393 A JP7087393 A JP 7087393A JP 2560963 B2 JP2560963 B2 JP 2560963B2
Authority
JP
Japan
Prior art keywords
type
light emitting
layer
gallium nitride
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7087393A
Other languages
Japanese (ja)
Other versions
JPH06260680A (en
Inventor
修二 中村
成人 岩佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13444114&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2560963(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP7087393A priority Critical patent/JP2560963B2/en
Priority to US08/153,153 priority patent/US5578839A/en
Priority to TW082109713A priority patent/TW231376B/zh
Priority to EP98100538A priority patent/EP0844675B1/en
Priority to KR1019930024797A priority patent/KR970007135B1/en
Priority to DE69319854T priority patent/DE69319854T2/en
Priority to DE69333829T priority patent/DE69333829T2/en
Priority to EP93118670A priority patent/EP0599224B2/en
Publication of JPH06260680A publication Critical patent/JPH06260680A/en
Priority to US08/661,138 priority patent/US5747832A/en
Priority to US08/661,157 priority patent/US5734182A/en
Priority to US08/705,972 priority patent/US5880486A/en
Application granted granted Critical
Publication of JP2560963B2 publication Critical patent/JP2560963B2/en
Priority to KR1019980015415A priority patent/KR100406200B1/en
Priority to KR1019980015416A priority patent/KR100406201B1/en
Priority to US09/145,972 priority patent/US6078063A/en
Priority to US09/300,788 priority patent/US6215133B1/en
Priority to KR1019990033017A priority patent/KR100289626B1/en
Priority to KR1019990033018A priority patent/KR100445524B1/en
Priority to US09/516,193 priority patent/US6469323B1/en
Priority to US10/227,834 priority patent/US6791103B2/en
Priority to US10/456,475 priority patent/US20030216011A1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は窒化ガリウム系化合物半
導体を用いた発光素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light emitting device using a gallium nitride compound semiconductor.

【0002】[0002]

【従来の技術】GaN、GaAlN、InGaN、In
AlGaN等の窒化ガリウム系化合物半導体は直接遷移
を有し、バンドギャップが1.95eV−6eVまで変
化するため、発光ダイオード、レーザダイオード等、発
光素子の材料として有望視されている。現在、この材料
を用いた発光素子には、n型窒化ガリウム系化合物半導
体の上に、p型ドーパントをドープした高抵抗なi型の
窒化ガリウム系化合物半導体を積層したいわゆるMIS
構造の青色発光ダイオードが知られている。
2. Description of the Related Art GaN, GaAlN, InGaN, In
Since gallium nitride-based compound semiconductors such as AlGaN have a direct transition and the bandgap changes up to 1.95 eV-6 eV, they are regarded as promising materials for light emitting devices such as light emitting diodes and laser diodes. At present, in a light emitting device using this material, a so-called MIS in which a high-resistance i-type gallium nitride-based compound semiconductor doped with a p-type dopant is stacked on an n-type gallium nitride-based compound semiconductor
Blue light emitting diodes with a structure are known.

【0003】MIS構造の発光素子として、例えば特開
平4−10665号公報、特開平4−10666号公
報、特開平4−10667号公報において、n型Ga
Al1−YNの上に、SiおよびZnをドープしたi型
GaAl1−YNを積層する技術が開示されている。
これらの技術によると、Si、ZnをGa Al1−Y
Nにドープしてi型の発光層とすることにより発光素子
の発光色を白色にすることができる。
As a light-emitting element having a MIS structure, for example, in JP-A-4-10665, JP-A-4-10666 and JP-A-4-10667, an n-type Ga Y is disclosed.
On the Al 1-Y N, technique of laminating an i-type Ga doped with Si and Zn Y Al 1-Y N is disclosed.
According to these techniques, Si and Zn are converted into Ga Y Al 1-Y.
By doping N to form an i-type light emitting layer, the emission color of the light emitting element can be made white.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記技
術のように、p型ドーパントであるZnをドープし、さ
らにn型ドーパントであるSiをドープした高抵抗なi
型GaAl1−YN層を発光層とするMIS構造の発
光素子は輝度、発光出力共低く、発光素子として実用化
するには未だ不十分であった。
However, as in the above technique, a high-resistance i-type doped with Zn as a p-type dopant and further doped with Si as an n-type dopant.
A MIS structure light-emitting element having a type Ga Y Al 1-YN layer as a light-emitting layer has low luminance and light-emission output, and is still insufficient for practical use as a light-emitting element.

【0005】従って本発明はこのような事情を鑑みて成
されたものであり、その目的とするところは、p−n接
合の窒化ガリウム系化合物半導体を用いて発光素子の輝
度、および発光出力を向上させようとするものである。
Therefore, the present invention has been made in view of such circumstances, and an object of the present invention is to improve the brightness and the light emission output of a light emitting device by using a gallium nitride-based compound semiconductor having a pn junction. It is an attempt to improve.

【0006】[0006]

【課題を解決するための手段】本発明の窒化ガリウム系
化合物半導体発光素子は、n型窒化ガリウム系化合物半
導体と、p型窒化ガリウム系化合物半導体層との間に、
インジウムとガリウムを今む窒化物半導体層の発光層を
備え、発光層にSiおよびZnをドープしてなることを
特徴とする。特に、本発明の窒化ガリウム系化合物半導
体発光素子は、ZnとSiのドープされたインジウムと
ガリウムを含む窒化物半導体層の発光層を備える構造と
することにより、従来のMIS構造の発光素子は言うに
及ばず、ダブルヘテロ構造の発光特性を飛躍的に改善す
ることに成功したものである。
The gallium nitride system of the present invention
The compound semiconductor light-emitting device is an n-type gallium nitride compound
Between the conductor and the p-type gallium nitride compound semiconductor layer,
The light emitting layer of the nitride semiconductor layer containing indium and gallium
That the light emitting layer is doped with Si and Zn.
Characterize. In particular, the gallium nitride-based compound semiconductor of the present invention
The body light emitting device includes Zn and Si-doped indium.
A structure including a light emitting layer of a nitride semiconductor layer containing gallium,
As a result, the conventional MIS structure light emitting device
And dramatically improve the emission characteristics of the double hetero structure.
That was successful.

【0007】本発明の窒化ガリウム系化合物半導体発光
素子において、n型およびp型窒化ガリウム系化合物半
導体層とは、GaN、GaAlN、InGaN、InA
lGaN等、窒化ガリウムを含む窒化ガリウム系化合物
半導体に、n型であれば例えばSi、Ge、Se、Te
等のn型ドーパントをドープして、n型特性を示すよう
に成長した層をいい、p型であれば例えばzn、 M
g、Cd、Be、Ca等のp型ドーパントをドープし
て、p型特性を示すように成長した層をいう。n型窒化
ガリウム系化合物半導体の場合はノンドープでもn型に
なる性質がある。また、p型窒化ガリウム系化合物半導
体層の場合、p型窒化ガリウム系化合物半導体層をさら
に低抵抗化する手段として、我々が先に出願した特願平
3−357046号に開示するアニーリング処理を行っ
てもよい。
In the gallium nitride-based compound semiconductor light emitting device of the present invention, the n-type and p-type gallium nitride-based compound semiconductor layers are GaN, GaAlN, InGaN and InA.
A gallium nitride-based compound semiconductor containing gallium nitride, such as lGaN, may be formed of, for example, Si, Ge, Se, Te if it is n-type
Is a layer grown to show n-type characteristics by being doped with an n-type dopant such as z.
A layer grown by doping with a p-type dopant such as g, Cd, Be, or Ca to exhibit p-type characteristics. In the case of an n-type gallium nitride-based compound semiconductor, it has a property of becoming n-type even if it is not doped. Further, in the case of a p-type gallium nitride compound semiconductor layer, as a means for further reducing the resistance of the p-type gallium nitride compound semiconductor layer, an annealing treatment disclosed in Japanese Patent Application No. 3-357046 previously filed by us is performed. May be.

【0008】また、ZnおよびSiをドープした発光層
は、好ましくは、In Ga 1−x Nの組成式で示され
る。この組成式において、Xの値は、0<X<0.5の
範囲に調整することが好ましい。この組成式の窒化物半
導体層は、X値を0より多くすることにより、発光色は
およそ紫色領域となる。X値を増加するに従い発光色は
短波長側から長波長側に移行し、X値が1付近で赤色に
まで変化させることができる。しかしながら、X値が
0.5以上では結晶性に優れたInGaNが得られにく
く、発光効率に優れた発光素子が得られにくくなるた
め、X値は0.5未満が好ましい。
A light emitting layer doped with Zn and Si
It is preferably represented by a composition formula of In x Ga 1-x N
It In this composition formula, the value of X is preferably adjusted within the range of 0 <X <0.5. Nitride half of this composition formula
By setting the X value of the conductor layer to be greater than 0, the emission color is in the purple region. As the X value increases, the emission color shifts from the short wavelength side to the long wavelength side, and can be changed to red when the X value is around 1. However, when the X value is 0.5 or more, it is difficult to obtain InGaN having excellent crystallinity and it is difficult to obtain a light emitting device having excellent light emitting efficiency. Therefore, the X value is preferably less than 0.5.

【0009】また、発光層であるインジウムとガリウム
を含む窒化物半導体層に含まれるZnおよびSiの濃度
は、両者とも1×1017/cm〜1×1021/c
の範囲に調整することが好ましい。1×1017
cmよりも少ないと十分な発光強度が得られにくく、
1×1021/cmよりも多いと、同じく発光強度が
減少する傾向にある。さらに、Zn濃度よりもSi濃度
の方を多くすることによりInGaNを好ましくn型と
することができる。
Further , indium and gallium which are light emitting layers
The concentrations of Zn and Si contained in the nitride semiconductor layer containing Si are both 1 × 10 17 / cm 3 to 1 × 10 21 / c.
It is preferable to adjust to the range of m 3 . 1 x 10 17 /
If it is less than cm 3, it is difficult to obtain sufficient emission intensity,
When it is more than 1 × 10 21 / cm 3 , the emission intensity tends to decrease. Further, by making the Si concentration higher than the Zn concentration, InGaN can be preferably made to be n-type.

【0010】[0010]

【作用】図1に、Znを1×1018/cmドープし
たn型In0.15Ga0.85N層と、Znを1×1
19/cmおよびSiを5×1019/cmドー
プしたn型In0.15Ga0.85N層とにHe−C
dレーザーを照射して、室温でフォトルミネッセンス
(PL)を測定し、それらの発光強度を比較して示す。
なお、ZnのみをドープしたInGaN層のスペクトル
強度は実際の強度を10倍に拡大して示している。この
図に示すように、Znのみをドープしたn型InGaN
のPLスペクトル(b)、SiおよびZnをドープした
n型InGaNのPLスペクトル(a)はいずれも49
0nmにその主発光ピークを有する。しかしながら、そ
の発光強度は(a)の方が10倍以上大きい。これは、
ZnをドープしたInGaNに、さらにSiをドープす
ることによりドナー濃度が増え、ドナー・アクセプタの
ペア発光により発光強度が増大していると推察される。
なぜなら、ノンドープのInGaNは成長条件により電
子キャリア濃度が、およそ1×1017/cm〜1×
1022/cmぐらいのn型を示す。これは、ある程
度の数のドナーがノンドープの状態でInGaN中に残
留していることを示している。そこで、このノンドープ
のInGaNにZnをドープすると、前記残留ドナー
と、ドープしたZnアクセプターとのドナー・アクセプ
ターのペア発光が青色発光となって現れる。しかしなが
ら、前記のように、残留ドナーによる電子キャリア濃度
は1×1017〜1×1022/cmぐらいまで成長
条件によりばらつき、再現性よく一定のドナー濃度のI
nGaNを得ることは困難であった。そこで、新たにS
iをドープしてこのドナー濃度を多くすると共に、安定
して再現性よく一定のドナー濃度を得るのが、Siドー
プの効果である。実際、Siをドープすることにより、
電子キャリア濃度がおよそ1×1018/cmのもの
が2×1019/cmまで1桁増加し、ドナー濃度が
増加していることが判明した。従って、ドナーが増加し
た分だけドープするZnの量も増やすことができ、ドナ
ー・アクセプタのペア発光の数が増加することにより青
色発光強度が増大すると推察される。
In FIG. 1, an n-type In0.15Ga0.85N layer doped with Zn at 1 × 10 18 / cm 3 and Zn at 1 × 1
0 19 / cm 3 and 5 × 10 19 / cm 3 Si-doped n-type In0.15Ga0.85N layer and He-C.
The photoluminescence (PL) was measured at room temperature by irradiating d laser, and their emission intensities are compared and shown.
The spectral intensity of the InGaN layer doped with only Zn is shown by enlarging the actual intensity ten times. As shown in this figure, n-type InGaN doped only with Zn
The PL spectrum (b) of the above and the PL spectrum (a) of n-type InGaN doped with Si and Zn are both 49
It has its main emission peak at 0 nm. However, the emission intensity of (a) is 10 times or more higher. this is,
It is presumed that the donor concentration is increased by further doping Si into Zn-doped InGaN, and the emission intensity is increased by the donor-acceptor pair emission.
This is because non-doped InGaN has an electron carrier concentration of approximately 1 × 10 17 / cm 3 to 1 ×, depending on the growth conditions.
It exhibits an n-type of about 10 22 / cm 3 . This indicates that a certain number of donors remain in InGaN in a non-doped state. Therefore, when Zn is doped into this non-doped InGaN, pair emission of the residual donor and the donor-acceptor of the doped Zn acceptor appears as blue emission. However, as described above, the electron carrier concentration due to the residual donor varies up to about 1 × 10 17 to 1 × 10 22 / cm 3 depending on the growth condition, and the I of a constant donor concentration is constant with good reproducibility.
It was difficult to obtain nGaN. Therefore, a new S
The effect of Si doping is to dope i to increase the donor concentration and to obtain a stable and reproducible constant donor concentration. In fact, by doping Si,
It was found that the electron carrier concentration of about 1 × 10 18 / cm 3 increased by one digit to 2 × 10 19 / cm 3 , and the donor concentration increased. Therefore, it is presumed that the amount of Zn to be doped can be increased by the amount of increased donors, and the blue emission intensity is increased by increasing the number of pair emission of donor / acceptor.

【0011】本発明の窒化ガリウム系化合物半導体発光
素子は、n型窒化ガリウム系化合物半導体と、p型窒化
ガリウム系化合物半導体との間にインジウムとガリウム
を含む窒化物半導体層を発光層とする半導体発光素子で
あって、発光層にSiとZnをドープすることにより、
従来のSiとZnをドープしたi型GaAlNを発光層
とするMIS構造の発光素子に比して発光効率、および
発光強度を、100倍以上と格段に向上させることがで
きる。
The gallium nitride-based compound semiconductor light-emitting device of the present invention comprises an n-type gallium nitride-based compound semiconductor and a p-type nitride.
Indium and gallium between the gallium compound semiconductor
A semiconductor light emitting device having a nitride semiconductor layer containing
By doping the light emitting layer with Si and Zn,
The light emission efficiency and the light emission intensity can be remarkably improved to 100 times or more as compared with the conventional light emitting element having the MIS structure in which the light emitting layer is i-type GaAlN doped with Si and Zn.

【0012】[0012]

【実施例】以下有機金属気相成長法により、本発明の発
光素子を製造する方法を述べる。
EXAMPLES A method of manufacturing the light emitting device of the present invention by the metal organic chemical vapor deposition method will be described below.

【0013】[実施例1] よく洗浄したサファイア基板を反応容器内にセットし、
反応容器内を水素で十分置換した後、水素を流しなが
ら、基板の温度を1050℃まで上昇させサファイア基
板のクリーニングを行う。
Example 1 A well-cleaned sapphire substrate was set in a reaction vessel,
After sufficiently replacing the inside of the reaction vessel with hydrogen, the temperature of the substrate is raised to 1050 ° C. while flowing hydrogen to clean the sapphire substrate.

【0014】続いて、温度を510℃まで下げ、キャリ
アガスとして水素、原料ガスとしてアンモニアとTMG
(トリメチルガリウム)とを用い、サファイア基坂上に
GaNよりなるバッファ層を約200オングストローム
の膜厚で成長させる。
Then, the temperature is lowered to 510 ° C., hydrogen is used as a carrier gas, and ammonia and TMG are used as a source gas.
(Trimethylgallium), a buffer layer made of GaN is grown on the sapphire substrate with a thickness of about 200 Å.

【0015】バッファ層成長後、TMGのみ止めて、温
度を1030℃まで上昇させる。1030℃になった
ら、同じく原料ガスにTMGとアンモニアガス、ドーパ
ントガスにシランガスを用い、Siを1×1020/c
ドープしたn型GaN層を4μm成長させる。
After the growth of the buffer layer, only TMG is stopped and the temperature is raised to 1030.degree. When the temperature reached 1030 ° C., TMG and ammonia gas were used as the source gas, and silane gas was used as the dopant gas, and Si was added at 1 × 10 20 / c.
An m 3 -doped n-type GaN layer is grown to 4 μm.

【0016】n型GaN層成長後、原料ガス、ドーパン
トガスを止め、温度を800℃にして、キャリアガスを
窒素に切り替え、原料ガスとしてTMGとTMI(トリ
メチルインジウム)とアンモニア、ドーパントガスとし
てシランガスとDEZ(ジエチルジンク)とを用い、S
iを5×1019/cm、Znを1×1019/cm
ドープしたn型In0.15Ga0.85N層を10
0オングストローム成長させる。
After the growth of the n-type GaN layer, the source gas and the dopant gas are stopped, the temperature is set to 800 ° C., the carrier gas is switched to nitrogen, TMG, TMI (trimethylindium) and ammonia are used as the source gases, and silane gas is used as the dopant gas. Using DEZ (diethyl zinc), S
i is 5 × 10 19 / cm 3 and Zn is 1 × 10 19 / cm 3.
3- doped n-type In0.15Ga0.85N layer 10
Grow to 0 angstrom.

【0017】次に、原料ガス、ドーパントガスを止め、
再び温度を1020℃まで上昇させ、原料ガスとしてT
MGとアンモニア、ドーパントガスとしてCp2Mg
(シクロペンタジエニルマグネシウム)とを用い、Mg
を2×1020/cmドープしたp型GaN層を0.
8μm成長させる。
Next, stop the source gas and the dopant gas,
The temperature is again raised to 1020 ° C. and T is used as a source gas.
MG and ammonia, Cp2Mg as a dopant gas
(Cyclopentadienyl magnesium) and Mg
Of a p-type GaN layer doped with 2 × 10 20 / cm 3 of 0.2.
Grow 8 μm.

【0018】p型GaN層成長後、基板を反応容器から
取り出し、アニーリング装置にて窒素雰囲気中、700
℃で20分間アニーリングを行い、最上層のp型GaN
層をさらに低抵抗化する。
After the growth of the p-type GaN layer, the substrate was taken out of the reaction container and then annealed at 700 in a nitrogen atmosphere.
Anneal at 20 ° C for 20 minutes to obtain the top p-type GaN
The resistance of the layer is further reduced.

【0019】以上のようにして得られたウエハーのp型
GaN層、およびn型In0.15Ga0.85N層の
一部をエッチングにより取り除き、n型GaN層を露出
させ、p型GaN層と、n型GaN層とにオーミック電
極を設け、500μm角のチップにカットした後、常法
に従い発光ダイオードとしたところ、発光出力は20m
Aにおいて300μW、輝度900mcd(ミリカンデ
ラ)、発光波長490nmであった。
A part of the p-type GaN layer and the n-type In0.15Ga0.85N layer of the wafer thus obtained is removed by etching to expose the n-type GaN layer, and the p-type GaN layer and the n-type GaN layer. After forming an ohmic electrode on the GaN layer and cutting it into chips of 500 μm square, a light emitting diode was produced by a conventional method.
In A, the emission was 300 μW, the brightness was 900 mcd (millicandela), and the emission wavelength was 490 nm.

【0020】[実施例2] 実施例1において、n型In0.15Ga0.85N層
のSi濃度を2×1020/cm、Zn濃度を5×1
19/cmとする他は、同様にして青色発光ダイオ
ードを得たところ、20mAにおいて発光出力300μ
W、輝度920mcd、発光波長490nmであった。
Example 2 In Example 1, the n-type In0.15Ga0.85N layer had a Si concentration of 2 × 10 20 / cm 3 and a Zn concentration of 5 × 1.
0 addition to the 19 / cm 3 is where to obtain a blue light-emitting diodes in the same manner, the light emission output in 20 mA 300 microns
W, luminance was 920 mcd, and emission wavelength was 490 nm.

【0021】[実施例3] 実施例1において、n型In0.15Ga0.85N層
のSi濃度を5×1018/cm、Zn濃度を1×1
18/cmとする他は、同様にして青色発光ダイオ
ードを得たところ、20mAにおいて発光出力280μ
W、輝度850mcd、発光波長490nmであった。
Example 3 In Example 1, the n-type In0.15Ga0.85N layer had a Si concentration of 5 × 10 18 / cm 3 and a Zn concentration of 1 × 1.
A blue light emitting diode was obtained in the same manner except that it was 0 18 / cm 3, and the emission output was 280 μm at 20 mA.
W, brightness 850 mcd, and emission wavelength 490 nm.

【0022】[実施例4] 実施例1において、n型InGaNのInのモル比をI
n0.25Ga0.75Nとする他は、同様にして青色
発光ダイオードを得たところ、20mAにおいて発光出
力250μW、輝度1000mcd、発光波長510n
mであった。
Example 4 In Example 1, the In molar ratio of n-type InGaN was changed to I
A blue light emitting diode was obtained in the same manner except that n0.25Ga0.75N was obtained. At 20 mA, a light emission output of 250 μW, a luminance of 1000 mcd, and an emission wavelength of 510 n
It was m.

【0023】[比較例1] 実施例1において、Siをドープせず、Zn濃度1×1
18/cmのZnドープIn0.15Ga0.85
Nを成長させる他は同様にして発光ダイオードとしたと
ころ、20mAにおいて、発光出力180μW、輝度4
00mcdでしかなく、発光波長は490nmであっ
た。
Comparative Example 1 In Example 1, Zn concentration was 1 × 1 without Si doping.
Zn-doped In0.15Ga0.85 of 0 18 / cm 3
When a light emitting diode was made in the same manner except that N was grown, a light emission output of 180 μW and a brightness of 4 at 20 mA.
The emission wavelength was 490 nm.

【0024】[比較例2] 実施例1のSi、Znドープn型In0.15Ga0.
85N層を成長させる工程において、原料ガスにTM
G、アンモニア、ドーパントガスにシランガス、DEZ
を用いて、Siを1×1018/cmとZnを1×1
20/cmドープしたi型GaN層を成長させる。
i型GaN層成長後、同様にしてi型GaN層の一部を
エッチングし、n型GaN層を露出させ、n型GaN層
とi型GaN層とに電極を設けて、MIS構造の発光ダ
イオードとしたところ、発光出力は20mAにおいて1
μW、輝度0.1mcdしかなかった。
[Comparative Example 2] Si, Zn-doped n-type In0.15GaO.
In the process of growing the 85N layer, TM is used as the source gas.
G, ammonia, silane gas as dopant gas, DEZ
By using Si for 1 × 10 18 / cm 3 and Zn for 1 × 1
An i-type GaN layer doped with 0 20 / cm 3 is grown.
After growing the i-type GaN layer, a part of the i-type GaN layer is similarly etched to expose the n-type GaN layer, electrodes are provided on the n-type GaN layer and the i-type GaN layer, and a MIS structure light emitting diode is formed. rollers and was, emission output 1 at 20mA
It had only μW and a brightness of 0.1 mcd.

【0025】[0025]

【発明の効果】以上説明したように、本発明の窒化ガリ
ウム系化合物半導体発光素子は、インジウムとガリウム
を含む窒化物半導体層の発光層を有し、その発光層にS
iおよびZnをドープすることにより、従来のMIS構
造の発光素子は言うに及ばず、ダブルヘテロ構造の発光
素子であっても到底想像もできない、飛躍的に改善され
た発光効率と、発光強席を実現する。しかも、主発光波
長はInGaN中のInのモル比を変えることによって
赤色から紫色まで自由に調節することができ、その産業
上の利用価値は大きい。
As described above, the gallium nitride-based compound semiconductor light-emitting device of the present invention is composed of indium and gallium.
A light emitting layer of a nitride semiconductor layer containing
By doping i and Zn, the conventional MIS structure is
Not to mention the light emitting element of the structure, the light emission of the double hetero structure
Even if it is an element, it can not be imagined at all, it has been dramatically improved
Achieves luminous efficiency and luminous strength. Moreover, the main emission wavelength can be freely adjusted from red to purple by changing the molar ratio of In in InGaN, and its industrial utility value is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】 ZnのみをドープしたInGaN層(b)
と、ZnおよびSiをドープしたInGaN層(a)と
の室温でのフォトルミネッセンス強度を比較して示す
図。
FIG. 1 InGaN layer doped only with Zn (b)
3A and 3B are diagrams showing a comparison of photoluminescence intensity at room temperature between InGaN layer (a) doped with Zn and Si.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−10665(JP,A) 特開 平4−10666(JP,A) 特開 平4−10667(JP,A) 特開 平3−252175(JP,A) 特開 平4−252175(JP,A) 特開 平4−236478(JP,A) 特開 平4−199752(JP,A) 特開 昭59−228776(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-4-10665 (JP, A) JP-A-4-10666 (JP, A) JP-A-4-10667 (JP, A) JP-A-3- 252175 (JP, A) JP 4-252175 (JP, A) JP 4-236478 (JP, A) JP 4-199752 (JP, A) JP 59-228776 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 n型窒化ガリウム系化合物半導体層と、
p型窒化ガリウム系化合物半導体層との間に、インジウ
ムとガリウムを含む窒化物半導体層の発光層を備え、発
光層にSiおよびZnをドープしてなる窒化ガリウム系
化合物半導体発光素子。
1. An n-type gallium nitride-based compound semiconductor layer,
Between the p-type gallium nitride-based compound semiconductor layer, indium
And a light emitting layer of a nitride semiconductor layer containing gallium.
A gallium nitride-based compound semiconductor light-emitting device having an optical layer doped with Si and Zn .
JP7087393A 1992-11-19 1993-03-05 Gallium nitride compound semiconductor light emitting device Expired - Fee Related JP2560963B2 (en)

Priority Applications (20)

Application Number Priority Date Filing Date Title
JP7087393A JP2560963B2 (en) 1993-03-05 1993-03-05 Gallium nitride compound semiconductor light emitting device
US08/153,153 US5578839A (en) 1992-11-20 1993-11-17 Light-emitting gallium nitride-based compound semiconductor device
EP93118670A EP0599224B2 (en) 1992-11-20 1993-11-19 Light-emitting gallium nitride-based compound semiconductor device
EP98100538A EP0844675B1 (en) 1992-11-20 1993-11-19 Light-emitting gallium nitride-based compound semiconductor device
TW082109713A TW231376B (en) 1992-11-20 1993-11-19
KR1019930024797A KR970007135B1 (en) 1992-11-19 1993-11-19 Light-emitting gallium nitride-based compound semiconductor device
DE69319854T DE69319854T2 (en) 1992-11-20 1993-11-19 Light-emitting device based on a gallium nitride semiconductor compound
DE69333829T DE69333829T2 (en) 1992-11-20 1993-11-19 Light-emitting device based on a gallium nitride semiconductor compound
US08/661,138 US5747832A (en) 1992-11-20 1996-06-10 Light-emitting gallium nitride-based compound semiconductor device
US08/661,157 US5734182A (en) 1992-11-20 1996-06-10 Light-emitting gallium nitride-based compound semiconducor device
US08/705,972 US5880486A (en) 1992-11-20 1996-08-30 Light-emitting gallium nitride-based compound semiconductor device
KR1019980015415A KR100406200B1 (en) 1992-11-20 1998-04-29 Light-emitting gallium nitride-based compound semiconductor device
KR1019980015416A KR100406201B1 (en) 1992-11-20 1998-04-29 Light-emitting gallium nitride-based compound semiconductor device
US09/145,972 US6078063A (en) 1992-11-20 1998-09-03 Light-emitting gallium nitride-based compound semiconductor device
US09/300,788 US6215133B1 (en) 1992-11-20 1999-04-28 Light-emitting gallium nitride-based compound semiconductor device
KR1019990033017A KR100289626B1 (en) 1992-11-20 1999-08-12 Light-Emitting Gallium Nitride-Based Compound Semiconductor Device
KR1019990033018A KR100445524B1 (en) 1992-11-20 1999-08-12 Light-Emitting Gallium Nitride-Based Compound Semiconductor Device
US09/516,193 US6469323B1 (en) 1992-11-20 2000-03-01 Light-emitting gallium nitride-based compound semiconductor device
US10/227,834 US6791103B2 (en) 1992-11-20 2002-08-27 Light-emitting gallium nitride-based compound semiconductor device
US10/456,475 US20030216011A1 (en) 1992-11-20 2003-06-09 Light-emitting gallium nitride-based compound semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7087393A JP2560963B2 (en) 1993-03-05 1993-03-05 Gallium nitride compound semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH06260680A JPH06260680A (en) 1994-09-16
JP2560963B2 true JP2560963B2 (en) 1996-12-04

Family

ID=13444114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7087393A Expired - Fee Related JP2560963B2 (en) 1992-11-19 1993-03-05 Gallium nitride compound semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP2560963B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3016241B2 (en) * 1994-03-22 2000-03-06 豊田合成株式会社 Group III nitride semiconductor light emitting device
US6005258A (en) 1994-03-22 1999-12-21 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using group III Nitrogen compound having emission layer doped with donor and acceptor impurities
US6136626A (en) * 1994-06-09 2000-10-24 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device and production method thereof
US5751013A (en) * 1994-07-21 1998-05-12 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device and production method thereof
US6996150B1 (en) 1994-09-14 2006-02-07 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor
EP0732754B1 (en) * 1995-03-17 2007-10-31 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using group III nitride compound
US6608332B2 (en) 1996-07-29 2003-08-19 Nichia Kagaku Kogyo Kabushiki Kaisha Light emitting device and display
TW383508B (en) 1996-07-29 2000-03-01 Nichia Kagaku Kogyo Kk Light emitting device and display
JP3643665B2 (en) * 1996-12-20 2005-04-27 シャープ株式会社 Semiconductor light emitting device
KR100651145B1 (en) * 1997-08-29 2006-11-28 크리 인코포레이티드 Robust group iii nitride light emitting diode for high reliability in standard applications
US6445127B1 (en) 1998-02-17 2002-09-03 Matsushita Electric Industrial Co., Ltd. Light-emitting device comprising gallium-nitride-group compound-semiconductor and method of manufacturing the same
JP3408413B2 (en) * 1998-03-06 2003-05-19 松下電器産業株式会社 Semiconductor manufacturing method and semiconductor device
TW417315B (en) 1998-06-18 2001-01-01 Sumitomo Electric Industries GaN single crystal substrate and its manufacture method of the same
US6831304B2 (en) 2002-02-25 2004-12-14 Showa Denko Kabushiki Kaisha P-n junction type boron phosphide-based semiconductor light-emitting device and production method thereof
US6936863B2 (en) 2002-11-18 2005-08-30 Showa Denko K.K. Boron phosphide-based semiconductor light-emitting device, production method thereof and light-emitting diode
US20070069225A1 (en) * 2005-09-27 2007-03-29 Lumileds Lighting U.S., Llc III-V light emitting device
KR101019074B1 (en) * 2008-08-14 2011-03-07 주식회사 세미콘라이트 Manufactuting method of high n-type nitride semiconductor and nitride light emitting device thereby

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2623464B2 (en) * 1990-04-27 1997-06-25 豊田合成株式会社 Gallium nitride based compound semiconductor light emitting device
JP2564024B2 (en) * 1990-07-09 1996-12-18 シャープ株式会社 Compound semiconductor light emitting device
JPH04236477A (en) * 1991-01-21 1992-08-25 Pioneer Electron Corp Semiconductor light emitting element
JP2934337B2 (en) * 1991-04-23 1999-08-16 旭化成工業株式会社 Gallium nitride based semiconductor light emitting device materials
JPH04299876A (en) * 1991-03-28 1992-10-23 Asahi Chem Ind Co Ltd Semiconductor light emitting element material

Also Published As

Publication number Publication date
JPH06260680A (en) 1994-09-16

Similar Documents

Publication Publication Date Title
KR970007135B1 (en) Light-emitting gallium nitride-based compound semiconductor device
JP2778405B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2785254B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2560963B2 (en) Gallium nitride compound semiconductor light emitting device
JP2890396B2 (en) Nitride semiconductor light emitting device
JP3250438B2 (en) Nitride semiconductor light emitting device
JP3890930B2 (en) Nitride semiconductor light emitting device
JPH06177423A (en) Blue light emitting element
US6191437B1 (en) Semiconductor light emitting device and method of manufacturing the same
JP2713095B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP2918139B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2713094B2 (en) Semiconductor light emitting device and method of manufacturing the same
US6429032B1 (en) Nitride semiconductor and a method thereof, a nitride semiconductor device and a method thereof
JP2790242B2 (en) Nitride semiconductor light emitting diode
JP3458007B2 (en) Semiconductor light emitting device
JP2809045B2 (en) Nitride semiconductor light emitting device
JP2560964B2 (en) Gallium nitride compound semiconductor light emitting device
JPH10144960A (en) Method for manufacturing p-type nitride semiconductor and nitride semiconductor element
JP3216596B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2576819B1 (en) Gallium nitride based compound semiconductor light emitting device
JP3267250B2 (en) Nitride semiconductor light emitting device
JP2560963C (en)
JP2576819C (en)
JP2713095C (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960730

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees