JP3439994B2 - Low resistance n-type and the low-resistance p-type synthesis of single crystal AlN film - Google Patents

Low resistance n-type and the low-resistance p-type synthesis of single crystal AlN film

Info

Publication number
JP3439994B2
JP3439994B2 JP20861298A JP20861298A JP3439994B2 JP 3439994 B2 JP3439994 B2 JP 3439994B2 JP 20861298 A JP20861298 A JP 20861298A JP 20861298 A JP20861298 A JP 20861298A JP 3439994 B2 JP3439994 B2 JP 3439994B2
Authority
JP
Japan
Prior art keywords
type
resistance
low
type dopant
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20861298A
Other languages
Japanese (ja)
Other versions
JP2000031059A (en
Inventor
博 吉田
Original Assignee
科学技術振興事業団
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 科学技術振興事業団 filed Critical 科学技術振興事業団
Priority to JP20861298A priority Critical patent/JP3439994B2/en
Publication of JP2000031059A publication Critical patent/JP2000031059A/en
Application granted granted Critical
Publication of JP3439994B2 publication Critical patent/JP3439994B2/en
Anticipated expiration legal-status Critical
Application status is Expired - Fee Related legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL-GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL-GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、次世代半導体として期待される低抵抗n型および低抵抗p型単結晶AlN BACKGROUND OF THE INVENTION [0001] [Technical Field of the Invention The present invention provides a low-resistance n-type and the low-resistance p-type single crystal AlN which is expected as a next-generation semiconductor
(アルミニウム・ナイトライト)薄膜の製造方法に関する。 (Aluminum nitrite) process for the preparation of thin films. 【0002】 【従来の技術】分子線エピタキシー法等により単結晶A [0002] Single crystal A by the Related Art molecular beam epitaxy method, or the like
lN薄膜を製造する方法は公知である(例えば、特開平8−2999号公報、特開平9−309795公報)。 Method of making a lN film are known (e.g., JP-A 8-2999, JP-A No. 9-309795 Publication).
しかし、AlNはバンドギャップエネルギーが6.5e However, AlN has a band gap energy 6.5e
Vと大きいためにアクセプターやドナー単独では不純物準位が500meV(4000K)と深いため室温ではキャリアーはほとんど活性化することができないため高抵抗のものしか実現できなかった。 Impurity level in the acceptor or donor alone for large and V are carriers previously only possible most intended for inability to activate high resistance at room temperature for deep and 500 meV (4000K). 【0003】 【発明が解決しようとする課題】低抵抗n型および低抵抗p型単結晶AlN薄膜が合成できれば、高温で作動し、高速動作が可能で、高出力である半導体デバイスや、高密度記録や大量情報の伝達に必要な紫外光半導体レーザーダイオードをAlN薄膜で作製することができる。 [0003] The present invention is to provide a if the low resistance n-type and the low-resistance p-type single-crystal AlN thin film synthesis, operating at high temperature, can operate at high speed, and a semiconductor device which is a high output, high density the ultraviolet semiconductor laser diode necessary for transmission of the recording and mass information can be made of AlN films. また、ダイヤモンドに次ぐAlNの高硬度性を利用した低抵抗n型AlN薄膜で電気的・熱的伝導性の良い透明単結晶保護膜を作製することができる。 Further, it is possible to produce electrical and thermal conductivity good transparent single crystal protective film with low resistance n-type AlN thin film using the high hardness of the AlN next to diamond. さらに、A In addition, A
lNの負の電子親和エネルギーを利用して低抵抗n型単結晶AlN薄膜を用いた高効率電子線源材料による大面積デイスプレイの製造(壁掛けテレビ)が可能になる。 By utilizing the negative electron affinity energy of lN it becomes possible to manufacture a large-area Deisupurei with high efficiency electron source material using a low-resistance n-type single-crystal AlN thin film (wall-mounted TV). 【0004】 【課題を解決するための手段】本発明者は、上記課題を解決するために、原子状AlのビームとN2 を電磁波で励起または分解した原子状もしくは分子状Nを半導体基板上で急冷成長することにより単結晶AlN薄膜を成長させる際に、n型ドーパントとp型ドーパントを原子状ビームにして同時にドーピングすることにより結晶中にn型のドーパントとp型のドーパントの対を形成させて低抵抗n型および低抵抗p型単結晶AlN薄膜を合成できることを見出した。 [0004] The present inventors SUMMARY OF THE INVENTION To solve the above problems, a beam and N2 of atomic Al in electromagnetic excitation or decomposed atomic or molecular N on a semiconductor substrate when growing a single crystal AlN film by quenching grown to form a pair of n-type dopant and a p-type dopant in the crystal by which the n-type dopant and a p-type dopant atomic beam doping simultaneously It found to be able to synthesize a low-resistance n-type and the low-resistance p-type single-crystal AlN thin Te. 【0005】図1に示すように、同時ドーピングによりCアクセプターとOドナーのO−C−OやC−O−C等の複合体を作ることにより、より浅いドナー準位やアクセプター準位が形成され、AlN結晶中のキャリアー濃度が著しく増大し、より低抵抗n型および低抵抗p型A [0005] As shown in FIG. 1, by making a composite of such O-C-O and C-O-C C-acceptor and O donor by simultaneous doping is shallower donor level and the acceptor level formed It is, carrier density of the AlN crystal is significantly increased, lower resistance n-type and the low-resistance p-type a
lN薄膜が作製された。 lN thin film was produced. また、AlN結晶の中で、アクセプターであるCとドナーであるOは、図2に示す結晶モデルのような(1)低抵抗n型AlN、(2)低抵抗p型AlNの構造配置(不純物複合体)を取り、アクセプター原子とドナー原子が同時に存在することにより結晶学的な構造配置が安定化する。 Moreover, in the AlN crystal, is O C and the donor an acceptor, such as crystalline model shown in FIG. 2 (1) low-resistance n-type AlN, (2) structural configuration of the low-resistance p-type AlN (impurity take complex), stabilizes the crystallographic structure arranged by acceptor atoms and donor atoms are present at the same time. これにより、より高濃度までドナーやアクセプターをドープすることができる。 Thus, it is possible to dope the donor and acceptor to higher concentrations. 【0006】本発明の方法を実施するには、n型ドーパントとしてOを、またp型ドーパントとしてCをラジオ波、レーザー、X線、電子線等で電子励起することにより原子状にしたものを同時にドーピングする。 [0006] To implement the method of the present invention, the O as an n-type dopant, and radio waves C as p-type dopant, laser, X-rays, what was atomic by electrons excited by an electron beam or the like At the same time doping. また、A In addition, A
l蒸気分圧、N蒸気分圧、n型ドーパント蒸気分圧、p l vapor partial pressure, N vapor partial pressure, n-type dopant vapor partial pressure, p
型ドーパント蒸気分圧を制御して、n型ドーパント原子濃度(X)とp型ドーパント原子濃度(Y)の比(X/ By controlling the type dopant vapor partial pressure, the ratio of n-type dopant atom concentration (X) and p-type dopant atom concentration (Y) (X /
Y)を制御し、X/Y>1で低抵抗n型を、X/Y<1 Controls Y), a low-resistance n-type by X / Y> 1, X / Y <1
で低抵抗p型単結晶薄膜を作製する。 In making a low-resistance p-type single-crystal thin film. 【0007】また、本発明は、半導体基板上に低温、低圧下で結晶成長させた低抵抗n型および低抵抗p型Al Further, the present invention is a low-resistance n-type and the low-resistance p-type Al with low temperature by crystal growth under low pressure on a semiconductor substrate
N薄膜を一度冷却し、さらに高温で短時間電場をかけながらアニールすることにより水素によるドナーを結晶外に取り去り水素による不働態化の回復を行う方法を提供する。 The N thin film once cooled further provides a method for recovery of passivation by hydrogen removal donor with hydrogen outside the crystal by annealing while applying short electric field at high temperature. さらに、本発明は、合成した低抵抗n型および低抵抗p型AlN薄膜に円偏光したレーザーを照射することにより高効率のスピン偏極電子線源を作製する方法を提供する。 Furthermore, the present invention provides a method of making a spin-polarized electron beam source of a high efficiency by irradiating synthesized low-resistance n-type and laser circularly polarized low-resistance p-type AlN thin film. 【0008】 【作用】本発明の方法により、アクセプターやドナーの不純物準位を浅くし、キャリアー数を大幅に増加させ、 By the method of [0008] the present invention, shallower impurity levels of the acceptor or donor, drastically increases the number of carriers,
低抵抗で高品質の単結晶AlN薄膜を半導体基板上に成長させることができる。 It can be grown with high quality single crystal AlN thin film on a semiconductor substrate with low resistance. n型のドーパントとp型のドーパン卜を同時にドーピングすることにより、両者の間での静電エネルギーや格子エネルギーを低下させ、高濃度まで安定にn型およびp型ドーパントをドープすることができ、低抵抗化が可能になる。 By doping n-type dopant and a p-type dopant Bok simultaneously reduces the electrostatic energy or lattice energy therebetween, stably can be doped with n-type and p-type dopant to a high concentration, low resistance becomes possible. AlN結晶中にn型のドーパントとp型のドーパントの対(不純物複合体)を形成させることにより、n型およびp型キャリアーのドーパントによる電子散乱を低下させ、移動度が大きく増大することにより低抵抗化が起きる。 By forming a pair of n-type dopant and a p-type dopant (impurity complex) to AlN crystal, to reduce the electron scattering due to dopant of n-type and p-type carriers, low by mobility greatly increased resistance occurs. すなわち、本発明の方法によれば、膜厚0.05〜1.0μ程度、膜抵抗1.0Ω・cm以下の単結晶AlN薄膜を得ることができる。 That is, according to the method of the present invention, it is possible to obtain a thickness of about 0.05~1.0Myu, the following single-crystal AlN thin film resistor 1.0 [Omega] · cm. 【0009】 【発明の実施の形態】本発明において、原子状AlのビームとN2 を電磁波で励起または分解した原子状もしくは分子状Nを半導体基板上で急冷成長する方法としては、例えば、化合物ガスを用いる有機金属法(MOCV [0009] DETAILED DESCRIPTION OF THE INVENTION In the present invention, as a method of quenching grow excited or decomposed atomic or molecular N on a semiconductor substrate a beam and N2 of atomic Al in electromagnetic waves, for example, compound gas organic metal method using (MOCV
D法)や、原子状ビームを用いる分子線エピタキシー法(MBE法)等、単結晶AlN薄膜の合成に適する種々の方法が用いられる。 D method), molecular beam epitaxy method using atomic beam (MBE method), a variety of methods suitable for the synthesis of single crystal AlN film is used. 【0010】AlN結晶の育成中にn型のドーパントとp型のドーパントを同時にドーピングすることにより、 [0010] By simultaneously doping the n-type dopant and a p-type dopant during the growth of the AlN crystal,
ドーパントを高濃度まで安定化させ、AlN結晶中にn Dopant to stabilize to a high concentration, n in the AlN crystal
型のドーパントとp型のドーパントの複合体を形成させて、アクセプターやドナー準位を浅くする。 To form a complex of the type of dopant and a p-type dopant, a shallow acceptor and donor levels. n型およびp型キャリアーの同時ドーピングによりキャリアーの電子散乱機構をより短距離力のものに変えることにより、 By changing to that of the more short-range force the electron scattering mechanism of the carrier by co-doping of the n-type and p-type carrier,
キャリアーの移動度を大きく増大させ低抵抗化を可能にした。 Allowed the low resistance greatly increase the mobility of the carrier. 【0011】原子状にしたn型のドーパント(O)とp [0011] The atomic to the n-type dopant (O) and p
型のドーパント(C)を同時にドーピングすることにより、結晶中にドナー・アクセプ夕ー複合体を形成させて両者の間での静電エネルギーや格子エネルギーを低下させ、高濃度までn型およびp型ドーパントを安定にドープすることができ、また、ドナー・アクセプターの複合体が形成されるためドナーおよびアクセプター準位が低下することによりキャリアー濃度が著しく増大し低抵抗n型および低抵抗p型AlN薄膜を作製することができる。 By doping type dopant (C) at the same time, to form a donor-acceptor evening over complex in the crystal lowers the electrostatic energy or lattice energy therebetween and, n-type and p-type to a high concentration dopant can be stably doped, also, the donor and significantly increased resistance n-type and the low-resistance p-type AlN thin film carrier concentration by acceptor level is decreased because the complex is formed of the donor-acceptor it can be prepared. 本発明の方法により、紫外光レーザー半導体デバイス用の材料やn型AlN結晶の負の電子親和エネルギーを利用した大面積デイスプレイ用の高効率電子線放出源材料が作製できる。 The method of the present invention, high-efficiency electron emission source material for large area Deisupurei utilizing negative electron affinity energy of the material and n-type AlN crystal for ultraviolet laser semiconductor devices can be manufactured. 【0012】図3は、一例として、本発明の方法をMB [0012] Figure 3 shows, as an example, MB methods of the present invention
E法を用いて実施する概念を示す装置の側面図である。 Method E is a side view of the device showing the concept implemented using.
ホルダ(図示せず)にアルミナ基板2を取り付け、真空排気装置(図示せず)で真空チャンバ1内を真空に維持し、電熱ヒータ(図示せず)で前記基板2を500℃〜 Holder alumina substrate 2 attached to the (not shown) to maintain the vacuum chamber 1 to the vacuum evacuation device (not shown), the electric heater 500 ° C. the substrate 2 (not shown) -
1150℃に加熱する。 Heated to 1150 ℃. 原子状Alを導入管4からビームとして基板2に向けて流し、N2 分子を導入管5から前記基板2に向けて流す。 Flowing toward the atomic Al from inlet pipe 4 to the substrate 2 as a beam, flow from the inlet pipe 5 of N2 molecules toward the substrate 2. 各原料はRFコイル8で加熱して熱分解する。 Each raw material is thermally decomposed by heating in the RF coil 8. C等のアクセプターを導入管6から前記基板2に向けて流し、O等のドナーを導入管7から前記基板2に向けて流し、同時にドーピングしながら基板上にAlN膜3を結晶成長させる。 Flowing acceptor such as C from the inlet pipe 6 toward the substrate 2, flow of donor O and the like from the inlet pipe 7 toward the substrate 2, the crystal growth of the AlN layer 3 on the substrate while doping the same time. 【0013】n型ドナーとなるO、p型アクセプターとなるCは、分子ガス(O2 ,CO,CO2 等)にマイクロ波領域の電磁波を照射して原子状にしたものや単体セルを高温で原子状にしたものを用いる。 [0013] the n-type donor O, C to be a p-type acceptor molecule gas (O2, CO, CO2, etc.) that are irradiated with electromagnetic waves in the microwave region and the atomic shape or atom elemental cell at high temperature use what you Jo. 本発明の方法を実施するには、n型ドーパントとしてOを、またp型ドーパントとしてCをラジオ波、レーザー、X線、電子線等で電子励起することにより原子状にしたものを同時にドーピングするが、これらの電子励起の手段自体は公知の手段を適宜採用できる。 To implement the method of the present invention, the O as an n-type dopant, and radio waves C as p-type dopant, laser, X-rays, at the same time doping the those into atomic by electrons excited by an electron beam or the like but it means itself of these electronic excitation can properly employ known means. 【0014】また、Al蒸気分圧、N蒸気分圧、n型ドーパント蒸気分圧、p型ドーパント蒸気分圧を制御して、n型ドーパント原子濃度(X)とp型ドーパント原子濃度(Y)の比(X/Y)を制御し、X/Y>1で低抵抗n型を、X/Y<1で低抵抗p型単結晶薄膜を作製する。 Further, Al vapor partial pressure, N vapor partial pressure, n-type dopant vapor partial pressure, and controls the p-type dopant vapor partial pressure, n-type dopant atom concentration (X) and p-type dopant atom concentration (Y) and controlling the ratio of (X / Y), a low-resistance n-type by X / Y> 1, to produce a low-resistance p-type single-crystal thin film by X / Y <1. より具体的にはMBE法において、XとYの大きさをコントロールし、n型の場合、X:Y=2:1または3:1、p型の場合X:Y=1:2または1:3の比となるようにドーパントの分圧を調整する。 In more detail MBE method, to control the size of the X and Y, when n-type, X: Y = 2: 1 or 3: 1, in the case of a p-type X: Y = 1: 2 or 1: at 3 ratio adjusting the partial pressure of the dopant. 【0015】 【実施例】図3に示すように、真空チヤンバ1内を真空度10-10 torrに維持し、電熱ヒータでアルミナ基板2を加熱する。 [0015] [Example] As shown in FIG. 3, the vacuum Chiyanba 1 maintained at a vacuum 10-10 torr, heating the alumina substrate 2 by the electric heater. オーブンヒータでAl源を加熱し、原子状Alのビームを基板2に向けて照射する。 Heating the Al source in the oven heater to irradiate toward a beam of atomic Al in the substrate 2. N2 分子をRFコイル8により励起し前記基板2に向けてN+ または励起状態のN2 の原子状ガス流で供給し、吸着させる。 The N2 molecules toward the substrate 2 is excited by the RF coil 8 is supplied with N + or atomic gas flow N2 excited state, it is adsorbed. アクセプターとしてCを導入管6から流量10-9t Flow 10-9t the C from the inlet pipe 6 as the acceptor
orrで、前記基板2に向けて流し、ドナーとしてOを導入管7から流量5×10-9torrで、前記基板2に向けて流し、同時にドーピングしながら基板温度600 In orr, flow toward the substrate 2, with the O as a donor from the inlet pipe 7 flow 5 × -9 Torr, flow toward the substrate 2, a substrate temperature of 600 while simultaneously doped
℃、650℃、800℃、1000℃、1100℃でA ℃, 650 ℃, 800 ℃, 1000 ℃, A at 1100 ℃
lNを結晶成長させる。 The lN crystal is grown. アクセプターとなるC、およびドナーとなるOは、RFコイル8で電子励起することにより原子状ガスにした。 C which serves as an acceptor, and O, which serves as a donor, and the atomic gas by electrons excited by the RF coil 8. 120分経過後に結晶成長を停止した。 To stop the crystal growth after a lapse of 120 minutes. 【0016】得られたAlN結晶は、表1(C,Oの同時ドーピングがドナー濃度に及ぼす効果を示す。n型A [0016] The obtained AlN crystal, Table 1 (C, co-doping of O indicates the effect on the donor concentration .n type A
lN)、表2(C,Oの同時ドーピングがアクセプター濃度に及ぼす効果を示す。p型AlN)に示す膜厚を有し、p型ドーパントであるC蒸気を送り込むことなく単独にn型ドナーとなるO蒸気をドーピングした場合と比較して、C、Oの同時ドーピングの場合は、いずれの結晶成長温度でも数ケタ高いn型キャリアー濃度およびp l N), Table 2 (C, co-doping of O has a film thickness shown in .p type AlN) showing the effect on the acceptor concentration, and the n-type donor alone without feeding the C vapor which is a p-type dopant consisting of O vapor as compared with the case of doping, C, in the case of simultaneous doping of O, the number digits higher n-type carrier concentration at any crystal growth temperature and p
型キャリアー濃度を示している。 It shows the type carrier concentration. また、結晶成長温度(基板温度)に応じてドナー濃度およびアクセプター濃度が異なっていた。 Furthermore, the donor concentration and the acceptor concentration was different depending on the crystal growth temperature (substrate temperature). また、膜抵抗は表1、表2に示すとおり1.0Ω・cm以下となり、低抵抗となることが分かる。 Further, the membrane resistance becomes Table 1, below 1.0 [Omega] · cm as shown in Table 2, it can be seen that a low resistance. 【0017】 【表1】 [0017] [Table 1] 【0018】 【表2】 [0018] [Table 2] 【0019】図4のグラフにC、Oの同時ドーピングにより形成されるドナー・アクセプター複合体(2C+ [0019] Figure C in the graph of 4, O donor-acceptor complexes formed by co-doping (2C +
O)の電子状態密度を示す。 It shows the electron density of states O). 複合体(2C+O)が形成されることにより、単独のCドーピングの場合(図b) By complex (2C + O) is formed, in the case of a single C-doped (FIG. B)
と比べて、アクセプター準位は浅くなる(図d)ことが分かる。 Compared with, the acceptor level becomes shallower (Fig. D) can be seen. これにより、アクセプター準位は、500me As a result, the acceptor level is, 500me
Vから数十meVと浅くなり、キャリアー数の増大と低抵抗化が生じる。 Becomes shallow as several tens meV from V, it increases the resistance of the number of carriers occurs. 【0020】 【発明の効果】本発明の方法によれば、単結晶AlN薄膜として、低抵抗n型および低抵抗p型AlN薄膜が合成できるので、高温で作動し、高速動作が可能で、高出力であるAlN薄膜を用いた半導体デバイスや、高密度記録や大量情報の伝達に必要な紫外光半導体レーザーダイオードを作製することができる。 According to the method of the present invention, as the single crystal AlN thin film, the low-resistance n-type and the low-resistance p-type AlN thin film can be synthesized, and operate at high temperatures, it can operate at high speed, high and semiconductor device using the AlN thin film is output, it is possible to produce ultraviolet semiconductor laser diode necessary for transmission of high-density recording and mass information. また、AlNの高硬度性を利用した透明低抵抗n型単結晶保護膜を作製することができる。 Further, it is possible to produce a transparent low-resistance n-type single crystal protective film utilizing high hardness of AlN. さらに、低抵抗n型AlN単結晶薄膜をp型、n型ドーパントの同時ドーピングにより作製することができるので、負の電子親和エネルギーを実現でき、円偏光したレーザーを照射することにより高温、高速動作、高出力で、さらに高効率の電子線源材料による大面積デイスプレイ(壁掛けテレビ)を作製することができる。 Furthermore, low-resistance n-type AlN single crystal thin film of p-type, it is possible to produce by the simultaneous doping of n-type dopant, you can realize negative electron affinity energy, high temperature by irradiating a laser circularly polarized, high-speed operation , a high output, it is possible to produce a large area Deisupurei (wall-mounted TV) according to yet highly efficient electron beam source materials.

【図面の簡単な説明】 【図1】ドナーとアクセプターの同時ドーピングによりドナー準位が浅くなる原理を示す模式図。 Schematic diagram illustrating the principle of donor level becomes shallower by simultaneous doping BRIEF DESCRIPTION OF THE DRAWINGS [Figure 1] donor and acceptor. 【図2】ドナーとアクセプターの同時ドーピングにより形成されるドナー・アクセプター複合体を示す模式図。 Figure 2 is a schematic diagram illustrating a donor-acceptor complexes formed by co-doping of donor and acceptor. 【図3】MBE法によるAlN薄膜の同時ドーピング方法に用いる装置の概念を示す側面図。 Figure 3 is a side view showing a concept of an apparatus used for simultaneous doping method AlN thin film by the MBE method. 【図4】C、Oの同時ドーピングにより形成されるドナー・アクセプター複合体(2C+O)の電子状態密度を示すグラフ。 [4] C, a graph showing an electron state density of the donor-acceptor complex (2C + O) which is formed by co-doping of O.

Claims (1)

  1. (57)【特許請求の範囲】 【請求項1】 原子状AlのビームとN を電磁波で励起または分解した原子状もしくは分子状Nを半導体基板上で急冷成長することにより単結晶AlN薄膜を成長させる際に、n型ドーパントとp型ドーパントを原子状ビームにして同時にドーピングすることにより結晶中にn (57) The Claims 1. A single-crystal AlN film by quenching growing atomic Al beam and N excitation or decomposed atomic or molecular N 2 in an electromagnetic wave on a semiconductor substrate when growing, n in the crystal by simultaneously doping with the n-type dopant and a p-type dopant atomic beam
    型のドーパントとp型のドーパントの対を形成させて低抵抗n型および低抵抗p型単結晶AlN薄膜を合成する方法。 Methods for synthesizing low-resistance n-type and the low-resistance p-type single-crystal AlN thin film to form a pair of type dopant and a p-type dopant. 【請求項2】 n型ドーパントとしてOを、またp型ドーパントとしてCをラジオ波、レーザー、X線、電子線等で電子励起することにより原子状にしたものを同時にドーピングすることを特徴とする請求項1記載の低抵抗n型および低抵抗p型単結晶AlN薄膜を合成する方法。 The O as wherein n-type dopant, and wherein the radio wave C as p-type dopant, laser, X-rays, that simultaneously doping those into atomic by electrons excited by an electron beam or the like methods for synthesizing low-resistance n-type and the low-resistance p-type single-crystal AlN thin film according to claim 1, wherein. 【請求項3】 Al蒸気分圧、N蒸気分圧、n型ドーパント蒸気分圧、p型ドーパント蒸気分圧を制御して、n Wherein Al vapor partial pressure, N vapor partial pressure, n-type dopant vapor partial pressure, and controls the p-type dopant vapor partial pressure, n
    型ドーパント原子濃度(X)とp型ドーパント原子濃度(Y)の比(X/Y)を制御し、X/Y>1で低抵抗n To control the ratio (X / Y) of the type dopant atom concentration (X) and p-type dopant atom concentration (Y), low-resistance X / Y> 1 n
    型単結晶薄膜を、X/Y<1で低抵抗p型単結晶薄膜を作製することを特徴とする請求項1記載の低抵抗n型および低抵抗p型単結晶AlN薄膜を合成する方法。 Type single crystal thin film, X / Y <method of synthesizing the low-resistance n-type and the low-resistance p-type single-crystal AlN thin film according to claim 1, wherein making a low-resistance p-type single-crystal thin film 1. 【請求項4】 請求項1記載の方法で合成した低抵抗n Low resistance n synthesized in 4. Method according to claim 1
    型および低抵抗p型単結晶AlN薄膜を一度冷却し、さらに高温で短時間電場をかけながらアニールすることにより水素によるドナーを結晶外に取り去ることを特徴とする水素による不働態化の回復方法。 Type and the low-resistance p-type single-crystal AlN film was once cooled, further recovery method passivation by hydrogen, characterized in that removing the donor with hydrogen outside the crystal by annealing while applying short electric field at high temperature. 【請求項5】 請求項1記載の方法で合成した低抵抗n Low resistance n synthesized in 5. A method according to claim 1, wherein the method
    型および低抵抗p型単結晶AlN薄膜に円偏光したレーザーを照射することを特徴とする高効率のスピン偏極電子線源を作製する方法。 High efficiency method of producing a spin-polarized electron beam source, which comprises irradiating a laser that is circularly polarized in the mold and the low-resistance p-type single-crystal AlN film.
JP20861298A 1998-07-07 1998-07-07 Low resistance n-type and the low-resistance p-type synthesis of single crystal AlN film Expired - Fee Related JP3439994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20861298A JP3439994B2 (en) 1998-07-07 1998-07-07 Low resistance n-type and the low-resistance p-type synthesis of single crystal AlN film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP20861298A JP3439994B2 (en) 1998-07-07 1998-07-07 Low resistance n-type and the low-resistance p-type synthesis of single crystal AlN film
EP99926802A EP1037268A4 (en) 1998-07-07 1999-06-24 METHOD FOR SYNTHESIZING SINGLE CRYSTAL AlN THIN FILMS OF LOW RESISTANT n-TYPE AND LOW RESISTANT p-TYPE
US09/486,946 US6281099B1 (en) 1998-07-07 1999-06-24 Method for synthesizing single crystal AIN thin films of low resistivity n-type and low resistivity p-type
PCT/JP1999/003384 WO2000002240A1 (en) 1998-07-07 1999-06-24 METHOD FOR SYNTHESIZING SINGLE CRYSTAL AlN THIN FILMS OF LOW RESISTANT n-TYPE AND LOW RESISTANT p-TYPE

Publications (2)

Publication Number Publication Date
JP2000031059A JP2000031059A (en) 2000-01-28
JP3439994B2 true JP3439994B2 (en) 2003-08-25

Family

ID=16559110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20861298A Expired - Fee Related JP3439994B2 (en) 1998-07-07 1998-07-07 Low resistance n-type and the low-resistance p-type synthesis of single crystal AlN film

Country Status (4)

Country Link
US (1) US6281099B1 (en)
EP (1) EP1037268A4 (en)
JP (1) JP3439994B2 (en)
WO (1) WO2000002240A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7622322B2 (en) * 2001-03-23 2009-11-24 Cornell Research Foundation, Inc. Method of forming an AlN coated heterojunction field effect transistor
US8545629B2 (en) 2001-12-24 2013-10-01 Crystal Is, Inc. Method and apparatus for producing large, single-crystals of aluminum nitride
JP2006052123A (en) * 2004-07-12 2006-02-23 Sumitomo Electric Ind Ltd N-TYPE AlN CRYSTAL, N-TYPE AlGaN SOLID SOLUTION, AND METHOD FOR PRODUCING THEM
US7641735B2 (en) * 2005-12-02 2010-01-05 Crystal Is, Inc. Doped aluminum nitride crystals and methods of making them
JP4811082B2 (en) * 2006-03-29 2011-11-09 住友電気工業株式会社 n-type AlN crystal and manufacturing method thereof
US9034103B2 (en) 2006-03-30 2015-05-19 Crystal Is, Inc. Aluminum nitride bulk crystals having high transparency to ultraviolet light and methods of forming them
CN101454487B (en) * 2006-03-30 2013-01-23 晶体公司 Methods for controllable doping of aluminum nitride bulk crystals
US9771666B2 (en) 2007-01-17 2017-09-26 Crystal Is, Inc. Defect reduction in seeded aluminum nitride crystal growth
WO2008088838A1 (en) 2007-01-17 2008-07-24 Crystal Is, Inc. Defect reduction in seeded aluminum nitride crystal growth
US8080833B2 (en) 2007-01-26 2011-12-20 Crystal Is, Inc. Thick pseudomorphic nitride epitaxial layers
WO2012003304A1 (en) 2010-06-30 2012-01-05 Crystal Is, Inc. Growth of large aluminum nitride single crystals with thermal-gradient control
US8962359B2 (en) 2011-07-19 2015-02-24 Crystal Is, Inc. Photon extraction from nitride ultraviolet light-emitting devices
JP6055290B2 (en) * 2012-11-26 2016-12-27 シャープ株式会社 Method for manufacturing nitride semiconductor crystal
US9219123B2 (en) * 2012-11-26 2015-12-22 Sharp Kabushiki Kaisha Method of producing a nitride semiconductor crystal with precursor containing carbon and oxygen, and nitride semiconductor crystal and semiconductor device made by the method
JP6055325B2 (en) * 2013-01-30 2016-12-27 シャープ株式会社 Method for manufacturing nitride semiconductor crystal
WO2014151264A1 (en) 2013-03-15 2014-09-25 Crystal Is, Inc. Planar contacts to pseudomorphic electronic and optoelectronic devices
US10128310B2 (en) 2016-03-14 2018-11-13 Toshiba Memory Corporation Magnetoresistive memory device and manufacturing method of the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4152182A (en) * 1978-05-15 1979-05-01 International Business Machines Corporation Process for producing electronic grade aluminum nitride films utilizing the reduction of aluminum oxide
JPH0817156B2 (en) 1988-10-13 1996-02-21 日新電機株式会社 Semiconductor device and manufacturing method thereof
US5315127A (en) * 1991-05-02 1994-05-24 Daido Tokushuko Kabushiki Kaisha Semiconductor device for emitting highly spin-polarized electron beam
JP3075581B2 (en) 1991-05-23 2000-08-14 松下電器産業株式会社 Nitride compound semiconductor film growth apparatus
JP2606131B2 (en) * 1994-05-27 1997-04-30 日本電気株式会社 Semiconductor spin polarized electron source
JPH082999A (en) 1994-06-17 1996-01-09 Sumitomo Electric Ind Ltd Production of aluminum nitride thin film
JP3461074B2 (en) * 1995-12-12 2003-10-27 パイオニア株式会社 Iii-nitride semiconductor light emitting device manufacturing method
JPH09309795A (en) 1996-05-22 1997-12-02 Fine Ceramics Center Cubic aluminum nitride thin film and its synthesis

Also Published As

Publication number Publication date
WO2000002240A1 (en) 2000-01-13
EP1037268A4 (en) 2003-06-11
JP2000031059A (en) 2000-01-28
EP1037268A1 (en) 2000-09-20
US6281099B1 (en) 2001-08-28

Similar Documents

Publication Publication Date Title
US8896020B2 (en) Method and apparatus for producing large, single-crystals of aluminum nitride
US5210051A (en) High efficiency light emitting diodes from bipolar gallium nitride
US8785946B2 (en) Low 1C screw dislocation 3 inch silicon carbide wafer
CA2581856C (en) Low micropipe 100 mm silicon carbide wafer
JP4249184B2 (en) Nitride semiconductor growth substrate
US5385862A (en) Method for the preparation and doping of highly insulating monocrystalline gallium nitride thin films
US6270573B1 (en) Silicon carbide substrate, and method for producing the substrate, and semiconductor device utilizing the substrate
EP0282075B1 (en) Thin film single crystal substrate
US4213781A (en) Deposition of solid semiconductor compositions and novel semiconductor materials
US20130181231A1 (en) Micropipe-free silicon carbide and related method of manufacture
Li et al. ZnO nanobelts grown on Si substrate
DE60037526T2 (en) P-type zincoxide crystal with low resistance and method of manufacturing thereof
EP2267194B1 (en) Method of growing a beta-Ga2O3 single crystal thin film
JP3373853B2 (en) Multilayer crystal structure and a manufacturing method thereof
EP1489654B1 (en) METHOD OF MANUFACTURING LnCuO(S, Se, Te) MONOCRYSTALLINE THIN FILM
CN101174667A (en) Oxide films and process for preparing same
JP2004523450A (en) Generating apparatus and method for generating M&#39;n base material
US5187116A (en) Process for preparing electroluminescent device of compound semiconductor
JPH0650744B2 (en) Preparation of cadmium mercury telluride
Liu et al. Effect of temperature on pulsed laser deposition of ZnO films
JPWO2002099169A1 (en) Single crystal silicon carbide and a manufacturing method thereof
JPH10326911A (en) P-type iii nitride compound semiconductor and its production
US5425860A (en) Pulsed energy synthesis and doping of silicon carbide
KR100610580B1 (en) Zinc oxide semiconductor material
US7268063B1 (en) Process for fabricating semiconductor component

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees