JPH0955365A - Surface cleaning method of semiconductor substrate - Google Patents

Surface cleaning method of semiconductor substrate

Info

Publication number
JPH0955365A
JPH0955365A JP22579595A JP22579595A JPH0955365A JP H0955365 A JPH0955365 A JP H0955365A JP 22579595 A JP22579595 A JP 22579595A JP 22579595 A JP22579595 A JP 22579595A JP H0955365 A JPH0955365 A JP H0955365A
Authority
JP
Japan
Prior art keywords
substrate
semiconductor
znse
group
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22579595A
Other languages
Japanese (ja)
Inventor
Yoshikatsu Ichimura
好克 市村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HP Inc
Original Assignee
Hewlett Packard Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hewlett Packard Co filed Critical Hewlett Packard Co
Priority to JP22579595A priority Critical patent/JPH0955365A/en
Publication of JPH0955365A publication Critical patent/JPH0955365A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method by which impurities such as an oxide film grown on a substrate are removed inside a chamber for regrowth the substrate without damaging the crystal of the substrate. SOLUTION: A group II-VI semiconductor epitaxial film grown by an MBE method on a group III-V semiconductor substrate or a group II-VI semiconductor substrate is used as a substrate, and a group II-VI semiconductor is grown by an MBE method on the epitaxial film. At this time, the substrate is irradiated with an He/H2 mixed-gas plasma beam inside a regrowth chamber, and the surface of the substrate is cleaned. A ZnSe bulk crystal is used as a substrate. and a group II-VI semiconductor is grown by an MBE method on the bulk crystal. At this time, the substrate is irradiated with an He/H2 mixed-gas plasma beam inside a growth chamber, and the surface of the substrate is cleaned.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、分子線エピタキシ
ー(MBE)法を用いてII−VI族系半導体をII−
VIあるいはIII−V族系半導体結晶基板表面に成長
させる際に、該MBE成長室内で行う該基板表面の清浄
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses a molecular beam epitaxy (MBE) method to convert II-VI group semiconductors into II-type semiconductors.
The present invention relates to a method for cleaning a substrate surface in the MBE growth chamber when growing the surface of a VI or III-V group semiconductor crystal substrate.

【0002】[0002]

【技術背景】現在、MBE法で作製したII−VI族系
半導体レーザの研究が盛んに行われており、室温にて連
続動作させた際の寿命が約1時間程度のものが報告され
ている(A.Ishibashi and S.Ito
h,IEEE LEOS 1994,PD1.1,Bo
ston,USA(1994))。
BACKGROUND OF THE INVENTION Currently, a lot of research is being conducted on II-VI group semiconductor lasers produced by the MBE method, and it has been reported that they have a lifetime of about 1 hour when continuously operated at room temperature. (A. Ishibashi and S. Ito
h, IEEE LEOS 1994, PD1.1, Bo
Ston, USA (1994)).

【0003】また、埋め込み再成長型(基板上に単層ま
たは多層で形成した結晶の表面の一部をエッチングし、
該エッチング部に結晶を再成長させるタイプのもの)の
半導体レーザは、III−V族系半導体を用いる分野に
おいて、非常に一般的に用いられている(伊藤良一編
著,半導体レーザ)。しかし、II−VI族系半導体に
おいては、そのような再成長技術は確立されておらず、
特に、MBE法を用いた結晶成長技術においては、以下
に述べるような理由により、困難であると言われてい
る。
In addition, a buried regrown type (a part of the surface of a crystal formed in a single layer or multiple layers on a substrate is etched,
A semiconductor laser of the type in which a crystal is regrown in the etched portion) is very commonly used in the field of using III-V group semiconductors (edited by Ryoichi Ito, semiconductor laser). However, such a regrowth technique has not been established for II-VI group semiconductors,
In particular, it is said that the crystal growth technique using the MBE method is difficult for the reasons described below.

【0004】すなわち、一般に、II−VIあるいはI
II−V族系半導体をMBE法を用いて成長する際に用
いられる基板は、MBE成長室外で有機化合物あるいは
無機化合物により処理して表面損傷層を取り除き、これ
をMBE成長室内に導入し、さらに該成長室内におい
て、該基板表面に形成されている酸化膜を取り除く操作
を行った後に、MBE結晶成長に付している。
That is, in general, II-VI or I
The substrate used when growing the II-V group semiconductor using the MBE method is treated with an organic compound or an inorganic compound outside the MBE growth chamber to remove the surface damage layer, and this is introduced into the MBE growth chamber. MBE crystal growth is performed after the operation of removing the oxide film formed on the substrate surface is performed in the growth chamber.

【0005】この酸化膜は、通常、基板の温度を上昇
(例えば、GaAs基板では580〜600℃程度まで
温度上昇)させ、該膜を構成している酸化物を昇華させ
ることにより、除去している。
This oxide film is usually removed by raising the temperature of the substrate (for example, in the case of a GaAs substrate, raising the temperature to about 580 to 600 ° C.) and sublimating the oxide forming the film. There is.

【0006】しかし、MBE法で成長したII−VI族
系半導体は、この成長温度以上の温度で熱処理を行うこ
とで、急速に特性が劣化することが報告されている
(Y.Ichimura,K.Kishino,M.K
uramoto,M.Satake,A.Yoshid
a,Journal of Electronic M
aterials Vol.24(1995)17
1)。
However, it has been reported that the characteristics of the II-VI group semiconductor grown by the MBE method are rapidly deteriorated by heat treatment at a temperature higher than this growth temperature (Y. Ichimura, K. et al. Kishino, M.K.
uramoto, M .; Satake, A .; Yoshid
a, Journal of Electronic M
materials Vol. 24 (1995) 17
1).

【0007】一方、低温で結晶基板の酸化膜を取り除く
方法も知られており、その一つに、RF(Radio
Frequency)波、マイクロ波、あるいはECR
(Electron Cyclotron Reson
ance)波などで励起した水素プラズマを照射する方
法がある。この方法は、プラズマにより活性化した水素
を基板に照射するものであり、比較的低温で酸化膜を取
り除くことができる。
On the other hand, a method of removing the oxide film of the crystal substrate at low temperature is also known, and one of them is RF (Radio).
Frequency) wave, microwave, or ECR
(Electron Cyclotron Reson
There is a method of irradiating hydrogen plasma excited by an (an) wave or the like. In this method, the substrate is irradiated with hydrogen activated by plasma, and the oxide film can be removed at a relatively low temperature.

【0008】しかし、水素ガス単体でのプラズマ処理法
は、基板に与える損傷が大きい。また、基板に与える損
傷を抑えるべく、低流量(低圧力)、低パワーの水素プ
ラズマを使用することも考えられる。しかし、このよう
なプラズマを生成する場合、プラズマ放電が非常に不安
定になることが多く起こる。
However, the plasma processing method using only hydrogen gas causes a great deal of damage to the substrate. It is also possible to use low flow rate (low pressure) and low power hydrogen plasma in order to suppress damage to the substrate. However, when such plasma is generated, the plasma discharge often becomes very unstable.

【0009】[0009]

【発明の目的】そこで、本発明では、MBE法で成長し
たII−VI族系半導体エピタキシャル結晶膜を基板と
し、該基板上にMBE法でII−VI族系半導体を再成
長させる際に、該基板に損傷を与えることなく、しかも
低温で、安定に、該基板表面をクリーニングすることの
できる表面清浄方法を提供することを目的とする。ま
た、本発明では、II−VI族系半導体基板のうちのZ
nSeの場合には、上記のエピタキシャル結晶に限ら
ず、バルク法で成長したZnSeバルク結晶を基板と
し、該基板上にMBE法でII−VI族系半導体を再成
長させる際に、該基板に損傷を与えることなく、低温
で、安定に、該基板表面をクリーニングすることのでき
る表面清浄方法をも提供することを他の目的とする。
Therefore, in the present invention, the II-VI group semiconductor epitaxial crystal film grown by the MBE method is used as a substrate, and when the II-VI group semiconductor is regrown on the substrate by the MBE method, An object of the present invention is to provide a surface cleaning method capable of stably cleaning the surface of a substrate at low temperature without damaging the substrate. Further, in the present invention, Z of the II-VI group semiconductor substrate is used.
In the case of nSe, not only the above-mentioned epitaxial crystal but also a ZnSe bulk crystal grown by the bulk method is used as a substrate, and when the II-VI group semiconductor is regrown on the substrate by the MBE method, the substrate is damaged. It is another object to provide a surface cleaning method capable of stably cleaning the surface of the substrate at a low temperature without giving the above.

【0010】[0010]

【発明の概要】本発明者は、上記の問題点を解決するた
めに検討を重ねた結果、He/H混合ガスプラズマを
用いることで、Hガス単体を用いたプラズマよりも、
基板の結晶に対する損傷を抑制しながら、酸化膜などの
不純物を除去することが可能であり、この結果、十分な
特性を有する結晶の再成長を行うことができる基板表面
とすることができるとの知見を得て、本発明を完成する
に至った。
The present inventors SUMMARY OF THE INVENTION As a result of extensive investigations to solve the above problem, by using the He / H 2 mixed gas plasma, than plasma using H 2 gas alone,
It is possible to remove impurities such as an oxide film while suppressing damage to the crystal of the substrate, and as a result, it is possible to obtain a substrate surface on which regrowth of a crystal having sufficient characteristics can be performed. With the knowledge obtained, the present invention has been completed.

【0011】すなわち、本発明は、〔1〕III−V族
系半導体基板あるいはII−VI族系半導体基板上に分
子線エピタキシー法で成長したII−VI族系半導体エ
ピタキシャル結晶膜を基板として用い、該エピタキシャ
ル結晶膜基板上に分子線エピタキシー法でII−VI族
系半導体を再成長させる際に、同成長室内で、He/H
混合ガスプラズマビームを同基板に照射して、同基板
表面をクリーニングすることを特徴とする半導体基板の
表面清浄方法(以下、第1発明と言う)、および〔2〕
ZnSeバルク結晶を基板として用い、該バルク結晶基
板上に分子線エピタキシー法でII−VI族系半導体を
成長させる際に、同成長室内で、He/H混合ガスプ
ラズマビームを同基板に照射して、同基板表面をクリー
ニングすることを特徴とする半導体基板の表面清浄方法
(以下、第2発明と言う)を要旨とする。
That is, the present invention uses [1] a II-VI group semiconductor epitaxial crystal film grown by a molecular beam epitaxy method on a III-V group semiconductor substrate or a II-VI group semiconductor substrate as a substrate, When the II-VI group semiconductor is regrown on the epitaxial crystal film substrate by the molecular beam epitaxy method, He / H in the same growth chamber is used.
A method for cleaning a surface of a semiconductor substrate (hereinafter referred to as a first invention), which comprises irradiating the substrate with a two- mixed gas plasma beam to clean the surface of the substrate, and [2].
When a ZnSe bulk crystal is used as a substrate and a II-VI group semiconductor is grown on the bulk crystal substrate by a molecular beam epitaxy method, the substrate is irradiated with a He / H 2 mixed gas plasma beam in the same growth chamber. A method of cleaning a surface of a semiconductor substrate (hereinafter, referred to as a second invention) is characterized in that the surface of the substrate is cleaned.

【0012】このとき、(1)He/H混合ガスが容
積比で2/1〜250/1であること、(2)成長室内
の真空度が5×10−8〜1×10−4torrである
こと、(3)基板温度が、第1発明では100℃以上で
II−VI族系半導体エピタキシャル結晶膜の成長温度
以下であり、第2発明では100〜500℃であるこ
と、が好ましい。
At this time, (1) the He / H 2 mixed gas has a volume ratio of 2/1 to 250/1, and (2) the degree of vacuum in the growth chamber is 5 × 10 −8 to 1 × 10 −4. and (3) the substrate temperature is not lower than 100 ° C. in the first invention and not higher than the growth temperature of the II-VI group semiconductor epitaxial crystal film, and is 100 to 500 ° C. in the second invention. .

【0013】ところで、GaAs基板上に窒素ドープの
p−ZnSe:Nを成長する際に用いられているRF波
により励起したラジカル窒素に、ヘリウムガスを混合し
たものを用いた場合に、損傷無く良質なp−ZnSeエ
ピタキシャル膜を成長できることが知られている(長竹
剛,登坂裕之,小林正和,吉川明彦:1993年秋期第
54回応用物理学会学術講演会講演予稿集P.256,
29P−ZL−14)。しかし、この文献には、RF
波、マイクロ波、あるいはECR波などで励起した水素
プラズマにヘリウムを混合した場合については何ら言及
しておらず、この文献から、これらの水素プラズマとヘ
リウムとを混合した場合に、II−VI族エピタキシャ
ル膜に大きな損傷を与えずに、該膜の表面に形成されて
いる酸化膜等の不純物を除去できることを予測すること
は不可能である。
By the way, when a mixture of helium gas and radical nitrogen excited by an RF wave used in growing nitrogen-doped p-ZnSe: N on a GaAs substrate is used, no damage occurs. It is known that p-ZnSe epitaxial films can be grown (Take Nagatake, Hiroyuki Tosaka, Masakazu Kobayashi, Akihiko Yoshikawa: Proceedings of the 54th Annual Meeting of the Society of Applied Physics, Autumn 1993 P.256.
29P-ZL-14). However, in this document, RF
No mention is made of the case where helium is mixed with hydrogen plasma excited by microwaves, microwaves, ECR waves or the like, and from this document, when these hydrogen plasma and helium are mixed, the II-VI group It is impossible to predict that impurities such as an oxide film formed on the surface of the epitaxial film can be removed without serious damage.

【0014】そこで、本発明者は、H/He混合ガス
プラズマはII−VI族エピタキシャル膜に大きな損傷
を与えずに、該膜の表面に形成されている酸化膜等の不
純物を除去できるとの仮定の下に、H/He混合ガス
プラズマの安定性を確認するために、RF波によるH
/He混合ガスプラズマの、プラズマ発光スペクトルの
解析を行った。
Therefore, the inventor of the present invention has found that the H 2 / He mixed gas plasma can remove impurities such as an oxide film formed on the surface of the II-VI group epitaxial film without seriously damaging the film. under the assumption, in order to confirm the stability of the H 2 / the He mixed gas plasma, H 2 by RF waves
The plasma emission spectrum of the / He mixed gas plasma was analyzed.

【0015】図1は、後述する実施例で得たH/He
混合ガスプラズマの発光スペクトルの典型例を示すもの
である。プラズマ発光スペクトル上に現れるHガスに
起因する輝線およびHeガスに起因する輝線の強度は、
それぞれのプラズマの強度を表すものである。このスペ
クトル中、570nm付近の発光輝線はHeに、650
nm付近の輝線はHに、それぞれ起因するものであ
る。
FIG. 1 shows H 2 / He obtained in the examples described later.
1 shows a typical example of an emission spectrum of mixed gas plasma. The intensity of the emission line due to H 2 gas and the emission line due to He gas appearing on the plasma emission spectrum are
It represents the intensity of each plasma. In this spectrum, the emission line near 570 nm is He and 650
The bright lines near nm are due to H 2 .

【0016】図2は、RF波パワーおよびHガス流量
を一定にしたときの、HガスおよびHeガスプラズマ
の輝線強度を(Heガス流量との関係において)示すも
のである。
FIG. 2 shows the emission line intensities of the H 2 gas and He gas plasmas (in relation to the He gas flow rate) when the RF wave power and the H 2 gas flow rate are constant.

【0017】図1および図2から明らかなように、RF
波のパワーおよびHガスの流量を固定した条件下にお
いて、(α)Heガスを導入することで、プラズマ放電
状態が安定すること、(β)Heガス流量を増加させる
と、Hプラズマの輝線強度も増加すること、(γ)H
eプラズマの輝線強度とHプラズマの輝線強度がとも
に最大になるような、He/Hガス混合比の最適条件
が存在すること、が分かる。
As is apparent from FIGS. 1 and 2, RF
Under conditions with a fixed flow rate of the wave power and H 2 gas, (alpha) by introducing He gas, the plasma discharge state is stabilized, (beta) increasing the He gas flow rate, H 2 plasma The bright line intensity also increases, (γ) H
It can be seen that there is an optimum condition of the He / H 2 gas mixture ratio such that the emission line intensity of the e plasma and the emission line intensity of the H 2 plasma both become maximum.

【0018】以上のプラズマ発光スペクトルの解析結果
と、他の種々の実験結果とから、第1および第2発明の
清浄方法における最適条件は、HeおよびHそれぞれ
のガスの流量やRF波のパワーによっても異なるが、一
般には、上記(1)のHe/Hの混合比、(2)の成
長室内の真空度、(3)の基板温度の各範囲内にあるこ
とが確認され、これらの範囲内から、ガスの流量やRF
波のパワーによって最適なものを適宜選定すればよい。
From the above analysis results of the plasma emission spectrum and other various experimental results, the optimum conditions in the cleaning methods of the first and second inventions are that the flow rates of He and H 2 gases and the power of RF waves are Generally, it is confirmed that the He / H 2 mixing ratio in (1), the vacuum degree in the growth chamber in (2), and the substrate temperature in (3) are within the respective ranges. From within the range, gas flow rate and RF
The optimum one may be appropriately selected according to the wave power.

【0019】上記(1)〜(3)の条件下において、水
素原子は、プラズマによって励起されたラジカルあるい
はイオン化された状態にあり、非常に反応性に富み、M
BE成長用基板のクリーニング用として有用な状態にあ
る。
Under the above-mentioned conditions (1) to (3), hydrogen atoms are in a radical excited by plasma or in an ionized state, and are highly reactive.
It is in a useful state for cleaning the BE growth substrate.

【0020】この励起された水素原子を、第1発明で
は、III−V族系半導体基板またはII−VI族系半
導体基板上にMBE法で成長したII−VI族系半導体
エピタキシャル結晶膜に、MBE法でII−VI族系半
導体を再成長させる際に、この成長室内で、この結晶膜
に照射する。
In the first invention, the excited hydrogen atoms are added to the MBE group II-VI group semiconductor substrate or the II-VI group semiconductor substrate by the MBE method to form an MBE grown II-VI group semiconductor epitaxial crystal film. When the II-VI group semiconductor is regrown by the method, the crystal film is irradiated in the growth chamber.

【0021】また、第2発明では、ZnSeバルク結晶
に、MBE法でII−VI族系半導体を成長させる際
に、同成長室内で、この結晶に照射する。
Further, in the second invention, when a group II-VI group semiconductor is grown on a ZnSe bulk crystal by the MBE method, the crystal is irradiated in the same growth chamber.

【0022】上記の照射により、第1,第2発明とも、
上記の結晶表面が、上記の励起された水素原子によりク
リーニングされることとなる。
Due to the above irradiation, both the first and second inventions,
The crystal surface will be cleaned by the excited hydrogen atoms.

【0023】[0023]

【実施例】【Example】

実施例1 以下の手順にて、まずHe/H混合ガスプラズマ発生
の最適条件を求め、次いでGaAs基板上に成長したZ
nSeおよびMgZnSSeエピタキシャル膜の表面酸
化膜の除去を行い、続いてZnSeの再成長を行った。
Example 1 According to the following procedure, the optimum conditions for He / H 2 mixed gas plasma generation were first determined, and then Z grown on a GaAs substrate was used.
The surface oxide film of the nSe and MgZnSSe epitaxial film was removed, and then ZnSe was regrown.

【0024】He/H混合ガスプラズマの発生は、M
BE成長室にとりつけられた、p−ZnSeを成長する
際に用いるRF(13.56MHz)−ラジカルプラズ
マセルを使用して、次の要領で行った。まず、このセル
に、Hガス0.04SCCM(標準状態における1分
当たりの流量《cc》)を導入し、RFパワーを350
W引加した。続いて、Heガス0.04SCCMを導入
し、Heガスの流量を徐々に増やした。Heガス流量が
0.13SCCMとなった時点で、He/H混合ガス
のプラズマが発生した。なお、MBE成長室内の真空度
は、約6×10−6Torrとした。
The generation of He / H 2 mixed gas plasma is
An RF (13.56 MHz) -radical plasma cell used for growing p-ZnSe attached to the BE growth chamber was used, and the procedure was as follows. First, 0.04 SCCM of H 2 gas (flow rate per minute << cc >> in standard state) was introduced into this cell, and RF power was set to 350.
W added. Subsequently, He gas of 0.04 SCCM was introduced to gradually increase the flow rate of He gas. When the He gas flow rate became 0.13 SCCM, plasma of He / H 2 mixed gas was generated. The degree of vacuum in the MBE growth chamber was about 6 × 10 −6 Torr.

【0025】このプラズマの発光スペクトルが図1に示
したものである。図1から明らかなように、Heガスの
流量を増加させる(0.13SCCMから0.87SC
CMにする)と、発光スペクトル上のHeガスおよびH
ガスの輝線の強度が増加する。
The emission spectrum of this plasma is shown in FIG. As is apparent from FIG. 1, the flow rate of He gas is increased (from 0.13 SCCM to 0.87 SC).
CM) and He gas and H on the emission spectrum
The intensity of the emission line of the two gases increases.

【0026】また、RFパワーを350W、Hガス流
量を0.04SCCMに固定したときの、Hガスプラ
ズマおよびHeガスプラズマの輝線強度のHeガス流量
依存性を図2に示す。図2から明らかなように、Heガ
ス流量に最適値が存在し、この条件では、Heガス流量
が0.87SCCMのときに、両プラズマの輝線強度が
最大となる。
FIG. 2 shows the He gas flow rate dependence of the emission line intensities of the H 2 gas plasma and the He gas plasma when the RF power is fixed at 350 W and the H 2 gas flow rate is fixed at 0.04 SCCM. As is clear from FIG. 2, there is an optimum value for the He gas flow rate, and under this condition, the emission line intensity of both plasmas becomes maximum when the He gas flow rate is 0.87 SCCM.

【0027】したがって、Hガス流量およびRFパワ
ーを上記の条件に固定したとき、He/H混合ガスプ
ラズマは、上記の条件(すなわち、0.87/0.04
《SCCM》≒20/1《SCCM》)で、最も安定す
ると考えられる。ただし、この条件は、使用するMBE
装置およびラジカルプラズマセルの形状・性能に大きく
依存する。このため、この安定条件は、使用するこれら
の装置によって多少異なるが、一般には、前記した
(1)〜(3)の範囲内にある。
Therefore, when the H 2 gas flow rate and the RF power are fixed to the above conditions, the He / H 2 mixed gas plasma has the above conditions (that is, 0.87 / 0.04).
<< SCCM >> ≈20 / 1 << SCCM >>) is considered to be the most stable. However, this condition is the MBE used
It depends largely on the shape and performance of the device and radical plasma cell. For this reason, this stability condition is slightly different depending on these devices to be used, but is generally within the range (1) to (3) described above.

【0028】次に、GaAs(基板)に、ZnSeおよ
びMgZnSSeエピタキシャル膜を、基板温度を27
5℃とし、MBE法で成長させた。
Next, a ZnSe and MgZnSSe epitaxial film was formed on the GaAs (substrate) at a substrate temperature of 27.
The temperature was set to 5 ° C. and the growth was performed by the MBE method.

【0029】この試料を大気中に取り出し、表面をK
CrとHSOとの混液にてウエットエッチン
グ処理した後、再びMBE成長室に戻した。
This sample was taken out into the atmosphere and the surface was K 2
After wet etching treatment with a mixed solution of Cr 2 O 7 and H 2 SO 4 , the sample was returned to the MBE growth chamber again.

【0030】続いて、上記試料の温度を275℃に設定
し、上記した条件で発生させたHe/H混合ガスプラ
ズマを、真空度約6×10−6Torr下で、該試料の
表面に照射した。試料表面の状態は、高速電子線回折法
(RHEED)により観測した。
Subsequently, the temperature of the sample was set to 275 ° C., and the He / H 2 mixed gas plasma generated under the above conditions was applied to the surface of the sample under a vacuum degree of about 6 × 10 −6 Torr. Irradiated. The state of the sample surface was observed by a high speed electron diffraction method (RHEED).

【0031】図3の1(a),(b)に、成長室に導入
した直後のZnSe(a),MgZnSSe(b)基板
の電子線回折パターンを示す。図3の1(a),(b)
から明らかなように、両試料とも比較的暗く、点状に近
いパターンであり、これは、試料表面が原子オーダーで
は平坦でないことを示している。
3 (a) and 3 (b) show electron diffraction patterns of the ZnSe (a) and MgZnSSe (b) substrates immediately after being introduced into the growth chamber. 1 (a) and (b) of FIG.
As is clear from the above, both samples were relatively dark and had a pattern similar to a point, which indicates that the sample surface was not flat in atomic order.

【0032】図3の2(c),(d)に、上記のHe/
混合ガスプラズマを1時間照射した後のZnSe
(c),MgZnSSe(d)基板の電子線回折パター
ンを示す。図3の2(c),(d)から明らかなよう
に、プラズマ照射後は、照射前のものと比較すると、電
子線回折スポットの強度が増大し、また直線上に延びた
高次の回折パターンも現れている。これは、試料表面の
酸化膜などの非結晶部分が取り除かれて、原子オーダー
での平坦性が確保されたことを示している。
2 (c) and 2 (d) of FIG.
ZnSe after irradiation with H 2 mixed gas plasma for 1 hour
(C), An electron diffraction pattern of a MgZnSSe (d) substrate is shown. As is clear from 2 (c) and 2 (d) of FIG. 3, after the plasma irradiation, the intensity of the electron beam diffraction spot is increased as compared with that before the plasma irradiation, and the higher-order diffraction extended linearly. The pattern also appears. This indicates that the non-crystalline portion such as the oxide film on the surface of the sample was removed and the flatness on the atomic order was secured.

【0033】上記のプラズマ処理したZnSeおよびM
gZnSSe上に、275℃、約4×10−10Tor
rで、ZnSeエピタキシャル膜を成長させた。図3の
3(e),(f)に、成長後の電子線回折パターンを示
す。(e)がZnSe基板上に成長させた場合で、
(f)がMgZnSSe(d)基板上に成長させた場合
である。これらのパターンは、通常のGaAs基板上に
成長したZnSeエピタキシャル膜と同等の質を持って
いる。
The above plasma treated ZnSe and M
On gZnSSe, 275 ° C., about 4 × 10 −10 Tor
At r, a ZnSe epitaxial film was grown. 3 (e) and 3 (f) of FIG. 3 show electron beam diffraction patterns after growth. When (e) is grown on a ZnSe substrate,
(F) is a case of growing on a MgZnSSe (d) substrate. These patterns have the same quality as a ZnSe epitaxial film grown on a normal GaAs substrate.

【0034】また、このZnSeエピタキシャル膜につ
いて、フォトルミネッセンス(PL)法を用い、温度1
5K(ケルビン)で評価した。この結果を図4に示す。
同図(a)は、参考のために示すもので、GaAs基板
上に、上記のプラズマ処理を行わない以外は上記と同一
の条件で、成長させた0.5μm厚のZnSeエピタキ
シャル膜のPLスペクトルである。同図(b)および
(c)は、上記のプラズマ処理したZnSeおよびMg
ZnSSe上に成長させた0.5μm厚のZnSeエピ
タキシャル膜のPLスペクトルである。
For this ZnSe epitaxial film, a photoluminescence (PL) method was used to obtain a temperature of 1
It was evaluated at 5K (Kelvin). The result is shown in FIG.
The same figure (a) is shown for reference, and the PL spectrum of a 0.5 μm thick ZnSe epitaxial film grown on a GaAs substrate under the same conditions as above except that the above plasma treatment is not performed. Is. (B) and (c) of the figure show the above-mentioned plasma-treated ZnSe and Mg.
3 is a PL spectrum of a 0.5 μm thick ZnSe epitaxial film grown on ZnSSe.

【0035】同図(a)〜(c)の全ての試料につい
て、2.80eV付近に強いバンド端発光が観測され、
2.3eV付近の深い準位からの発光が比較的よく抑え
られていることが分かる。一方、2.6eV付近に、転
位に絡んだY線発光といわれる輝線が観測されるが、こ
れはZnSeエピタキシャル膜が0.5μmと比較的薄
いために現れるもので、特に結晶性に大きく影響を与え
るものではない。
Strong band-edge emission was observed around 2.80 eV for all the samples shown in FIGS.
It can be seen that light emission from deep levels near 2.3 eV is relatively well suppressed. On the other hand, a bright line called Y-ray emission entangled with dislocations is observed near 2.6 eV, which appears because the ZnSe epitaxial film is relatively thin at 0.5 μm, and particularly affects the crystallinity. Not something to give.

【0036】このように、He/H混合ガスプラズマ
処理したZnSeおよびMgZnSSeエピタキシャル
膜上には、GaAs基板上に成長したZnSe同レベル
の比較的良好な結晶を成長させることができることが明
らかである。
As described above, it is apparent that a relatively good crystal of the same level as ZnSe grown on the GaAs substrate can be grown on the ZnSe and MgZnSSe epitaxial film treated with the He / H 2 mixed gas plasma. .

【0037】以上より、He/H混合ガスプラズマを
用いることによって、ZnSe,MgZnSSeエピタ
キシャル膜上に生成している酸化膜を、MBE成長室内
で、該エピタキシャル膜に大きな損傷を与えることな
く、安定に、除去することが可能であり、しかも同成長
室内において引き続き、このZnSe,MgZnSSe
エピタキシャル膜上に良質なZnSeエピタキシャル結
晶を再成長させることができることが分かる。
As described above, by using the He / H 2 mixed gas plasma, the oxide film formed on the ZnSe, MgZnSSe epitaxial film is stabilized in the MBE growth chamber without causing a large damage to the epitaxial film. It is possible to remove ZnSe and MgZnSSe in the same growth chamber.
It can be seen that a good quality ZnSe epitaxial crystal can be regrown on the epitaxial film.

【0038】実施例2 実施例1のGaAs(基板)にZnSeおよびMgZn
SSeエピタキシャル膜を成長させた試料に代えて、Z
nSeバルク結晶(基板)を用いる以外は、実施例1と
同様にして、酸化膜の生成、He/H混合ガスプラズ
マ照射による該酸化膜の除去、酸化膜除去後のZnSe
エピタキシャル膜を成長を行った。この結果は、実施例
1とほぼ同様に、He/H混合ガスプラズマ処理した
ZnSeバルク結晶上には、GaAs基板上に成長した
ZnSeエピタキシャル結晶と同レベルの比較的良好な
エピタキシャル結晶を成長することができた。
Example 2 ZnSe and MgZn were added to the GaAs (substrate) of Example 1.
Instead of the sample on which the SSe epitaxial film was grown, Z
As in Example 1, except that an nSe bulk crystal (substrate) was used, an oxide film was formed, the oxide film was removed by He / H 2 mixed gas plasma irradiation, and ZnSe after the oxide film was removed.
The epitaxial film was grown. This result shows that, as in Example 1, a relatively good epitaxial crystal of the same level as that of the ZnSe epitaxial crystal grown on the GaAs substrate is grown on the ZnSe bulk crystal treated by the He / H 2 mixed gas plasma. I was able to.

【0039】したがって、ZnSeバルク結晶を基板と
する場合においても、He/H混合ガスプラズマを用
いることによって、該基板上に生成している酸化膜を、
MBE成長室内で、該バルク結晶に大きな損傷を与える
ことなく、安定に、除去することができ、かつ同室内に
おいて引き続き、該基板上に良質なZnSeエピタキシ
ャル結晶を再成長させることができることが分かる。
Therefore, even when a ZnSe bulk crystal is used as the substrate, the oxide film formed on the substrate can be removed by using the He / H 2 mixed gas plasma.
It can be seen that the bulk crystal can be stably removed without serious damage in the MBE growth chamber, and a good quality ZnSe epitaxial crystal can be regrown on the substrate continuously in the MBE growth chamber.

【0040】[0040]

【発明の効果】以上詳述したように、本発明によれば、
MBE成長室内において、基板の表面に生成している酸
化膜などの不純物を、基板の結晶に対する損傷を抑制し
ながら、安定に、除去することができ、この結果、同成
長室内において、引き続きMBE法による再成長を実行
することができる。また、本発明によれば、Heとの混
合下でHを使用するため、Hによる危険はなく、安
全に半導体基板の表面清浄を行うことができる。
As described in detail above, according to the present invention,
Impurities such as an oxide film generated on the surface of the substrate can be stably removed in the MBE growth chamber while suppressing damage to the crystal of the substrate. As a result, the MBE method can be continuously performed in the growth chamber. Re-growth can be performed. Further, according to the present invention, since H 2 is used while being mixed with He, there is no danger of H 2 and the surface of the semiconductor substrate can be safely cleaned.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例で得たH/He混合ガスプラ
ズマの発光スペクトルの典型例を示す図である。
FIG. 1 is a diagram showing a typical example of an emission spectrum of H 2 / He mixed gas plasma obtained in an example of the present invention.

【図2】本発明の実施例で得たRF波パワーおよびH
ガス流量を一定にしたときの、HガスおよびHeガス
プラズマの輝線強度のHeガス流量依存性を示す図であ
る。
FIG. 2 shows RF wave power and H 2 obtained in the embodiment of the present invention.
When the gas flow rate constant is a diagram showing the He gas flow rate dependency of the H 2 gas and He gas plasma emission line intensities.

【図3の1】(a),(b)は本発明の実施例で得たZ
nSe,MgZnSSe基板の表面状態の高速電子線回
折パターンである。(a)がZnSe基板の場合、
(b)がMgZnSSe基板の場合である。
FIGS. 3A and 3B are Z obtained in the embodiment of the present invention.
It is a high-speed electron beam diffraction pattern of the surface state of a nSe and MgZnSSe substrate. When (a) is a ZnSe substrate,
(B) is a case of a MgZnSSe substrate.

【図3の2】(c),(d)はこれらの基板にHe/H
混合ガスプラズマを照射した後の該基板の表面状態の
電子線回折パターンである。(c)がZnSe基板の場
合、(d)がMgZnSSe基板の場合である。
3 (c) and 3 (d) show He / H on these substrates.
2 is an electron beam diffraction pattern of the surface state of the substrate after being irradiated with two mixed gas plasmas. (C) is a case of a ZnSe substrate, and (d) is a case of a MgZnSSe substrate.

【図3の2】(e),(f)はプラズマ照射後に再成長
させたZnSeエピタキシャル膜の表面状態の電子線回
折パターンである。(e)がZnSe基板の場合、
(f)がMgZnSSe基板の場合である。
2 (e) and 3 (f) are electron beam diffraction patterns of the surface state of the ZnSe epitaxial film regrown after plasma irradiation. When (e) is a ZnSe substrate,
(F) is the case of the MgZnSSe substrate.

【図4】本発明の実施例で得たZnSeエピタキシャル
膜についてのフォトルミネッセンス(PL)法による評
価結果を示し、(a)は、参考のために示すもので、G
aAs基板上に本発明によるプラズマ処理を行わないで
成長させた0.5μm厚のZnSeエピタキシャル膜の
PLスペクトル、(b)および(c)は、本発明による
プラズマ処理を行ったZnSeおよびMgZnSSe上
に成長させた0.5μm厚のZnSeエピタキシャル膜
のPLスペクトルである。
FIG. 4 shows evaluation results by a photoluminescence (PL) method for the ZnSe epitaxial film obtained in the example of the present invention, and (a) is shown for reference and G
PL spectra of 0.5 μm thick ZnSe epitaxial films grown on aAs substrate without plasma treatment according to the present invention, (b) and (c) are on ZnSe and MgZnSSe plasma treated according to the present invention. 3 is a PL spectrum of a grown 0.5 μm thick ZnSe epitaxial film.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/3065 H01L 21/363 21/363 21/302 N ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location H01L 21/3065 H01L 21/363 21/363 21/302 N

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 III−V族系半導体基板あるいはII
−VI族系半導体基板上に分子線エピタキシー法で成長
したII−VI族系半導体エピタキシャル結晶膜を基板
として用い、該エピタキシャル結晶膜基板上に分子線エ
ピタキシー法でII−VI族系半導体を再成長させる際
に、同成長室内で、He/H混合ガスプラズマビーム
を同基板に照射して、同基板表面をクリーニングするこ
とを特徴とする半導体基板の表面清浄方法。
1. A III-V group semiconductor substrate or II
A II-VI group semiconductor epitaxial crystal film grown by a molecular beam epitaxy method on a -VI group semiconductor substrate is used as a substrate, and a II-VI group semiconductor is regrown on the epitaxial crystal film substrate by a molecular beam epitaxy method. A surface cleaning method for a semiconductor substrate, characterized in that the surface of the substrate is cleaned by irradiating the substrate with a He / H 2 mixed gas plasma beam in the growth chamber.
【請求項2】 He/H混合ガスが容積比で2/1〜
250/1であることを特徴とする請求項1記載の半導
体基板の表面清浄方法。
2. The He / H 2 mixed gas has a volume ratio of 2/1 to
The method for cleaning the surface of a semiconductor substrate according to claim 1, wherein the surface cleaning method is 250/1.
【請求項3】 成長室内の真空度が5×10−8〜1×
10−4torrであることを特徴とする請求項1,2
記載の半導体基板の表面清浄方法。
3. The degree of vacuum in the growth chamber is 5 × 10 −8 to 1 ×.
10. It is 10-4 torr, It is characterized by the above-mentioned.
A method for cleaning the surface of a semiconductor substrate as described above.
【請求項4】 II−VI族系半導体エピタキシャル結
晶膜基板の温度が100℃以上でII−VI族系半導体
エピタキシャル結晶膜の成長温度以下であることを特徴
とする請求項1〜3記載の半導体基板の表面清浄方法。
4. The semiconductor according to claim 1, wherein the temperature of the II-VI group semiconductor epitaxial crystal film substrate is 100 ° C. or higher and the growth temperature of the II-VI group semiconductor epitaxial crystal film or lower. Substrate surface cleaning method.
【請求項5】 ZnSeバルク結晶を基板として用い、
該バルク結晶基板上に分子線エピタキシー法でII−V
I族系半導体を成長させる際に、同成長室内で、He/
混合ガスプラズマビームを同基板に照射して、同基
板表面をクリーニングすることを特徴とする半導体基板
の表面清浄方法。
5. A ZnSe bulk crystal is used as a substrate,
II-V was formed on the bulk crystal substrate by molecular beam epitaxy.
When growing a group I semiconductor, He /
A method for cleaning a surface of a semiconductor substrate, which comprises irradiating the same substrate with an H 2 mixed gas plasma beam to clean the surface of the same substrate.
【請求項6】 He/H混合ガスが、容積比で2/1
〜250/1であることを特徴とする請求項5記載の表
面清浄方法。
6. The He / H 2 mixed gas has a volume ratio of 2/1.
The surface cleaning method according to claim 5, wherein the surface cleaning method is about 250/1.
【請求項7】 成長室内が、5×10−8〜1×10
−4torrの真空度に保持されていることを特徴とす
る請求項5,6記載の表面清浄方法。
7. The growth chamber is 5 × 10 −8 to 1 × 10 5.
The surface cleaning method according to claim 5, wherein the vacuum is maintained at -4 torr.
【請求項8】 ZnSe半導体バルク結晶基板が、10
0〜500℃であることを特徴とする請求項5〜7記載
の表面清浄方法。
8. A ZnSe semiconductor bulk crystal substrate is 10
It is 0-500 degreeC, The surface cleaning method of Claims 5-7 characterized by the above-mentioned.
JP22579595A 1995-08-10 1995-08-10 Surface cleaning method of semiconductor substrate Pending JPH0955365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22579595A JPH0955365A (en) 1995-08-10 1995-08-10 Surface cleaning method of semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22579595A JPH0955365A (en) 1995-08-10 1995-08-10 Surface cleaning method of semiconductor substrate

Publications (1)

Publication Number Publication Date
JPH0955365A true JPH0955365A (en) 1997-02-25

Family

ID=16834906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22579595A Pending JPH0955365A (en) 1995-08-10 1995-08-10 Surface cleaning method of semiconductor substrate

Country Status (1)

Country Link
JP (1) JPH0955365A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6528395B2 (en) 2000-04-27 2003-03-04 Sumitomo Electric Industries, Ltd. Method of fabricating compound semiconductor device and apparatus for fabricating compound semiconductor device
JP2017201692A (en) * 2016-05-06 2017-11-09 エーエスエム アイピー ホールディング ビー.ブイ. Formation of silicon oxycarbide thin films
WO2020212154A1 (en) * 2019-04-15 2020-10-22 Forschungszentrum Jülich GmbH Producing an ohmic contact, and electronic component with ohmic contact
US10991573B2 (en) 2017-12-04 2021-04-27 Asm Ip Holding B.V. Uniform deposition of SiOC on dielectric and metal surfaces
US11107673B2 (en) 2015-11-12 2021-08-31 Asm Ip Holding B.V. Formation of SiOCN thin films
US11158500B2 (en) 2017-05-05 2021-10-26 Asm Ip Holding B.V. Plasma enhanced deposition processes for controlled formation of oxygen containing thin films
US11195845B2 (en) 2017-04-13 2021-12-07 Asm Ip Holding B.V. Substrate processing method and device manufactured by the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6528395B2 (en) 2000-04-27 2003-03-04 Sumitomo Electric Industries, Ltd. Method of fabricating compound semiconductor device and apparatus for fabricating compound semiconductor device
US6815316B2 (en) 2000-04-27 2004-11-09 Sumitomo Electric Industries, Ltd. Apparatus for fabricating compound semiconductor device
US11107673B2 (en) 2015-11-12 2021-08-31 Asm Ip Holding B.V. Formation of SiOCN thin films
US11996284B2 (en) 2015-11-12 2024-05-28 Asm Ip Holding B.V. Formation of SiOCN thin films
JP2017201692A (en) * 2016-05-06 2017-11-09 エーエスエム アイピー ホールディング ビー.ブイ. Formation of silicon oxycarbide thin films
US11562900B2 (en) 2016-05-06 2023-01-24 Asm Ip Holding B.V. Formation of SiOC thin films
US11195845B2 (en) 2017-04-13 2021-12-07 Asm Ip Holding B.V. Substrate processing method and device manufactured by the same
US11158500B2 (en) 2017-05-05 2021-10-26 Asm Ip Holding B.V. Plasma enhanced deposition processes for controlled formation of oxygen containing thin films
US11776807B2 (en) 2017-05-05 2023-10-03 ASM IP Holding, B.V. Plasma enhanced deposition processes for controlled formation of oxygen containing thin films
US10991573B2 (en) 2017-12-04 2021-04-27 Asm Ip Holding B.V. Uniform deposition of SiOC on dielectric and metal surfaces
WO2020212154A1 (en) * 2019-04-15 2020-10-22 Forschungszentrum Jülich GmbH Producing an ohmic contact, and electronic component with ohmic contact

Similar Documents

Publication Publication Date Title
EP0463870B1 (en) Method of plasma treating a resist using hydrogen gas
Yabumoto et al. Surface damage on Si substrates caused by reactive sputter etching
Mileham et al. Patterning of AlN, InN, and GaN in KOH‐based solutions
US7470989B2 (en) Technique for perfecting the active regions of wide bandgap semiconductor nitride devices
US5145554A (en) Method of anisotropic dry etching of thin film semiconductors
Shul et al. High rate electron cyclotron resonance etching of GaN, InN, and AlN
KR100500908B1 (en) Uv/halogen treatment for dry oxide etching
JPH0955365A (en) Surface cleaning method of semiconductor substrate
Chen et al. Plasma-assisted molecular beam epitaxy for ZnO based II–VI semiconductor oxides and their heterostructures
Lee et al. Improvements in the heteroepitaxy of GaAs on Si by incorporating a ZnSe buffer layer
JP3075581B2 (en) Apparatus for growing nitride-based compound semiconductor films
Shindo et al. Low-temperature large-grain poly-Si direct deposition by microwave plasma enhanced chemical vapor deposition using SiH 4/Xe
JP2002029896A (en) Crystal growth method for nitride semiconductor
Djie et al. High-density plasma enhanced quantum well intermixing in InGaAs/InGaAsP structure using argon plasma
Chen et al. Reactive Ion Etching of ZnSe, ZnSSe, ZnCdSe and ZnMgSSe by H2/Ar and CH4/H2/Ar
US5133830A (en) Method of pretreatment and anisotropic dry etching of thin film semiconductors
Pearton et al. Hybrid electron cyclotron resonance-radio-frequency plasma etching of III–V semiconductors in Cl 2-based discharges. Part I: GaAs and related compounds
Yoo et al. Reactive ion etching‐induced damage in GaAs/AlGaAs quantum well structures and recovery by rapid thermal annealing and hydrogen passivation
JP2917900B2 (en) Method for surface treatment of III-V compound semiconductor substrate
US5396862A (en) Method of manufacturing a compound semiconductor
JPH0864576A (en) Selective process of using hydrocarbon and hydrogen
JPH08255777A (en) Semiconductor wafer cleaning method
JPS62118521A (en) Formation of semiconductor film
Reed et al. Size‐dependent photoluminescence energy and intensity of selective electron cyclotron resonance‐etched strained InGaAs/GaAs quantum boxes
Humphreys et al. ECR RIE-enhanced low pressure plasma etching of GaN/InGaN/AlGaN heterostructures