JP2007173744A - Method of manufacturing n-type aluminum-nitride and semiconductor device - Google Patents

Method of manufacturing n-type aluminum-nitride and semiconductor device Download PDF

Info

Publication number
JP2007173744A
JP2007173744A JP2005373079A JP2005373079A JP2007173744A JP 2007173744 A JP2007173744 A JP 2007173744A JP 2005373079 A JP2005373079 A JP 2005373079A JP 2005373079 A JP2005373079 A JP 2005373079A JP 2007173744 A JP2007173744 A JP 2007173744A
Authority
JP
Japan
Prior art keywords
aln
aluminum nitride
nitride
silicon
type aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005373079A
Other languages
Japanese (ja)
Other versions
JP4956992B2 (en
Inventor
Masakazu Kanechika
将一 兼近
Toru Kachi
徹 加地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2005373079A priority Critical patent/JP4956992B2/en
Publication of JP2007173744A publication Critical patent/JP2007173744A/en
Application granted granted Critical
Publication of JP4956992B2 publication Critical patent/JP4956992B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain n-type aluminum-nitride through ion implantation. <P>SOLUTION: Silicon ions (Si<SP>+</SP>) are implanted on a front surface of an aluminum-nitride layer with acceleration energy of 90keV and dosage of 5×10<SP>15</SP>cm<SP>-2</SP>. Thermal treatment is performed for 10 min at 1400°C under N<SB>2</SB>atmosphere of 10 Torr. The silicon is approximately uniformly implanted from the front surface of an AlN layer to the depth of 0.2μm. At a measured temperature 50°C, an electron density is calculated as 2.0×10<SP>15</SP>, at a measured temperature 300°C, the electron density is calculated as 3.0×10<SP>16</SP>cm<SP>-3</SP>and at a measured temperature 300°C, the electron density is calculated as 2.8×10<SP>17</SP>cm<SP>-3</SP>. Furthermore, it is concluded that the donor level of silicon in the aluminum-nitride (AlN) is 311meV. Thus, the present invention enables n-type aluminum-nitride (AlN) to be obtained. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、III族窒化物系化合物半導体である、n型窒化アルミニウムの製造方法に関する。   The present invention relates to a method for producing n-type aluminum nitride, which is a group III nitride compound semiconductor.

III族窒化物系化合物半導体は、LED及びLDと言った発光素子を初めとして、HEMT等の電界効果トランジスタその他の機能素子が種々開発されている。ここにおいて、p型層及びn型層を形成するためには、有機金属気相成長法(以下、MOCVDと称す)により半導体層を形成する場合は、アクセプタやドナーを母材原料化合物と共に供給する方法が用いられている。   For group III nitride compound semiconductors, various field effect transistors such as HEMTs and other functional elements have been developed, including light emitting elements such as LEDs and LDs. Here, in order to form a p-type layer and an n-type layer, when a semiconductor layer is formed by metal organic chemical vapor deposition (hereinafter referred to as MOCVD), an acceptor and a donor are supplied together with a base material compound. The method is used.

LEDやLDにおいては、MOCVDにより半導体層を単純に積層する構造で形成でき、ドナーやアクセプタの供給は比較的容易である。しかし、トランジスタ等の素子では、半導体層の単純な積層では形成できず、場所によって異なる深さにp型領域やn型領域を所望に形成する必要がある。この際、例えばマスクを使用してMOCVDを領域ごとに実施すると、マスクとの境界近傍において形成されるエピタキシャル層が厚くなり、その後の素子形成プロセスで障害となってしまう。   An LED or LD can be formed with a structure in which semiconductor layers are simply stacked by MOCVD, and supply of donors and acceptors is relatively easy. However, elements such as transistors cannot be formed by simple lamination of semiconductor layers, and it is necessary to form p-type regions and n-type regions at different depths depending on the location. At this time, if MOCVD is performed for each region using, for example, a mask, the epitaxial layer formed in the vicinity of the boundary with the mask becomes thick, which becomes an obstacle in the subsequent element formation process.

n型層を形成する技術として、下記非特許文献1及び2においてはGaNへのSiイオン注入が、非特許文献3においてはAl0.13Ga0.87NへのSiイオン注入が報告されている。i層又は高抵抗層の一部にイオン注入により低抵抗n型層を形成することで、HEMTその他の素子を形成する技術も公知である。
J. C. Zolper, H. H. Tan, J. S. Williams, J. Zou, D. J. H. Cockayne, S. J. Pearton, M. Hagerott Crawford, and R. F. Karlicek, Jr., "Electrical and structual analysis of high-dose Si implantation in GaN," Appl. Phys. Lett., 70 (1997) pp. 2729-2731 X. A.Cao, C. R. Abernathy, R. K. Singh, S. J. Pearton, M. Fu, V.Sarvepalli, J. A. Sekhar, J. C. Zolper, D. J. Rieger, J. Han, T. J. Drummond, R. J. Shul, and R. G. Wilson, "Ultrahigh Si+ implant activation efficiency inGaN using a high-temperature rapid thermal process system," Appl. Phys. Lett., 73 (1998) pp. 229-231 Y. Irokawa, O. Fujishima, T. Kachi. S. J. Pearton, and F. Ren, "Activation characteristics of ion-implanted Si+ in AlGaN," Appl. Phys. Lett., 86 (2005) 192102 (downloaded document)
As techniques for forming an n-type layer, the following Non-Patent Documents 1 and 2 report Si ion implantation into GaN, and Non-Patent Document 3 reports Si ion implantation into Al 0.13 Ga 0.87 N. A technique for forming a HEMT or other elements by forming a low resistance n-type layer by ion implantation in a part of the i layer or the high resistance layer is also known.
JC Zolper, HH Tan, JS Williams, J. Zou, DJH Cockayne, SJ Pearton, M. Hagerott Crawford, and RF Karlicek, Jr., "Electrical and structual analysis of high-dose Si implantation in GaN," Appl. Phys. Lett., 70 (1997) pp. 2729-2731 XACao, CR Abernathy, RK Singh, SJ Pearton, M. Fu, V. Sarvepalli, JA Sekhar, JC Zolper, DJ Rieger, J. Han, TJ Drummond, RJ Shul, and RG Wilson, "Ultrahigh Si + implant activation efficiency inGaN using a high-temperature rapid thermal process system, "Appl. Phys. Lett., 73 (1998) pp. 229-231 Y. Irokawa, O. Fujishima, T. Kachi. SJ Pearton, and F. Ren, "Activation characteristics of ion-implanted Si + in AlGaN," Appl. Phys. Lett., 86 (2005) 192102 (downloaded document)

さて、窒化アルミニウム(AlN)はバンドギャップが6.1eVと高く、破壊電界が他の半導体より大きいと期待される。比較すれば、4H−SiCはバンドギャップが3.26eV、GaNは3.39eVである。しかし、Gaを含まない窒化アルミニウム(AlN)へのSiイオン注入によりn型の窒化アルミニウム(AlN)を得ることは未だ報告が無く、現時点の技術では不可能ではないかと考えられている。   Aluminum nitride (AlN) has a high band gap of 6.1 eV and is expected to have a breakdown electric field larger than that of other semiconductors. In comparison, 4H-SiC has a band gap of 3.26 eV and GaN has 3.39 eV. However, it has not been reported yet that n-type aluminum nitride (AlN) can be obtained by Si ion implantation into aluminum nitride (AlN) containing no Ga, and it is considered that it is impossible with the current technology.

本発明者らは上記現状を打破するため、検討を行い、下記に示す条件でn型窒化アルミニウムを製造可能であることを見出した。   In order to overcome the above-described present situation, the present inventors have studied and found that n-type aluminum nitride can be produced under the following conditions.

請求項1に係る発明は、窒化アルミニウム(AlN)に、シリコン(Si)をドーズ量1015/cm-2以上1017/cm-2以下でイオン注入するイオン注入工程と、イオン注入工程の後に、温度1300℃を越え1500℃未満、5分以上2時間以下でアニーリングするアニーリング工程とを有することを特徴とするn型窒化アルミニウムの製造方法である。 The invention according to claim 1 is an ion implantation step of implanting silicon (Si) into aluminum nitride (AlN) at a dose of 10 15 / cm −2 or more and 10 17 / cm −2 or less, and after the ion implantation step. And an annealing step of annealing at a temperature exceeding 1300 ° C. and less than 1500 ° C. for 5 minutes to 2 hours, and a method for producing n-type aluminum nitride.

また、請求項2に係る発明は、窒化アルミニウムの表面の一部に形成した、電子濃度が3×1016/cm-3以上となる測定温度が、150℃以下であるn型領域を有することを特徴とする半導体素子である。 Further, the invention according to claim 2 has an n-type region formed on a part of the surface of aluminum nitride and having a measurement temperature at which the electron concentration is 3 × 10 16 / cm −3 or more is 150 ° C. or less. It is a semiconductor element characterized by this.

窒化アルミニウム(AlN)へのSiイオン注入を大量のドーズ量で行い、その後の高温且つ長時間のアニールによって、測定温度150℃以下で電子濃度が3×1016/cm-3以上となることが見出された。注入されたSiは、高温アニールで活性化し、Alと置換するものと考えられる。この時、ドナー準位が311meVとなることも見出された。本発明により、領域を選択しての、窒化アルミニウム(AlN)へのSiイオン注入が可能となり、種々の素子構成に適用することができる。尚、窒化ガリウム(GaN)や窒化アルミニウムガリウム(AlGaN)を1000℃以上でアニールする際は分解から保護するために絶縁膜等で被覆する必要があるが、窒化アルミニウム(AlN)ではそのような絶縁膜を形成せずとも活性化が可能である。尚、絶縁膜で被膜してから活性化することを排除するものではない。 Si ion implantation into aluminum nitride (AlN) is carried out with a large dose, and subsequent high-temperature and long-time annealing can result in an electron concentration of 3 × 10 16 / cm −3 or more at a measurement temperature of 150 ° C. or less. It was found. The implanted Si is considered to be activated by high-temperature annealing to replace Al. At this time, it was also found that the donor level was 311 meV. According to the present invention, Si ions can be implanted into aluminum nitride (AlN) by selecting a region, and can be applied to various element configurations. In addition, when annealing gallium nitride (GaN) or aluminum gallium nitride (AlGaN) at 1000 ° C. or higher, it is necessary to cover it with an insulating film or the like to protect it from decomposition. Activation is possible without forming a film. Note that activation after coating with an insulating film is not excluded.

本発明を適用すべき窒化アルミニウムは、単結晶であればその製造方法は任意である。結晶性の極めて良い単結晶を得るためには、例えばサファイアその他の異種基板上にバッファ層を介してMOCVDを用いると良い。その他、単結晶の窒化アルミニウムは任意の方法で構成することができる。尚、本発明を適用すべき窒化アルミニウムは、実質的に他の元素を含有していないものを想定している。ここで実質的に他元素を含有していないとは、その製造工程において意図的に他の元素化合物等の供給をしていないことを言い、製造工程におけるコンタミネーションによる避けることのできないドープをも排除するものではない。例えば痕跡量の他元素を含むものを排除するものではない。   The manufacturing method of aluminum nitride to which the present invention is applied is arbitrary as long as it is a single crystal. In order to obtain a single crystal with extremely good crystallinity, MOCVD is preferably used on a different substrate such as sapphire via a buffer layer. In addition, single crystal aluminum nitride can be formed by any method. In addition, the aluminum nitride which should apply this invention assumes what does not contain other elements substantially. Here, “substantially not containing other elements” means that other elemental compounds are not intentionally supplied in the manufacturing process, and dope that cannot be avoided due to contamination in the manufacturing process. It is not excluded. For example, it does not exclude those containing trace amounts of other elements.

シリコンイオンのイオン注入装置は、本発明のドーズ量を達成できるような公用の装置を用いることができる。また、アニールに際しては、減圧された窒素中等の、不活性ガス中で行うことが望ましい。   As an ion implantation apparatus for silicon ions, a public apparatus capable of achieving the dose of the present invention can be used. In addition, it is desirable that the annealing be performed in an inert gas such as nitrogen under reduced pressure.

サファイア基板上に、バッファ層を介して、MOCVDにより単結晶窒化アルミニウム(AlN)層を膜厚1μm形成した。次に単結晶窒化アルミニウム(AlN)層の表面に、加速エネルギー90keV、ドーズ量5×1015cm-2でシリコンイオン(Si+)を注入した。これを減圧して、10TorrのN2雰囲気下で1400℃、10分間熱処理した。SIMS測定により、シリコンは単結晶窒化アルミニウム(AlN)層の表面から0.2μmの深さに渡って注入されたことが確認された。 A single crystal aluminum nitride (AlN) layer having a thickness of 1 μm was formed on the sapphire substrate by MOCVD through a buffer layer. Next, silicon ions (Si + ) were implanted into the surface of the single crystal aluminum nitride (AlN) layer at an acceleration energy of 90 keV and a dose of 5 × 10 15 cm −2 . This was decompressed and heat-treated at 1400 ° C. for 10 minutes in an N 2 atmosphere of 10 Torr. It was confirmed by SIMS measurement that silicon was implanted over a depth of 0.2 μm from the surface of the single crystal aluminum nitride (AlN) layer.

このように形成した、窒化アルミニウム(AlN)のシリコン注入層をホール測定し、得られたシートキャリア濃度(単位cm-2)と、注入層の厚さ0.2μmとにより、電子濃度(単位cm-3)を算出した。尚、室温(〜25℃)では測定限界未満であったので、50℃〜300℃の範囲で、25℃間隔でサンプルを保温してホール測定を行った。この結果を図1に示す。尚図1においては横軸を絶対温度T(単位K)の逆数として、アレニウスプロットとした。測定温度50℃において電子濃度が2.0×1015cm-3、測定温度150℃において電子濃度が3.0×1016cm-3、測定温度300℃において電子濃度が2.8×1017cm-3と算出された。また、窒化アルミニウム(AlN)中のシリコンのドナー準位は311meVであると結論付けられた。このように、本発明によりn型の窒化アルミニウム(AlN)を得ることができた。 The thus formed aluminum injection layer of aluminum nitride (AlN) is subjected to hole measurement, and the resulting sheet carrier concentration (unit cm −2 ) and the injection layer thickness of 0.2 μm give the electron concentration (unit cm). -3 ) was calculated. In addition, since it was less than the measurement limit at room temperature (˜25 ° C.), the sample was kept warm at intervals of 25 ° C. in the range of 50 ° C. to 300 ° C., and hall measurement was performed. The result is shown in FIG. In FIG. 1, the horizontal axis is an inverse of absolute temperature T (unit K), and an Arrhenius plot is used. The electron concentration is 2.0 × 10 15 cm −3 at a measurement temperature of 50 ° C., the electron concentration is 3.0 × 10 16 cm −3 at a measurement temperature of 150 ° C., and the electron concentration is 2.8 × 10 17 at a measurement temperature of 300 ° C. Calculated as cm -3 . It was also concluded that the silicon donor level in aluminum nitride (AlN) was 311 meV. Thus, n-type aluminum nitride (AlN) could be obtained according to the present invention.

次に、単結晶窒化アルミニウム(AlN)層の表面に注入するシリコンイオン(Si+)のドーズ量を1×1014〜1×1016cm-2の範囲で変化させ、実施例1と同様にアニールして得られたn型の窒化アルミニウム(AlN)の、測定温度150℃での電子濃度を算出した。この結果を図2に示す。ドーズ量が1×1015cm-2以下では電子濃度が0、即ちホール測定の検出限界以下であった。ドーズ量が5×1015cm-2以上ではホール測定が可能であった。 Next, the dose of silicon ions (Si + ) implanted into the surface of the single crystal aluminum nitride (AlN) layer is changed in the range of 1 × 10 14 to 1 × 10 16 cm −2 , and the same as in Example 1. The electron concentration at the measurement temperature of 150 ° C. of n-type aluminum nitride (AlN) obtained by annealing was calculated. The result is shown in FIG. When the dose was 1 × 10 15 cm −2 or less, the electron concentration was 0, that is, below the detection limit of hole measurement. Hole measurement was possible when the dose was 5 × 10 15 cm −2 or more.

次に、アニール温度を変化させた場合の、n型の窒化アルミニウム(AlN)の、測定温度150℃での電子濃度を算出した。アニール温度以外は上記実施例1と同じ条件とした。この結果を図3に示す。アニール温度が1300℃以下と、1500℃以上では、ホール測定の検出限界以下であった。アニール温度を1400℃とした場合、150℃における電子濃度は3.0×1016cm-3、アニール温度を1450℃とした場合、150℃における電子濃度は8.8×1015cm-3であった。 Next, the electron concentration of n-type aluminum nitride (AlN) at a measurement temperature of 150 ° C. when the annealing temperature was changed was calculated. The conditions were the same as in Example 1 except for the annealing temperature. The result is shown in FIG. When the annealing temperature was 1300 ° C. or lower and 1500 ° C. or higher, it was below the detection limit of hole measurement. When the annealing temperature is 1400 ° C., the electron concentration at 150 ° C. is 3.0 × 10 16 cm −3 , and when the annealing temperature is 1450 ° C., the electron concentration at 150 ° C. is 8.8 × 10 15 cm −3 . there were.

本発明のn型窒化アルミニウム(AlN)は、MOSFETなどのソース、ドレイン領域、或いはショットキーダイオードに用いることができる。いずれの場合も、n型窒化アルミニウム(AlN)を用いているため、窒化ガリウム(GaN)を用いた場合よりも微小なサイズで耐圧を高くすることが可能であり、従来のシリコンパワーデバイスよりも低損失化が期待できる。   The n-type aluminum nitride (AlN) of the present invention can be used for a source such as a MOSFET, a drain region, or a Schottky diode. In either case, since n-type aluminum nitride (AlN) is used, it is possible to increase the breakdown voltage with a smaller size than when using gallium nitride (GaN), which is higher than conventional silicon power devices. Low loss can be expected.

図4.Aは、MOSFET100の構造を示す断面図である。MOSFET100は、真性窒化アルミニウム基板10の表面の2箇所を、本発明のシリコンイオン注入によりn型窒化アルミニウム領域(n−AlN)として、一方をソース領域S、他方をドレイン領域Dとした。また、これらにはさまれた領域をチャネル領域Cとする。チャネル領域C上部とソース領域S及びドレイン領域Dをも一部覆うようにSiO2から成るゲート絶縁膜Iを形成し、その上に金属から成るゲート電極Gを形成したものである。 FIG. A is a cross-sectional view showing the structure of the MOSFET 100. FIG. In the MOSFET 100, two portions of the surface of the intrinsic aluminum nitride substrate 10 are formed as an n-type aluminum nitride region (n-AlN) by silicon ion implantation of the present invention, one as a source region S and the other as a drain region D. Further, a region sandwiched between them is referred to as a channel region C. A gate insulating film I made of SiO 2 is formed so as to partially cover the upper part of the channel region C and the source region S and drain region D, and a gate electrode G made of metal is formed thereon.

図4.Bは、ショットキーダイオード200の構造を示す断面図である。ショットキーダイオード200は、真性窒化アルミニウム基板20の表面の1箇所を、本発明のシリコンイオン注入によりn型窒化アルミニウム領域(n−AlN)25とする。この領域に、オーミック電極31とショットキー電極32を形成したものである。   FIG. B is a cross-sectional view showing the structure of the Schottky diode 200. FIG. In the Schottky diode 200, an n-type aluminum nitride region (n-AlN) 25 is formed on one surface of the intrinsic aluminum nitride substrate 20 by silicon ion implantation of the present invention. In this region, the ohmic electrode 31 and the Schottky electrode 32 are formed.

実施例1で得られた窒化アルミニウム(AlN)のシリコン注入層の、ホール測定温度T(絶対温度で横軸は1/T)と電子濃度の関係を示すグラフ図。FIG. 3 is a graph showing the relationship between the hole measurement temperature T (absolute temperature, the horizontal axis is 1 / T) and the electron concentration in the aluminum injection layer of AlN obtained in Example 1. 注入するシリコンイオン(Si+)のドーズ量と電子濃度の関係を示すグラフ図。The graph which shows the relationship between the dose of silicon ion (Si <+> ) inject | pouring, and electron concentration. アニール温度と電子濃度の関係を示すグラフ図。The graph which shows the relationship between annealing temperature and electron concentration. 4.Aは、本発明に係るMOSFET100の構造を示す断面図、4.Bは、本発明に係るショットキーダイオード200の構造を示す断面図。4). 3A is a cross-sectional view showing the structure of a MOSFET 100 according to the present invention. B is a sectional view showing the structure of a Schottky diode 200 according to the present invention.

符号の説明Explanation of symbols

10、20:真性窒化アルミニウム基板(i−AlN)
25:n型窒化アルミニウム領域(n−AlN)
31:オーミック電極
32:ショットキー電極
10, 20: Intrinsic aluminum nitride substrate (i-AlN)
25: n-type aluminum nitride region (n-AlN)
31: Ohmic electrode 32: Schottky electrode

Claims (2)

窒化アルミニウム(AlN)に、シリコン(Si)をドーズ量1015/cm-2以上1017/cm-2以下でイオン注入するイオン注入工程と、
イオン注入工程の後に、温度1300℃を越え1500℃未満、5分以上2時間以下でアニーリングするアニーリング工程とを有することを特徴とするn型窒化アルミニウムの製造方法。
An ion implantation step of implanting silicon (Si) into aluminum nitride (AlN) at a dose of 10 15 / cm −2 to 10 17 / cm −2 ;
A method for producing n-type aluminum nitride, comprising: an annealing step after the ion implantation step and annealing at a temperature exceeding 1300 ° C. and less than 1500 ° C. for 5 minutes to 2 hours.
窒化アルミニウムの表面の一部に形成した、電子濃度が3×1016/cm-3以上となる測定温度が、150℃以下であるn型領域を有することを特徴とする半導体素子。 A semiconductor element having an n-type region formed at a part of the surface of aluminum nitride and having a measurement temperature of 150 ° C. or less at which an electron concentration is 3 × 10 16 / cm −3 or more.
JP2005373079A 2005-12-26 2005-12-26 Method for producing n-type aluminum nitride Expired - Fee Related JP4956992B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005373079A JP4956992B2 (en) 2005-12-26 2005-12-26 Method for producing n-type aluminum nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005373079A JP4956992B2 (en) 2005-12-26 2005-12-26 Method for producing n-type aluminum nitride

Publications (2)

Publication Number Publication Date
JP2007173744A true JP2007173744A (en) 2007-07-05
JP4956992B2 JP4956992B2 (en) 2012-06-20

Family

ID=38299861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005373079A Expired - Fee Related JP4956992B2 (en) 2005-12-26 2005-12-26 Method for producing n-type aluminum nitride

Country Status (1)

Country Link
JP (1) JP4956992B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013084951A (en) * 2011-09-30 2013-05-09 Asahi Kasei Electronics Co Ltd Semiconductor device and method for manufacturing the same
WO2013115269A1 (en) * 2012-01-30 2013-08-08 独立行政法人物質・材料研究機構 AlN MONOCRYSTALLINE SCHOTTKY BARRIER DIODE AND METHOD FOR PRODUCING SAME
CN112687526A (en) * 2020-12-25 2021-04-20 广东省科学院半导体研究所 Preparation method of nitride semiconductor material and annealing treatment method thereof
CN113668061A (en) * 2021-07-27 2021-11-19 奥趋光电技术(杭州)有限公司 Method for improving ultraviolet transmittance of aluminum nitride wafer
CN113913771A (en) * 2021-10-09 2022-01-11 中紫半导体科技(东莞)有限公司 Method for manufacturing high-activation-rate doped aluminum nitride single crystal film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003092270A (en) * 2001-09-19 2003-03-28 Matsushita Electric Ind Co Ltd Treatment method for compound semiconductor
JP2005183668A (en) * 2003-12-19 2005-07-07 Hitachi Cable Ltd Manufacturing method of compound semiconductor element
JP2005252075A (en) * 2004-03-05 2005-09-15 Mitsubishi Electric Corp Method of manufacturing semiconductor device
JP2006052123A (en) * 2004-07-12 2006-02-23 Sumitomo Electric Ind Ltd N-TYPE AlN CRYSTAL, N-TYPE AlGaN SOLID SOLUTION, AND METHOD FOR PRODUCING THEM

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003092270A (en) * 2001-09-19 2003-03-28 Matsushita Electric Ind Co Ltd Treatment method for compound semiconductor
JP2005183668A (en) * 2003-12-19 2005-07-07 Hitachi Cable Ltd Manufacturing method of compound semiconductor element
JP2005252075A (en) * 2004-03-05 2005-09-15 Mitsubishi Electric Corp Method of manufacturing semiconductor device
JP2006052123A (en) * 2004-07-12 2006-02-23 Sumitomo Electric Ind Ltd N-TYPE AlN CRYSTAL, N-TYPE AlGaN SOLID SOLUTION, AND METHOD FOR PRODUCING THEM

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013084951A (en) * 2011-09-30 2013-05-09 Asahi Kasei Electronics Co Ltd Semiconductor device and method for manufacturing the same
WO2013115269A1 (en) * 2012-01-30 2013-08-08 独立行政法人物質・材料研究機構 AlN MONOCRYSTALLINE SCHOTTKY BARRIER DIODE AND METHOD FOR PRODUCING SAME
US9190483B2 (en) 2012-01-30 2015-11-17 National Institute For Materials Science AlN single crystal Schottky barrier diode and method of producing the same
EP2811526B1 (en) * 2012-01-30 2020-11-18 National Institute for Materials Science AlN MONOCRYSTALLINE SCHOTTKY BARRIER DIODE AND METHOD FOR PRODUCING SAME
CN112687526A (en) * 2020-12-25 2021-04-20 广东省科学院半导体研究所 Preparation method of nitride semiconductor material and annealing treatment method thereof
CN113668061A (en) * 2021-07-27 2021-11-19 奥趋光电技术(杭州)有限公司 Method for improving ultraviolet transmittance of aluminum nitride wafer
CN113913771A (en) * 2021-10-09 2022-01-11 中紫半导体科技(东莞)有限公司 Method for manufacturing high-activation-rate doped aluminum nitride single crystal film

Also Published As

Publication number Publication date
JP4956992B2 (en) 2012-06-20

Similar Documents

Publication Publication Date Title
Kucheyev et al. Ion implantation into GaN
JP5358955B2 (en) Method for forming p-type gallium nitride based semiconductor region
US20140054680A1 (en) Method of forming group iii nitride semiconductor, method of fabricating semiconductor device, group iii nitride semiconductor device, method of performing thermal treatment
JP5266679B2 (en) Group III nitride electronic devices
US9269577B2 (en) Method for manufacturing nitride semiconductor device
JP5782033B2 (en) Epitaxial substrate for semiconductor element, semiconductor element, PN junction diode element, and method for manufacturing epitaxial substrate for semiconductor element
KR20120002985A (en) Dopant diffusion modulation in gan buffer layers
JP2007103451A (en) Semiconductor device and its manufacturing method
US9287389B2 (en) Method and system for doping control in gallium nitride based devices
JP2009266938A (en) Semiconductor element
WO2015029578A1 (en) Semiconductor device manufacturing method and semiconductor device
JP4956992B2 (en) Method for producing n-type aluminum nitride
US20160043178A1 (en) Semiconductor component and method of manufacture
US20170186880A1 (en) Semiconductor device and manufacturing method thereof
JP2004356257A (en) Manufacturing method for p-type iii nitride semiconductor
JP2007273649A (en) Semiconductor device, substrate for manufacturing same, and its manufacturing method
JP4852786B2 (en) Group III nitride semiconductor manufacturing method and group III nitride semiconductor device
WO2018098952A1 (en) Gan-based epitaxial structure, semiconductor device and formation method therefor
US20160268134A1 (en) Method for manufacturing semiconductor device
US11588096B2 (en) Method to achieve active p-type layer/layers in III-nitrtde epitaxial or device structures having buried p-type layers
US10763333B2 (en) Nitride semiconductor device and method of manufacturing nitride semiconductor device
JP2009289827A (en) Semiconductor device having heterojunction and manufacturing method thereof
US20120248577A1 (en) Controlled Doping in III-V Materials
JP6416705B2 (en) Field effect transistor and manufacturing method thereof
CN115004342A (en) Silicon carbide semiconductor device and method for manufacturing silicon carbide semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4956992

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees