JP2006052123A - N-TYPE AlN CRYSTAL, N-TYPE AlGaN SOLID SOLUTION, AND METHOD FOR PRODUCING THEM - Google Patents

N-TYPE AlN CRYSTAL, N-TYPE AlGaN SOLID SOLUTION, AND METHOD FOR PRODUCING THEM Download PDF

Info

Publication number
JP2006052123A
JP2006052123A JP2005174864A JP2005174864A JP2006052123A JP 2006052123 A JP2006052123 A JP 2006052123A JP 2005174864 A JP2005174864 A JP 2005174864A JP 2005174864 A JP2005174864 A JP 2005174864A JP 2006052123 A JP2006052123 A JP 2006052123A
Authority
JP
Japan
Prior art keywords
solid solution
type
atoms
aln crystal
aln
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005174864A
Other languages
Japanese (ja)
Inventor
Hisao Takeuchi
久雄 竹内
Tomomasa Miyanaga
倫正 宮永
Takashi Chikuno
孝 築野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2005174864A priority Critical patent/JP2006052123A/en
Publication of JP2006052123A publication Critical patent/JP2006052123A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problems that the productivity or the carrier concentration is not sufficient in the production of an n-type AlN crystal and an n-type AlGaN solid solution; and to obtain the n-type AlGaN solid solution having a low resistivity required for being used as a semiconductor element. <P>SOLUTION: The low resistivity n-type AlN crystal or AlGaN solid solution, having a shallow impurity level can be produced by simultaneously substituting a portion of Al atoms of the AlN crystal or Al or/and Ga atoms of the AlGaN solid solution with group IIa element atoms and two atoms of adjacent N atoms with O atoms. A CVD method, an MBE method or the like can be utilized as the production method of the AlN crystal or the AlGaN solid solution. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ワイドバンドギャップ半導体として開発が進められている、低抵抗n型AlN結晶、n型AlGaN固溶体及びそれらの製造方法に関するものである。   The present invention relates to a low-resistance n-type AlN crystal, an n-type AlGaN solid solution, and methods for producing them, which are being developed as wide band gap semiconductors.

AlN(窒化アルミニウム)は、バンドギャップが大きい(6.5eV)のに加え、高い熱伝導率(320W/mK)や耐熱性等多くの優れた特性を有することから、高密度記録に必要な短波長発光素子やパワーデバイスへの利用が期待されている。
またAlGaN固溶体においても、AlN(窒化アルミニウム)とGaN(窒化ガリウム)の混合比率によって、バンドギャップや熱膨張係数を連続的に制御できることから、高密度記録に必要な短波長発光素子やパワーデバイスの構成要素としての利用が期待されている。これらの用途に用いられるためには、ドーピングによってp,n型結晶を合成する必要があり、AlN、GaN結晶と共に、多方面で検討が行われている。ここで、AlGaN固溶体とは、AlNのAl原子の一部をGa原子で置換した固溶体を意味する。化学式では、Al1-nGanN(0<n<1)と表現される。
AlN (aluminum nitride) has many excellent characteristics such as high thermal conductivity (320 W / mK) and heat resistance, in addition to a large band gap (6.5 eV), and therefore it is a short necessary for high-density recording. Use in wavelength light emitting devices and power devices is expected.
Also in the AlGaN solid solution, the band gap and the thermal expansion coefficient can be continuously controlled by the mixing ratio of AlN (aluminum nitride) and GaN (gallium nitride), so that the short wavelength light emitting elements and power devices required for high density recording can be used. Use as a component is expected. In order to be used in these applications, it is necessary to synthesize p-type and n-type crystals by doping, and studies are being made in various fields together with AlN and GaN crystals. Here, the AlGaN solid solution means a solid solution obtained by substituting a part of Al atoms of AlN with Ga atoms. In the chemical formula, it is expressed as Al 1-n G n N (0 <n <1).

例えば、原子状のビームを用いて、C原子とO原子を同時ドーピングしたAlN結晶を合成し、C,Oの比率によってp型やn型の半導体を得た事例(特許文献1参照)や、MOCVDを用いたAlN、AlGaN合成時にSiを導入し、キャリア濃度が約1017cm-1のn型AlN結晶やAlGaN固溶体を得た事例(非特許文献1参照)が報告されている。しかし、これらの方法では、生産性やキャリア濃度が十分ではないという問題があった。本発明は、これらの問題を解決するためになされた。
特開2000−031059号公報 Yoshida Taniyasu et.al ,Applied Physics Letters 81(7), 1255p (2002)
For example, using an atomic beam, an AlN crystal in which C atoms and O atoms are simultaneously doped is synthesized, and a p-type or n-type semiconductor is obtained depending on the ratio of C and O (see Patent Document 1), There has been reported an example (see Non-Patent Document 1) in which Si is introduced during the synthesis of AlN and AlGaN using MOCVD to obtain an n-type AlN crystal or AlGaN solid solution having a carrier concentration of about 10 17 cm −1 . However, these methods have a problem that productivity and carrier concentration are not sufficient. The present invention has been made to solve these problems.
JP 2000-031059 A Yoshida Taniyasu et.al, Applied Physics Letters 81 (7), 1255p (2002)

上述したように従来の技術においては、生産性やキャリア濃度が十分ではないという問題があった。そこで本発明は、これらの問題を解決するためになされた。   As described above, the conventional technology has a problem that productivity and carrier concentration are not sufficient. Therefore, the present invention has been made to solve these problems.

本発明におけるn型AlN結晶は下記の構成よりなる。
(1)AlN結晶のAl原子の一部をIIa族元素で、隣接するN原子のうち2原子をO原子で同時に置換した構造を有するn型AlN結晶。
(2)IIa族元素の濃度(C2A)が1×1018cm-1以上であり、O濃度(Co)が、1.5C2A<Co<2.5C2Aである、前記(1)記載のn型AlN結晶。
(3)CVD法又はMBE法を用いてAlN結晶を合成する際、IIa族元素含有化合物及び酸素(O) 含有化合物を添加することを特徴とするn型AlN結晶の製造方法。
(4)昇華法を用いてAlN結晶を合成する際、IIa族元素含有化合物及び酸素(O) 含有化合物を添加することを特徴とするn型AlN結晶の製造方法。
(5)合成したAlN結晶を、不活性雰囲気において熱処理することを特徴とする、前記(3)または(4)記載のn型AlN結晶の製造方法。
The n-type AlN crystal in the present invention has the following configuration.
(1) An n-type AlN crystal having a structure in which a part of Al atoms of an AlN crystal is a group IIa element and two of the adjacent N atoms are simultaneously substituted with O atoms.
(2) Concentration of IIa group element (C 2A) is not less 1 × 10 18 cm -1 or more, O concentration (Co) is a 1.5C 2A <Co <2.5C 2A, the (1), wherein N-type AlN crystal.
(3) A method for producing an n-type AlN crystal, comprising adding an IIa group element-containing compound and an oxygen (O) -containing compound when synthesizing an AlN crystal using a CVD method or an MBE method.
(4) A method for producing an n-type AlN crystal, comprising adding a IIa group element-containing compound and an oxygen (O) -containing compound when synthesizing an AlN crystal using a sublimation method.
(5) The method for producing an n-type AlN crystal according to (3) or (4), wherein the synthesized AlN crystal is heat-treated in an inert atmosphere.

すなわち、本発明によれば、AlN結晶のAl原子の一部を、IIa族元素で置換し、隣接する窒素(N)2原子を酸素(O)2原子で置換することにより、浅い不純物準位が形成され、低抵抗n型AlN結晶を得ることができる。ここで、IIa族元素とは、Be、Mg、Ca、Sr、Ba、Raを示し、本発明には、Be、Mgが特に望ましい。
より具体的には、CVDや昇華法によってAlN結晶を合成する際に、IIa族元素化合物及び酸素(O) 含有化合物を添加することによってこれらの元素を含有する結晶を合成し、必要に応じて熱処理(拡散処理)することにより、前述の「O−M−O構造」(MはIIa族金属)を形成して、浅い不純物準位を有するn型半導体を得ることができる。この際、IIa族元素及び酸素(O)が単一の化合物中に含有される場合には、必ずしも、複数の化合物を用いる必要はない。
That is, according to the present invention, by replacing a part of Al atoms of an AlN crystal with a group IIa element and replacing adjacent nitrogen (N) 2 atoms with oxygen (O) 2 atoms, shallow impurity levels are obtained. Thus, a low resistance n-type AlN crystal can be obtained. Here, the group IIa element represents Be, Mg, Ca, Sr, Ba, and Ra, and Be and Mg are particularly desirable in the present invention.
More specifically, when synthesizing an AlN crystal by CVD or sublimation, a crystal containing these elements is synthesized by adding a IIa group element compound and an oxygen (O) containing compound, and if necessary, By performing heat treatment (diffusion treatment), the above-mentioned “OMO structure” (M is a Group IIa metal) can be formed, and an n-type semiconductor having a shallow impurity level can be obtained. At this time, when the group IIa element and oxygen (O) are contained in a single compound, it is not always necessary to use a plurality of compounds.

さらに本発明におけるn型AlGaN固溶体は下記の構成よりなる。
(6)AlGaN固溶体のAlまたは/およびGa原子をIIa族元素で、隣接するN原子のうち2原子をO原子で同時に置換した構造を有するn型AlGaN固溶体。
(7)IIa族元素の濃度(C2A)が1×1013cm-1以上であり、O濃度(Co)が、1.5C2A<Co<2.5C2Aである、前記(6)記載のn型AlGaN固溶体。
(8)Al原子の濃度(CAl)とGa原子の濃度(CGa)の関係が、CAl≧CGaである前記(6)又は(7)に記載のn型AlGaN固溶体。
(9)CVD法又はMBE法を用いてAlGaN固溶体を合成する際、IIa族元素含有化合物及び酸素(O) 含有化合物を添加することを特徴とする、前記(6)〜(8)のいずれか一項に記載のn型AlGaN固溶体の製造方法。
(10)合成したAlGaN固溶体を、不活性雰囲気において熱処理することを特徴とする、前記(4)記載のn型AlGaN固溶体の製造方法。
Furthermore, the n-type AlGaN solid solution in the present invention has the following configuration.
(6) An n-type AlGaN solid solution having a structure in which Al or / and Ga atoms of an AlGaN solid solution are simultaneously substituted with group IIa elements and two of the adjacent N atoms are simultaneously substituted with O atoms.
(7) concentration of the Group IIa element (C 2A) is not less 1 × 10 13 cm -1 or more, O concentration (Co) is a 1.5C 2A <Co <2.5C 2A, the (6), wherein N-type AlGaN solid solution.
(8) The n-type AlGaN solid solution according to (6) or (7), wherein the relationship between the concentration of Al atoms (C Al ) and the concentration of Ga atoms (C Ga ) is C Al ≧ C Ga .
(9) When synthesizing an AlGaN solid solution using a CVD method or an MBE method, any one of the above (6) to (8), wherein a IIa group element-containing compound and an oxygen (O) -containing compound are added A method for producing an n-type AlGaN solid solution according to one item.
(10) The method for producing an n-type AlGaN solid solution according to (4), wherein the synthesized AlGaN solid solution is heat-treated in an inert atmosphere.

すなわち本発明によれば、AlGaN固溶体のIIIb族原素(Alまたは/およびGa原子)を、IIa族元素で置換し、隣接する窒素(N)2原子を酸素(O)2原子で置換することにより、浅い不純物準位が形成され、低抵抗のn型AlGaN固溶体を得ることができる。
より具体的には、CVD法等によってAlGaN固溶体を合成する際に、IIa族元素化合物及び酸素(O) 含有化合物を添加することによってこれらの元素を含有する固溶体を合成し、必要に応じて熱処理(拡散処理)することにより、前述の「O−M−O構造」(MはIIa族金属)を形成して、浅い不純物準位を有するn型半導体を得ることができる。この際、IIa族元素及び酸素(O)が単一の化合物中に含有される場合には、必ずしも、複数の化合物を用いる必要はない。
That is, according to the present invention, the group IIIb element (Al or / and Ga atom) of the AlGaN solid solution is replaced with a group IIa element, and adjacent nitrogen (N) 2 atoms are replaced with oxygen (O) 2 atoms. As a result, shallow impurity levels are formed, and a low-resistance n-type AlGaN solid solution can be obtained.
More specifically, when synthesizing an AlGaN solid solution by a CVD method or the like, a solid solution containing these elements is synthesized by adding a IIa group element compound and an oxygen (O) containing compound, and heat treatment is performed as necessary. By performing (diffusion treatment), the above-described “OMO structure” (M is a Group IIa metal) can be formed, and an n-type semiconductor having a shallow impurity level can be obtained. At this time, when the group IIa element and oxygen (O) are contained in a single compound, it is not always necessary to use a plurality of compounds.

前述のO−M−O構造の形成とその導電性を向上させる効果については、第一原理計算による解析等から、次のような要因があると推定される。
構造形成については、AlNのAl若しくはAlGaN固溶体のIIIb族元素をIIa族元素で単独置換する場合や、NをOで単独置換する場合には、格子の歪みが大きく、特にIIa族元素では添加可能な濃度が限られてしまう。これに対し、O−M−O構造では、格子の歪みが小さく、M−O結合エネルギーが極めて強いことも相まって、エネルギー的に極めて有利となる。このため、結晶(固溶体)成長中や熱処理中において、M,Oは隣接サイトに選択的に導入されると推定される。この効果はBeとMgで特に顕著である。
Regarding the effect of improving the conductivity and the formation of the above-described O-MO structure, it is presumed that there are the following factors from the analysis by the first principle calculation.
For structure formation, when the group IIIb element of AlN Al or AlGaN solid solution is replaced with the group IIa element alone or when N is replaced with O alone, the lattice distortion is large, and it can be added especially for the group IIa element. The density is limited. On the other hand, the O-M-O structure is extremely advantageous in terms of energy in combination with a small lattice distortion and a very strong M-O bond energy. For this reason, it is presumed that M and O are selectively introduced into adjacent sites during crystal (solid solution) growth or heat treatment. This effect is particularly remarkable with Be and Mg.

この構造の効果については、M−O結合により、Oの結合形態が変化するためと考えている。酸素は、AlNに相当量(約1000ppm)固溶することが古くから知られており、「n型半導体」となるが、深い不純物準位(350〜700meV)を形成するため、現実には絶縁体的な挙動を示す。この原因は、OがNサイトで偏心するため、非結合手が生じるためと考えられている。IIa族元素で隣接位置を置換することによって偏心が解消され、不純物準位が浅くなり、導電性が向上する。AlN結晶若しくはAlGaN固溶体でも、同様の現象が生じているものと推定される。   The effect of this structure is considered to be due to the change of the O bond form due to the M—O bond. Oxygen has been known for a long time to be dissolved in a considerable amount (about 1000 ppm) in AlN and becomes an “n-type semiconductor”, but it forms a deep impurity level (350 to 700 meV), so it is actually insulated. Shows physical behavior. This is thought to be because non-bonded hands are generated because O is eccentric at the N site. By substituting the adjacent position with the IIa group element, the eccentricity is eliminated, the impurity level becomes shallow, and the conductivity is improved. It is estimated that the same phenomenon occurs in the AlN crystal or AlGaN solid solution.

上述の同時ドーピングにおいて、ドープ元素濃度の比率は重要である。O/Mが1.5以下の場合には、Mの単独置換サイト(p型)やM−O構造(電荷中立)が多く形成され、n型半導体としての機能が十分ではなくなる。一方、O/Mが2.5以上の場合には、Oの単独置換サイトが多く形成されて、深い不純物準位の影響が主体的となり、導電率が低下する。
また、本発明のn型AlGnN固溶体において、本同時ドーピングの効果はAlN側で顕著である。Nサイトを置換するO原子との結合強度は、Alの方がGaより大きく、隣接するIIIb族サイトのGa原子数が多い場合には、エネルギー面の優位性が低下するためと推定される。
In the above-described co-doping, the ratio of the doping element concentration is important. When O / M is 1.5 or less, many M single substitution sites (p-type) and MO structures (charge neutrality) are formed, and the function as an n-type semiconductor is not sufficient. On the other hand, when O / M is 2.5 or more, a large number of single substitution sites for O are formed, the influence of deep impurity levels becomes dominant, and the conductivity decreases.
Moreover, in the n-type AlGnN solid solution of the present invention, the effect of the present simultaneous doping is remarkable on the AlN side. The bond strength with the O atom substituting the N site is presumed to be due to the fact that Al is larger than Ga and the number of Ga atoms in the adjacent IIIb group sites is large, the energy advantage is reduced.

以上の様に、本発明によれば、低抵抗のn型AlN半導体結晶若しくはn型AlGaN固溶体を得ることができ、短波長発光素子やパワーデバイスを実現することができる。   As described above, according to the present invention, a low-resistance n-type AlN semiconductor crystal or n-type AlGaN solid solution can be obtained, and a short wavelength light-emitting element or power device can be realized.

以下、実施例にもとづいて本発明を具体的に説明する。
実施例1
AlN単結晶板(1mm×5mm×1mm)に、IIa族元素及びOOの濃度が表1の濃度になるよう、イオン注入法を用いてドープを行い、不活性雰囲気中1500℃で10分間熱処理して試料を作製し、100℃で導電率を測定した。結果を表1に併記した。
Hereinafter, the present invention will be specifically described based on examples.
Example 1
An AlN single crystal plate (1 mm x 5 mm x 1 mm) is doped by ion implantation so that the concentrations of group IIa elements and OO are the concentrations shown in Table 1, and heat-treated at 1500 ° C for 10 minutes in an inert atmosphere. A sample was prepared, and the conductivity was measured at 100 ° C. The results are also shown in Table 1.

Figure 2006052123
Figure 2006052123

実施例2
昇華法により、SiC基板上に成長したAlN(0001)を基板としてエピタキシャル成長をMOCVD法により行った。トリメチルアルミニウムとアンモニアからドーパントを含まないAlNエピタキシャル層を約0.5μm成長させた後、装置内にトリメチルアルミニウム、アンモニアとは別系統で基板ホルダー直上に設置したノズルから、エチルアルコールとビスシクロペンタディエニルマグネシウムを導入しながら0.2μmのエピタキシャル層を成長させた。成長後、不活性ガス雰囲気下で1200℃にてアニール処理を行った。その結果、シート抵抗500Ω、またホール測定によりn型の導電性を示すことが確認された。
Example 2
Epitaxial growth was performed by MOCVD using AlN (0001) grown on a SiC substrate by a sublimation method. After an AlN epitaxial layer containing no dopant was grown from trimethylaluminum and ammonia by about 0.5 μm, ethyl alcohol and biscyclopentadiene were fed from a nozzle installed directly on the substrate holder in a separate system from trimethylaluminum and ammonia. While introducing enylmagnesium, an epitaxial layer of 0.2 μm was grown. After the growth, annealing was performed at 1200 ° C. in an inert gas atmosphere. As a result, it was confirmed that the sheet resistance was 500Ω and n-type conductivity was shown by hole measurement.

実施例3
高さが200mmの炭素(グラファイト)製ヒータの内部に、MgO粉末(1wt%)とAl23粉末(0.8wt%)を混合したAlN粉末を入れたBN製のルツボを設置し、ケースの上部にはAlNの種結晶を固定して、1気圧の窒素雰囲気中、ルツボ下部の温度が2200℃,上部が2100℃となるよう20時間加熱し、AlN結晶を成長させた。得られた結晶の比抵抗を150℃で測定した結果、0.8Ω・cmであった。
Example 3
Inside of 200mm carbon (graphite) manufactured by heater height, established the MgO powder (1 wt%) and Al 2 O 3 powder BN crucible containing the AlN powder obtained by mixing (0.8 wt%), Case An AlN seed crystal was fixed on the top of the substrate, and heated in a nitrogen atmosphere at 1 atm so that the temperature at the bottom of the crucible was 2200 ° C. and the top was 2100 ° C. for 20 hours to grow an AlN crystal. As a result of measuring the specific resistance of the obtained crystal at 150 ° C., it was 0.8 Ω · cm.

実施例4
サファイア(0001)を基板として、AlNエピタキシャル成長をHVPE法により行った。
石英管中にAlCl3とNH3を別系統で導入して基板上で反応させ、さらに別系統からCP2Mgと酸素を導入した。圧力は常圧、温度は1000℃とし、5時間結晶成長させた後、不活性ガス雰囲気下、1200℃でアニール処理を行った。得られた試料の導電性性を測定した結果、シート抵抗は500Ωであり、ホール測定によりn型の電気伝導を示すことが確認された。
Example 4
AlN epitaxial growth was performed by HVPE using sapphire (0001) as a substrate.
AlCl 3 and NH 3 were introduced into the quartz tube from different systems and reacted on the substrate, and CP 2 Mg and oxygen were further introduced from the other system. The pressure was normal pressure, the temperature was 1000 ° C., and after crystal growth for 5 hours, annealing was performed at 1200 ° C. in an inert gas atmosphere. As a result of measuring the conductivity of the obtained sample, the sheet resistance was 500Ω, and it was confirmed by hole measurement that n-type electric conduction was exhibited.

実施例5
Gaの含有率が5at%(Al/Gaの原子比=9)のAlGaN固溶体の板(1mm×5mm×1mm)に、IIa族元素及びOの濃度が表2の濃度になるよう、イオン注入法を用いてドープを行い、不活性雰囲気中1200で10分間熱処理して試料(1−A,1−B)を作製し、100℃で導電率を測定した。さらにIIa族元素に対するO濃度比が約1.15の試料(1−C)及び同約2.94の試料(1−D)を実施例と同様の方法により作製し、100℃で導電率を測定した。これらの結果を表2に併記した。
Example 5
Ion implantation method so that the concentration of group IIa elements and O becomes the concentrations shown in Table 2 on an AlGaN solid solution plate (1 mm × 5 mm × 1 mm) with a Ga content of 5 at% (Al / Ga atomic ratio = 9). The sample (1-A, 1-B) was prepared by heat treatment in an inert atmosphere at 1200 for 10 minutes, and the conductivity was measured at 100 ° C. Further, a sample (1-C) having an O concentration ratio of about 1.15 to a group IIa element and a sample (1-D) having a concentration of about 2.94 were prepared by the same method as in the example, and the conductivity was measured at 100 ° C. It was measured. These results are also shown in Table 2.

Figure 2006052123
Figure 2006052123

実施例6
昇華法により、SiC基板上に成長したAlN(0001)を基板としてエピタキシャル成長をMOCVD法により行った。トリメチルアルミニウム、トリメチルガリウムとアンモニアからドーパントを含まないAlNエピタキシャル層を約0.5μm成長させた後、装置内にトリメチルアルミニウム、トリメチルガリウム、アンモニアとは別系統で基板ホルダー直上に設置したノズルから、エチルアルコールとビスシクロペンタディエニルマグネシウムを導入しながら0.3μmのエピタキシャル層を成長させた。成長後、不活性ガス雰囲気下で1200℃にてアニール処理を行った。得られたAlGaN層のAl/Ga比率は15であった。導電率を測定した結果、シート抵抗400Ω、またホール測定によりn型の導電性を示すことが確認された。
Example 6
Epitaxial growth was performed by MOCVD using AlN (0001) grown on a SiC substrate by a sublimation method. After an AlN epitaxial layer containing no dopant is grown from trimethylaluminum, trimethylgallium and ammonia by about 0.5 μm, ethyl is removed from a nozzle installed directly on the substrate holder in a separate system from trimethylaluminum, trimethylgallium and ammonia. An epitaxial layer of 0.3 μm was grown while introducing alcohol and biscyclopentadienylmagnesium. After the growth, annealing was performed at 1200 ° C. in an inert gas atmosphere. The Al / Ga ratio of the obtained AlGaN layer was 15. As a result of measuring the conductivity, it was confirmed that the sheet resistance was 400Ω, and the n-type conductivity was shown by the hole measurement.

実施例7
サファイア(0001)を基板として、AlGaNエピタキシャル成長をHVPE法により行った。
石英管中にAlCl3、GaCl3とNH3を別系統で導入して基板上で反応させ、さらに別系統からCP2Mgと酸素を導入した。圧力は常圧、温度は1000℃とし、3時間結晶成長させた後、不活性ガス雰囲気下、1150℃でアニール処理を行った。得られた試料のAl/Ga比率は、4.5であった。導電率を測定した結果、シート抵抗は1.2kΩであり、ホール測定によりn型の導電性を示すことが確認された。
Example 7
AlGaN epitaxial growth was performed by HVPE using sapphire (0001) as a substrate.
Into the quartz tube, AlCl 3 , GaCl 3 and NH 3 were introduced in another system and reacted on the substrate, and CP 2 Mg and oxygen were further introduced from the other system. The pressure was normal pressure, the temperature was 1000 ° C., and after crystal growth for 3 hours, annealing was performed at 1150 ° C. in an inert gas atmosphere. The obtained sample had an Al / Ga ratio of 4.5. As a result of measuring the electrical conductivity, the sheet resistance was 1.2 kΩ, and it was confirmed by hole measurement that n-type conductivity was exhibited.

Claims (10)

AlN結晶のAl原子の一部をIIa族元素で、隣接するN原子のうち2原子をO原子で同時に置換した構造を有するn型AlN結晶。     An n-type AlN crystal having a structure in which a part of Al atoms of an AlN crystal is a group IIa element and two of the adjacent N atoms are simultaneously substituted with O atoms. IIa族元素の濃度(C2A)が1×1018cm-1以上であり、O濃度(Co)が、1.5C2A<Co<2.5C2Aである、請求項1記載のn型AlN結晶。 2. The n-type AlN according to claim 1, wherein the group IIa element concentration (C 2A ) is 1 × 10 18 cm −1 or more and the O concentration (Co) is 1.5C 2A <Co <2.5C 2A. crystal. CVD法又はMBE法を用いてAlN結晶を合成する際、IIa族元素含有化合物及び酸素(O) 含有化合物を添加することを特徴とするn型AlN結晶の製造方法。     A method for producing an n-type AlN crystal, comprising adding an IIa group element-containing compound and an oxygen (O) -containing compound when an AlN crystal is synthesized using a CVD method or an MBE method. 昇華法を用いてAlN結晶を合成する際、IIa族元素含有化合物及び酸素(O) 含有化合物を添加することを特徴とするn型AlN結晶の製造方法。     A method for producing an n-type AlN crystal, comprising adding a Group IIa element-containing compound and an oxygen (O) -containing compound when synthesizing an AlN crystal using a sublimation method. 合成したAlN結晶を、不活性雰囲気において熱処理することを特徴とする、請求項3または4記載のn型AlN結晶の製造方法。     The method for producing an n-type AlN crystal according to claim 3 or 4, wherein the synthesized AlN crystal is heat-treated in an inert atmosphere. AlGaN固溶体のAlまたは/およびGa原子をIIa族元素で、隣接するN原子のうち2原子をO原子で同時に置換した構造を有するn型AlGaN固溶体。     An n-type AlGaN solid solution having a structure in which Al or / and Ga atoms of an AlGaN solid solution are substituted with Group IIa elements and two of adjacent N atoms are simultaneously substituted with O atoms. IIa族元素の濃度(C2A)が1×1013cm-1以上であり、O濃度(Co)が、1.5C2A<Co<2.5C2Aである、請求項6記載のn型AlGaN固溶体。 The n-type AlGaN according to claim 6, wherein the concentration of group IIa element (C 2A ) is 1 × 10 13 cm −1 or more and the O concentration (Co) is 1.5C 2A <Co <2.5C 2A. Solid solution. Al原子の濃度(CAl)とGa原子の濃度(CGa)の関係が、CAl≧CGaである請求項6又は7に記載のn型AlGaN固溶体。 The n-type AlGaN solid solution according to claim 6 or 7, wherein the relationship between the concentration of Al atoms (C Al ) and the concentration of Ga atoms (C Ga ) is C Al ≧ C Ga . CVD法又はMBE法を用いてAlGaN固溶体を合成する際、IIa族元素含有化合物及び酸素(O) 含有化合物を添加することを特徴とする、請求項6〜8のいずれか一項に記載のn型AlGaN固溶体の製造方法。     9. The n according to claim 6, wherein a group IIa element-containing compound and an oxygen (O) -containing compound are added when an AlGaN solid solution is synthesized using a CVD method or an MBE method. Type AlGaN solid solution manufacturing method. 合成したAlGaN固溶体を、不活性雰囲気において熱処理することを特徴とする、請求項4記載のn型AlGaN固溶体の製造方法。     The method for producing an n-type AlGaN solid solution according to claim 4, wherein the synthesized AlGaN solid solution is heat-treated in an inert atmosphere.
JP2005174864A 2004-07-12 2005-06-15 N-TYPE AlN CRYSTAL, N-TYPE AlGaN SOLID SOLUTION, AND METHOD FOR PRODUCING THEM Pending JP2006052123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005174864A JP2006052123A (en) 2004-07-12 2005-06-15 N-TYPE AlN CRYSTAL, N-TYPE AlGaN SOLID SOLUTION, AND METHOD FOR PRODUCING THEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004204206 2004-07-12
JP2005174864A JP2006052123A (en) 2004-07-12 2005-06-15 N-TYPE AlN CRYSTAL, N-TYPE AlGaN SOLID SOLUTION, AND METHOD FOR PRODUCING THEM

Publications (1)

Publication Number Publication Date
JP2006052123A true JP2006052123A (en) 2006-02-23

Family

ID=36029833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005174864A Pending JP2006052123A (en) 2004-07-12 2005-06-15 N-TYPE AlN CRYSTAL, N-TYPE AlGaN SOLID SOLUTION, AND METHOD FOR PRODUCING THEM

Country Status (1)

Country Link
JP (1) JP2006052123A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007173744A (en) * 2005-12-26 2007-07-05 Toyota Central Res & Dev Lab Inc Method of manufacturing n-type aluminum-nitride and semiconductor device
WO2007111219A1 (en) * 2006-03-29 2007-10-04 Sumitomo Electric Industries, Ltd. Method for growing iii nitride single crystal
JP2007261883A (en) * 2006-03-29 2007-10-11 Sumitomo Electric Ind Ltd n-TYPE ALN CRYSTAL AND METHOD FOR MANUFACTURING THE SAME
JP2008019140A (en) * 2006-07-14 2008-01-31 Ngk Insulators Ltd METHOD FOR FORMING AlN SINGLE CRYSTAL FILM
JP2012087392A (en) * 2010-10-22 2012-05-10 Shin-Etsu Chemical Co Ltd Method for forming aluminum nitride film
JP2012512119A (en) * 2008-12-12 2012-05-31 ソラア インコーポレーテッド Polycrystalline Group III Metal Nitride by Getter and Method of Fabrication

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10135140A (en) * 1996-10-28 1998-05-22 Nippon Telegr & Teleph Corp <Ntt> Hetero-epitaxial growing method, hetero-epitaxial layer and semiconductor light-emitting device
JPH10154829A (en) * 1996-11-25 1998-06-09 Nichia Chem Ind Ltd P-type nitride semiconductor growth method and nitride semiconductor element
JP2000031059A (en) * 1998-07-07 2000-01-28 Japan Science & Technology Corp METHOD FOR SYNTHESIZING LOW RESISTANCE N-TYPE AND LOW RESISTANCE P-TYPE SINGLE CRYSTAL AlN THIN FILMS
JP2000150875A (en) * 1998-11-13 2000-05-30 Toshiba Corp Semiconductor device and formation of thin film
JP2002075879A (en) * 2000-09-01 2002-03-15 Inst Of Physical & Chemical Res Method and device for doping semiconductor, and semiconductor material
JP2002141614A (en) * 2000-10-31 2002-05-17 Nichia Chem Ind Ltd Nitride semiconductor element and light emitting device comprising it
JP2002208732A (en) * 1994-09-19 2002-07-26 Toshiba Corp Compound semiconductor device
JP2003112999A (en) * 2001-10-03 2003-04-18 Matsushita Electric Ind Co Ltd Semiconductor substrate, semiconductor device and method for manufacturing the same, and crystal growth method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002208732A (en) * 1994-09-19 2002-07-26 Toshiba Corp Compound semiconductor device
JPH10135140A (en) * 1996-10-28 1998-05-22 Nippon Telegr & Teleph Corp <Ntt> Hetero-epitaxial growing method, hetero-epitaxial layer and semiconductor light-emitting device
JPH10154829A (en) * 1996-11-25 1998-06-09 Nichia Chem Ind Ltd P-type nitride semiconductor growth method and nitride semiconductor element
JP2000031059A (en) * 1998-07-07 2000-01-28 Japan Science & Technology Corp METHOD FOR SYNTHESIZING LOW RESISTANCE N-TYPE AND LOW RESISTANCE P-TYPE SINGLE CRYSTAL AlN THIN FILMS
JP2000150875A (en) * 1998-11-13 2000-05-30 Toshiba Corp Semiconductor device and formation of thin film
JP2002075879A (en) * 2000-09-01 2002-03-15 Inst Of Physical & Chemical Res Method and device for doping semiconductor, and semiconductor material
JP2002141614A (en) * 2000-10-31 2002-05-17 Nichia Chem Ind Ltd Nitride semiconductor element and light emitting device comprising it
JP2003112999A (en) * 2001-10-03 2003-04-18 Matsushita Electric Ind Co Ltd Semiconductor substrate, semiconductor device and method for manufacturing the same, and crystal growth method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007173744A (en) * 2005-12-26 2007-07-05 Toyota Central Res & Dev Lab Inc Method of manufacturing n-type aluminum-nitride and semiconductor device
WO2007111219A1 (en) * 2006-03-29 2007-10-04 Sumitomo Electric Industries, Ltd. Method for growing iii nitride single crystal
JP2007261883A (en) * 2006-03-29 2007-10-11 Sumitomo Electric Ind Ltd n-TYPE ALN CRYSTAL AND METHOD FOR MANUFACTURING THE SAME
US8361226B2 (en) 2006-03-29 2013-01-29 Sumitomo Electric Industries, Ltd. III-nitride single-crystal growth method
JP5374872B2 (en) * 2006-03-29 2013-12-25 住友電気工業株式会社 Group III nitride single crystal growth method
JP2008019140A (en) * 2006-07-14 2008-01-31 Ngk Insulators Ltd METHOD FOR FORMING AlN SINGLE CRYSTAL FILM
JP4680140B2 (en) * 2006-07-14 2011-05-11 日本碍子株式会社 Method for forming AlN single crystal film
JP2012512119A (en) * 2008-12-12 2012-05-31 ソラア インコーポレーテッド Polycrystalline Group III Metal Nitride by Getter and Method of Fabrication
JP2012087392A (en) * 2010-10-22 2012-05-10 Shin-Etsu Chemical Co Ltd Method for forming aluminum nitride film

Similar Documents

Publication Publication Date Title
EP0881666B1 (en) P-type nitrogen compound semiconductor and method of manufacturing same
Oshima et al. Properties of Ge-doped, high-quality bulk GaN crystals fabricated by hydride vapor phase epitaxy
US11898269B2 (en) Oxygen-doped group III metal nitride and method of manufacture
KR101669259B1 (en) Method for production of laminate
TW200950152A (en) Method of growing group III-V compound semiconductor, and method of manufacturing light-emitting device and electron device
KR20160070743A (en) N-type aluminum nitride single-crystal substrate and vertical nitride semiconductor device
JP2007320790A (en) Method for producing silicon carbide single crystal, silicon carbide single crystal ingot, and silicon carbide single crystal substrate
JP2006052123A (en) N-TYPE AlN CRYSTAL, N-TYPE AlGaN SOLID SOLUTION, AND METHOD FOR PRODUCING THEM
JP2007518266A (en) Co-doping to control the Fermi level in semi-insulating III-nitrides
CN102782808B (en) P-type AlGaN layer and manufacture method thereof and III group-III nitride semiconductor light-emitting component
US20160133461A1 (en) Method to grow a semi-conducting sic layer
JP5053362B2 (en) P-type group III nitride semiconductor and group III nitride semiconductor device
JP5957179B2 (en) Aluminum carbide thin film, semiconductor substrate on which aluminum carbide thin film is formed, and manufacturing method thereof
US20120104557A1 (en) Method for manufacturing a group III nitride crystal, method for manufacturing a group III nitride template, group III nitride crystal and group III nitride template
JP4811082B2 (en) N-type AlN crystal and manufacturing method thereof
US8802546B2 (en) Method for manufacturing silicon carbide semiconductor device
Gogova et al. A new approach to grow C‐doped GaN thick epitaxial layers
JP4699420B2 (en) Method for manufacturing nitride film
JP4595592B2 (en) Single crystal growth method
JP2005191477A (en) Epitaxial wafer for high electron mobility transistor
JP2014179544A (en) AlN THIN FILM MANUFACTURING METHOD AND AlN THIN FILM
Ueda et al. Effects of growth temperatures on crystal quality of GaN by vapor phase epitaxy using GaCl3 and NH3
JP4829273B2 (en) Group III nitride semiconductor light emitting device manufacturing method
JP2006093681A (en) Germanium additional source for compound semiconductor, method of manufacturing compound semiconductor using the same, and compound semiconductor
JP5071703B2 (en) Semiconductor manufacturing equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100609

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101019