JP3439994B2 - Method for synthesizing low-resistance n-type and low-resistance p-type single-crystal AlN thin films - Google Patents

Method for synthesizing low-resistance n-type and low-resistance p-type single-crystal AlN thin films

Info

Publication number
JP3439994B2
JP3439994B2 JP20861298A JP20861298A JP3439994B2 JP 3439994 B2 JP3439994 B2 JP 3439994B2 JP 20861298 A JP20861298 A JP 20861298A JP 20861298 A JP20861298 A JP 20861298A JP 3439994 B2 JP3439994 B2 JP 3439994B2
Authority
JP
Japan
Prior art keywords
type
resistance
low
type dopant
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20861298A
Other languages
Japanese (ja)
Other versions
JP2000031059A (en
Inventor
博 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP20861298A priority Critical patent/JP3439994B2/en
Priority to EP99926802A priority patent/EP1037268A4/en
Priority to PCT/JP1999/003384 priority patent/WO2000002240A1/en
Priority to US09/486,946 priority patent/US6281099B1/en
Publication of JP2000031059A publication Critical patent/JP2000031059A/en
Application granted granted Critical
Publication of JP3439994B2 publication Critical patent/JP3439994B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、次世代半導体とし
て期待される低抵抗n型および低抵抗p型単結晶AlN
(アルミニウム・ナイトライト)薄膜の製造方法に関す
る。
TECHNICAL FIELD The present invention relates to low-resistance n-type and low-resistance p-type single crystal AlN expected as a next-generation semiconductor.
The present invention relates to a method for manufacturing an (aluminum nitrite) thin film.

【0002】[0002]

【従来の技術】分子線エピタキシー法等により単結晶A
lN薄膜を製造する方法は公知である(例えば、特開平
8−2999号公報、特開平9−309795公報)。
しかし、AlNはバンドギャップエネルギーが6.5e
Vと大きいためにアクセプターやドナー単独では不純物
準位が500meV(4000K)と深いため室温では
キャリアーはほとんど活性化することができないため高
抵抗のものしか実現できなかった。
2. Description of the Related Art Single crystal A obtained by molecular beam epitaxy or the like
A method for producing an 1N thin film is known (for example, JP-A-8-2999 and JP-A-9-309795).
However, AlN has a bandgap energy of 6.5e
Since V is large, the impurity level of the acceptor or the donor alone is as deep as 500 meV (4000 K), and the carriers can hardly be activated at room temperature, so that only high resistance can be realized.

【0003】[0003]

【発明が解決しようとする課題】低抵抗n型および低抵
抗p型単結晶AlN薄膜が合成できれば、高温で作動
し、高速動作が可能で、高出力である半導体デバイス
や、高密度記録や大量情報の伝達に必要な紫外光半導体
レーザーダイオードをAlN薄膜で作製することができ
る。また、ダイヤモンドに次ぐAlNの高硬度性を利用
した低抵抗n型AlN薄膜で電気的・熱的伝導性の良い
透明単結晶保護膜を作製することができる。さらに、A
lNの負の電子親和エネルギーを利用して低抵抗n型単
結晶AlN薄膜を用いた高効率電子線源材料による大面
積デイスプレイの製造(壁掛けテレビ)が可能になる。
If low-resistance n-type and low-resistance p-type single crystal AlN thin films can be synthesized, they can operate at high temperature, can operate at high speed, and have high output. An ultraviolet semiconductor laser diode required for transmitting information can be made of an AlN thin film. In addition, a transparent single crystal protective film having a good electrical and thermal conductivity can be produced from a low resistance n-type AlN thin film that utilizes the high hardness of AlN, which is second only to diamond. Furthermore, A
By utilizing the negative electron affinity energy of 1N, it is possible to manufacture a large-area display (wall TV) with a high-efficiency electron beam source material using a low-resistance n-type single crystal AlN thin film.

【0004】[0004]

【課題を解決するための手段】本発明者は、上記課題を
解決するために、原子状AlのビームとN2 を電磁波で
励起または分解した原子状もしくは分子状Nを半導体基
板上で急冷成長することにより単結晶AlN薄膜を成長
させる際に、n型ドーパントとp型ドーパントを原子状
ビームにして同時にドーピングすることにより結晶中に
n型のドーパントとp型のドーパントの対を形成させて
低抵抗n型および低抵抗p型単結晶AlN薄膜を合成で
きることを見出した。
In order to solve the above-mentioned problems, the inventor of the present invention rapidly quenches and grows an atomic Al beam and atomic or molecular N obtained by exciting or decomposing N2 with electromagnetic waves on a semiconductor substrate. As a result, when a single crystal AlN thin film is grown, an n-type dopant and a p-type dopant are simultaneously doped into an atomic beam to form a pair of an n-type dopant and a p-type dopant in the crystal, resulting in low resistance. It was found that n-type and low-resistance p-type single crystal AlN thin films can be synthesized.

【0005】図1に示すように、同時ドーピングにより
CアクセプターとOドナーのO−C−OやC−O−C等
の複合体を作ることにより、より浅いドナー準位やアク
セプター準位が形成され、AlN結晶中のキャリアー濃
度が著しく増大し、より低抵抗n型および低抵抗p型A
lN薄膜が作製された。また、AlN結晶の中で、アク
セプターであるCとドナーであるOは、図2に示す結晶
モデルのような(1)低抵抗n型AlN、(2)低抵抗
p型AlNの構造配置(不純物複合体)を取り、アクセ
プター原子とドナー原子が同時に存在することにより結
晶学的な構造配置が安定化する。これにより、より高濃
度までドナーやアクセプターをドープすることができ
る。
As shown in FIG. 1, a shallower donor level or acceptor level is formed by forming a complex of C acceptor and O donor such as O--C--O or C--O--C by co-doping. As a result, the carrier concentration in the AlN crystal is significantly increased, and the lower resistance n-type and lower resistance p-type A
An IN thin film was prepared. In the AlN crystal, the acceptor C and the donor O are (1) low resistance n-type AlN and (2) low resistance p-type AlN structural arrangement (impurity) as in the crystal model shown in FIG. The complex) is taken, and the crystallographic structural arrangement is stabilized by the simultaneous presence of the acceptor atom and the donor atom. Thereby, the donor or acceptor can be doped to a higher concentration.

【0006】本発明の方法を実施するには、n型ドーパ
ントとしてOを、またp型ドーパントとしてCをラジオ
波、レーザー、X線、電子線等で電子励起することによ
り原子状にしたものを同時にドーピングする。また、A
l蒸気分圧、N蒸気分圧、n型ドーパント蒸気分圧、p
型ドーパント蒸気分圧を制御して、n型ドーパント原子
濃度(X)とp型ドーパント原子濃度(Y)の比(X/
Y)を制御し、X/Y>1で低抵抗n型を、X/Y<1
で低抵抗p型単結晶薄膜を作製する。
In order to carry out the method of the present invention, O is used as an n-type dopant, and C is used as a p-type dopant, which are atomized by electron excitation with radio waves, lasers, X-rays, electron beams or the like. Dope at the same time. Also, A
l vapor partial pressure, N vapor partial pressure, n-type dopant vapor partial pressure, p
By controlling the partial pressure of the type dopant vapor, the ratio of the n-type dopant atom concentration (X) and the p-type dopant atom concentration (Y) (X /
Y) is controlled, and when X / Y> 1, low resistance n-type is set to X / Y <1.
A low resistance p-type single crystal thin film is prepared by.

【0007】また、本発明は、半導体基板上に低温、低
圧下で結晶成長させた低抵抗n型および低抵抗p型Al
N薄膜を一度冷却し、さらに高温で短時間電場をかけな
がらアニールすることにより水素によるドナーを結晶外
に取り去り水素による不働態化の回復を行う方法を提供
する。さらに、本発明は、合成した低抵抗n型および低
抵抗p型AlN薄膜に円偏光したレーザーを照射するこ
とにより高効率のスピン偏極電子線源を作製する方法を
提供する。
Further, the present invention is a low resistance n-type and low resistance p-type Al grown on a semiconductor substrate at low temperature and low pressure.
Provided is a method of removing a donor due to hydrogen to the outside of a crystal and recovering passivation due to hydrogen by cooling an N thin film once and annealing at a high temperature while applying an electric field for a short time. Further, the present invention provides a method for producing a highly efficient spin polarized electron beam source by irradiating the synthesized low resistance n-type and low resistance p-type AlN thin films with a circularly polarized laser.

【0008】[0008]

【作用】本発明の方法により、アクセプターやドナーの
不純物準位を浅くし、キャリアー数を大幅に増加させ、
低抵抗で高品質の単結晶AlN薄膜を半導体基板上に成
長させることができる。n型のドーパントとp型のドー
パン卜を同時にドーピングすることにより、両者の間で
の静電エネルギーや格子エネルギーを低下させ、高濃度
まで安定にn型およびp型ドーパントをドープすること
ができ、低抵抗化が可能になる。AlN結晶中にn型の
ドーパントとp型のドーパントの対(不純物複合体)を
形成させることにより、n型およびp型キャリアーのド
ーパントによる電子散乱を低下させ、移動度が大きく増
大することにより低抵抗化が起きる。すなわち、本発明
の方法によれば、膜厚0.05〜1.0μ程度、膜抵抗
1.0Ω・cm以下の単結晶AlN薄膜を得ることがで
きる。
By the method of the present invention, the impurity levels of the acceptor and the donor are made shallow, and the number of carriers is greatly increased.
A single crystal AlN thin film of low resistance and high quality can be grown on a semiconductor substrate. By simultaneously doping the n-type dopant and the p-type dopan dopant, electrostatic energy and lattice energy between the two can be reduced, and the n-type and p-type dopants can be stably doped to a high concentration, Lower resistance is possible. By forming a pair of n-type dopant and p-type dopant (impurity complex) in the AlN crystal, electron scattering by the dopants of the n-type and p-type carriers is reduced, and mobility is greatly increased, resulting in low mobility. Resistance occurs. That is, according to the method of the present invention, a single crystal AlN thin film having a film thickness of about 0.05 to 1.0 μm and a film resistance of 1.0 Ω · cm or less can be obtained.

【0009】[0009]

【発明の実施の形態】本発明において、原子状Alのビ
ームとN2 を電磁波で励起または分解した原子状もしく
は分子状Nを半導体基板上で急冷成長する方法として
は、例えば、化合物ガスを用いる有機金属法(MOCV
D法)や、原子状ビームを用いる分子線エピタキシー法
(MBE法)等、単結晶AlN薄膜の合成に適する種々
の方法が用いられる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, as a method of rapidly growing an atomic or molecular N obtained by exciting or decomposing an atomic Al beam and N 2 with an electromagnetic wave on a semiconductor substrate, for example, an organic compound gas is used. Metal method (MOCV
D method), a molecular beam epitaxy method using an atomic beam (MBE method), and various other methods suitable for synthesizing a single crystal AlN thin film are used.

【0010】AlN結晶の育成中にn型のドーパントと
p型のドーパントを同時にドーピングすることにより、
ドーパントを高濃度まで安定化させ、AlN結晶中にn
型のドーパントとp型のドーパントの複合体を形成させ
て、アクセプターやドナー準位を浅くする。n型および
p型キャリアーの同時ドーピングによりキャリアーの電
子散乱機構をより短距離力のものに変えることにより、
キャリアーの移動度を大きく増大させ低抵抗化を可能に
した。
By simultaneously doping the n-type dopant and the p-type dopant during the growth of the AlN crystal,
Stabilize the dopant to a high concentration,
A complex of a type dopant and a p-type dopant is formed to shallow the acceptor and donor levels. By changing the electron scattering mechanism of carriers to that of shorter range force by simultaneous doping of n-type and p-type carriers,
The mobility of the carrier is greatly increased and low resistance is possible.

【0011】原子状にしたn型のドーパント(O)とp
型のドーパント(C)を同時にドーピングすることによ
り、結晶中にドナー・アクセプ夕ー複合体を形成させて
両者の間での静電エネルギーや格子エネルギーを低下さ
せ、高濃度までn型およびp型ドーパントを安定にドー
プすることができ、また、ドナー・アクセプターの複合
体が形成されるためドナーおよびアクセプター準位が低
下することによりキャリアー濃度が著しく増大し低抵抗
n型および低抵抗p型AlN薄膜を作製することができ
る。本発明の方法により、紫外光レーザー半導体デバイ
ス用の材料やn型AlN結晶の負の電子親和エネルギー
を利用した大面積デイスプレイ用の高効率電子線放出源
材料が作製できる。
Atomic n-type dopant (O) and p
Simultaneous doping with a dopant (C) of a positive type forms a donor-acceptor complex in the crystal to reduce electrostatic energy and lattice energy between the two, and to increase the n-type and p-type to a high concentration. The dopant can be stably doped, and since the donor-acceptor complex is formed and the donor and acceptor levels are lowered, the carrier concentration is remarkably increased, and the low-resistance n-type and low-resistance p-type AlN thin film is formed. Can be produced. According to the method of the present invention, a material for an ultraviolet laser semiconductor device or a high-efficiency electron beam emission source material for a large-area display utilizing the negative electron affinity energy of n-type AlN crystal can be produced.

【0012】図3は、一例として、本発明の方法をMB
E法を用いて実施する概念を示す装置の側面図である。
ホルダ(図示せず)にアルミナ基板2を取り付け、真空
排気装置(図示せず)で真空チャンバ1内を真空に維持
し、電熱ヒータ(図示せず)で前記基板2を500℃〜
1150℃に加熱する。原子状Alを導入管4からビー
ムとして基板2に向けて流し、N2 分子を導入管5から
前記基板2に向けて流す。各原料はRFコイル8で加熱
して熱分解する。C等のアクセプターを導入管6から前
記基板2に向けて流し、O等のドナーを導入管7から前
記基板2に向けて流し、同時にドーピングしながら基板
上にAlN膜3を結晶成長させる。
FIG. 3 illustrates, by way of example, the method of the present invention in MB.
It is a side view of the apparatus which shows the concept implemented using the E method.
The alumina substrate 2 is attached to a holder (not shown), the inside of the vacuum chamber 1 is maintained in vacuum by a vacuum exhaust device (not shown), and the substrate 2 is heated to 500 ° C. or more by an electric heater (not shown).
Heat to 1150 ° C. Atomic Al is made to flow as a beam from the introduction pipe 4 toward the substrate 2, and N2 molecules are made to flow from the introduction pipe 5 toward the substrate 2. Each raw material is heated by the RF coil 8 and thermally decomposed. An acceptor such as C is caused to flow from the introduction pipe 6 toward the substrate 2, and a donor such as O is caused to flow from the introduction pipe 7 toward the substrate 2, and at the same time, the AlN film 3 is crystal-grown on the substrate while being doped.

【0013】n型ドナーとなるO、p型アクセプターと
なるCは、分子ガス(O2 ,CO,CO2 等)にマイク
ロ波領域の電磁波を照射して原子状にしたものや単体セ
ルを高温で原子状にしたものを用いる。本発明の方法を
実施するには、n型ドーパントとしてOを、またp型ド
ーパントとしてCをラジオ波、レーザー、X線、電子線
等で電子励起することにより原子状にしたものを同時に
ドーピングするが、これらの電子励起の手段自体は公知
の手段を適宜採用できる。
O that serves as an n-type donor and C that serves as a p-type acceptor are obtained by irradiating a molecular gas (O 2, CO, CO 2, etc.) with electromagnetic waves in the microwave region to form an atom, or by atomizing a single cell at high temperature. Use the one in the shape. In order to carry out the method of the present invention, O as an n-type dopant and C as a p-type dopant, which are atomized by electron excitation with radio waves, lasers, X-rays, electron beams, etc., are simultaneously doped. However, publicly known means can be appropriately adopted as means for exciting these electrons.

【0014】また、Al蒸気分圧、N蒸気分圧、n型ド
ーパント蒸気分圧、p型ドーパント蒸気分圧を制御し
て、n型ドーパント原子濃度(X)とp型ドーパント原
子濃度(Y)の比(X/Y)を制御し、X/Y>1で低
抵抗n型を、X/Y<1で低抵抗p型単結晶薄膜を作製
する。より具体的にはMBE法において、XとYの大き
さをコントロールし、n型の場合、X:Y=2:1また
は3:1、p型の場合X:Y=1:2または1:3の比
となるようにドーパントの分圧を調整する。
Further, by controlling the Al vapor partial pressure, N vapor partial pressure, n-type dopant vapor partial pressure, and p-type dopant vapor partial pressure, the n-type dopant atom concentration (X) and the p-type dopant atom concentration (Y) are controlled. (X / Y) is controlled to produce a low resistance n-type thin film when X / Y> 1 and a low resistance p-type single crystal thin film when X / Y <1. More specifically, in the MBE method, the sizes of X and Y are controlled, and in the case of n-type, X: Y = 2: 1 or 3: 1, and in the case of p-type, X: Y = 1: 2 or 1: The partial pressure of the dopant is adjusted so that the ratio becomes 3.

【0015】[0015]

【実施例】図3に示すように、真空チヤンバ1内を真空
度10-10 torrに維持し、電熱ヒータでアルミナ基
板2を加熱する。オーブンヒータでAl源を加熱し、原
子状Alのビームを基板2に向けて照射する。N2 分子
をRFコイル8により励起し前記基板2に向けてN+ ま
たは励起状態のN2 の原子状ガス流で供給し、吸着させ
る。アクセプターとしてCを導入管6から流量10-9t
orrで、前記基板2に向けて流し、ドナーとしてOを
導入管7から流量5×10-9torrで、前記基板2に
向けて流し、同時にドーピングしながら基板温度600
℃、650℃、800℃、1000℃、1100℃でA
lNを結晶成長させる。アクセプターとなるC、および
ドナーとなるOは、RFコイル8で電子励起することに
より原子状ガスにした。120分経過後に結晶成長を停
止した。
EXAMPLE As shown in FIG. 3, the inside of the vacuum chamber 1 is maintained at a vacuum degree of 10 @ -10 torr and the alumina substrate 2 is heated by an electric heater. The Al source is heated by an oven heater, and a beam of atomic Al is directed toward the substrate 2. N2 molecules are excited by the RF coil 8 and supplied toward the substrate 2 by a flow of N + or excited state N2 atomic gas to adsorb them. C as an acceptor, flow rate from the introduction pipe 6 to 10-9 t
at a flow rate of 5 × 10 −9 torr from the introduction tube 7 as a donor, and at the same time as doping, the substrate temperature 600
A at ℃, 650 ℃, 800 ℃, 1000 ℃, 1100 ℃
Crystallize 1N. C, which serves as an acceptor, and O, which serves as a donor, are converted into atomic gas by electronically exciting the RF coil 8. Crystal growth was stopped after 120 minutes had elapsed.

【0016】得られたAlN結晶は、表1(C,Oの同
時ドーピングがドナー濃度に及ぼす効果を示す。n型A
lN)、表2(C,Oの同時ドーピングがアクセプター
濃度に及ぼす効果を示す。p型AlN)に示す膜厚を有
し、p型ドーパントであるC蒸気を送り込むことなく単
独にn型ドナーとなるO蒸気をドーピングした場合と比
較して、C、Oの同時ドーピングの場合は、いずれの結
晶成長温度でも数ケタ高いn型キャリアー濃度およびp
型キャリアー濃度を示している。また、結晶成長温度
(基板温度)に応じてドナー濃度およびアクセプター濃
度が異なっていた。また、膜抵抗は表1、表2に示すと
おり1.0Ω・cm以下となり、低抵抗となることが分
かる。
The obtained AlN crystal shows the effect of simultaneous doping of C and O on the donor concentration in Table 1. n-type A
1N) and Table 2 (Effects of co-doping of C and O on the acceptor concentration. p-type AlN) have a film thickness shown in FIG. In the case of simultaneous doping of C and O, the n-type carrier concentration and the p concentration are several orders of magnitude higher at any crystal growth temperature, as compared with the case of being doped with O vapor.
The type carrier concentration is shown. Further, the donor concentration and the acceptor concentration differed depending on the crystal growth temperature (substrate temperature). Further, the film resistance is 1.0 Ω · cm or less as shown in Tables 1 and 2, and it can be seen that the resistance is low.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【表2】 [Table 2]

【0019】図4のグラフにC、Oの同時ドーピングに
より形成されるドナー・アクセプター複合体(2C+
O)の電子状態密度を示す。複合体(2C+O)が形成
されることにより、単独のCドーピングの場合(図b)
と比べて、アクセプター準位は浅くなる(図d)ことが
分かる。これにより、アクセプター準位は、500me
Vから数十meVと浅くなり、キャリアー数の増大と低
抵抗化が生じる。
In the graph of FIG. 4, a donor-acceptor complex (2C +) formed by co-doping of C and O is shown.
O) shows the electronic density of states. In case of single C doping due to formation of complex (2C + O) (Fig. B)
It can be seen that the acceptor level becomes shallower than that of (Fig. D). As a result, the acceptor level is 500 me.
It becomes shallow from V to several tens of meV, and the number of carriers increases and the resistance decreases.

【0020】[0020]

【発明の効果】本発明の方法によれば、単結晶AlN薄
膜として、低抵抗n型および低抵抗p型AlN薄膜が合
成できるので、高温で作動し、高速動作が可能で、高出
力であるAlN薄膜を用いた半導体デバイスや、高密度
記録や大量情報の伝達に必要な紫外光半導体レーザーダ
イオードを作製することができる。また、AlNの高硬
度性を利用した透明低抵抗n型単結晶保護膜を作製する
ことができる。さらに、低抵抗n型AlN単結晶薄膜を
p型、n型ドーパントの同時ドーピングにより作製する
ことができるので、負の電子親和エネルギーを実現で
き、円偏光したレーザーを照射することにより高温、高
速動作、高出力で、さらに高効率の電子線源材料による
大面積デイスプレイ(壁掛けテレビ)を作製することが
できる。
According to the method of the present invention, since a low-resistance n-type and a low-resistance p-type AlN thin film can be synthesized as a single crystal AlN thin film, it operates at high temperature, can operate at high speed, and has high output. A semiconductor device using an AlN thin film and an ultraviolet semiconductor laser diode required for high density recording and transmission of a large amount of information can be manufactured. In addition, a transparent low resistance n-type single crystal protective film utilizing the high hardness of AlN can be manufactured. Furthermore, since a low-resistance n-type AlN single crystal thin film can be prepared by simultaneous doping with p-type and n-type dopants, negative electron affinity energy can be realized, and high temperature and high speed operation can be achieved by irradiating a circularly polarized laser. A large-area display (wall-mounted television) can be manufactured using a high-output and highly-efficient electron beam source material.

【図面の簡単な説明】[Brief description of drawings]

【図1】ドナーとアクセプターの同時ドーピングにより
ドナー準位が浅くなる原理を示す模式図。
FIG. 1 is a schematic diagram showing a principle that a donor level becomes shallow by simultaneous doping of a donor and an acceptor.

【図2】ドナーとアクセプターの同時ドーピングにより
形成されるドナー・アクセプター複合体を示す模式図。
FIG. 2 is a schematic diagram showing a donor-acceptor complex formed by simultaneous doping of a donor and an acceptor.

【図3】MBE法によるAlN薄膜の同時ドーピング方
法に用いる装置の概念を示す側面図。
FIG. 3 is a side view showing the concept of an apparatus used for the simultaneous doping method of an AlN thin film by the MBE method.

【図4】C、Oの同時ドーピングにより形成されるドナ
ー・アクセプター複合体(2C+O)の電子状態密度を
示すグラフ。
FIG. 4 is a graph showing electron density of states of a donor-acceptor complex (2C + O) formed by co-doping with C and O.

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 原子状AlのビームとNを電磁波で励
起または分解した原子状もしくは分子状Nを半導体基板
上で急冷成長することにより単結晶AlN薄膜を成長さ
せる際に、n型ドーパントとp型ドーパントを原子状ビ
ームにして同時にドーピングすることにより結晶中にn
型のドーパントとp型のドーパントの対を形成させて低
抵抗n型および低抵抗p型単結晶AlN薄膜を合成する
方法。
1. A n-type dopant is used when growing a single crystal AlN thin film by rapidly cooling an atomic or molecular N obtained by exciting or decomposing an atomic Al beam and N 2 with an electromagnetic wave on a semiconductor substrate. By making a p-type dopant into an atomic beam and simultaneously doping it, n
A method of forming a pair of a p-type dopant and a p-type dopant to synthesize low-resistance n-type and low-resistance p-type single crystal AlN thin films.
【請求項2】 n型ドーパントとしてOを、またp型ド
ーパントとしてCをラジオ波、レーザー、X線、電子線
等で電子励起することにより原子状にしたものを同時に
ドーピングすることを特徴とする請求項1記載の低抵抗
n型および低抵抗p型単結晶AlN薄膜を合成する方
法。
2. O-type as an n-type dopant and C as a p-type dopant, which are atomized by being excited electronically by radio wave, laser, X-ray, electron beam, etc. are simultaneously doped. A method for synthesizing the low-resistance n-type and low-resistance p-type single crystal AlN thin films according to claim 1.
【請求項3】 Al蒸気分圧、N蒸気分圧、n型ドーパ
ント蒸気分圧、p型ドーパント蒸気分圧を制御して、n
型ドーパント原子濃度(X)とp型ドーパント原子濃度
(Y)の比(X/Y)を制御し、X/Y>1で低抵抗n
型単結晶薄膜を、X/Y<1で低抵抗p型単結晶薄膜を
作製することを特徴とする請求項1記載の低抵抗n型お
よび低抵抗p型単結晶AlN薄膜を合成する方法。
3. An n vapor partial pressure, an n vapor partial pressure, an n-type dopant vapor partial pressure, and a p-type dopant vapor partial pressure are controlled to obtain n.
The ratio (X / Y) of the p-type dopant atomic concentration (X) and the p-type dopant atomic concentration (Y) is controlled, and the low resistance n is satisfied when X / Y> 1.
2. A method for synthesizing a low-resistance n-type and low-resistance p-type single crystal AlN thin film according to claim 1, wherein the low-resistance p-type single crystal thin film is produced with X / Y <1.
【請求項4】 請求項1記載の方法で合成した低抵抗n
型および低抵抗p型単結晶AlN薄膜を一度冷却し、さ
らに高温で短時間電場をかけながらアニールすることに
より水素によるドナーを結晶外に取り去ることを特徴と
する水素による不働態化の回復方法。
4. A low resistance n synthesized by the method according to claim 1.
Type and low-resistance p-type single crystal AlN thin film is once cooled, and is further annealed while applying an electric field at a high temperature for a short time to remove hydrogen donors out of the crystal, thereby recovering passivation by hydrogen.
【請求項5】 請求項1記載の方法で合成した低抵抗n
型および低抵抗p型単結晶AlN薄膜に円偏光したレー
ザーを照射することを特徴とする高効率のスピン偏極電
子線源を作製する方法。
5. A low resistance n synthesized by the method according to claim 1.
-Type and low-resistance p-type single crystal AlN thin film is irradiated with a circularly polarized laser, and a method for producing a highly efficient spin-polarized electron beam source.
JP20861298A 1998-07-07 1998-07-07 Method for synthesizing low-resistance n-type and low-resistance p-type single-crystal AlN thin films Expired - Fee Related JP3439994B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP20861298A JP3439994B2 (en) 1998-07-07 1998-07-07 Method for synthesizing low-resistance n-type and low-resistance p-type single-crystal AlN thin films
EP99926802A EP1037268A4 (en) 1998-07-07 1999-06-24 METHOD FOR SYNTHESIZING SINGLE CRYSTAL AlN THIN FILMS OF LOW RESISTANT n-TYPE AND LOW RESISTANT p-TYPE
PCT/JP1999/003384 WO2000002240A1 (en) 1998-07-07 1999-06-24 METHOD FOR SYNTHESIZING SINGLE CRYSTAL AlN THIN FILMS OF LOW RESISTANT n-TYPE AND LOW RESISTANT p-TYPE
US09/486,946 US6281099B1 (en) 1998-07-07 1999-06-24 Method for synthesizing single crystal AIN thin films of low resistivity n-type and low resistivity p-type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20861298A JP3439994B2 (en) 1998-07-07 1998-07-07 Method for synthesizing low-resistance n-type and low-resistance p-type single-crystal AlN thin films

Publications (2)

Publication Number Publication Date
JP2000031059A JP2000031059A (en) 2000-01-28
JP3439994B2 true JP3439994B2 (en) 2003-08-25

Family

ID=16559110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20861298A Expired - Fee Related JP3439994B2 (en) 1998-07-07 1998-07-07 Method for synthesizing low-resistance n-type and low-resistance p-type single-crystal AlN thin films

Country Status (4)

Country Link
US (1) US6281099B1 (en)
EP (1) EP1037268A4 (en)
JP (1) JP3439994B2 (en)
WO (1) WO2000002240A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7622322B2 (en) * 2001-03-23 2009-11-24 Cornell Research Foundation, Inc. Method of forming an AlN coated heterojunction field effect transistor
US8545629B2 (en) 2001-12-24 2013-10-01 Crystal Is, Inc. Method and apparatus for producing large, single-crystals of aluminum nitride
JP2006052123A (en) * 2004-07-12 2006-02-23 Sumitomo Electric Ind Ltd N-TYPE AlN CRYSTAL, N-TYPE AlGaN SOLID SOLUTION, AND METHOD FOR PRODUCING THEM
CN101331249B (en) * 2005-12-02 2012-12-19 晶体公司 Doped aluminum nitride crystals and methods of making them
JP4811082B2 (en) * 2006-03-29 2011-11-09 住友電気工業株式会社 N-type AlN crystal and manufacturing method thereof
US9034103B2 (en) 2006-03-30 2015-05-19 Crystal Is, Inc. Aluminum nitride bulk crystals having high transparency to ultraviolet light and methods of forming them
EP2007933B1 (en) * 2006-03-30 2017-05-10 Crystal Is, Inc. Methods for controllable doping of aluminum nitride bulk crystals
US9771666B2 (en) 2007-01-17 2017-09-26 Crystal Is, Inc. Defect reduction in seeded aluminum nitride crystal growth
CN107059116B (en) 2007-01-17 2019-12-31 晶体公司 Defect reduction in seeded aluminum nitride crystal growth
US8080833B2 (en) 2007-01-26 2011-12-20 Crystal Is, Inc. Thick pseudomorphic nitride epitaxial layers
CN105951177B (en) 2010-06-30 2018-11-02 晶体公司 Use the growth for the bulk aluminum nitride single crystal that thermal gradient controls
US8962359B2 (en) 2011-07-19 2015-02-24 Crystal Is, Inc. Photon extraction from nitride ultraviolet light-emitting devices
JP6055325B2 (en) * 2013-01-30 2016-12-27 シャープ株式会社 Method for manufacturing nitride semiconductor crystal
JP6055290B2 (en) * 2012-11-26 2016-12-27 シャープ株式会社 Method for manufacturing nitride semiconductor crystal
US9219123B2 (en) * 2012-11-26 2015-12-22 Sharp Kabushiki Kaisha Method of producing a nitride semiconductor crystal with precursor containing carbon and oxygen, and nitride semiconductor crystal and semiconductor device made by the method
CN108511567A (en) 2013-03-15 2018-09-07 晶体公司 With the counterfeit plane contact with electronics and photoelectric device
US10128310B2 (en) 2016-03-14 2018-11-13 Toshiba Memory Corporation Magnetoresistive memory device and manufacturing method of the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4152182A (en) * 1978-05-15 1979-05-01 International Business Machines Corporation Process for producing electronic grade aluminum nitride films utilizing the reduction of aluminum oxide
JPH0817156B2 (en) 1988-10-13 1996-02-21 日新電機株式会社 Semiconductor device and manufacturing method thereof
DE69201095T2 (en) * 1991-05-02 1995-05-18 Daido Steel Co Ltd Semiconductor device for high spin polarized electron beam.
JP3075581B2 (en) 1991-05-23 2000-08-14 松下電器産業株式会社 Apparatus for growing nitride-based compound semiconductor films
JPH082999A (en) 1994-06-17 1996-01-09 Sumitomo Electric Ind Ltd Production of aluminum nitride thin film
JP2606131B2 (en) * 1994-05-27 1997-04-30 日本電気株式会社 Semiconductor spin-polarized electron source
JP3461074B2 (en) * 1995-12-12 2003-10-27 パイオニア株式会社 Method of manufacturing group III nitride semiconductor light emitting device
JPH09309795A (en) 1996-05-22 1997-12-02 Fine Ceramics Center Cubic aluminum nitride thin film and its synthesis

Also Published As

Publication number Publication date
EP1037268A1 (en) 2000-09-20
US6281099B1 (en) 2001-08-28
WO2000002240A1 (en) 2000-01-13
EP1037268A4 (en) 2003-06-11
JP2000031059A (en) 2000-01-28

Similar Documents

Publication Publication Date Title
JP3439994B2 (en) Method for synthesizing low-resistance n-type and low-resistance p-type single-crystal AlN thin films
JP4126332B2 (en) Low resistance p-type single crystal zinc oxide and method for producing the same
US7323356B2 (en) LnCuO(S,Se,Te)monocrystalline thin film, its manufacturing method, and optical device or electronic device using the monocrystalline thin film
JP3945782B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP3540275B2 (en) P-type ZnO single crystal and method for producing the same
JP3568394B2 (en) Method for synthesizing low-resistance n-type diamond
CN107287578B (en) A kind of chemical gas-phase deposition process for preparing of a wide range of uniformly double-deck molybdenum disulfide film
WO2006137401A1 (en) Diamond semiconductor element and method for manufacturing same
WO2008096884A1 (en) N-type conductive aluminum nitride semiconductor crystal and method for producing the same
JP2013056803A (en) METHOD FOR PRODUCING β-Ga2O3-BASED SINGLE CRYSTAL FILM
CN112647130B (en) Method for growing gallium oxide film by low-pressure chemical vapor deposition
US20110027928A1 (en) PULSED LASER DEPOSITION OF HIGH QUALITY PHOTOLUMINESCENT GaN FILMS
WO2006038567A1 (en) METHOD FOR PRODUCING P-TYPE Ga2O3 FILM AND METHOD FOR PRODUCING PN JUNCTION-TYPE Ga2O3 FILM
CN110896024B (en) Silicon carbide epitaxial gallium oxide film method and silicon carbide epitaxial gallium oxide film structure
JP5019326B2 (en) Method for producing MgaZn1-aO single crystal thin film
CN110993505B (en) Preparation method of semiconductor structure based on silicon carbide substrate and semiconductor structure
JP2007129271A (en) Semiconductor light emitting element and method of manufacturing same
US20060081172A1 (en) Method for preparing diamond from graphite by inner shell electron excitation
US11492696B2 (en) Manufacturing method for semiconductor laminated film, and semiconductor laminated film
JP2013056804A (en) METHOD FOR PRODUCING β-Ga2O3-BASED SINGLE CRYSTAL FILM AND LAMINATED CRYSTAL STRUCTURE
JP2001270799A (en) Zinc oxide thin film and method for producing the same
US11972947B2 (en) Manufacturing method for semiconductor laminated film, and semiconductor laminated film
JPH0379769A (en) Production of boron nitride
JP3464618B2 (en) Method for manufacturing high-brightness light emitting semiconductor material
JPH09153500A (en) Manufacture of p-type semiconductor crystal

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees