JP3658892B2 - Method for growing p-type nitride semiconductor and nitride semiconductor device - Google Patents

Method for growing p-type nitride semiconductor and nitride semiconductor device Download PDF

Info

Publication number
JP3658892B2
JP3658892B2 JP31344296A JP31344296A JP3658892B2 JP 3658892 B2 JP3658892 B2 JP 3658892B2 JP 31344296 A JP31344296 A JP 31344296A JP 31344296 A JP31344296 A JP 31344296A JP 3658892 B2 JP3658892 B2 JP 3658892B2
Authority
JP
Japan
Prior art keywords
nitride semiconductor
type
layer
doped
growing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31344296A
Other languages
Japanese (ja)
Other versions
JPH10154829A (en
Inventor
一幸 蝶々
孝夫 山田
修二 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP31344296A priority Critical patent/JP3658892B2/en
Publication of JPH10154829A publication Critical patent/JPH10154829A/en
Application granted granted Critical
Publication of JP3658892B2 publication Critical patent/JP3658892B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

【0001】
【発明の属する技術分野】
本発明は、LED、LD等の発光デバイス、太陽電池、光センサー等の受光デバイスに応用される窒化物半導体素子を構成するp型窒化物半導体(InXAlYGa1-X-YN、0≦X、0≦Y、X+Y≦1)の成長方法とその方法を用いた窒化物半導体素子に関する。
【0002】
【従来の技術】
窒化物半導体は格子欠陥が非常に多い半導体材料であり、さらに、ノンドープ(不純物をドープしない状態)で結晶内部にできた窒素空孔によりn型の導電性を示すことが知られている。そのため、p型不純物を窒化物半導体にドープしても高抵抗なi(insulater)型にしかならず、低抵抗なp型結晶を得るのが難しい材料であった。
【0003】
しかし、1983年、Saparinらが、Znをドープしたi型GaN層に、試料温度300Kにおいて、20keV、200A/cm2を越えない範囲で電子線照射処理を行うことによって、ZnドープGaNのフォトルミネセンス(PL)強度が向上することを見い出した(Vestnik Moskovskogo Universiteta. Fizika, Vol.38, No.3, pp 56-59,1983)。また、特開昭63−239989号公報に、前記技術と類似した電子線照射処理技術が示された。その後、特開平2−257679号公報において、MgをドープしたGaNに電子線照射処理を行い、PL強度が向上することが示された。PL強度が向上するということは、即ち、電子線照射部分の抵抗率が低下して、i型がp型に接近していることを示している。これらの電子線照射の技術をMgドープGaNを例にとって説明すると、成長直後のMgドープGaNでは、MgがGaサイトに入っておらず、格子間位置のようなところにいる。このためMgはアクセプターとして働かずにMgドープGaNは高抵抗を示す。このi型GaNに電子線照射することにより、電子線のエネルギーでMgが移動してGaサイトに入り、Mgがアクセプターとして働くようになって低抵抗を示すようになるという。
【0004】
一方、電子線照射とは別に、本出願人は特開平5−183189号公報において、p型不純物をドープした窒化物半導体をアニーリングすることによりp型とする技術を示した。この技術は、水素が半導体中に混入されてMgと結合して高抵抗となっているMgドープGaNから、アニーリングすることにより水素を除去し、Mgを正常なアクセプターとして作用させて、低抵抗なp型を得る技術である。この技術が発表されてから様々な研究機関でp型窒化物半導体が研究されるようになった。例えば特開平8−32113号には冷却速度を遅くする技術、特開平8−51235号には電極アニールとpアニールを同時に行う技術、特開平8−8460にはp層の上にn層を載せた状態でアニールする技術等が示されている。
【0005】
さらに、MBE法においてGaAs基板の上にBeと酸素とをドープしたGaNを成長させることにより高キャリア濃度のp型が得られることが示されている(Appl.Phys.Lett.69(18),28 Oct 1996 pp2707-2709)。
【0006】
【発明が解決しようとする課題】
しかし、アニーリングによりp型層が得られたといっても、そのキャリア濃度は1×1018/cm3以下にしか過ぎず、さらにキャリア濃度の高いp型層が求められている。キャリア濃度の高いp型層が得られると、窒化物半導体を用いたLED、LD等のVfが極端に低下し、LDに至っては発熱量が少なくなるので連続発振が可能となる。従って、本発明の目的とするところは、キャリア濃度の高いp型窒化物半導体が得られる成長方法を提供することにより、そのp型窒化物半導体を用いた各種デバイスの発光効率、受光効率を向上させることにある。
【0007】
【課題を解決するための手段】
本発明のp型窒化物半導体の成長方法は、有機金属気相成長法により窒化物半導体を成長させる方法において、前記窒化物半導体成長中にp型不純物と、酸素とを同時にドープすることを特徴とする。本発明ではp型不純物とは、周期律表第2A族、及び第2B族より選択される少なくとも1種の元素を指す。本発明の方法では複数のp型不純物を同時にドープする技術も本発明の範囲に含まれる。p型不純物はMgであることが最も好ましい。
【0008】
また本発明の成長方法は、p型不純物と酸素とを含む窒化物半導体を成長させた後、その窒化物半導体層中に含まれる水素を除くことを特徴とする。なお、窒化物半導体層に含まれる水素を除くとは、水素を全て除くのではく、微量除去することも本発明の範囲に含まれる。
【0009】
また、本発明の成長方法では水素を除く手段がアニーリング(熱処理)であることを特徴とする。アニーリングにはランプアニール、プラズマアニール、反応容器内でのアニール、冷却速度を遅くしてアニールする等の手段も含まれる。またアニーリングの他、電子線照射技術もあるが、実用的、工業的にはアニーリングが最も好ましい。アニーリングする場合、アニーリング温度は300℃以上が最も好ましく、水素を含まない雰囲気中で行う。水素を含む雰囲気中で行うとHが再吸蔵されてしまうからである。
【0010】
さらに、酸素のドープ量を調整することにより、窒化物半導体の正孔キャリア濃度を調整することを特徴とする。正孔キャリア濃度を調整できるとp−、p+等の窒化物半導体が容易にできる。
【0011】
本発明の窒化物半導体素子は、n型窒化物半導体層と、インジウムを含む窒化物半導体よりなる活性層と、p型窒化物半導体層と、p電極層とを順に有する窒化物半導体素子において、前記活性層と、前記p電極層との間に、p型不純物と酸素とがドープされたp型窒化物半導体層を少なくとも1層有することを特徴とする。
【0012】
さらに本発明の素子では、p型不純物と酸素とがドープされたp型窒化物半導体層の酸素のドープ量が、p型不純物のドープ量に対して、0.1%以上で、p型不純物のドープ量を越えない範囲であることを特徴とする。
【0013】
p型不純物は、前記のように周期律表第2A族、及び第2B族より選択される少なくとも1種の元素であるが、その中でも好ましくはMg、Ba、Ca、Sr、Zn等の環境にほとんど無害で、取り扱いやすい元素が好ましく、その中でも、特にMgが最も高キャリア濃度のp型が得られる。
【0014】
【発明の実施の形態】
図1は従来のp型不純物のみをドープした窒化物半導体と、本発明のp型不純物と、酸素と同時にドープした窒化物半導体とが、アニーリングによって低抵抗なp型に変わることを比較して示す図である。これはサファイア基板の上にGaNよりなるバッファ層を200オングストローム成長させ、その上に、MgをドープしたGaN(従来)、MgとOとをドープしたGaN(本発明)の抵抗率をそれぞれ温度の関数としてプロットして示す図である。
【0015】
この図に示すように、本発明によると従来と比べて抵抗率が2桁近く低下する。抵抗率が2桁も低下すると、p型層に形成したオーミック電極の接触抵抗がさらに低下するので、素子のVfを大幅に低下させることができる。また、従来では400℃付近から抵抗率が低下し始めていたのに対し、本発明では300℃付近から抵抗率が低下し始める。アニーリング温度が低下するということは、従来に比較して短時間でp型化でき、さらに、アニーリング装置の選択肢も広がり、熱処理できる装置であれば、ほとんどの手段が使用できるようになるという効果がある。なお、図1はMgドープGaNについて示したものであるが、他の窒化物半導体、例えばAlGaNのようなAlを含む窒化物半導体についても同様の傾向があることが確認された。さらに他のp型不純物、例えばZn、Ba、Be等についても同様の傾向があることが確認されたが、Mgが酸素との組み合わせにおいて最も顕著な効果があることが確認された。
【0016】
本発明のp型窒化物半導体(以下、本発明の説明において、窒化物半導体をGaNということがある。)は有機金属気相成長法で成長される。有機金属気相成長法では原料ガスにN源として、アンモニア、ヒドラジン等のHを含む化合物が使用される。これらの水素化合物がGaN成長時、若しくは成長後に、反応容器内において分解して、どうしてもp型不純物と共にGaN層中に取り込まれる。ドープされたp型不純物の多くはGaN結晶内においてGaサイトに入っておらず、GaとNの中間のような位置にある。しかもp型不純物は結晶中にドープされるHと結合しており不活性化している。そこで、本発明では酸素をp型不純物と同時にドープすることにより、Gaサイトに入っていないp型不純物が酸素で置き換わり、p型不純物がGaサイトに入りやすくする。しかも酸素を後からイオンインプランテーション等で打ち込むのではなく、p型不純物と同時にドープするために、酸素がGaとNの中間位置、若しくはN位置に入りやすくなって、よりp型不純物をGaサイトに入りやすくする。つまり、水素を除去する前に、Gaサイトに入るp型不純物の量を多くできるため、p型不純物と結合した水素が除去されてから、アクセプターとして作用するp型不純物量が増えるのでキャリア濃度が大幅に向上する。
【0017】
図2はOとMgをドープして、アニーリングにより低抵抗なp型としたp型窒化物半導体層のO濃度と正孔キャリア濃度との関係を示す図である。これはMOCVD法により、MgとOとをドープしたGaNを成長させる際に、O源のガス流量を変えて、Mgを1×1020/cm3ドープしたGaN層に、Oを数々の濃度でドープしたGaN層を作製し、そのGaN層のキャリア濃度と、O濃度との関係を示している。
【0018】
図2に示すように、p型GaNは、Mgを1×1020/cm3もドープしているにもかかわらず、キャリア濃度は3×1017/cm3しか過ぎない。これは正常なアクセプターとして作用しているp型不純物が如何に少ないかを示している。しかしながら、Oを1×1017/cm3付近(Mgに対して0.1%)以上ドープすることにより、キャリア濃度が2桁も上がり、5×1018/cm3〜8×1019/cm3付近でほぼ一定となる。そして、ドープしたp型不純物の量と同じ程度になると、ドナーとアクセプターとが相殺するようになり、O濃度がp型不純物を超えると、n型となるために、正孔キャリア濃度は負の値となる。従って、p型不純物に対するOの好ましいドープ量は、0.1%以上で、p不純物量を超えない範囲が望ましく、さらに好ましくは0.5%以上、最も好ましくは5%以上、80%以下である。このようにp型不純物とOとを同時にドープするとキャリア濃度は2桁も向上するが、未だドープしたp型不純物の量だけのキャリア濃度を得ることは難しい。これはGaサイトに入っていないp型不純物がまだ数多く残っていることと、格子欠陥が多く存在するためと推察される。
【0019】
また本発明では、p型不純物とOとを同時にドープすることにより、p型層のキャリア濃度をOで調整できる。つまり従来であれば、p型不純物濃度と、アニーリングのみでキャリア濃度を調整していたが、新たにOをドープして、ドープ量を変化させることにより、容易にキャリア濃度が調整できる。このため、活性層から上のp型層を、例えばキャリア濃度の小さいp−層、キャリア濃度の大きいp+層と順に積層して、キャリア濃度の大きいp+層にp電極を形成すると、キャリアの注入効率が向上して出力が向上する。
【0020】
p型不純物と、Oとを同時にドープする窒化物半導体は、インジウムを含む窒化物半導体よりなる活性層を成長させた後に、成長させることが望ましい。Inを含む活性層、特にInGaNは、その結晶の性質が、他のAlを含む窒化物半導体に比べて柔らかいか、若しくは弾性がある。そのためInGaNがバッファ層のような役割をする。従ってInGaNの上に成長される窒化物半導体は結晶の性質が良くなり、p型ドーパントとOとをドープして、高キャリア濃度のp型になりやすい。
【0021】
【実施例】
以下、図面を元に本発明の方法を用いた窒化物半導体素子を作製する方法について説明する。図1は本発明の一実施例に係る窒化物半導体発光素子の構造を示す模式的な断面図であり、具体的にはLEDの構造を示している。
【0022】
サファイア(C面)よりなる基板1を反応容器内にセットし、容器内を水素で十分置換した後、水素を流しながら、基板の温度を1050℃まで上昇させ、基板のクリーニングを行う。基板1にはサファイアC面の他、R面、A面を主面とするサファイア、その他、スピネル(MgA124)のような絶縁性の基板の他、SiC(6H、4H、3Cを含む)、ZnS、ZnO、GaAs、GaN等の半導体基板を用いることもできる。
【0023】
続いて、温度を510℃まで下げ、キャリアガスに水素、原料ガスにアンモニアとTMG(トリメチルガリウム)とを用い、基板1上にGaNよりなるバッファ層2を約200オングストロームの膜厚で成長させる。バッファ層はAlN、GaN、AlGaN等が、900℃以下の温度で、膜厚数十オングストローム〜数百オングストロームで形成できる。このバッファ層は基板と窒化物半導体との格子定数不正を緩和するために形成されるが、窒化物半導体の成長方法、基板の種類等によっては省略することも可能である。
【0024】
バッファ層2成長後、TMGのみ止めて、温度を1030℃まで上昇させる。1030℃になったら、同じく原料ガスにTMG、アンモニアガス、ドーパントガスにシランガスを用い、n型コンタクト層3として、Siを8×1018/cm3ドープしたSiドープn型GaN層を5μmの膜厚で成長させる。またこの層は、電極を形成するべきコンタクト層としてだけではなく、キャリアを閉じこめるn型のクラッド層としても作用する。n型コンタクト層3はInXAlYGa1-X-YN(0≦X、0≦Y、X+Y≦1)で構成することができ、特にGaN、InGaN、その中でもn型不純物、特にSi若しくはGeをドープしたGaNで構成することにより、キャリア濃度の高いn型層が得られ、またn電極と好ましいオーミック接触が得られる。n電極の材料としてはAl、Ti、W、Cu、Zn、Sn、In等の金属若しくは合金が好ましいオーミックが得られる。
【0025】
次に、温度を800℃にして、キャリアガスを窒素に切り替え、原料ガスにTMG、TMI(トリメチルインジウム)、アンモニアを用いて、膜厚30オングストロームの単一量子井戸構造(SQW:Single Quantum Well)のIn0.2Ga0.8Nよりなる活性層4を成長させる。Inを含む窒化物半導体よりなる活性層4は単一量子井戸構造、若しくは多重量子井戸構造(MQW:Multi Quantum Well)とすることが望ましい。活性層をSQW、MQWのような量子井戸構造で構成する場合、少なくともIn含む窒化物半導体よりなる井戸層を有することが望ましく、単一井戸層の好ましい膜厚は70オングストローム以下、さらに好ましくは50オングストローム以下の膜厚に調整する。MQWの場合、障壁層は井戸層よりもバンドギャップエネルギーが大きい窒化物半導体層で構成し、膜厚は150オングストローム以下、さらに好ましくは100オングストローム以下に調整する。MQWの場合、障壁層も特にInを含む窒化物半導体とする必要はないが、好ましくはInを含む井戸層よりもバンドギャップの大きい窒化物半導体とする。なぜなら、Inを含む窒化物半導体は、AlGaN、GaNよりも成長温度が低い。つまり分解温度がAlGaNよりも低い。低温で成長させるInGaNよりなる井戸層の上に、高温で成長させるAlGaNよりなる障壁層を積層しようとすると、少なからずInGaNが分解する。そのためInGaNよりなる井戸層とInGaNよりなる障壁層とを積層するのであれば、同一温度で成長できるため、先に成長させたInGaN層が分解することがないので、高出力な発光素子を実現することができる。
【0026】
活性層4成長後、温度を1050℃にして、原料ガスにTMG、TMA(トリメチルアルミニウム)、アンモニア、不純物ガスに酸素ガス、p型不純物ガスにCp2Mg(シクロペンタジエニルマグネシウム)ガスを同時に用いて、窒素キャリア中、Oを5×1017/cm3と、Mgを1×1020/cm3ドープした低キャリア濃度のp−型Al0.2Ga0.8Nよりなるp型クラッド層5を0.5μmの膜厚で成長させる。活性層に接するp型層を、Alを含む窒化物半導体層、好ましくはAlXGa1-XN(0<X≦1)とすると発光出力が向上する。このp型クラッド層5は100オングストローム以上、2μm以下、さらに好ましくは500オングストローム以上、1μm以下で成長させることが望ましい。100オングストロームよりも薄いとクラッド層として作用しにくく、2μmよりも厚いと結晶中にクラックが入りやすくなるからである。このようにp型不純物と酸素をドープした窒化物半導体成長時は、キャリアガスは窒素、アルゴンのような不活性ガスを用いることは言うまでもない。また酸素をドープするには、原料ガスに意図的に酸素を混入させても良いが、定量的にドープするには原料ガスとは別に不純物ガスとしてMFC(マスフローコントローラー)で流量を制御しながらドープすることが望ましい。
【0027】
続いて、温度を1030℃に保ち、TMAガスを止め、シランガスの流量を多くし、Mgを1×1020/cm3、Oを1×1019/cm3ドープした高キャリア濃度のp+型GaNよりなるp型コンタクト層5を0.5μmの膜厚で成長させる。p型コンタクト層5はp型のInXAlYGa1-X-YN(0≦X、0≦Y、X+Y≦1)で構成することができるが、特に好ましくはInXGa1-XN(0≦X≦1)とする。本発明のように1×1019/cm3以上のキャリア濃度が得られるp型層をコンタクト層とすると、オーミック電極材料との接触抵抗が下がる。p型層と好ましいオーミックが得られる電極材料には、例えばCr、Ni、Au、Pd、Ti等がある。
【0028】
反応終了後、温度を600℃まで下げ、窒素雰囲気中、ウェーハを反応容器内において、アニーリングを行い、p型クラッド層、p型コンタクト層中に含まれる水素の一部を除去し、p型層をさらに低抵抗化する。
【0029】
アニーリング後、ウェーハを反応容器から取り出し、図3に示すように、RIE装置でにより最上層のp型コンタクト層6側からエッチングを行い、n電極8を形成すべきn型コンタクト層3の表面を露出させる。
【0030】
次に、p型コンタクト層12にNiとAuよりなるp電極7を形成し、一方、露出したn型コンタクト3にはTiとAlよりなるn電極8を形成する。
【0031】
以上のようにして、p電極7、n電極8を形成したウェーハを研磨装置に移送し、ダイヤモンド研磨剤を用いて、窒化物半導体を形成していない側のサファイア基板1をラッピングし、基板の厚さを90μmとして、サファイア基板側をスクライブして350μm角のLEDチップとする。このLEDチップを順方向電流(If)20mAで発光させたところ、p層にSiをドープしない従来のLEDは(順方向電圧)Vfが3.5Vであったのに対し、本発明のLEDは2.8Vと0.7Vも低下した。また発光波長450nmにおいて、出力は従来のLEDに比較して1.5倍に向上した。
【0032】
[実施例2]
実施例1において、p型クラッド層5を成長させる際にOを1×1019/cm3ドープする他は同様にして、LED素子を作製したところ、Vfは実施例1のものとほぼ同等であり、出力は従来のLEDと比較して1.3倍であった。
【0033】
【発明の効果】
本発明ではp型不純物に加えて、酸素をドープしていることにより、本質的に活性層に注入される正孔の数が増え、発光効率が向上することはもちろんのこと、p層のキャリア濃度が増加するので、p層と好ましいオーミックが得られる。このようなp層の上にp電極を形成すると、さらに接触抵抗を下げることができてVfを大幅に低下させることができる。このような本発明の技術は、LED、LDのような発光デバイスだけではなく、トランジスタ、FET、MOS等の窒化物半導体を用いた全ての電子デバイスに適用できることはいうまでもない。
【0034】
窒化物半導体素子のVfが低下すると、窒化物半導体を利用したフルカラーディスプレイに非常に好都合である。即ち、現在のフルカラーディスプレイは、赤色LEDがGaAs系またはAlInGaP系の半導体材料よりなり、緑色LEDと、青色LEDが窒化物半導体よりなる。GaAs系、AlInGaP系の赤色LEDはVfが1V台であるのに対して、窒化物半導体のLEDは従来では3.5Vもあった。そのため青色、緑色LEDの電流を下げて使用して、LEDに多大な発熱を与えないようにして使用されていた。一方、赤色LEDは緑色、青色LEDと輝度バランスをとるために、個数を増やしたり、規格値いっぱいで使用されるような過酷な条件で使用されていた。そのため、赤色LEDは、青色LED、緑色LEDに比べて、発熱による信頼性が低いという欠点があった。しかしながら、本発明によると緑色、青色LEDのVfが低下したので、全体の発熱量が低下させることができる。そのため、本発明のフルカラーディスプレイを実現すると、全体の信頼性が向上する。さらに、信号灯のような過酷な条件で使用される場合においても、Vfが低下すると発熱量も少なくなり、信頼性が大幅に向上する。
【図面の簡単な説明】
【図1】 Oとp型不純物とをドープした本発明のp型窒化物半導体と、従来のp型窒化物半導体において、アニール温度と抵抗率の関係を比較して示す図。
【図2】 本発明の方法における窒化物半導体層のSi濃度と、正孔キャリア濃度との関係を示す図。
【図3】 本発明の一実施例によるLED素子の構造を示す模式断面図。
【符号の説明】
1・・・基板
2・・・バッファ層
3・・・n型コンタクト層
4・・・活性層
5・・・p型クラッド層
6・・・p型コンタクト層
7・・・p電極
8・・・n電極
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a p-type nitride semiconductor (In X Al Y Ga 1-XY N, 0 ≦≦ comprising a nitride semiconductor element applied to light-emitting devices such as LEDs and LDs, and light-receiving devices such as solar cells and photosensors. The present invention relates to a growth method of X, 0 ≦ Y, X + Y ≦ 1) and a nitride semiconductor device using the method.
[0002]
[Prior art]
Nitride semiconductors are semiconductor materials with a large number of lattice defects, and are known to exhibit n-type conductivity due to nitrogen vacancies formed inside the crystal in a non-doped (undoped state) state. For this reason, even if a p-type impurity is doped into a nitride semiconductor, it becomes only a high resistance i (insulater) type, and it is difficult to obtain a low resistance p-type crystal.
[0003]
However, in 1983, Saparin et al. Performed Zn-doped GaN photoluminescence by performing electron beam irradiation treatment on a Zn-doped i-type GaN layer at a sample temperature of 300 K within a range not exceeding 20 keV and 200 A / cm 2. It was found that the sense (PL) strength was improved (Vestnik Moskovskogo Universiteta. Fizika, Vol. 38, No. 3, pp 56-59, 1983). Japanese Patent Application Laid-Open No. Sho 63-239989 discloses an electron beam irradiation treatment technique similar to the above technique. After that, JP-A-2-257679 discloses that GaN doped with Mg is subjected to an electron beam irradiation treatment to improve the PL intensity. An increase in PL intensity indicates that the resistivity of the electron beam irradiated portion is reduced and the i-type is approaching the p-type. Explaining these electron beam irradiation techniques using Mg-doped GaN as an example, in Mg-doped GaN immediately after growth, Mg does not enter the Ga site and is located at an interstitial position. For this reason, Mg does not work as an acceptor, and Mg-doped GaN exhibits high resistance. By irradiating this i-type GaN with an electron beam, Mg is moved by the energy of the electron beam and enters the Ga site, so that Mg acts as an acceptor and exhibits a low resistance.
[0004]
On the other hand, apart from electron beam irradiation, the present applicant has disclosed a technique for forming a p-type by annealing a nitride semiconductor doped with a p-type impurity in Japanese Patent Application Laid-Open No. 5-183189. This technology removes hydrogen by annealing from Mg-doped GaN, in which hydrogen is mixed into the semiconductor and combined with Mg, resulting in high resistance, making Mg act as a normal acceptor and low resistance. This is a technique for obtaining p-type. Since this technology was announced, p-type nitride semiconductors have been studied at various research institutions. For example, Japanese Patent Application Laid-Open No. 8-32113 discloses a technique for slowing the cooling rate, Japanese Patent Application Laid-Open No. Hei 8-512235 discloses a technique for performing electrode annealing and p-anneal simultaneously, and Japanese Patent Application Laid-Open No. 8-8460 includes an n layer on the p layer. The technique etc. which anneals in the state of being hot are shown.
[0005]
Furthermore, it has been shown that a p-type with a high carrier concentration can be obtained by growing GaN doped with Be and oxygen on a GaAs substrate in the MBE method (Appl. Phys. Lett. 69 (18), 28 Oct 1996 pp2707-2709).
[0006]
[Problems to be solved by the invention]
However, even if a p-type layer is obtained by annealing, the carrier concentration is only 1 × 10 18 / cm 3 or less, and a p-type layer having a higher carrier concentration is required. If a p-type layer having a high carrier concentration is obtained, Vf of LEDs, LDs, and the like using nitride semiconductors is extremely lowered, and the amount of heat generated in the LDs is reduced, so that continuous oscillation is possible. Accordingly, an object of the present invention is to improve the light emission efficiency and the light receiving efficiency of various devices using the p-type nitride semiconductor by providing a growth method capable of obtaining a p-type nitride semiconductor having a high carrier concentration. There is to make it.
[0007]
[Means for Solving the Problems]
The method for growing a p-type nitride semiconductor according to the present invention is a method for growing a nitride semiconductor by metal organic vapor phase epitaxy, wherein a p-type impurity and oxygen are simultaneously doped during the growth of the nitride semiconductor. And In the present invention, the p-type impurity refers to at least one element selected from Groups 2A and 2B of the periodic table. In the method of the present invention, a technique of simultaneously doping a plurality of p-type impurities is also included in the scope of the present invention. Most preferably, the p-type impurity is Mg.
[0008]
The growth method of the present invention is characterized in that after a nitride semiconductor containing a p-type impurity and oxygen is grown, hydrogen contained in the nitride semiconductor layer is removed. Note that excluding hydrogen contained in the nitride semiconductor layer does not exclude all hydrogen but also removes a trace amount within the scope of the present invention.
[0009]
The growth method of the present invention is characterized in that the means for removing hydrogen is annealing (heat treatment). Annealing includes means such as lamp annealing, plasma annealing, annealing in a reaction vessel, and annealing at a low cooling rate. In addition to annealing, there is an electron beam irradiation technique, but annealing is most preferable from a practical and industrial viewpoint. In the case of annealing, the annealing temperature is most preferably 300 ° C. or higher, and it is performed in an atmosphere containing no hydrogen. This is because H is re-occluded when performed in an atmosphere containing hydrogen.
[0010]
Furthermore, the hole carrier concentration of the nitride semiconductor is adjusted by adjusting the oxygen doping amount. If the hole carrier concentration can be adjusted, nitride semiconductors such as p− and p + can be easily formed.
[0011]
The nitride semiconductor device of the present invention is an nitride semiconductor device having an n-type nitride semiconductor layer, an active layer made of a nitride semiconductor containing indium, a p-type nitride semiconductor layer, and a p-electrode layer in this order. At least one p-type nitride semiconductor layer doped with a p-type impurity and oxygen is provided between the active layer and the p-electrode layer.
[0012]
Furthermore, in the element of the present invention, the p-type nitride semiconductor layer doped with the p-type impurity and oxygen has an oxygen doping amount of 0.1% or more with respect to the p-type impurity doping amount. It is the range which does not exceed the dope amount of this.
[0013]
As described above, the p-type impurity is at least one element selected from Groups 2A and 2B of the periodic table, and among them, Mg, Ba, Ca, Sr, Zn and the like are preferable. Elements that are almost harmless and easy to handle are preferable. Among them, Mg is the p-type having the highest carrier concentration.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows that a conventional nitride semiconductor doped only with a p-type impurity, the p-type impurity of the present invention, and a nitride semiconductor doped with oxygen are changed to a low-resistance p-type by annealing. FIG. This is because a buffer layer made of GaN is grown on a sapphire substrate by 200 angstroms, and the resistivity of GaN doped with Mg (conventional) and GaN doped with Mg and O (according to the present invention) are set at the respective temperatures. It is a figure plotted and shown as a function.
[0015]
As shown in this figure, according to the present invention, the resistivity is reduced by almost two orders of magnitude as compared with the prior art. When the resistivity is reduced by two orders of magnitude, the contact resistance of the ohmic electrode formed on the p-type layer is further reduced, so that the Vf of the element can be greatly reduced. Further, in the past, the resistivity began to decrease from around 400 ° C., whereas in the present invention, the resistivity began to decrease from around 300 ° C. The decrease in the annealing temperature means that the p-type can be formed in a short time compared to the prior art, and the options for the annealing apparatus are widened, so that most means can be used as long as the apparatus can be heat-treated. is there. Although FIG. 1 shows Mg-doped GaN, it was confirmed that other nitride semiconductors, for example, nitride semiconductors containing Al such as AlGaN have the same tendency. Further, it was confirmed that other p-type impurities such as Zn, Ba, Be and the like have the same tendency, but it was confirmed that Mg has the most remarkable effect in combination with oxygen.
[0016]
The p-type nitride semiconductor of the present invention (hereinafter, in the description of the present invention, the nitride semiconductor may be referred to as GaN) is grown by metal organic vapor phase epitaxy. In the metal organic chemical vapor deposition method, a compound containing H such as ammonia, hydrazine or the like is used as the N source in the source gas. These hydrogen compounds are decomposed in the reaction vessel during or after the growth of GaN and are inevitably taken into the GaN layer together with the p-type impurities. Most of the doped p-type impurities do not enter the Ga site in the GaN crystal, and are located at a position between Ga and N. Moreover, the p-type impurity is inactivated by being bonded to H doped in the crystal. Therefore, in the present invention, oxygen is doped simultaneously with the p-type impurity, so that the p-type impurity that does not enter the Ga site is replaced with oxygen, and the p-type impurity easily enters the Ga site. In addition, oxygen is not implanted later by ion implantation or the like, but is doped at the same time as the p-type impurity, so that oxygen easily enters an intermediate position between Ga and N, or the N position. Make it easy to enter. In other words, since the amount of p-type impurities entering the Ga site can be increased before removing hydrogen, the amount of p-type impurities acting as an acceptor increases after the hydrogen bonded to the p-type impurities is removed, so that the carrier concentration is increased. Greatly improved.
[0017]
FIG. 2 is a diagram showing the relationship between the O concentration and the hole carrier concentration of a p-type nitride semiconductor layer doped with O and Mg to have a low resistance by annealing. This is because, when GaN doped with Mg and O is grown by MOCVD, the gas flow rate of the O source is changed, and Mg is doped in various concentrations at a concentration of 1 × 10 20 / cm 3. A doped GaN layer is prepared, and the relationship between the carrier concentration of the GaN layer and the O concentration is shown.
[0018]
As shown in FIG. 2, p-type GaN has a carrier concentration of only 3 × 10 17 / cm 3 , even though Mg is doped as much as 1 × 10 20 / cm 3 . This shows how few p-type impurities are acting as normal acceptors. However, by doping O in the vicinity of 1 × 10 17 / cm 3 (0.1% with respect to Mg) or more, the carrier concentration increases by two orders of magnitude, 5 × 10 18 / cm 3 to 8 × 10 19 / cm. It becomes almost constant around 3 . When the amount of the doped p-type impurity is approximately the same, the donor and the acceptor cancel each other. When the O concentration exceeds the p-type impurity, the n-type impurity is formed. Value. Therefore, the preferable doping amount of O with respect to the p-type impurity is 0.1% or more and desirably does not exceed the p impurity amount, more preferably 0.5% or more, most preferably 5% or more and 80% or less. is there. When the p-type impurity and O are doped at the same time, the carrier concentration is improved by two orders of magnitude, but it is still difficult to obtain the carrier concentration corresponding to the amount of the doped p-type impurity. This is presumably because there are still many p-type impurities that do not enter the Ga site and there are many lattice defects.
[0019]
In the present invention, the carrier concentration of the p-type layer can be adjusted by O by simultaneously doping the p-type impurity and O. That is, conventionally, the carrier concentration is adjusted only by the p-type impurity concentration and annealing, but the carrier concentration can be easily adjusted by newly doping O and changing the doping amount. For this reason, when the p-type layer above the active layer is laminated in the order of, for example, a p− layer having a low carrier concentration and a p + layer having a high carrier concentration, and a p electrode is formed on the p + layer having a high carrier concentration, carrier injection Efficiency increases and output improves.
[0020]
It is desirable to grow a nitride semiconductor doped with p-type impurities and O at the same time after growing an active layer made of a nitride semiconductor containing indium. An active layer containing In, particularly InGaN, has a crystal property that is softer or more elastic than other nitride semiconductors containing Al. Therefore, InGaN functions as a buffer layer. Therefore, a nitride semiconductor grown on InGaN has improved crystal properties and is likely to be p-type with a high carrier concentration by doping with a p-type dopant and O.
[0021]
【Example】
Hereinafter, a method for fabricating a nitride semiconductor device using the method of the present invention will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional view showing the structure of a nitride semiconductor light emitting device according to an embodiment of the present invention, and specifically shows the structure of an LED.
[0022]
The substrate 1 made of sapphire (C surface) is set in a reaction vessel, and after the inside of the vessel is sufficiently replaced with hydrogen, the temperature of the substrate is raised to 1050 ° C. while flowing hydrogen, and the substrate is cleaned. In addition to the sapphire C surface, the substrate 1 includes SiC (6H, 4H, 3C) as well as sapphire whose principal surface is the R surface and A surface, and other insulating substrates such as spinel (MgA1 2 O 4 ). ), A semiconductor substrate such as ZnS, ZnO, GaAs, or GaN can also be used.
[0023]
Subsequently, the temperature is lowered to 510 ° C., hydrogen is used as a carrier gas, ammonia and TMG (trimethyl gallium) are used as a source gas, and a buffer layer 2 made of GaN is grown on the substrate 1 to a thickness of about 200 Å. The buffer layer can be formed of AlN, GaN, AlGaN or the like at a temperature of 900 ° C. or less and with a film thickness of several tens of angstroms to several hundreds of angstroms. This buffer layer is formed to mitigate the irregularity of the lattice constant between the substrate and the nitride semiconductor, but may be omitted depending on the growth method of the nitride semiconductor, the type of the substrate, and the like.
[0024]
After the growth of the buffer layer 2, only TMG is stopped and the temperature is raised to 1030 ° C. When the temperature reaches 1030 ° C., similarly, TMG, ammonia gas, and silane gas are used as the source gas, and the Si-doped n-type GaN layer doped with Si 8 × 10 18 / cm 3 is used as the n-type contact layer 3. Grow with thickness. In addition, this layer acts not only as a contact layer for forming an electrode but also as an n-type cladding layer for confining carriers. n-type contact layer 3 may be composed of In X Al Y Ga 1-XY N (0 ≦ X, 0 ≦ Y, X + Y ≦ 1), in particular GaN, InGaN, n-type impurity Among them, particularly Si or Ge By using GaN doped with n, an n-type layer having a high carrier concentration can be obtained, and a preferable ohmic contact with the n electrode can be obtained. As the n-electrode material, a metal or alloy such as Al, Ti, W, Cu, Zn, Sn, or In is preferable.
[0025]
Next, the temperature is set to 800 ° C., the carrier gas is switched to nitrogen, TMG, TMI (trimethylindium), and ammonia are used as source gases, and a single quantum well structure (SQW: Single Quantum Well) with a film thickness of 30 Å An active layer 4 made of In0.2Ga0.8N is grown. The active layer 4 made of a nitride semiconductor containing In desirably has a single quantum well structure or a multi quantum well (MQW) structure. When the active layer has a quantum well structure such as SQW or MQW, it is desirable to have a well layer made of a nitride semiconductor containing at least In. The preferred thickness of the single well layer is 70 angstroms or less, more preferably 50 Adjust the film thickness to less than angstrom. In the case of MQW, the barrier layer is formed of a nitride semiconductor layer having a band gap energy larger than that of the well layer, and the film thickness is adjusted to 150 angstroms or less, more preferably 100 angstroms or less. In the case of MQW, the barrier layer is not particularly required to be a nitride semiconductor containing In, but is preferably a nitride semiconductor having a band gap larger than that of a well layer containing In. This is because a nitride semiconductor containing In has a lower growth temperature than AlGaN and GaN. That is, the decomposition temperature is lower than that of AlGaN. When a barrier layer made of AlGaN grown at a high temperature is to be stacked on a well layer made of InGaN grown at a low temperature, InGaN is decomposed at least. Therefore, if a well layer made of InGaN and a barrier layer made of InGaN are stacked, growth can be performed at the same temperature, so that the previously grown InGaN layer will not be decomposed, thereby realizing a high-power light-emitting element. be able to.
[0026]
After growth of the active layer 4, the temperature is set to 1050 ° C., and TMG, TMA (trimethylaluminum), ammonia, oxygen gas as the impurity gas, and Cp2Mg (cyclopentadienylmagnesium) gas as the p-type impurity gas are simultaneously used. The p-type cladding layer 5 made of p-type Al0.2Ga0.8N having a low carrier concentration doped with 5 × 10 17 / cm 3 of O and 1 × 10 20 / cm 3 of Mg in a nitrogen carrier is 0.5 μm. Growing with a film thickness of If the p-type layer in contact with the active layer is a nitride semiconductor layer containing Al, preferably Al x Ga 1 -xN (0 <x ≦ 1), the light emission output is improved. The p-type cladding layer 5 is preferably grown at a thickness of 100 Å or more and 2 μm or less, more preferably 500 Å or more and 1 μm or less. This is because if it is thinner than 100 angstroms, it does not act as a cladding layer, and if it is thicker than 2 μm, cracks are likely to occur in the crystal. Needless to say, an inert gas such as nitrogen or argon is used as the carrier gas when growing a nitride semiconductor doped with p-type impurities and oxygen. In order to dope oxygen, oxygen may be intentionally mixed in the source gas. However, in order to dope quantitatively, doping is performed while controlling the flow rate with an MFC (mass flow controller) as an impurity gas separately from the source gas. It is desirable to do.
[0027]
Subsequently, the temperature is maintained at 1030 ° C., the TMA gas is stopped, the flow rate of the silane gas is increased, and Mg is doped at 1 × 10 20 / cm 3 and O is doped at 1 × 10 19 / cm 3. A p-type contact layer 5 is grown to a thickness of 0.5 μm. The p-type contact layer 5 can be composed of p-type In X Al Y Ga 1-XY N (0 ≦ X, 0 ≦ Y, X + Y ≦ 1), and particularly preferably In X Ga 1-X N ( 0 ≦ X ≦ 1). When a p-type layer capable of obtaining a carrier concentration of 1 × 10 19 / cm 3 or more as in the present invention is used as a contact layer, the contact resistance with the ohmic electrode material is lowered. Examples of electrode materials that can provide a preferable ohmic with the p-type layer include Cr, Ni, Au, Pd, and Ti.
[0028]
After the completion of the reaction, the temperature is lowered to 600 ° C., the wafer is annealed in a reaction vessel in a nitrogen atmosphere, and a part of hydrogen contained in the p-type cladding layer and the p-type contact layer is removed. The resistance is further reduced.
[0029]
After annealing, the wafer is taken out from the reaction vessel, and as shown in FIG. 3, the surface of the n-type contact layer 3 on which the n-electrode 8 is to be formed is etched using the RIE apparatus from the uppermost p-type contact layer 6 side. Expose.
[0030]
Next, a p-electrode 7 made of Ni and Au is formed on the p-type contact layer 12, while an n-electrode 8 made of Ti and Al is formed on the exposed n-type contact 3.
[0031]
As described above, the wafer on which the p-electrode 7 and the n-electrode 8 are formed is transferred to a polishing apparatus, and the sapphire substrate 1 on which the nitride semiconductor is not formed is wrapped using a diamond abrasive, The thickness is 90 μm, and the sapphire substrate side is scribed to form a 350 μm square LED chip. When this LED chip was caused to emit light at a forward current (If) of 20 mA, the conventional LED in which the p layer was not doped with Si had a (forward voltage) Vf of 3.5 V, whereas the LED of the present invention 2.8V and 0.7V were also reduced. In addition, at an emission wavelength of 450 nm, the output was improved 1.5 times compared to the conventional LED.
[0032]
[Example 2]
In Example 1, when the p-type cladding layer 5 was grown, except that O was doped at 1 × 10 19 / cm 3 , an LED device was produced in the same manner. Vf was almost the same as that in Example 1. Yes, the output was 1.3 times that of the conventional LED.
[0033]
【The invention's effect】
In the present invention, doping with oxygen in addition to p-type impurities essentially increases the number of holes injected into the active layer and improves the light emission efficiency. Since the concentration increases, a p-layer and a preferable ohmic are obtained. When a p-electrode is formed on such a p-layer, the contact resistance can be further reduced and Vf can be greatly reduced. It goes without saying that the technology of the present invention can be applied not only to light emitting devices such as LEDs and LDs but also to all electronic devices using nitride semiconductors such as transistors, FETs, and MOSs.
[0034]
When the Vf of the nitride semiconductor device is lowered, it is very convenient for a full-color display using a nitride semiconductor. That is, in the current full color display, the red LED is made of a GaAs or AlInGaP semiconductor material, and the green LED and the blue LED are made of a nitride semiconductor. GaAs-based and AlInGaP-based red LEDs have Vf on the order of 1V, whereas nitride semiconductor LEDs have conventionally had 3.5V. For this reason, the blue and green LEDs have been used by lowering the current so that they do not generate a large amount of heat. On the other hand, the red LED has been used under severe conditions such as increasing the number of the LEDs or using them at full standard values in order to balance the luminance with the green and blue LEDs. For this reason, the red LED has a drawback that it is less reliable due to heat generation than the blue LED and the green LED. However, according to the present invention, since the Vf of the green and blue LEDs is reduced, the overall heat generation amount can be reduced. Therefore, when the full color display of the present invention is realized, the overall reliability is improved. Furthermore, even when used under harsh conditions such as signal lights, when Vf decreases, the amount of heat generation decreases and the reliability is greatly improved.
[Brief description of the drawings]
FIG. 1 shows a comparison of the relationship between annealing temperature and resistivity in a p-type nitride semiconductor of the present invention doped with O and p-type impurities and a conventional p-type nitride semiconductor.
FIG. 2 is a graph showing the relationship between the Si concentration of a nitride semiconductor layer and the hole carrier concentration in the method of the present invention.
FIG. 3 is a schematic cross-sectional view showing the structure of an LED element according to an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Substrate 2 ... Buffer layer 3 ... n-type contact layer 4 ... Active layer 5 ... p-type cladding layer 6 ... p-type contact layer 7 ... p-electrode 8 ...・ N electrode

Claims (4)

有機金属気相成長法によりp型窒化物半導体を成長させる方法において、p型不純物と酸素とを同時にドープして窒化物半導体を成長させた後、アニーリングして、キャリア濃度の小さいp−層と、キャリア濃度の大きいp+層とからなるp型窒化物半導体層を得るp型窒化物半導体の成長方法。  In a method of growing a p-type nitride semiconductor by metal organic vapor phase epitaxy, a nitride semiconductor is grown by simultaneously doping a p-type impurity and oxygen, and then annealed to form a p-layer having a low carrier concentration. A p-type nitride semiconductor growth method for obtaining a p-type nitride semiconductor layer comprising a p + layer having a high carrier concentration. 前記アニーリングすることにより、窒化物半導体層中に含まれる水素の一部を除くことを特徴とする請求項1に記載のp型窒化物半導体の成長方法。  The method for growing a p-type nitride semiconductor according to claim 1, wherein a part of hydrogen contained in the nitride semiconductor layer is removed by the annealing. 前記p型窒化物半導体層の酸素のドープ量が、p型不純物のドープ量に対して、0.1%以上でかつ、p型不純物のドープ量を超えない範囲であることを特徴とする請求項1と2に記載のp型窒化物半導体の成長方法。  The oxygen doping amount of the p-type nitride semiconductor layer is 0.1% or more with respect to the doping amount of the p-type impurity and is within a range not exceeding the doping amount of the p-type impurity. Item 3. A method for growing a p-type nitride semiconductor according to Item 1 or 2. 前記p型不純物はMgである請求項1乃至3のいずれか1項に記載のp型窒化物半導体の成長方法。  The method for growing a p-type nitride semiconductor according to claim 1, wherein the p-type impurity is Mg.
JP31344296A 1996-11-25 1996-11-25 Method for growing p-type nitride semiconductor and nitride semiconductor device Expired - Fee Related JP3658892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31344296A JP3658892B2 (en) 1996-11-25 1996-11-25 Method for growing p-type nitride semiconductor and nitride semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31344296A JP3658892B2 (en) 1996-11-25 1996-11-25 Method for growing p-type nitride semiconductor and nitride semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003393145A Division JP2004096129A (en) 2003-11-21 2003-11-21 Nitride semiconductor device

Publications (2)

Publication Number Publication Date
JPH10154829A JPH10154829A (en) 1998-06-09
JP3658892B2 true JP3658892B2 (en) 2005-06-08

Family

ID=18041355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31344296A Expired - Fee Related JP3658892B2 (en) 1996-11-25 1996-11-25 Method for growing p-type nitride semiconductor and nitride semiconductor device

Country Status (1)

Country Link
JP (1) JP3658892B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6657300B2 (en) * 1998-06-05 2003-12-02 Lumileds Lighting U.S., Llc Formation of ohmic contacts in III-nitride light emitting devices
JP2001298214A (en) * 2000-02-10 2001-10-26 Sharp Corp Semiconductor light-emitting element and method of manufacturing the same
JP4581198B2 (en) * 2000-08-10 2010-11-17 ソニー株式会社 Heat treatment method for nitride compound semiconductor layer and method for manufacturing semiconductor device
US6773504B2 (en) * 2001-04-12 2004-08-10 Sumitomo Electric Industries, Ltd. Oxygen doping method to gallium nitride single crystal substrate and oxygen-doped N-type gallium nitride freestanding single crystal substrate
JP2002314204A (en) * 2001-04-16 2002-10-25 Ricoh Co Ltd p-TYPE SUPERLATTICE STRUCTURE AND ITS MANUFACTURING METHOD, AND GROUP III NITRIDE SEMICONDUCTOR ELEMENT AND LIGHT EMITTING ELEMENT THEREOF
JP2006052123A (en) * 2004-07-12 2006-02-23 Sumitomo Electric Ind Ltd N-TYPE AlN CRYSTAL, N-TYPE AlGaN SOLID SOLUTION, AND METHOD FOR PRODUCING THEM
JP2007305630A (en) * 2006-05-08 2007-11-22 Furukawa Electric Co Ltd:The Field effect transistor and manufacturing method thereof
CN103283043A (en) 2011-04-08 2013-09-04 松下电器产业株式会社 Nitride semiconductor element and method for producing same
WO2016006298A1 (en) 2014-07-07 2016-01-14 ソニー株式会社 Semiconductor optical device
JP2017222549A (en) * 2016-06-17 2017-12-21 国立研究開発法人物質・材料研究機構 N-type semiconductor material, p-type semiconductor material, and semiconductor element
JP7169613B2 (en) * 2017-11-10 2022-11-11 学校法人 名城大学 Manufacturing method of nitride semiconductor light emitting device
CN111584620A (en) * 2020-05-28 2020-08-25 西安电子科技大学芜湖研究院 Preparation method for reducing contact resistance of source and drain electrodes of P-type MOSFET (metal-oxide-semiconductor field effect transistor)
CN113421917A (en) * 2021-03-09 2021-09-21 广西飓芯科技有限责任公司 Method for reducing specific contact resistivity of p-type III-V group semiconductor material and contact electrode

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2540791B2 (en) * 1991-11-08 1996-10-09 日亜化学工業株式会社 A method for manufacturing a p-type gallium nitride-based compound semiconductor.
JP3223295B2 (en) * 1996-09-30 2001-10-29 科学技術振興事業団 Method for producing low-resistance p-type GaN crystal

Also Published As

Publication number Publication date
JPH10154829A (en) 1998-06-09

Similar Documents

Publication Publication Date Title
JP2785254B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2778405B2 (en) Gallium nitride based compound semiconductor light emitting device
JP4947035B2 (en) Nitride semiconductor device
JP2890396B2 (en) Nitride semiconductor light emitting device
JP3223832B2 (en) Nitride semiconductor device and semiconductor laser diode
JP3744211B2 (en) Nitride semiconductor device
JP3282174B2 (en) Nitride semiconductor light emitting device
JP3660446B2 (en) Nitride semiconductor device and manufacturing method thereof
JP3658892B2 (en) Method for growing p-type nitride semiconductor and nitride semiconductor device
US20150125980A1 (en) Method for producing m-plane nitride-based light-emitting diode
US6365923B1 (en) Nitride semiconductor light-emitting element and process for production thereof
JP3561105B2 (en) P-type semiconductor film and semiconductor device
JP3620292B2 (en) Nitride semiconductor device
JPH1065213A (en) Nitride semiconductor element
JP3651260B2 (en) Nitride semiconductor device
JPH11214746A (en) Nitride semiconductor light-emitting device
JPH10144960A (en) Method for manufacturing p-type nitride semiconductor and nitride semiconductor element
JP2918139B2 (en) Gallium nitride based compound semiconductor light emitting device
JP4457691B2 (en) GaN-based semiconductor device manufacturing method
JPH11195812A (en) Nitride semiconductor light-emitting element
JPH10290047A (en) Nitride semiconductor element
JP3496480B2 (en) Nitride semiconductor device
JP3216596B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2001024223A (en) Nitride semiconductor light emitting diode
JP2560964B2 (en) Gallium nitride compound semiconductor light emitting device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050307

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080325

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100325

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100325

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110325

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110325

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120325

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120325

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120325

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130325

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130325

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140325

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees