JP3075581B2 - Apparatus for growing nitride-based compound semiconductor films - Google Patents

Apparatus for growing nitride-based compound semiconductor films

Info

Publication number
JP3075581B2
JP3075581B2 JP03118583A JP11858391A JP3075581B2 JP 3075581 B2 JP3075581 B2 JP 3075581B2 JP 03118583 A JP03118583 A JP 03118583A JP 11858391 A JP11858391 A JP 11858391A JP 3075581 B2 JP3075581 B2 JP 3075581B2
Authority
JP
Japan
Prior art keywords
radical generator
nitrogen
based compound
compound semiconductor
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03118583A
Other languages
Japanese (ja)
Other versions
JPH04346218A (en
Inventor
由雄 真鍋
茂生 林
常男 三露
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP03118583A priority Critical patent/JP3075581B2/en
Publication of JPH04346218A publication Critical patent/JPH04346218A/en
Application granted granted Critical
Publication of JP3075581B2 publication Critical patent/JP3075581B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、窒化物系化合物半導体
膜の成長装置の関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for growing a nitride-based compound semiconductor film.

【0002】[0002]

【従来の技術】近年、ワイドバンドギャップ化合物半導
体は青色領域での高効率LEDやレーザなどの用途が考
えられている。特に窒化物系族化合物半導体の成長にお
いてより高品質な材料を得るために、成長方法や成長装
置が注目されている。
2. Description of the Related Art In recent years, wide band gap compound semiconductors have been considered for applications such as high efficiency LEDs and lasers in the blue region. In particular, in order to obtain a higher quality material in the growth of a nitride-based compound semiconductor, a growth method and a growth apparatus have attracted attention.

【0003】この分野における従来の技術としては、ハ
ライド系気相成長法が用いられてきた。たとえば、Ga
Nの成長にはGa−HCl−NH3 系の反応によって行
なわれてきた。窒化物系化合物半導体の成長装置として
は、石英反応管内に試料基板を設置し、この石英反応管
を電気炉内におき、3族元素を塩化物で、窒素をアンモ
ニア(NH3 )で供給し、試料基板上で熱分解して成長
させるハライド系気相成長装置がある。
[0003] As a conventional technique in this field, a halide-based vapor phase epitaxy has been used. For example, Ga
N has been grown by a Ga-HCl-NH 3 system reaction. As a device for growing a nitride-based compound semiconductor, a sample substrate is set in a quartz reaction tube, the quartz reaction tube is placed in an electric furnace, and a group III element is supplied with chloride and nitrogen is supplied with ammonia (NH 3 ). There is a halide vapor phase epitaxy apparatus that grows by thermal decomposition on a sample substrate.

【0004】また、アプライド フィジックス レター
ズ第48巻870ページ(Applied Physi
cs Letters,Vol.48,1986)(特
開昭61−179527号公報)に開示されているよう
に、窒素のECRプラズマ中の窒素分子イオンと3族有
機金属を用いて、基板上に成長させている。ECRプラ
ズマを用いた窒化物系化合物半導体の成長装置の概略図
を図5に示す。基本構成としては、窒素分子イオンを発
生させるプラズマ発生室22と窒化物系化合物半導体膜
19を成長させる成長室23からなる。プラズマ発生室
22はマイクロ波導波管20によってマイクロ波を供給
し、電磁石10によって磁場を印加することによってE
CRプラズマを発生できるようにしてあり、成長室23
は3族有機金属を導入口21によって供給してある。プ
ラズマ発生室22で発生した窒素分子イオンを成長室2
3に供給し、3族有機金属と反応させて基板5上に窒化
物系化合物半導体膜を成長することができる。
Further, Applied Physics Letters, Vol. 48, p. 870 (Applied Physi
cs Letters, Vol. 48, 1986) (Japanese Unexamined Patent Publication (Kokai) No. 61-179527), the substrate is grown on a substrate by using nitrogen molecule ions in a nitrogen ECR plasma and a group 3 organic metal. FIG. 5 shows a schematic view of a nitride-based compound semiconductor growth apparatus using ECR plasma. The basic configuration includes a plasma generation chamber 22 for generating nitrogen molecular ions and a growth chamber 23 for growing a nitride-based compound semiconductor film 19. The plasma generation chamber 22 is supplied with microwaves by the microwave waveguide 20 and is applied with a magnetic field by the electromagnet 10 to generate E.
A CR plasma can be generated, and the growth chamber 23
Is supplied with a group 3 organic metal through an inlet 21. The nitrogen molecular ions generated in the plasma generation chamber 22 are transferred to the growth chamber 2
3 and react with the group 3 organic metal to grow a nitride-based compound semiconductor film on the substrate 5.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記方
法の窒化物系化合物半導体の成長装置および成長方法で
は、次のような課題がある。1)従来のハライド系気相
成長法では、3族元素とNを反応させて窒化物系化合物
半導体膜を成長させるには、基板温度を高温にしてなく
てはならなかった。例えば、GaNでは、基板温度を1
500℃以上にしなくてはならない。また、この温度で
はGaとNの蒸気圧の相違により得られたGaN膜中に
窒素空孔を多く含み、結晶性が悪いという問題があっ
た。さらに、この窒素空孔の影響でGaN膜は低抵抗と
なり、アクセプタ不純物を添加なしに高抵抗GaNを得
ることが困難であった。他の窒化物系化合物半導体のA
lNやInNも同様な問題を有していた。2)ECRプ
ラズマを用いた窒化物系化合物半導体膜の成長方法で
は、高励起の窒素イオンの作用によって、基板温度の低
下を図ることができた。しかし、ECRプラズマ中に含
まれる高励起のイオン種が半導体膜および基板上に照射
されて、窒素空孔を発生させてしまい、結晶性が悪くな
りワイドバンドギャップ半導体として使用するに至らな
かった。これは、ECRプラズマ中の電子温度は約5〜
10eVと非常に高いため、イオン種が基板付近で形成
されるイオンシースで加速されて入射されるためと考え
られる。
However, the apparatus and method for growing a nitride-based compound semiconductor according to the above method have the following problems. 1) In the conventional halide-based vapor phase epitaxy method, the substrate temperature must be increased in order to grow a nitride-based compound semiconductor film by reacting a group III element with N. For example, in GaN, the substrate temperature is set to 1
It must be above 500 ° C. At this temperature, the GaN film obtained due to the difference in vapor pressure between Ga and N contains many nitrogen vacancies, and has a problem of poor crystallinity. Further, the GaN film has a low resistance under the influence of the nitrogen vacancies, and it has been difficult to obtain high-resistance GaN without adding an acceptor impurity. A of other nitride-based compound semiconductors
1N and InN also had a similar problem. 2) In the method for growing a nitride-based compound semiconductor film using ECR plasma, the substrate temperature could be reduced by the action of highly excited nitrogen ions. However, highly excited ionic species contained in the ECR plasma are irradiated onto the semiconductor film and the substrate to generate nitrogen vacancies, resulting in poor crystallinity and not being used as a wide band gap semiconductor. This means that the electron temperature in the ECR plasma is about 5
This is considered to be because the ion species is accelerated by the ion sheath formed near the substrate and is incident because it is as high as 10 eV.

【0006】さらに、RFスパッタ法などのグロー放電
法による膜成長では、多結晶膜しか得られてないという
問題がある。
Further, in the film growth by a glow discharge method such as the RF sputtering method, there is a problem that only a polycrystalline film is obtained.

【0007】本発明は、電子サイクロトロン共鳴プラズ
マによって多量の窒素分子ラジカルまたは窒素原子ラジ
カルを供給し、3族原子と反応させることにより、結晶
性が高く高抵抗な良質の窒化物系化合物半導体膜を提供
することを目的とする。
The present invention provides a high-quality nitride-based compound semiconductor film having high crystallinity and high resistance by supplying a large amount of nitrogen molecule radicals or nitrogen atom radicals by electron cyclotron resonance plasma and reacting with a group III atom. The purpose is to provide.

【0008】[0008]

【課題を解決するための手段】前記目的を達成するた
め、本発明の窒化物系化合物半導体膜の成長装置は、真
空槽内に、3族原子を供給させる手段と、窒素分子ラジ
カルまたは窒素原子ラジカルを発生させる手段とを少な
くとも備えた窒化物系化合物半導体膜の成長装置であっ
て、前記窒素分子ラジカルまたは窒素原子ラジカルを発
生させる手段として、マイクロ波と磁場の印加によって
窒素を含む気体の電子サイクロトロン共鳴(ECR)プ
ラズマを発生させるラジカル発生器を用い、前記ECR
プラズマ中の窒素分子イオンまたは窒素原子イオンを除
去させる手段として、前記マイクロ波の伝搬方向の磁場
強度の分布を、前記ラジカル発生器の前記マイクロ波の
導入口付近から前記ラジカル発生器の管内波長の一波長
以上までの領域においてECR発生条件以上の磁場強度
に保ち、前記ラジカル発生器の出口付近でECR発生条
件以下の磁場強度にしたことを特徴とする。
In order to achieve the above object, the present invention provides an apparatus for growing a nitride-based compound semiconductor film, comprising: means for supplying a group III atom into a vacuum chamber; A device for growing a nitride-based compound semiconductor film comprising at least a means for generating radicals, wherein the means for generating nitrogen molecule radicals or nitrogen atom radicals includes gas electrons containing nitrogen by applying a microwave and a magnetic field. A radical generator for generating cyclotron resonance (ECR) plasma;
As means for removing nitrogen molecular ions or nitrogen atom ions in the plasma, the distribution of the magnetic field strength in the direction of propagation of the microwave is changed from the vicinity of the microwave introduction port of the radical generator to the guide wavelength of the radical generator. A magnetic field strength equal to or higher than the ECR generation condition is maintained in a region up to one wavelength or more, and a magnetic field intensity equal to or lower than the ECR generation condition is set near the exit of the radical generator.

【0009】前記構成においては、ラジカル発生器内
出口付近に負電位の電極を設けることが好ましい。
[0009] In the above configuration, the inside of the radical generator
It is preferable to provide a negative potential electrode near the outlet .

【0010】また前記構成においては、ラジカル発生器
の出口としてマイクロ波を遮断できる大きさ以下にし
かつ1個にしたすることが好ましい。
[0010] In the above structure, the size of the outlet of the radical generator is set to be smaller than a size capable of blocking microwaves ,
In addition, it is preferable to use one.

【0011】[0011]

【作用】図1は、ラジカル発生器内の磁場分布とイオ
ン、ラジカルの動きの概略を示した図である。プラズマ
中のイオン1は磁力線2に沿って運動するので、図1中
に示すようにイオン1がラジカル発生器の出口付近に到
達することを少なくすることができる。また、ラジカル
3は荷電粒子でないので、窒素分子ラジカルまたは窒素
原子ラジカルは直進する。イオンダメージを起こすイオ
ン種は除去でき、窒素分子ラジカルを基板上に輸送でき
る。
FIG. 1 is a schematic diagram showing the magnetic field distribution in the radical generator and the movement of ions and radicals. Since the ions 1 in the plasma move along the lines of magnetic force 2, it is possible to reduce the arrival of the ions 1 near the exit of the radical generator as shown in FIG. Since the radical 3 is not a charged particle, the nitrogen molecule radical or the nitrogen atom radical goes straight. Ion species that cause ion damage can be removed, and nitrogen molecular radicals can be transported onto the substrate.

【0012】さらに、ラジカル発生器内に窒素ガスを導
入しECR放電を行うことによって、ラジカル発生器内
の窒素分子ラジカルまたは窒素原子ラジカルを多量に発
生でき、かつ発生したラジカルを衝突なく基板上に輸送
できる。これにより、反応性が高くかつ長寿命の窒素分
子ラジカルの一つに、準安定状態(A3Σu+)がある。
準安定状態(A3Σu+)は長寿命(>1sec)であ
り、窒素原子に解離しすい。ここで、ラジカル発生器内
の圧力は1×10 -3 Paから1Paが窒素分子ラジカル
を発生するのに好ましい。
Further, nitrogen gas is introduced into the radical generator.
By carrying out the ECR discharge, a large amount of nitrogen molecule radicals or nitrogen atom radicals in the radical generator can be generated, and the generated radicals can be transported onto the substrate without collision. Thus, one of the highly reactive and long-lived nitrogen molecular radicals is a metastable state (A 3 Σu + ).
The metastable state (A 3 Σu + ) has a long life (> 1 sec) and is easily dissociated into nitrogen atoms. Here, in the radical generator
Pressure is 1 × 10 −3 Pa to 1 Pa is nitrogen molecule radical
Is preferred to generate

【0013】[0013]

【実施例】以下実施例を用いて本発明をさらに具体的に
説明する。図2は本発明の成長装置の一つの実施例の概
略構成図であり、図3はラジカル発生器の概略構成図で
ある。基本構成としては、真空槽4内に基板5、3族原
子を供給するKセル6、ラジカル発生器7である。EC
Rプラズマを形成するためのラジカル発生器7は、マイ
クロ波導入口8と窒素ガス導入口9を有し、ラジカル発
生器7の周囲に電磁石10を配置した。ラジカル発生器
7は、内径80mm、長さ600mmとした。マイクロ
波の周波数を2.45GHzとした場合ECR発生条件
を満足する磁場強度は0.0875Tとなり、また内径
80mmのラジカル発生器7に円筒TE11モードを励振
する場合、ラジカル発生器7の管内波長は277mmと
なる。ラジカル発生器7のマイクロ波の伝搬方向11に
印加した磁場強度分布はマイクロ波導入口8付近で0.
1Tとした。0.1Tの磁場強度をマイクロ波導入口8
から300mmまで一定に保ち、この長さはラジカル発
生器7の管内波長(277mm)の一波長以上である。
またラジカル発生器7の出口12付近の磁場強度を0.
02Tまで減少させて、ECR条件以下の磁場強度とし
た。
The present invention will be described more specifically with reference to the following examples. FIG. 2 is a schematic configuration diagram of one embodiment of the growth apparatus of the present invention, and FIG. 3 is a schematic configuration diagram of a radical generator. The basic configuration includes a substrate 5, a K cell 6 for supplying a group 3 atom, and a radical generator 7 in a vacuum chamber 4. EC
The radical generator 7 for forming R plasma has a microwave inlet 8 and a nitrogen gas inlet 9, and an electromagnet 10 is arranged around the radical generator 7. The radical generator 7 had an inner diameter of 80 mm and a length of 600 mm. When the microwave frequency is set to 2.45 GHz, the magnetic field intensity that satisfies the ECR generation condition is 0.0875 T. When exciting the cylindrical TE 11 mode to the radical generator 7 having an inner diameter of 80 mm, the guide wavelength of the radical generator 7 Is 277 mm. The intensity distribution of the magnetic field applied in the microwave propagation direction 11 of the radical generator 7 is approximately 0. 0 near the microwave inlet 8.
1T. 0.1T magnetic field intensity at microwave inlet 8
From 300 mm to 300 mm, and this length is at least one wavelength in the guide wavelength (277 mm) of the radical generator 7.
In addition, the magnetic field intensity near the outlet 12 of the radical generator 7 is set to 0.
The magnetic field intensity was reduced to 02T to be equal to or lower than the ECR condition.

【0014】ラジカル発生器7の出口12の内径Dは7
0mmとした。この内径Dは2.45GHz、円筒TE
11モードの場合マイクロ波を遮断する内径71.8mm
以下にしてあるので、マイクロ波は真空槽4内に伝搬し
ない。マイクロ波電力は200W一定にした。
The inner diameter D of the outlet 12 of the radical generator 7 is 7
0 mm. This inner diameter D is 2.45 GHz, cylindrical TE
111.8mm inside diameter to block microwaves in 11 mode
The microwave does not propagate into the vacuum chamber 4 because of the following. The microwave power was kept constant at 200W.

【0015】また、ラジカル発生器7の出口12は直流
電源13で負電位の電極にし、電極に−20Vを印加し
た。ラジカル発生器7に円筒TE11モードを励振するた
めに、マイクロ波を円筒TE11モードの導波管14を通
して供給した。
The outlet 12 of the radical generator 7 is made a negative potential electrode by a DC power supply 13, and -20 V is applied to the electrode. In order to excite the radical generator 7 in the cylindrical TE 11 mode, microwaves were supplied through the waveguide 14 in the cylindrical TE 11 mode.

【0016】図4は図3のラジカル発生器7の出口12
付近において発光分光測定して得られた窒素分子イオン
の発光(391nm:I391 )と窒素分子ラジカルの発
光(337nm:I337 )の発光強度比(I337 /I
391 )の圧力依存性を示した。窒素分子イオン(391
nm)と窒素分子ラジカル(337nm)の発光は、そ
れぞれの遷移の上準位の寿命がほぼ同じなので、発光強
度比(I337 /I391 )は窒素分子ラジカルと窒素分子
イオンの発生量比に比例している。また、窒素分子ラジ
カルの発光(337nm)は、窒素分子の電子間遷移C
3 Πu −B3 Πg における振動準位間遷移(ν’、
ν”)=(0、0)の発光であり、励起されたC3 Πu
状態は、B3 Πg 状態を経て準安定状態(A3 Σ u+
になる。さらにC3 Πu 、B3 Πg 状態の寿命はμse
c以下なので、窒素分子ラジカルの発光(337nm)
の発光強度は、準安定状態(A3 Σ u+ )の発生量と比
例している。
FIG. 4 shows the outlet 12 of the radical generator 7 of FIG.
In the vicinity, the emission intensity ratio (I 337 / I) of the emission of nitrogen molecule ions ( 391 nm: I 391 ) and the emission of nitrogen molecule radicals (337 nm: I 337 ) obtained by emission spectrometry.
391 ) showed pressure dependence. Nitrogen molecular ion (391
nm) and the emission of a nitrogen molecular radical (337 nm) have almost the same lifetime at the upper level of each transition. Therefore, the emission intensity ratio (I 337 / I 391 ) is equal to the ratio of the amount of the generated nitrogen molecular radical to the amount of the nitrogen molecular ion. Proportional. In addition, the emission (337 nm) of the nitrogen molecule radical shows the transition between electrons of the nitrogen molecule.
Transition between the vibration levels in 3 Π u -B 3 Π g ( ν ',
ν ") = (0,0) is a light emission of the excited C 3 [pi u
State, metastable state through B 3 [pi g state (A 3 Σ u +)
become. Furthermore C 3 Π u, B 3 of [pi g state lifetime μse
c or less, emission of nitrogen molecular radicals (337 nm)
Is proportional to the amount of metastable state (A 3 Σu + ) generated.

【0017】ラジカル発生器7内の圧力を1×10-3
a以下1Pa以上にすると、窒素分子ラジカルの発生量
が窒素分子イオンより多く発生する。また、ラジカル発
生器7の出口12を負電位に印加することにより、窒素
分子イオンをさらに除去できる。ラジカル発生器内の圧
力が1×10-3Pa未満の場合イオン種がラジカル種よ
り多く発生するとともに、発生量も少なくなる。圧力が
1Paより大きい場合準安定状態(A3 Σ u+ )の失活
反応が増加する。
The pressure in the radical generator 7 is set to 1 × 10 −3 P
If a is equal to or less than a and equal to or greater than 1 Pa, the amount of generated nitrogen molecular radicals is larger than that of nitrogen molecular ions. Further, by applying the outlet 12 of the radical generator 7 to a negative potential, nitrogen molecular ions can be further removed. When the pressure in the radical generator is less than 1 × 10 −3 Pa, ionic species are generated more than radical species, and the amount of generation is reduced. When the pressure is higher than 1 Pa, the deactivation reaction in the metastable state (A 3 Σu + ) increases.

【0018】以下本発明の具体的実施例について説明す
る。 実施例1(AlN膜の成長)真空槽4内を10-8Pa以
下にした後、ラジカル発生器7内にN2 ガスを1〜10
sccm供給し、ラジカル発生器7内の圧力を10-3
1Paにした。マイクロ波電力は200〜300Wを印
加して、窒素ラジカルを発生させた。基板としてサファ
イアc面基板を用い、基板温度を400〜700℃に設
定した。Alの供給源としてKセル6を用いて、セル温
度を700〜900℃に設定した。分子線強度で10-6
〜10-5Paであった。このようにして、サファイアc
面基板上にAlN膜を成長させた。X線回折法によって
結晶評価を行なうと、2θ=36゜近傍に(002)面
からの回折ピークが現れており、成長させたAlN膜が
c軸配向していることを示した。また、反射高エネルギ
ー電子線回折(RHEED)法による評価では、スポッ
ト状の回折パターンが得られ、成長させたAlN膜が単
結晶膜であることを示した。電気的特性ではAlN膜は
高抵抗膜であり、窒素空孔の少ない膜であると考えられ
る。
Hereinafter, specific embodiments of the present invention will be described. Example 1 (Growth of AlN film) After the pressure in the vacuum chamber 4 was reduced to 10 −8 Pa or less, the N 2 gas was
sccm, and the pressure in the radical generator 7 is set to 10 −3 to
It was set to 1 Pa. Microwave power of 200 to 300 W was applied to generate nitrogen radicals. A sapphire c-plane substrate was used as the substrate, and the substrate temperature was set at 400 to 700 ° C. The cell temperature was set to 700 to 900 ° C. using the K cell 6 as a supply source of Al. 10 -6 in molecular beam intensity
-10 -5 Pa. Thus, sapphire c
An AlN film was grown on the surface substrate. When the crystal was evaluated by the X-ray diffraction method, a diffraction peak from the (002) plane appeared near 2θ = 36 °, indicating that the grown AlN film was c-axis oriented. Evaluation by reflection high energy electron diffraction (RHEED) revealed that a spot-like diffraction pattern was obtained, indicating that the grown AlN film was a single crystal film. In terms of electrical characteristics, the AlN film is considered to be a high-resistance film and a film having few nitrogen vacancies.

【0019】なお、本実施例ではN2 ガスを用いたが、
NH3 ガスでも同様な結果が得られた。 実施例2(GaN膜の成長)真空槽4内のガス圧、窒素
ラジカルを発生させるラジカル発生器7内の条件は、実
施例1と同一に設定した。基板としてはサファイアc面
基板を用い、基板温度は400〜600℃と設定した。
Gaの供給源として、Gaの有機金属であるトリメチル
ガリウム(Ga(CH3 3 )を用いた。トリメチルガ
リウムを35℃一定に保ち、マスフローメータを用いて
真空槽4内に0.1〜0.5sccm供給した。X線回
折法、RHEEDによって結晶評価を行なうと、AlN
膜と同様にc軸配向の単結晶膜が得られた。電気的特性
も高抵抗膜であった。
In this embodiment, N 2 gas is used.
Similar results were obtained with NH 3 gas. Example 2 (Growth of GaN film) The gas pressure in the vacuum chamber 4 and the conditions in the radical generator 7 for generating nitrogen radicals were set the same as in Example 1. A sapphire c-plane substrate was used as the substrate, and the substrate temperature was set at 400 to 600 ° C.
As a source of Ga, trimethylgallium (Ga (CH 3 ) 3 ) which is an organic metal of Ga was used. Trimethyl gallium was kept at 35 ° C., and was supplied into the vacuum chamber 4 using a mass flow meter at 0.1 to 0.5 sccm. When the crystal is evaluated by the X-ray diffraction method and RHEED, AlN
A c-axis oriented single crystal film was obtained in the same manner as the film. The electrical characteristics were also high resistance films.

【0020】なお、本実施例1、2においては、GaN
膜とAlN膜について説明したが、他の窒化物系化合物
半導体のGaAlN、InNにおいても、単結晶薄膜を
得ることができた。
In the first and second embodiments, GaN
Although the film and the AlN film have been described, a single-crystal thin film could be obtained also with other nitride-based compound semiconductors such as GaAlN and InN.

【0021】以上説明したように、本発明の実施例によ
れば、真空槽内に窒素分子ラジカルまたは窒素原子ラジ
カルを発生させる手段と、3族原子を供給させる手段と
を有し、窒素分子ラジカルまたは窒素原子ラジカルを発
生させる手段として、マイクロ波と磁場の印加によって
窒素を含む気体のECRプラズマを発生させるラジカル
発生器を用い、ECRプラズマ中の窒素分子イオンまた
は窒素原子イオンを除去させる手段として、マイクロ波
の伝搬方向の磁場強度の分布をマイクロ波のラジカル発
生器内の導入口付近からマイクロ波の管内波長の一波長
以上の領域においてECR条件以上の磁場強度に保ち、
ラジカル発生器の出口付近でECR条件以下の磁場強度
にした構成で、多量の反応性の高い窒素ラジカルを発生
できるので、低い基板温度でかつイオン衝撃を少なくで
き、良質な窒化物系化合物半導体膜を得る効果をもつ。
As described above, according to the embodiment of the present invention, there is provided a means for generating a nitrogen molecule radical or a nitrogen atom radical in a vacuum chamber and a means for supplying a group III atom. Alternatively, as a means for generating nitrogen atom radicals, a radical generator for generating a gas containing nitrogen by application of a microwave and a magnetic field is used, and as a means for removing nitrogen molecule ions or nitrogen atom ions in the ECR plasma, The distribution of the magnetic field strength in the propagation direction of the microwave is maintained at a magnetic field strength equal to or higher than the ECR condition in a region of one or more wavelengths in the microwave tube from the vicinity of the inlet in the radical generator of the microwave,
A large amount of highly reactive nitrogen radicals can be generated near the exit of the radical generator under the magnetic field strength below the ECR condition, so that a low substrate temperature and less ion bombardment can be obtained, and a high quality nitride-based compound semiconductor film can be obtained. Has the effect of obtaining

【0022】また本発明は、ラジカル発生器内の圧力P
を1×10-3Pa以上1Pa以下にしたことによって、
低圧力で多量のラジカルを発生できるので、高い反応性
の窒素ラジカルを他の粒子と衝突することなく基板上ま
で容易に輸送できる効果を発揮できる。
Further, according to the present invention, the pressure P
Is set to 1 × 10 −3 Pa or more and 1 Pa or less,
Since a large amount of radicals can be generated at a low pressure, the effect of easily transporting highly reactive nitrogen radicals to the substrate without colliding with other particles can be exhibited.

【0023】以上のように、本発明は優れた効果を有す
るものであり、本発明の工業的価値は高い。
As described above, the present invention has excellent effects, and the industrial value of the present invention is high.

【0024】[0024]

【発明の効果】以上説明した通り本発明によれば、マイ
クロ波と磁場によって高励起、高密度のECRプラズマ
をプラズマ発生器内に容易に発生でき、窒素を含む気体
の場合反応性の高い窒素のイオン種やラジカル種を多量
に発生できる。さらに、ラジカル発生器内のマイクロ波
の伝搬方向の磁場強度の分布を、ラジカル発生器の導入
口付近からラジカル発生器の管内波長の一波長以上まで
の領域においてECR発生条件以上の磁場強度に保ち、
ラジカル発生器の出口付近でECR発生条件以下の磁場
強度にすることで、ECRプラズマ中の窒素分子イオン
または窒素原子イオンを除去できる。また、ECR発生
条件以上の磁場強度の領域を管内波長の一波長以上ある
のでマイクロ波は十分に吸収することができる。
As described above, according to the present invention, highly excited and high-density ECR plasma can be easily generated in a plasma generator by using a microwave and a magnetic field. A large amount of ionic and radical species can be generated. Furthermore, the distribution of the magnetic field strength in the propagation direction of the microwave in the radical generator is maintained at a magnetic field strength exceeding the ECR generation condition in a region from the vicinity of the inlet of the radical generator to one or more wavelengths in the tube wavelength of the radical generator. ,
By setting the magnetic field intensity below the ECR generation conditions near the exit of the radical generator, nitrogen molecule ions or nitrogen atom ions in the ECR plasma can be removed. In addition, since a region having a magnetic field strength equal to or higher than the ECR generation condition is at least one wavelength in the tube, microwaves can be sufficiently absorbed.

【0025】[0025]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例のラジカル発生器内の磁場分
布と、イオン、ラジカルの動きの概略図である。
FIG. 1 is a schematic diagram of a magnetic field distribution in a radical generator and movement of ions and radicals according to an embodiment of the present invention.

【図2】本発明の一実施例の成長装置の概略構成図であ
る。
FIG. 2 is a schematic configuration diagram of a growth apparatus according to one embodiment of the present invention.

【図3】本発明の一実施例のラジカル発生器の概略構成
図である。
FIG. 3 is a schematic configuration diagram of a radical generator according to one embodiment of the present invention.

【図4】本発明の一実施例のラジカル発生器の出口付近
において発光分光測定して得られた窒素分子イオンの発
光(391nm:I391 )と窒素分子ラジカルの発光
(337nm:I337 )の発光強度比(I337
391 )の圧力依存性を示した図である。
FIG. 4 shows the emission of nitrogen molecular ions ( 391 nm: I 391 ) and the emission of nitrogen molecular radicals (337 nm: I 337 ) obtained by emission spectroscopy near the exit of the radical generator according to one embodiment of the present invention. Emission intensity ratio (I 337 /
It is a figure showing the pressure dependence of I391 ).

【図5】従来の窒化物系化合物半導体膜の成長装置の概
略構成図である。
FIG. 5 is a schematic configuration diagram of a conventional nitride-based compound semiconductor film growth apparatus.

【符号の説明】[Explanation of symbols]

1 イオン 2 磁力線 3 ラジカル 4 真空槽 5 基板 6 Kセル 7 ラジカル発生器 8 マイクロ波導入口 9 窒素ガス導入口 10 電磁石 11 マイクロ波の伝搬方向 12 ラジカル発生器の出口 13 直流電源 14 TE11モードの円筒導波管 15 石英板 19 窒化物系化合物半導体膜 21 3族有機金属導入口 22 プラズマ発生室 23 成長室DESCRIPTION OF SYMBOLS 1 Ion 2 Magnetic field line 3 Radical 4 Vacuum tank 5 Substrate 6 K cell 7 Radical generator 8 Microwave introduction port 9 Nitrogen gas introduction port 10 Electromagnet 11 Microwave propagation direction 12 Radical generator exit 13 DC power supply 14 TE 11 mode cylinder Waveguide 15 Quartz plate 19 Nitride-based compound semiconductor film 21 Group 3 organic metal inlet 22 Plasma generation chamber 23 Growth chamber

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−179527(JP,A) 特開 平1−307225(JP,A) 特開 昭61−59821(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/203,21/363 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-61-179527 (JP, A) JP-A-1-307225 (JP, A) JP-A-61-59821 (JP, A) (58) Investigation Field (Int.Cl. 7 , DB name) H01L 21 / 203,21 / 363

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】真空槽内に、3族原子を供給させる手段
と、窒素分子ラジカルまたは窒素原子ラジカルを発生さ
せる手段とを少なくとも備えた窒化物系化合物半導体膜
の成長装置であって、前記窒素分子ラジカルまたは窒素
原子ラジカルを発生させる手段として、マイクロ波と磁
場の印加によって窒素を含む気体の電子サイクロトロン
共鳴(ECR)プラズマを発生させるラジカル発生器を
用い、前記ECRプラズマ中の窒素分子イオンまたは窒
素原子イオンを除去させる手段として、前記マイクロ波
の伝搬方向の磁場強度の分布を、前記ラジカル発生器の
前記マイクロ波の導入口付近から前記ラジカル発生器の
管内波長の一波長以上までの領域においてECR発生条
件以上の磁場強度に保ち、前記ラジカル発生器の出口付
近でECR発生条件以下の磁場強度にしたことを特徴と
する窒化物系化合物半導体膜の成長装置。
An apparatus for growing a nitride-based compound semiconductor film, comprising: a means for supplying a group 3 atom into a vacuum chamber; and a means for generating a nitrogen molecule radical or a nitrogen atom radical. As a means for generating molecular radicals or nitrogen atom radicals, a radical generator for generating electron cyclotron resonance (ECR) plasma of a gas containing nitrogen by applying a microwave and a magnetic field is used, and nitrogen molecule ions or nitrogen in the ECR plasma are used. As means for removing atomic ions, the distribution of the magnetic field strength in the direction of propagation of the microwave is controlled by ECR in a region from the vicinity of the microwave introduction port of the radical generator to one or more wavelengths in the guide tube of the radical generator. ECR generation conditions near the exit of the radical generator were maintained at a magnetic field intensity higher than the generation conditions. Apparatus for growing a nitride-based compound semiconductor film, characterized in that the magnetic field strength below.
【請求項2】ラジカル発生器内の出口付近に負電位の電
極を設ける請求項1に記載の窒化物系化合物半導体膜の
成長装置。
2. The apparatus for growing a nitride-based compound semiconductor film according to claim 1, wherein a negative potential electrode is provided near an outlet in the radical generator.
【請求項3】ラジカル発生器の出口としてマイクロ波を
遮断できる大きさ以下にし、かつ1個にした請求項1に
記載の窒化物系化合物半導体膜の成長装置。
3. An apparatus for growing a nitride-based compound semiconductor film according to claim 1, wherein the number of outlets of the radical generator is less than or equal to a size at which microwaves can be blocked.
JP03118583A 1991-05-23 1991-05-23 Apparatus for growing nitride-based compound semiconductor films Expired - Fee Related JP3075581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03118583A JP3075581B2 (en) 1991-05-23 1991-05-23 Apparatus for growing nitride-based compound semiconductor films

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03118583A JP3075581B2 (en) 1991-05-23 1991-05-23 Apparatus for growing nitride-based compound semiconductor films

Publications (2)

Publication Number Publication Date
JPH04346218A JPH04346218A (en) 1992-12-02
JP3075581B2 true JP3075581B2 (en) 2000-08-14

Family

ID=14740183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03118583A Expired - Fee Related JP3075581B2 (en) 1991-05-23 1991-05-23 Apparatus for growing nitride-based compound semiconductor films

Country Status (1)

Country Link
JP (1) JP3075581B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9534322B2 (en) 2012-10-10 2017-01-03 Ayaha Corporation Fabric for carbon fiber reinforced composite material and method of manufacturing the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07263766A (en) * 1994-03-24 1995-10-13 Agency Of Ind Science & Technol Growth of metal nitride single crystal thin film and apparatus therefor
JP3349931B2 (en) * 1997-10-30 2002-11-25 松下電器産業株式会社 Method of manufacturing semiconductor laser device
JP3439994B2 (en) 1998-07-07 2003-08-25 科学技術振興事業団 Method for synthesizing low-resistance n-type and low-resistance p-type single-crystal AlN thin films
JP2003282434A (en) * 2002-03-20 2003-10-03 Ngk Insulators Ltd ZnO-BASED EPITAXIAL GROWTH SUBSTRATE, ZnO-BASED EPITAXIAL GROWTH UNDERLYING SUBSTRATE, AND MANUFACTURING METHOD FOR ZnO-BASED FILM
KR20120108324A (en) * 2011-03-23 2012-10-05 한국기초과학지원연구원 Method and apparatus for manufacturing light emit device using hyperthermal neutral beam

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9534322B2 (en) 2012-10-10 2017-01-03 Ayaha Corporation Fabric for carbon fiber reinforced composite material and method of manufacturing the same

Also Published As

Publication number Publication date
JPH04346218A (en) 1992-12-02

Similar Documents

Publication Publication Date Title
US4509451A (en) Electron beam induced chemical vapor deposition
US5512102A (en) Microwave enhanced CVD system under magnetic field
US9466479B2 (en) System and process for high-density, low-energy plasma enhanced vapor phase epitaxy
US6230650B1 (en) Microwave enhanced CVD system under magnetic field
US5376223A (en) Plasma etch process
JP4184789B2 (en) M'N-based material generating apparatus and method
JP2635021B2 (en) Deposition film forming method and apparatus used for the same
US4481229A (en) Method for growing silicon-including film by employing plasma deposition
EP0540304A1 (en) An apparatus for manufacturing a nitrogen-containing compound thin film
JPH0652716B2 (en) Semiconductor crystalline film manufacturing equipment
US20020005159A1 (en) Method of producing thin semiconductor film and apparatus therefor
JP3075581B2 (en) Apparatus for growing nitride-based compound semiconductor films
US6673722B1 (en) Microwave enhanced CVD system under magnetic field
Zembutsu et al. Low temperature growth of GaN single crystal films using electron cyclotron resonance plasma excited metalorganic vapor phase epitaxy
JP2662219B2 (en) Plasma processing equipment
JP2996162B2 (en) Plasma device, thin film forming method and etching method
Ohtani et al. Analysis and optimization of the electron cyclotron resonance plasma for nitride epitaxy
JPH0955365A (en) Surface cleaning method of semiconductor substrate
JP4590225B2 (en) Molecular beam epitaxial growth apparatus and method for producing group III nitride single crystal film on silicon substrate using the same
JPH09312271A (en) Plasma device, thin film formation and etching
EP0568177A2 (en) Epitaxial growth method and apparatus for doping nitrogen
JPH0379770A (en) Production of boron nitride
JPH05234892A (en) Growing method for crystal and radical generator for growing crystal
JPH05291138A (en) Molecular beam epitaxy method
JPH05275339A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees