JP4811082B2 - N-type AlN crystal and manufacturing method thereof - Google Patents

N-type AlN crystal and manufacturing method thereof Download PDF

Info

Publication number
JP4811082B2
JP4811082B2 JP2006089897A JP2006089897A JP4811082B2 JP 4811082 B2 JP4811082 B2 JP 4811082B2 JP 2006089897 A JP2006089897 A JP 2006089897A JP 2006089897 A JP2006089897 A JP 2006089897A JP 4811082 B2 JP4811082 B2 JP 4811082B2
Authority
JP
Japan
Prior art keywords
aln crystal
group
type
crystal
aln
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006089897A
Other languages
Japanese (ja)
Other versions
JP2007261883A (en
Inventor
久雄 竹内
孝 築野
倫正 宮永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2006089897A priority Critical patent/JP4811082B2/en
Publication of JP2007261883A publication Critical patent/JP2007261883A/en
Application granted granted Critical
Publication of JP4811082B2 publication Critical patent/JP4811082B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Description

本発明は、ワイドバンドギャップ半導体として開発が進められている、低抵抗n型AlN結晶及びその製造方法に関するものである。   The present invention relates to a low-resistance n-type AlN crystal being developed as a wide band gap semiconductor and a method for manufacturing the same.

AlN(窒化アルミニウム)は、バンドギャップが大きい(6.5eV)のに加え、高い熱伝導率(320W/mK)や耐熱性等多くの優れた特性を有することから、高密度記録に必要な短波長発光素子やパワーデバイスへの利用が期待されている。これらの用途に用いられるためには、ドーピングによってp,n型結晶を合成する必要があり、多方面で検討が行われている。   AlN (aluminum nitride) has many excellent characteristics such as high thermal conductivity (320 W / mK) and heat resistance, in addition to a large band gap (6.5 eV), and therefore it is a short necessary for high-density recording. Use in wavelength light emitting devices and power devices is expected. In order to be used for these applications, it is necessary to synthesize p-type and n-type crystals by doping, and various studies have been conducted.

例えば、原子状のビームを用いて、C原子とO原子を同時ドーピングしたAlN結晶を合成し、C,Oの比率によってp型やn型の半導体を得た事例(特許文献1参照)や、MOCVDを用いたAlN合成時にSiを導入し、キャリア濃度が約1017cm-3のn型AlN結晶を得た事例(非特許文献1参照)が報告されている。しかし、これらの方法では、生産性やキャリア濃度が十分ではないという問題があった。本発明は、これらの問題を解決するためになされた。
特許第3439994号 Yoshitaka Taniyasu et.al,Applied Physics Letters 81(7), 1255p (2002)
For example, using an atomic beam, an AlN crystal in which C atoms and O atoms are simultaneously doped is synthesized, and a p-type or n-type semiconductor is obtained depending on the ratio of C and O (see Patent Document 1), There has been reported a case (see Non-Patent Document 1) in which Si was introduced during AlN synthesis using MOCVD to obtain an n-type AlN crystal having a carrier concentration of about 10 17 cm −3 . However, these methods have a problem that productivity and carrier concentration are not sufficient. The present invention has been made to solve these problems.
Japanese Patent No. 3439994 Yoshitaka Taniyasu et.al, Applied Physics Letters 81 (7), 1255p (2002)

従来の技術において不十分であった生産性やキャリア濃度という問題を解決し、低抵抗n型AlN半導体結晶を提供し、もって短波長発光素子やパワーデバイスを実現することを目的とする。   An object of the present invention is to solve the problems of productivity and carrier concentration, which are insufficient in the prior art, to provide a low resistance n-type AlN semiconductor crystal, and to realize a short wavelength light emitting element and a power device.

本発明は、上記課題を解決するために以下の構成が採用された。
(1)本発明は、AlN結晶のAl原子の一部をIIIa族元素又は/及びIIIb族元素で置換し、隣接するN原子のうち1原子をO原子で同時に置換した構造n型AlN結晶であって、前記IIIa族元素又は/及びIIIb族元素は、Y、Sc、La、Ce、及びGaよりなる群から選ばれる1種以上の元素であることを特徴とするn型AlN結晶である。
(2)本発明は、IIIa族元素又は/及びIIIb族元素の合計濃度(C3A)が1×1018cm−3以上であり、O濃度(C)が、0.01C3A<C<1.5C3Aであることを特徴とする、請求項1記載のn型AlN結晶である。

The present invention employs the following configuration in order to solve the above problems.
(1) The present invention, a part of Al atoms in the AlN crystal was replaced with IIIa group element and / or IIIb group elements, n-type AlN crystal simultaneously having a structure resulting from substitution of the one atom in O atom of the adjacent N atom The group IIIa element and / or group IIIb element is an n-type AlN crystal characterized by being one or more elements selected from the group consisting of Y, Sc, La, Ce, and Ga. .
(2) In the present invention, the total concentration (C 3A ) of group IIIa elements and / or group IIIb elements is 1 × 10 18 cm −3 or more, and the O concentration (C O ) is 0.01C 3A <C O The n-type AlN crystal according to claim 1, characterized in that it is <1.5C 3A .

(3)本発明は、CVD法又はMBE法を用いてAlN結晶を合成する際、IIIa族元素
又は/及びIIIb族元素含有化合物及び酸素(O) 含有化合物を添加することを特徴とす
る、請求項1又は2記載のn型AlN結晶の製造方法である。
(4)本発明は、昇華法を用いてAlN結晶を合成する際、IIIa族元素又は/及びIIIb族元素含有化合物及び酸素(O) 含有化合物を添加することを特徴とする、請求項1又は2記載のn型AlN結晶の製造方法である。
(5)本発明は、合成したAlN結晶を、不活性雰囲気において熱処理することを特徴とする、請求項1又は2記載のn型AlN結晶の製造方法である。
すなわち本発明によれば、AlN結晶のAl原子を、IIIa族元素又は/及びIIIb族元素(以下「III族元素」と略記)で置換し、隣接する窒素(N)1原子を酸素(O)原子
で置換することにより、浅い不純物準位が形成され、低抵抗n型AlN結晶を得ることが
できる。ここで、IIIa族元素とは、Sc,Yの他ランタン系及びアクチニウム系の希土
類元素を、IIIb族元素とは、B,Ga,In,Tlを意味する。
(3) The present invention is characterized in that when an AlN crystal is synthesized using a CVD method or an MBE method, a IIIa group element or / and a IIIb group element-containing compound and an oxygen (O) -containing compound are added. Item 3. A method for producing an n-type AlN crystal according to Item 1 or 2.
(4) The present invention is characterized in that when an AlN crystal is synthesized using a sublimation method, a group IIIa element or / and a group IIIb element-containing compound and an oxygen (O) -containing compound are added. 2. A method for producing an n-type AlN crystal according to 2.
(5) The present invention is the method for producing an n-type AlN crystal according to claim 1 or 2, wherein the synthesized AlN crystal is heat-treated in an inert atmosphere.
That is, according to the present invention, an Al atom of an AlN crystal is substituted with a group IIIa element or / and a group IIIb element (hereinafter abbreviated as “group III element”), and one adjacent nitrogen (N) atom is oxygen (O). By substituting with atoms, shallow impurity levels are formed, and a low-resistance n-type AlN crystal can be obtained. Here, the group IIIa element means Sc, Y, lanthanum and actinium rare earth elements, and the group IIIb element means B, Ga, In, Tl.

より具体的には、CVD法や昇華法等によってAlN結晶を合成する際に、III族元素
化合物及び酸素(O) 含有化合物を添加することによって、これらの元素を含有する結晶を合成し、必要に応じて熱処理(拡散処理)することにより、前述の「M−O構造」(MはIII族元素)を形成して、浅い不純物準位を有するn型半導体を得ることができる。こ
の際、III族元素及び酸素(O)が単一の化合物中に含有される場合には、必ずしも、複数の化合物を用いる必要はない。
前述のM−O構造形成とその導電性を向上させる効果については、第一原理計算による解析等から、次のような要因があると推定される。
More specifically, when an AlN crystal is synthesized by a CVD method, a sublimation method, or the like, a crystal containing these elements is synthesized by adding a group III element compound and an oxygen (O) -containing compound. By performing heat treatment (diffusion treatment) according to the above, the above-described “MO structure” (M is a group III element) can be formed, and an n-type semiconductor having a shallow impurity level can be obtained. At this time, when the group III element and oxygen (O) are contained in a single compound, it is not always necessary to use a plurality of compounds.
About the effect which improves the above-mentioned MO structure formation and its electroconductivity, it is estimated from the analysis etc. by the first principle calculation that there are the following factors.

構造形成については、M−O構造では、格子の歪みが小さく、M−O結合エネルギーが極めて強いことも相まって、単独置換する場合に比較してエネルギー的に極めて有利となる。このため、結晶成長中や熱処理中において、M,Oは隣接サイトに選択的に導入されると推定される。この隣接サイト選択置換効果は、M−O結合エネルギーが大きいIIIa
族元素でより顕著である。
Regarding the structure formation, in the MO structure, the lattice distortion is small and the MO bond energy is extremely strong, which is extremely advantageous in terms of energy compared to the case of single substitution. For this reason, it is estimated that M and O are selectively introduced into adjacent sites during crystal growth and heat treatment. This adjacent site selective substitution effect is caused by IIIa having a large MO bond energy.
It is more prominent among group elements.

この構造の効果については、M−O結合により、Oの結合形態が変化するためと考えている。酸素は、AlNに相当量(約1000ppm)固溶することが古くから知られており、「n型半導体」となるが、深い不純物準位(350〜700meV)を形成するため、現実には絶縁体的な挙動を示す。この原因は、OがNサイトで偏心するため、非結合手が生じるためと考えられている。III族元素で隣接位置を置換することによって偏心が解
消され、不純物準位が浅くなり、導電性が向上すると推定される。
The effect of this structure is considered to be due to the change of the O bond form due to the M—O bond. It has long been known that oxygen is dissolved in a considerable amount (about 1000 ppm) in AlN, and becomes an “n-type semiconductor”. However, since it forms a deep impurity level (350 to 700 meV), it is actually insulated. Shows physical behavior. This is thought to be because non-bonded hands are generated because O is eccentric at the N site. By substituting the adjacent position with a group III element, the eccentricity is eliminated, the impurity level becomes shallow, and the conductivity is estimated to be improved.

上述の同時ドーピングにおいて、ドープ元素濃度の比率は重要である。O/Mが0.01以下の場合には、Mの単独置換サイト(電荷中立)が多数形成されて結晶構造が乱れる効果が大きく、n型半導体としての機能が十分ではなくなる。一方、O/Mが1.5以上の場合には、Oの単独置換サイトが多く形成されて、深い不純物準位の影響が主体的となり、導電率が低下する。   In the above-described co-doping, the ratio of the doping element concentration is important. When O / M is 0.01 or less, many single substitution sites (charge neutrality) of M are formed and the crystal structure is disturbed, and the function as an n-type semiconductor is not sufficient. On the other hand, when O / M is 1.5 or more, a large number of single substitution sites for O are formed, the influence of deep impurity levels becomes dominant, and the conductivity decreases.

以上の様に、本発明によれば、低抵抗n型AlN半導体結晶を得ることができ、短波長発光素子やパワーデバイスを実現することができる。   As described above, according to the present invention, a low-resistance n-type AlN semiconductor crystal can be obtained, and a short wavelength light emitting element and a power device can be realized.

以下、実施例に基づいて本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described based on examples.

AlN単結晶板(1mm×5mm×1mm)に、III族元素及びOの濃度が表1の濃度
になるよう、イオン注入法を用いてドープを行い、不活性雰囲気中1500℃で10分間熱処理して試料を作製し、120℃で導電率を測定した。結果を表1に併記した。
An AlN single crystal plate (1 mm × 5 mm × 1 mm) is doped using an ion implantation method so that the concentrations of Group III elements and O are the concentrations shown in Table 1, and heat-treated at 1500 ° C. for 10 minutes in an inert atmosphere. A sample was prepared, and the conductivity was measured at 120 ° C. The results are also shown in Table 1.

Figure 0004811082
Figure 0004811082

昇華法により、SiC基板上に成長したAlN(0001)を基板としてエピタキシャル成長をMOCVD法により行った。トリメチルアルミニウムとアンモニアからドーパントを含まないAlNエピタキシャル層を約0.5μmに成長させた後、装置内にトリメチルアルミニウム、アンモニアとは別系統で基板ホルダー直上に設置したノズルから、エチルアルコールとビスシクロペンタディエニルイットリウムを導入しながら0.2μmのエピタキシャル層を成長させた。成長後、不活性ガス雰囲気下で1150℃にてアニール処理を行った。その結果、シート抵抗2kΩ、またホール測定によりn型の導電性を示すことが確認された。   Epitaxial growth was performed by MOCVD using AlN (0001) grown on a SiC substrate by a sublimation method. After growing an AlN epitaxial layer containing no dopant from trimethylaluminum and ammonia to about 0.5 μm, ethyl alcohol and biscyclopenta were introduced from a nozzle installed directly above the substrate holder in a separate system from trimethylaluminum and ammonia. An epitaxial layer of 0.2 μm was grown while introducing dienyl yttrium. After the growth, annealing was performed at 1150 ° C. in an inert gas atmosphere. As a result, it was confirmed that the sheet resistance was 2 kΩ and n-type conductivity was shown by hole measurement.

高さが200mmの炭素(グラファイト)製ヒータの内部に、CeO2粉末(2wt%)
を混合したAlN粉末を入れたBN製のルツボを設置し、ケースの上部にはAlNの種結晶を固定して、1気圧の窒素雰囲気中、ルツボ下部の温度が2200℃,上部が2100℃となるよう20時間加熱し、AlN結晶を成長させた。得られた結晶の比抵抗を150℃で測定した結果、5Ω・cmであった。
Inside a carbon (graphite) heater with a height of 200 mm, CeO 2 powder (2 wt%)
A crucible made of BN containing AlN powder mixed with the above was installed, and the seed crystal of AlN was fixed to the upper part of the case, and the temperature at the bottom of the crucible was 2200 ° C. and the upper part was 2100 ° C. It was heated for 20 hours to grow an AlN crystal. As a result of measuring the specific resistance of the obtained crystal at 150 ° C., it was 5 Ω · cm.

サファイア(0001)を基板として、AlNエピタキシャル成長をHVPE法により行った。
石英管中にAlCl3とNH3を別系統で導入して基板上で反応させ、さらに別系統からLaCl3と酸素を導入した。圧力は常圧、温度は1000℃とし、10時間結晶成長さ
せた後、不活性ガス雰囲気下、1200℃でアニール処理を行った。得られた試料の導電性を測定した結果、シート抵抗は1.5kΩであり、ホール測定によりn型の電気伝導を示すことが確認された。
AlN epitaxial growth was performed by HVPE using sapphire (0001) as a substrate.
Into the quartz tube, AlCl 3 and NH 3 were introduced in different systems and reacted on the substrate, and LaCl 3 and oxygen were introduced from another system. The pressure was normal pressure, the temperature was 1000 ° C., and the crystal was grown for 10 hours, and then annealed at 1200 ° C. in an inert gas atmosphere. As a result of measuring the conductivity of the obtained sample, the sheet resistance was 1.5 kΩ, and it was confirmed by hole measurement that n-type electric conduction was exhibited.

SiCを基板として、AlNエピタキシャル成長をMBE法により行った。
Ga源として金属Ga、N源として窒素分子(N2)を用い、N2をRFプラズマにより活性化した。
SiC基板上に、低温AlNバッファ層を堆積させた後、Y金属(400ppm)を含むGa源と共にO(O2,H2Oとして)を100ppm含むN源として用い、10時間結晶成長させた後、窒素雰囲気下、1100℃で1時間アニール処理を行った。得られた試料の導電性を100℃で測定した結果、シート抵抗は5kΩであり、ホール測定によりn型の電気伝導を示すことが確認された。
AlN epitaxial growth was performed by the MBE method using SiC as a substrate.
Metal Ga was used as the Ga source, nitrogen molecules (N 2 ) were used as the N source, and N 2 was activated by RF plasma.
After depositing a low-temperature AlN buffer layer on a SiC substrate, using a Ga source containing Y metal (400 ppm) and an N source containing 100 ppm of O (as O 2 , H 2 O), after crystal growth for 10 hours Annealing treatment was performed at 1100 ° C. for 1 hour in a nitrogen atmosphere. As a result of measuring the conductivity of the obtained sample at 100 ° C., the sheet resistance was 5 kΩ, and it was confirmed by hole measurement to show n-type electrical conduction.

Claims (5)

AlN結晶のAl原子の一部をIIIa族元素又は/及びIIIb族元素で置換し、隣接するN原子のうち1原子をO原子で同時に置換した構造n型AlN結晶であって、前記IIIa族元素又は/及びIIIb族元素は、Y、Sc、La、Ce、及びGaよりなる群から選ばれる1種以上の元素であることを特徴とするn型AlN結晶。 An n-type AlN crystal having a structure in which a part of Al atoms of an AlN crystal is substituted with a group IIIa element and / or a group IIIb element, and one of adjacent N atoms is simultaneously substituted with an O atom, The n-type AlN crystal, wherein the element or / and the group IIIb element is one or more elements selected from the group consisting of Y, Sc, La, Ce, and Ga. 前記IIIa族元素又は/及びIIIb族元素の合計濃度(C3A)が1×1018cm−3以上であり、O濃度(C)が、0.01C3A<C<1.5C3Aであることを特徴とする、請求項1記載のn型AlN結晶。 The total concentration (C 3A ) of the group IIIa element and / or group IIIb element is 1 × 10 18 cm −3 or more, and the O concentration (C O ) is 0.01C 3A <C O <1.5C 3A The n-type AlN crystal according to claim 1, wherein the n-type AlN crystal is present. CVD法又はMBE法を用いてAlN結晶を合成する際、IIIa族元素又は/及びIIIb族元素含有化合物及び酸素(O)含有化合物を添加することを特徴とする、請求項1又は2記載のn型AlN結晶の製造方法。   The n-group according to claim 1 or 2, wherein a group IIIa element or / and a group IIIb element-containing compound and an oxygen (O) -containing compound are added when an AlN crystal is synthesized using a CVD method or an MBE method. Of manufacturing type AlN crystal. 昇華法を用いてAlN結晶を合成する際、IIIa族元素又は/及びIIIb族元素含有化合物及び酸素(O)含有化合物を添加することを特徴とする、請求項1又は2記載のn型AlN結晶の製造方法。   3. The n-type AlN crystal according to claim 1, wherein a group IIIa element or / and a group IIIb element-containing compound and an oxygen (O) -containing compound are added when an AlN crystal is synthesized using a sublimation method. Manufacturing method. 合成したAlN結晶を、不活性雰囲気において熱処理することを特徴とする、請求項1又は2記載のn型AlN結晶の製造方法。   The method for producing an n-type AlN crystal according to claim 1 or 2, wherein the synthesized AlN crystal is heat-treated in an inert atmosphere.
JP2006089897A 2006-03-29 2006-03-29 N-type AlN crystal and manufacturing method thereof Active JP4811082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006089897A JP4811082B2 (en) 2006-03-29 2006-03-29 N-type AlN crystal and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006089897A JP4811082B2 (en) 2006-03-29 2006-03-29 N-type AlN crystal and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007261883A JP2007261883A (en) 2007-10-11
JP4811082B2 true JP4811082B2 (en) 2011-11-09

Family

ID=38635241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006089897A Active JP4811082B2 (en) 2006-03-29 2006-03-29 N-type AlN crystal and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4811082B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8461071B2 (en) * 2008-12-12 2013-06-11 Soraa, Inc. Polycrystalline group III metal nitride with getter and method of making
JP6055290B2 (en) * 2012-11-26 2016-12-27 シャープ株式会社 Method for manufacturing nitride semiconductor crystal
DE102015116068A1 (en) * 2015-09-23 2017-03-23 Forschungsverbund Berlin E.V. (Sc, Y): AIN single crystals for lattice-matched AlGaN systems

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01203270A (en) * 1988-02-08 1989-08-16 Sumitomo Electric Ind Ltd Sintered aluminum nitride body having high thermal conductivity and its production
JP3439994B2 (en) * 1998-07-07 2003-08-25 科学技術振興事業団 Method for synthesizing low-resistance n-type and low-resistance p-type single-crystal AlN thin films
JP2006052123A (en) * 2004-07-12 2006-02-23 Sumitomo Electric Ind Ltd N-TYPE AlN CRYSTAL, N-TYPE AlGaN SOLID SOLUTION, AND METHOD FOR PRODUCING THEM

Also Published As

Publication number Publication date
JP2007261883A (en) 2007-10-11

Similar Documents

Publication Publication Date Title
ES2602565T3 (en) Monocrystalline silicon carbide ingot, and epitaxial substrate and wafer obtained from the monocrystalline silicon carbide ingot
Itoh et al. High‐quality 4H‐SiC homoepitaxial layers grown by step‐controlled epitaxy
Davis Thin films and devices of diamond, silicon carbide and gallium nitride
Maruska et al. Preparation of Mg-doped GaN diodes exhibiting violet electroluminescence
US20170084702A1 (en) Doped aluminum nitride crystals and methods of making them
JP3568394B2 (en) Method for synthesizing low-resistance n-type diamond
JP5176254B2 (en) p-type single crystal ZnO
JP2002057109A (en) Silicon carbide-manufacturing method, silicon carbide, and semiconductor device
JP2007320790A (en) Method for producing silicon carbide single crystal, silicon carbide single crystal ingot, and silicon carbide single crystal substrate
JP2005507360A (en) High resistivity silicon carbide single crystal
JP2011176360A (en) Diamond semiconductor device having (100) face orientation
US20180053649A1 (en) Method to grow a semi-conducting sic layer
TW201221710A (en) Gan-crystal free-standing substrate and method for producing the same
JP2005314217A (en) Silicon carbide single crystal and method for manufacturing the same
JP2017065959A (en) P TYPE 4H-SiC SINGLE CRYSTAL AND METHOD FOR MANUFACTURING P TYPE 4H-SiC SINGLE CRYSTAL
JP2006052123A (en) N-TYPE AlN CRYSTAL, N-TYPE AlGaN SOLID SOLUTION, AND METHOD FOR PRODUCING THEM
JP4811082B2 (en) N-type AlN crystal and manufacturing method thereof
Kimoto et al. Homoepitaxial growth of 4H–SiC (033̄8) and nitrogen doping by chemical vapor deposition
JP2007191356A (en) Nitrogen-doped diamond film and its producing method
Lee et al. Arsenic doping of ZnO nanowires by post-annealing treatment
US8802546B2 (en) Method for manufacturing silicon carbide semiconductor device
JP2012111677A (en) Method for manufacturing group iii nitride crystal, method for manufacturing group iii nitride template, the group iii nitride crystal, and the group iii nitride template
To et al. Post-growth annealing induced change of conductivity in As-doped ZnO grown by radio frequency magnetron sputtering
CN1219614A (en) Method and installation for GaN growth by light radiation-heated metallic organic chemical gas-state deposition
Kimoto et al. Chemical vapor deposition and deep level analyses of 4H-SiC (112̄0)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110527

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110808

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4811082

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250