JP2540791B2 - A method for manufacturing a p-type gallium nitride-based compound semiconductor. - Google Patents

A method for manufacturing a p-type gallium nitride-based compound semiconductor.

Info

Publication number
JP2540791B2
JP2540791B2 JP35704691A JP35704691A JP2540791B2 JP 2540791 B2 JP2540791 B2 JP 2540791B2 JP 35704691 A JP35704691 A JP 35704691A JP 35704691 A JP35704691 A JP 35704691A JP 2540791 B2 JP2540791 B2 JP 2540791B2
Authority
JP
Japan
Prior art keywords
gallium nitride
compound semiconductor
type
layer
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP35704691A
Other languages
Japanese (ja)
Other versions
JPH05183189A (en
Inventor
修二 中村
成人 岩佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26570442&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2540791(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP35704691A priority Critical patent/JP2540791B2/en
Priority to US07/970,145 priority patent/US5306662A/en
Priority to EP92310132A priority patent/EP0541373B2/en
Priority to DE1992627170 priority patent/DE69227170T3/en
Publication of JPH05183189A publication Critical patent/JPH05183189A/en
Priority to US08/180,326 priority patent/US5468678A/en
Application granted granted Critical
Publication of JP2540791B2 publication Critical patent/JP2540791B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は紫外、青色発光レーザー
ダイオード、紫外、青色発光ダイオード等の発光デバイ
スに利用されるp型窒化ガリウム系化合物半導体の製造
方法に係り、詳しくは、気相成長法によりp型不純物を
ドープして形成した窒化ガリウム系化合物半導体層を低
抵抗なp型にする方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a p-type gallium nitride-based compound semiconductor used in a light emitting device such as an ultraviolet light emitting diode, a blue light emitting laser diode, an ultraviolet light emitting diode, and a blue light emitting diode. The present invention relates to a method of making a gallium nitride-based compound semiconductor layer formed by doping a p-type impurity into a p-type having a low resistance.

【0002】[0002]

【従来の技術】青色発光素子は、II-VI族のZnSe、I
V-IV族のSiC、III-V族のGaN等を用いて研究が進
められ、最近、その中でも窒化ガリウム系化合物半導体
[GaXAl1-XN(但し0≦X≦1)]が、常温で、比
較的優れた発光を示すことが発表され注目されている。
その窒化ガリウム系化合物半導体を有する青色発光素子
は、基本的に、サファイアよりなる基板の上に一般式が
GaXAl1-XN(但し0≦X≦1)で表される窒化ガリ
ウム系化合物半導体のエピタキシャル層が順にn型およ
びi型、あるいはp型に積層された構造を有するもので
ある。
2. Description of the Related Art A blue light emitting device is a ZnSe, I of II-VI group.
Studies have been conducted using V-IV group SiC, III-V group GaN, etc., and recently, gallium nitride compound semiconductors [Ga X Al 1-X N (where 0 ≦ X ≦ 1)] It has been noticed that it exhibits relatively excellent light emission at room temperature.
The blue light emitting device having the gallium nitride compound semiconductor is basically a gallium nitride compound represented by the general formula Ga X Al 1 -X N (where 0 ≦ X ≦ 1) on a substrate made of sapphire. The semiconductor epitaxial layer has a structure in which n-type and i-type or p-type semiconductor layers are sequentially stacked.

【0003】窒化ガリウム系化合物半導体を積層する方
法として、有機金属化合物気相成長法(以下MOCVD
法という。)、分子線エピタキシー法(以下MBE法と
いう。)等の気相成長法がよく知られている。例えば、
MOCVD法を用いた方法について簡単に説明すると、
この方法は、サファイア基板を設置した反応容器内に反
応ガスとして有機金属化合物ガス{トリメチルガリウム
(TMG)、トリメチルアルミニウム(TMA)、アン
モニア等}を供給し、結晶成長温度をおよそ900℃〜
1100℃の高温に保持して、基板上に窒化ガリウム系
化合物半導体を成長させ、また必要に応じて他の不純物
ガスを供給しながら窒化ガリウム系化合物半導体をn
型、i型、あるいはp型に積層する方法である。基板に
はサファイアの他にSiC、Si等もあるが一般的には
サファイアが用いられている。n型不純物としてはSi
(但し、窒化ガリウム系化合物半導体の場合、n型不純
物をドープしなくともn型になる性質がある。)が良く
知られており、p型不純物としてはZn、Cd、Be、
Mg、Ca、Ba等が挙げられるが、その中でもMg、
Znが最もよく知られている。
As a method for stacking gallium nitride-based compound semiconductors, metal-organic compound vapor phase epitaxy (hereinafter MOCVD) is used.
Called law. ), A molecular beam epitaxy method (hereinafter referred to as MBE method) and the like are well known. For example,
Briefly explaining the method using the MOCVD method,
In this method, an organometallic compound gas {trimethylgallium (TMG), trimethylaluminum (TMA), ammonia, etc.) is supplied as a reaction gas into a reaction vessel in which a sapphire substrate is installed, and the crystal growth temperature is about 900 ° C.
The gallium nitride-based compound semiconductor is grown at a high temperature of 1100 ° C. to grow the gallium nitride-based compound semiconductor on the substrate, and while supplying other impurity gas as necessary, the gallium nitride-based compound semiconductor is n-doped.
It is a method of laminating into a die, an i-type, or a p-type. In addition to sapphire, the substrate includes SiC, Si, etc., but sapphire is generally used. Si as the n-type impurity
(However, gallium nitride-based compound semiconductors have the property of becoming n-type even if they are not doped with n-type impurities.) As p-type impurities, Zn, Cd, Be,
Mg, Ca, Ba and the like can be mentioned. Among them, Mg,
Zn is best known.

【0004】また、MOCVD法による窒化ガリウム系
化合物半導体の形成方法の一つとして、高温でサファイ
ア基板上に直接窒化ガリウム系化合物半導体を成長させ
ると、その表面状態、結晶性が著しく悪くなるため、高
温で成長を行う前に、まず600℃前後の低温でAlN
よりなるバッファ層を形成し、続いてバッファ層の上
に、高温で成長を行うことにより、結晶性が格段に向上
することが明らかにされている(特開平2−22947
6号公報)。また、本発明者は特願平3−89840号
において、AlNをバッファ層とする従来の方法より
も、GaNをバッファ層とする方が優れた結晶性の窒化
ガリウム系化合物半導体が積層できることを示した。
When a gallium nitride-based compound semiconductor is grown directly on a sapphire substrate at a high temperature as one of the methods for forming a gallium nitride-based compound semiconductor by the MOCVD method, the surface condition and crystallinity of the gallium nitride-based compound semiconductor are significantly deteriorated. Before growing at a high temperature, first, at a low temperature around 600 ° C, AlN
It has been clarified that the crystallinity is remarkably improved by forming a buffer layer composed of the above and then growing it on the buffer layer at a high temperature (JP-A-2-22947).
No. 6). Further, the present inventor has shown in Japanese Patent Application No. 3-89840 that a crystalline gallium nitride-based compound semiconductor that is superior to GaN as a buffer layer can be stacked more than a conventional method using AlN as a buffer layer. It was

【0005】しかしながら、窒化ガリウム系化合物半導
体を有する青色発光デバイスは未だ実用化には至ってい
ない。なぜなら、窒化ガリウム系化合物半導体が低抵抗
なp型にできないため、ダブルへテロ、シングルへテロ
等の数々の構造の発光素子ができないからである。気相
成長法でp型不純物をドープした窒化ガリウム系化合物
半導体を成長しても、得られた窒化ガリウム系化合物半
導体はp型とはならず、抵抗率が108Ω・cm以上の高抵
抗な半絶縁材料、即ちi型となってしまうのが実状であ
った。このため現在、青色発光素子の構造は基板の上に
バッファ層、n型層、その上にi型層を順に積層した、
いわゆるMIS構造のものしか知られていない。
However, a blue light emitting device having a gallium nitride compound semiconductor has not yet been put to practical use. This is because the gallium nitride-based compound semiconductor cannot be made into a p-type having low resistance, so that a light emitting element having various structures such as double hetero and single hetero cannot be formed. Even if a gallium nitride-based compound semiconductor doped with p-type impurities is grown by the vapor phase growth method, the obtained gallium nitride-based compound semiconductor does not become p-type and has a high resistance of 10 8 Ω · cm or more. The actual situation is that it becomes a semi-insulating material, i.e., i-type. Therefore, at present, the structure of the blue light emitting device is such that the buffer layer, the n-type layer, and the i-type layer are sequentially stacked on the substrate.
Only the so-called MIS structure is known.

【0006】[0006]

【発明が解決しようとする課題】高抵抗なi型を低抵抗
化してp型に近づけるための手段として特開平2−25
7679号公報において、p型不純物としてMgをドー
プした高抵抗なi型窒化ガリウム化合物半導体を最上層
に形成した後に、加速電圧6kV〜30kVの電子線を
その表面に照射することにより、表面から約0.5μm
の層を低抵抗化する技術が開示されている。しかしなが
ら、この方法では電子線の侵入深さのみ、即ち極表面し
か低抵抗化できず、また電子線を走査しながらウエハー
全体を照射しなければならないため面内均一に低抵抗化
できないという問題があった。
As means for lowering the resistance of a high resistance i-type and making it closer to a p-type, Japanese Patent Laid-Open No. 2525/1990.
In Japanese Patent No. 7679, a high-resistance i-type gallium nitride compound semiconductor doped with Mg as a p-type impurity is formed on the uppermost layer, and then the surface is irradiated with an electron beam with an accelerating voltage of 6 kV to 30 kV. 0.5 μm
A technique for reducing the resistance of the layer is disclosed. However, in this method, only the penetration depth of the electron beam, that is, only the extreme surface can be lowered, and since the entire wafer must be irradiated while scanning the electron beam, there is a problem that the resistance cannot be uniformly lowered in the plane. there were.

【0007】従って本発明の目的は、p型不純物をドー
プした窒化ガリウム系化合物半導体を低抵抗なp型と
し、さらに膜厚によらず抵抗値がウエハー全体に均一で
あり、発光素子をダブルへテロ、シングルへテロ構造可
能な構造とできるp型窒化ガリウム系化合物半導体の製
造方法を提供するものである。
Therefore, an object of the present invention is to use a p-type impurity-doped gallium nitride-based compound semiconductor as a p-type having a low resistance, and the resistance value is uniform over the entire wafer regardless of the film thickness. Provided is a method for manufacturing a p-type gallium nitride-based compound semiconductor capable of forming a structure capable of forming a terrorism or single hetero structure.

【0008】[0008]

【課題を解決するための手段】本発明のp型窒化ガリウ
ム系化合物半導体の製造方法は、気相成長法により、p
型不純物をドープした窒化ガリウム系化合物半導体層を
形成した後、400℃以上の温度でアニーリングを行う
ことを特徴とするものである。
A method of manufacturing a p-type gallium nitride compound semiconductor according to the present invention is a method for producing a p-type gallium nitride compound semiconductor by a vapor phase epitaxy method.
After the gallium nitride-based compound semiconductor layer doped with the type impurities is formed, annealing is performed at a temperature of 400 ° C. or higher.

【0009】アニーリング(Annealing:焼きなまし)
はp型不純物をドープした窒化ガリウム系化合物半導体
層を形成した後、反応容器内で行ってもよいし、ウエハ
ーを反応容器から取り出してアニーリング専用の装置を
用いて行ってもよい。アニーリング雰囲気は真空中、N
2、He、Ne、Ar等の不活性ガス、またはこれらの
混合ガス雰囲気中で行い、最も好ましくは、アニーリン
グ温度における窒化ガリウム系化合物半導体の分解圧以
上で加圧した窒素雰囲気中で行う。なぜなら、窒素雰囲
気として加圧することにより、アニーリング中に、窒化
ガリウム系化合物半導体中のNが分解して出て行くのを
防止する作用があるからである。
Annealing: Annealing
After the formation of the gallium nitride-based compound semiconductor layer doped with p-type impurities, may be performed in the reaction vessel, or the wafer may be taken out of the reaction vessel and used in an apparatus dedicated to annealing. Annealing atmosphere is vacuum, N
2 , in an atmosphere of an inert gas such as He, Ne, Ar, or a mixed gas thereof, and most preferably in a nitrogen atmosphere pressurized at a decomposition pressure of the gallium nitride-based compound semiconductor or more at the annealing temperature. This is because pressurization as a nitrogen atmosphere has an action of preventing N in the gallium nitride-based compound semiconductor from decomposing and leaving during annealing.

【0010】例えばGaNの場合、GaNの分解圧は8
00℃で約0.01気圧、1000℃で約1気圧、11
00℃で約10気圧程である。このため、窒化ガリウム
系化合物半導体を400℃以上でアニーリングする際、
多かれ少なかれ窒化ガリウム系化合物半導体の分解が発
生し、その結晶性が悪くなる傾向にある。従って前記の
ように窒素で加圧することにより分解を防止できる。
For example, in the case of GaN, the decomposition pressure of GaN is 8
About 0.01 atmosphere at 00 ° C, about 1 atmosphere at 1000 ° C, 11
It is about 10 atm at 00 ° C. Therefore, when a gallium nitride compound semiconductor is annealed at 400 ° C. or higher,
The gallium nitride-based compound semiconductor is more or less decomposed, and its crystallinity tends to deteriorate. Therefore, by pressurizing with nitrogen as described above, decomposition can be prevented.

【0011】アニーリング温度は400℃以上、好まし
くは700℃以上で、1分以上保持、好ましくは10分
以上保持して行う。1000℃以上で行っても、前記し
たように窒素で加圧することにより分解を防止すること
ができ、後に述べるように、安定して、結晶性の優れた
p型窒化ガリウム系化合物半導体が得られる。
The annealing temperature is 400 ° C. or higher, preferably 700 ° C. or higher, and the annealing is performed for 1 minute or more, preferably 10 minutes or more. Even at 1000 ° C. or higher, decomposition can be prevented by pressurizing with nitrogen as described above, and as described later, a stable p-type gallium nitride compound semiconductor having excellent crystallinity can be obtained. .

【0012】また、アニーリング中の、窒化ガリウム系
化合物半導体の分解を抑える手段として、p型不純物を
ドープした窒化ガリウム系化合物半導体層の上にさらに
キャップ層を形成させたのち、アニーリングを行っても
よい。キャップ層とは、即ち保護膜であって、それをp
型不純物をドープした窒化ガリウム系化合物半導体の上
に形成した後、400℃以上でアニーリングすることに
よって、加圧下はいうまでもなく、減圧、常圧中におい
ても、窒化ガリウム系化合物半導体を分解させることな
く低抵抗なp型とすることができる。
Further, as a means for suppressing the decomposition of the gallium nitride compound semiconductor during annealing, a cap layer may be further formed on the gallium nitride compound semiconductor layer doped with p-type impurities and then annealed. Good. The cap layer is a protective film, which is a p-layer.
After being formed on a gallium nitride-based compound semiconductor doped with a type impurity, the gallium nitride-based compound semiconductor is decomposed not only under pressure but also under reduced pressure and normal pressure by annealing at 400 ° C. or higher. Can be made into a p-type with low resistance.

【0013】キャップ層を形成するには、p型不純物を
ドープした窒化ガリウム系化合物半導体層を形成した
後、続いて反応容器内で形成してもよいし、また、ウエ
ハーを反応容器から取り出し、他の結晶成長装置、例え
ばプラズマCVD装置等で形成してもよい。キャップ層
の材料としては、窒化ガリウム系化合物半導体の上に形
成できる材料で、400℃以上で安定な材料であればど
のようなものでもよく、好ましくはGaXAl1-XN(但
し0≦X≦1)、Si34、SiO2を挙げることがで
き、アニーリング温度により材料の種類を適宜選択す
る。また、キャップ層の膜厚は通常0.01〜5μmの
厚さで形成する。0.01μmより薄いと保護膜として
の効果が十分に得られず、また5μmよりも厚いと、ア
ニーリング後、キャップ層をエッチングにより取り除
き、p型窒化ガリウム系化合物半導体層を露出させるの
に手間がかかるため、経済的ではない。
To form the cap layer, the gallium nitride-based compound semiconductor layer doped with p-type impurities may be formed and then formed in the reaction vessel, or the wafer may be taken out from the reaction vessel. It may be formed by another crystal growth apparatus such as a plasma CVD apparatus. The material of the cap layer may be any material that can be formed on a gallium nitride-based compound semiconductor and is stable at 400 ° C. or higher, preferably Ga X Al 1-X N (where 0 ≦ X ≦ 1), Si 3 N 4 and SiO 2 can be mentioned, and the kind of material is appropriately selected depending on the annealing temperature. The thickness of the cap layer is usually 0.01 to 5 μm. If it is thinner than 0.01 μm, the effect as a protective film cannot be sufficiently obtained, and if it is thicker than 5 μm, it is troublesome to expose the p-type gallium nitride compound semiconductor layer by removing the cap layer by etching after annealing. Therefore, it is not economical.

【0014】[0014]

【作用】図1は、p型不純物をドープした窒化ガリウム
系化合物半導体層がアニーリングによって低抵抗なp型
に変わることを示す図である。これは、MOCVD法を
用いて、サファイア基板上にまずGaNバッファ層を形
成し、その上にp型不純物としてMgをドープしながら
GaN層を4μmの膜厚で形成した後、ウエハーを取り
出し、温度を変化させて窒素雰囲気中でアニーリングを
10分間行った後、ウエハーのホール測定を行い、抵抗
率をアニーリング温度の関数としてプロットした図であ
る。
FIG. 1 is a diagram showing that a gallium nitride-based compound semiconductor layer doped with a p-type impurity is changed to a low-resistance p-type by annealing. The MOCVD method is used to first form a GaN buffer layer on a sapphire substrate, form a GaN layer with a film thickness of 4 μm while doping Mg as a p-type impurity on the sapphire substrate, and then take out the wafer and set the temperature. Is a diagram in which the hole is measured on the wafer after annealing is performed for 10 minutes in a nitrogen atmosphere while changing the temperature, and the resistivity is plotted as a function of the annealing temperature.

【0015】この図からわかるように、400℃を越え
るあたりから急激にMgをドープしたGaN層の抵抗率
が減少し、700℃以上からはほぼ一定の低抵抗なp型
特性を示し、アニーリングの効果が現れている。なお、
アニーリングしないGaN層と700℃以上でアニーリ
ングしたGaN層のホール測定結果は、アニーリング前
のGaN層は抵抗率2×105Ω・cm、ホールキャリア濃
度8×1010/cm3であったのに対し、アニーリング後
のGaN層は抵抗率2Ω・cm、ホールキャリア濃度2×
1017/cm3であった。また、この図はGaNについて
示した図であるが、同じくp型不純物をドープしたGa
XAl1-XN(0≦X<1)においても同様の結果が得ら
れることが確かめられた。
As can be seen from this figure, the resistivity of the Mg-doped GaN layer sharply decreases from above 400 ° C., and from 700 ° C. or above, it exhibits a substantially constant low-resistance p-type characteristic, and the annealing The effect is appearing. In addition,
The hole measurement results of the non-annealed GaN layer and the GaN layer annealed at 700 ° C. or higher showed that the GaN layer before annealing had a resistivity of 2 × 10 5 Ω · cm and a hole carrier concentration of 8 × 10 10 / cm 3. On the other hand, the GaN layer after annealing has a resistivity of 2 Ω · cm and a hole carrier concentration of 2 ×.
It was 10 17 / cm 3 . In addition, although this figure shows GaN, Ga doped with p-type impurities is also used.
It was confirmed that similar results were obtained with X Al 1 -X N (0 ≦ X <1).

【0016】さらに、700℃でアニーリングした上記
4μmのGaN層をエッチングして2μmの厚さにし、
ホール測定を行った結果、ホールキャリア濃度2×10
17/cm3、抵抗率3Ω・cmであり、エッチング前とほぼ同
一の値であった。即ちp型不純物をドープしたGaN層
がアニーリングによって、深さ方向均一に全領域にわた
って低抵抗なp型となっていた。
Further, the 4 μm GaN layer annealed at 700 ° C. is etched to a thickness of 2 μm,
As a result of hole measurement, hole carrier concentration is 2 × 10
The value was 17 / cm 3 and the resistivity was 3 Ω · cm, which were almost the same values as before etching. That is, the GaN layer doped with the p-type impurity was p-type with low resistance throughout the entire region uniformly in the depth direction by annealing.

【0017】また、図2は、同じくMOCVD法を用い
て、サファイア基板上にGaNバッファ層とMgをドー
プした4μmのGaN層を形成したウエハーを用い、1
000℃で窒素雰囲気中20分間のアニーリングを行
い、20気圧の加圧下で行ったウエハー(a)と、大気
圧で行ったウエハー(b)のp型GaN層にそれぞれH
e−Cdレーザーを励起光源として照射し、そのフォト
ルミネッセンス強度で結晶性を比較して示す図であり、
そのフォトルミネッセンスの450nmにおける青色発
光強度が強いほど、結晶性が優れていると評価すること
ができる。
In addition, FIG. 2 also shows a wafer in which a GaN buffer layer and a Mg-doped 4 μm GaN layer are formed on a sapphire substrate by the same MOCVD method.
Annealing was performed for 20 minutes in a nitrogen atmosphere at 000 ° C., and H was applied to the p-type GaN layer of the wafer (a) performed under a pressure of 20 atm and the wafer (b) performed at atmospheric pressure.
It is a figure which irradiates e-Cd laser as an excitation light source, and compares and shows crystallinity by the photoluminescence intensity,
The stronger the blue emission intensity of the photoluminescence at 450 nm, the better the crystallinity can be evaluated.

【0018】図2に示すように、1000℃以上の高温
でアニーリングを行った場合、GaN層が熱分解するこ
とにより、その結晶性が悪くなる傾向にあるが、加圧す
ることにより熱分解を防止でき、優れた結晶性のp型G
aN層が得られる。
As shown in FIG. 2, when annealing is performed at a high temperature of 1000 ° C. or higher, the GaN layer tends to be thermally decomposed and its crystallinity tends to deteriorate. However, pressurization prevents the thermal decomposition. P-type G with excellent crystallinity
An aN layer is obtained.

【0019】また、図3は、同じくサファイア基板上に
GaNバッファ層とMgをドープした4μmのGaN層
を形成したウエハー(c)と、さらにその上にキャップ
層としてAlN層を0.5μmの膜厚で成長させたウエ
ハー(d)とを、今度は大気圧中において、1000
℃、窒素雰囲気で20分間のアニーリングを行った後、
エッチングによりキャップ層を取り除いて露出させたp
型GaN層の結晶性を、同じくフォトルミネッセンス強
度で比較して示す図である。
Further, FIG. 3 shows a wafer (c) having a GaN buffer layer and a Mg-doped 4 μm GaN layer formed on a sapphire substrate, and an AlN layer of 0.5 μm as a cap layer on the wafer (c). A wafer (d) grown to a thickness of 1000
After annealing at ℃ for 20 minutes in nitrogen atmosphere,
P exposed by removing the cap layer by etching
It is a figure which compares and shows the crystallinity of the type GaN layer by photoluminescence intensity similarly.

【0020】図3に示すように、キャップ層を成長させ
ずにアニーリングを行ったp型GaN層(c)は高温で
のアニーリングになるとp型GaN層の分解が進むた
め、450nmでの発光強度は弱くなってしまう。しか
し、キャップ層(この場合AlN)を成長させることに
より、キャップ層のAlNは分解するがp型GaN層は
分解しないため、発光強度は依然強いままである。
As shown in FIG. 3, the p-type GaN layer (c) that has been annealed without growing the cap layer undergoes decomposition at a high temperature when the p-type GaN layer is annealed at high temperature, so that the emission intensity at 450 nm is increased. Becomes weaker. However, by growing the cap layer (AlN in this case), the AlN of the cap layer is decomposed but the p-type GaN layer is not decomposed, and therefore the emission intensity still remains strong.

【0021】アニーリングにより低抵抗なp型窒化ガリ
ウム系化合物半導体が得られる理由は以下のとおりであ
ると推察される。
The reason why the p-type gallium nitride compound semiconductor having a low resistance can be obtained by annealing is presumed to be as follows.

【0022】即ち、窒化ガリウム系化合物半導体層の成
長において、N源として、一般にNH3が用いられてお
り、成長中にこのNH3が分解して原子状水素ができる
と考えられる。この原子状水素がアクセプター不純物と
してドープされたMg、Zn等と結合することにより、
Mg、Zn等のp型不純物がアクセプターとして働くの
を妨げていると考えられる。このため、反応後のp型不
純物をドープした窒化ガリウム系化合物半導体は高抵抗
を示す。
That is, in the growth of the gallium nitride compound semiconductor layer, NH 3 is generally used as the N source, and it is considered that during the growth, NH 3 is decomposed to form atomic hydrogen. By combining this atomic hydrogen with Mg, Zn, etc. doped as acceptor impurities,
It is considered that p-type impurities such as Mg and Zn prevent the p-type impurities from functioning as acceptors. Therefore, the gallium nitride-based compound semiconductor doped with the p-type impurity after the reaction has high resistance.

【0023】ところが、成長後アニーリングを行うこと
により、Mg−H、Zn−H等の形で結合している水素
が熱的に解離されて、p型不純物をドープした窒化ガリ
ウム系化合物半導体層から出て行き、正常にp型不純物
がアクセプターとして働くようになるため、低抵抗なp
型窒化ガリウム系化合物半導体が得られるのである。従
って、アニーリング雰囲気中にNH3、H2等の水素原子
を含むガスを使用することは好ましくない。また、キャ
ップ層においても、水素原子を含む材料を使用すること
は以上の理由で好ましくない。
However, by performing annealing after growth, hydrogen bound in the form of Mg-H, Zn-H, etc. is thermally dissociated, and the gallium nitride-based compound semiconductor layer doped with p-type impurities is removed. Since the p-type impurities work normally as an acceptor, the low resistance p
Thus, a gallium nitride-based compound semiconductor is obtained. Therefore, it is not preferable to use a gas containing hydrogen atoms such as NH 3 and H 2 in the annealing atmosphere. Further, it is not preferable to use a material containing hydrogen atoms also in the cap layer for the above reason.

【0024】[0024]

【実施例】以下実施例で本発明を詳述する。 [実施例1]まず良く洗浄したサファイア基板を反応容
器内のサセプターに設置する。容器内を真空排気した
後、水素ガスを流しながら基板を1050℃で、20分
間加熱し、表面の酸化物を除去する。その後、温度を5
10℃にまで冷却し、510℃においてGa源としてT
MGガスを27×10-6モル/分、N源としてアンモニ
アガスを4.0リットル/分、キャリアガスとして水素
ガスを2.0リットル/分で流しながら、GaNバッフ
ァ層を200オングストロームの膜厚で成長させる。
The present invention will be described in detail with reference to the following examples. [Example 1] First, a well-cleaned sapphire substrate is placed on a susceptor in a reaction vessel. After evacuating the inside of the container, the substrate is heated at 1050 ° C. for 20 minutes while flowing hydrogen gas to remove the oxide on the surface. Then increase the temperature to 5
It was cooled to 10 ° C and T was used as a Ga source at 510 ° C.
The GaN buffer layer has a film thickness of 200 angstrom while flowing MG gas at 27 × 10 −6 mol / min, ammonia gas as N source at 4.0 liter / min, and hydrogen gas at 2.0 liter / min as carrier gas. Grow with.

【0025】次にTMGガスのみを止めて温度を103
0℃まで上昇させた後、再びTMGガスを54×10-6
モル/分、新たにCp2Mg(シクロペンタジエニルマ
グネシウム)ガスを3.6×10-6モル/分で流しなが
ら60分間成長させて、MgをドープしたGaN層を4
μmの膜厚で成長させる。
Next, only the TMG gas is stopped and the temperature is set to 103
After raising the temperature to 0 ° C., TMG gas was again added to 54 × 10 −6
Cp 2 Mg (cyclopentadienylmagnesium) gas was newly added at a flow rate of 3.6 × 10 −6 mol / min for 60 minutes to grow a Mg-doped GaN layer at 4 mol / min.
Grow with a film thickness of μm.

【0026】冷却後、以上を成長させたウエハーを反応
容器から取り出し、アニーリング装置に入れ、常圧、窒
素雰囲気中で800℃で20分間保持してアニーリング
を行った。
After cooling, the wafer thus grown was taken out of the reaction vessel, placed in an annealing apparatus, and annealed by holding it at 800 ° C. for 20 minutes in a nitrogen atmosphere at normal pressure.

【0027】アニーリングして得られたp型GaN層の
ホール測定を行った結果、抵抗率2Ω・cm、ホールキャ
リア濃度2×1017/cm3と優れたp型特性を示した。
As a result of hole measurement of the p-type GaN layer obtained by annealing, excellent p-type characteristics such as a resistivity of 2 Ω · cm and a hole carrier concentration of 2 × 10 17 / cm 3 were shown.

【0028】[実施例2]実施例1において、Mgドー
プGaN層を成長させた後、Cp2Mgガスを止め、続
いてキャップ層としてGaN層を0.5μmの膜厚で成
長させる。
Example 2 In Example 1, after growing the Mg-doped GaN layer, Cp 2 Mg gas was stopped, and then a GaN layer was grown to a thickness of 0.5 μm as a cap layer.

【0029】実施例1と同様にアニーリング装置におい
て、常圧下、窒素とアルゴンの混合ガス雰囲気中、80
0℃で20分間アニーリングを行う。その後、ドライエ
ッチングにより、表面から0.5μmの層を取り除き、
キャップ層を除去してp型GaN層を露出させ、同様に
ホール測定を行った結果、抵抗率2Ω・cm、キャリア濃
度1.5×1017/cm3と優れたp型特性を示した。な
おフォトルミネッセンスの450nmの青色発光強度
は、実施例1と比較して約4倍強かった。
In the same manner as in Example 1, the annealing apparatus was operated under normal pressure in a mixed gas atmosphere of nitrogen and argon at 80 ° C.
Anneal for 20 minutes at 0 ° C. After that, a layer of 0.5 μm is removed from the surface by dry etching,
The p-type GaN layer was exposed by removing the cap layer, and the hole measurement was performed in the same manner. As a result, excellent p-type characteristics such as a resistivity of 2 Ω · cm and a carrier concentration of 1.5 × 10 17 / cm 3 were exhibited. The blue emission intensity of photoluminescence at 450 nm was about 4 times stronger than that in Example 1.

【0030】[実施例3]実施例1において、Mgドー
プGaN層を成長させた後、ウエハーを反応容器から取
り出し、アニーリング装置において、20気圧、窒素雰
囲気中、800℃で20分間アニーリングを行う。ホー
ル測定を行った結果、抵抗率2Ω・cm、キャリア濃度
2.0×1017/cm3と優れたp型特性を示し、フォト
ルミネッセンスの450nmの発光強度は、実施例1に
比較して約4倍強かった。
[Example 3] In Example 1, after growing the Mg-doped GaN layer, the wafer was taken out of the reaction vessel and annealed at 20 atm in a nitrogen atmosphere at 800 ° C for 20 minutes. As a result of Hall measurement, it showed excellent p-type characteristics with a resistivity of 2 Ω · cm and a carrier concentration of 2.0 × 10 17 / cm 3, and the photoluminescence intensity of 450 nm was about the same as that of Example 1. It was four times stronger.

【0031】[実施例4]実施例1において、Mgドー
プGaN層を成長させた後、ウエハーを反応容器から取
り出し、プラズマCVD装置を用い、その上にキャップ
層としてSiO2層を0.5μmの膜厚で形成する。
Example 4 In Example 1, after the Mg-doped GaN layer was grown, the wafer was taken out of the reaction container and a plasma CVD apparatus was used to deposit a SiO 2 layer having a thickness of 0.5 μm as a cap layer thereon. It is formed with a film thickness.

【0032】アニーリング装置において、窒素雰囲気、
大気圧中、1000℃で20分間アニーリングを行う。
その後、フッ酸でSiO2キャップ層を取り除き、p型
GaN層を露出させ、同様にホール測定を行った結果、
抵抗率2Ω・cm、キャリア濃度2.0×1017/cm3と優
れたp型特性を示した。またフォトルミネッセンスの4
50nmの発光強度は、キャップ層を形成せず同一条件
でアニーリングを行ったものと比較して、約20倍も強
かった。
In the annealing apparatus, a nitrogen atmosphere,
Anneal for 20 minutes at 1000 ° C. under atmospheric pressure.
After that, the SiO 2 cap layer was removed with hydrofluoric acid to expose the p-type GaN layer, and the hole measurement was performed in the same manner.
It exhibited excellent p-type characteristics with a resistivity of 2 Ω · cm and a carrier concentration of 2.0 × 10 17 / cm 3 . In addition, 4 of photoluminescence
The emission intensity at 50 nm was about 20 times stronger than that of the case where annealing was performed under the same conditions without forming the cap layer.

【0033】[実施例5]実施例1において、Mgドー
プGaN層を成長させた後、引き続き、Cp2Mgガス
を止め、新たにTMAガスを6×10-6モル/分とSi
4(モノシラン)ガスを2.2×10-10モル/分を2
0分間流して、Siがドープされたn型Ga0 .9Al0.1
N層を0.8μmの厚さで成長させる。
[Embodiment 5] In Embodiment 1, after the Mg-doped GaN layer is grown, Cp 2 Mg gas is stopped and new TMA gas is added at 6 × 10 -6 mol / min Si.
2.2 × 10 -10 mol / min of H 4 (monosilane) gas to 2
Flowing 0 minutes, n-type Si-doped Ga 0 .9 Al 0.1
The N layer is grown to a thickness of 0.8 μm.

【0034】TMGガス、TMAガス、SiH4ガスを
止め、水素ガスとアンモニアガスを流しながら、室温ま
で冷却した後、ウエハーを取りだして、アニーリング装
置に入れ、窒素雰囲気中で700℃で20分間保持して
アニーリングを行う。
After stopping the TMG gas, TMA gas and SiH 4 gas and cooling to room temperature while flowing hydrogen gas and ammonia gas, the wafer was taken out and placed in an annealing apparatus and kept at 700 ° C. for 20 minutes in a nitrogen atmosphere. And do annealing.

【0035】このようにしてサファイア基板上にp型G
aN層とn型Ga0.9Al0.1N層が順に積層されたシン
グルへテロ構造の素子ができた。この素子の窒化ガリウ
ム系化合物半導体層を、常法に従いn型Ga0.9Al0.1
N層の一部をエッチングしてp型GaN層の一部を露出
させ、それぞれの層にオーミック電極をつけた後、ダイ
シングソーでチップ状にカットした。チップ上に露出し
たn型層およびp型層から電極を取りだし、その後モー
ルドして青色発光ダイオードを作製した。この発光ダイ
オードの特性は順方向電流20mA、順方向電圧5Vで
発光出力90μWの青色発光を示し、ピーク波長は43
0nmであった。この発光出力は青色発光ダイオードの
出力としては過去に報告されたことがない高い値であ
る。
Thus, the p-type G is formed on the sapphire substrate.
An element having a single hetero structure in which an aN layer and an n-type Ga 0.9 Al 0.1 N layer were sequentially stacked was obtained. A gallium nitride-based compound semiconductor layer of this device was formed into an n-type Ga 0.9 Al 0.1
A part of the N layer was etched to expose a part of the p-type GaN layer, an ohmic electrode was attached to each layer, and then cut into chips with a dicing saw. Electrodes were taken out from the n-type layer and the p-type layer exposed on the chip and then molded to produce a blue light emitting diode. The characteristics of this light emitting diode are that blue light is emitted with a forward current of 20 mA, a forward voltage of 5 V and an emission output of 90 μW, and the peak wavelength is 43.
It was 0 nm. This light emission output is a high value that has never been reported as the output of the blue light emitting diode.

【0036】一方、アニーリングをせず、同様のシング
ルへテロ構造を有する発光ダイオードを製作したとこ
ろ、この発光ダイオードは順方向電流20mAにおい
て、順方向電圧は60V近くもあり、しかも発光は微か
には黄色っぽく光るのみで、すぐに壊れてしまい発光出
力は測定不能であった。
On the other hand, when a light emitting diode having the same single hetero structure was manufactured without annealing, the light emitting diode had a forward voltage of about 60 V at a forward current of 20 mA and emitted light only slightly. It only glowed yellowish and soon broke, and the emission output could not be measured.

【0037】[実施例6]実施例1と同様にしてサファ
イア基板の上にGaNバッファ層を200オングストロ
ームの膜厚で形成する。
[Embodiment 6] Similar to Embodiment 1, a GaN buffer layer is formed on a sapphire substrate to a thickness of 200 Å.

【0038】次にTMGガスのみを止め、温度を103
0℃にまで上昇させた後、再びTMGガスを54×10
-6モル/分と、新たにSiH4(モノシラン)ガスを
2.2×10-10モル/分で流しながら60分間成長さ
せて、Siがドープされたn型GaN層を4μmの膜厚
で成長する。
Next, only the TMG gas is stopped and the temperature is set to 103
After raising the temperature to 0 ° C., TMG gas was again 54 × 10 5.
-6 mol / min and SiH 4 (monosilane) gas at a flow rate of 2.2 × 10 −10 mol / min for 60 minutes to grow a Si-doped n-type GaN layer with a thickness of 4 μm. grow up.

【0039】続いてSiH4ガスを止め、Cp2Mgガス
を3.6×10-6モル/分で流しながら30分間成長さ
せて、MgドープGaN層を2.0μmの厚さで成長さ
せる。
Then, the SiH 4 gas is stopped, and Cp 2 Mg gas is grown at a flow rate of 3.6 × 10 -6 mol / min for 30 minutes to grow the Mg-doped GaN layer to a thickness of 2.0 μm.

【0040】TMGガス、Cp2Mgガスを止め、水素
ガスとアンモニアガスを流しながら、室温まで冷却した
後、反応容器内に流れるガスを窒素ガスに置換し、窒素
ガスを流しながら反応容器内の温度を1000℃まで上
昇させ、反応容器内で20分間保持してアニーリングを
行う。
After stopping the TMG gas and Cp 2 Mg gas and cooling to room temperature while flowing hydrogen gas and ammonia gas, the gas flowing in the reaction vessel was replaced with nitrogen gas, and nitrogen gas was flowed in the reaction vessel. The temperature is raised to 1000 ° C. and kept in the reaction vessel for 20 minutes for annealing.

【0041】このようにして得られた素子を実施例4と
同様にして発光ダイオードにして発光させたところ43
0nm付近に発光ピークを持つ青色発光を示し、発光出
力は20mAで50μWであり、順方向電圧は同じく2
0mAで4Vであった。またアニーリングを行わず同様
の構造の素子を作製し発光ダイオードとしたところ、2
0mAにおいてわずかに黄色に発光し、すぐにダイオー
ドが壊れてしまった。
The device thus obtained was used as a light emitting diode to emit light in the same manner as in Example 43.
It exhibits blue light emission with an emission peak near 0 nm, the emission output is 50 μW at 20 mA, and the forward voltage is 2 as well.
It was 4 V at 0 mA. Moreover, when an element having the same structure was manufactured as a light emitting diode without performing annealing, 2
It emitted a slight yellow light at 0 mA and immediately the diode broke.

【0042】[0042]

【発明の効果】以上述べたように本発明の製造方法によ
ると、従来p型不純物をドープしても低抵抗なp型とな
らなかった窒化ガリウム系化合物半導体を低抵抗なp型
とすることができるため、数々の構造の素子を製造する
ことができる。さらに、従来の電子線照射による方法で
は最上層の極表面しか低抵抗化できなかったが、本発明
ではアニーリングによってp型不純物がドープされた窒
化ガリウム系化合物半導体層を全体をp型化できるた
め、面内均一にしかも深さ方向均一にp型化でき、しか
もどこの層にでもp型層を形成できる。また厚膜の層を
形成することができるため、高輝度な青色発光素子を得
ることができる。
As described above, according to the manufacturing method of the present invention, a gallium nitride-based compound semiconductor, which has not been a p-type having a low resistance even when doped with a p-type impurity, is made a p-type having a low resistance. Therefore, it is possible to manufacture devices having various structures. Further, the conventional method using electron beam irradiation can reduce the resistance of only the uppermost surface, but in the present invention, the gallium nitride-based compound semiconductor layer doped with p-type impurities by annealing can be made to be p-type as a whole. The p-type layer can be formed uniformly in the plane and even in the depth direction, and the p-type layer can be formed on any layer. In addition, since a thick film layer can be formed, a high-luminance blue light emitting element can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例によるアニーリング温度
と、抵抗率の関係を示す図。
FIG. 1 is a diagram showing a relationship between an annealing temperature and a resistivity according to an embodiment of the present invention.

【図2】 本発明の一実施例によるp型GaN層の結晶
性をフォトルミネッセンス強度で比較して示す図。
FIG. 2 is a diagram showing a comparison of crystallinity of p-type GaN layers according to an example of the present invention by photoluminescence intensity.

【図3】本発明の一実施例によるp型GaN層の結晶性
をフォトルミネッセンス強度で比較して示す図。
FIG. 3 is a diagram showing a comparison of crystallinity of p-type GaN layers according to an example of the present invention by photoluminescence intensity.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 気相成長法により、p型不純物がドープ
された窒化ガリウム系化合物半導体を成長させた後、4
00℃以上の温度でアニーリングを行うことを特徴とす
るp型窒化ガリウム系化合物半導体の製造方法。
1. After growing a p-type impurity-doped gallium nitride-based compound semiconductor by a vapor phase growth method, 4
A method for producing a p-type gallium nitride-based compound semiconductor, which comprises performing annealing at a temperature of 00 ° C. or higher.
【請求項2】 前記アニーリングは、そのアニーリング
温度における窒化ガリウム系化合物半導体の分解圧以上
に加圧した窒素雰囲気中で行うことを特徴とする請求項
1に記載のp型窒化ガリウム系化合物半導体の製造方
法。
2. The p-type gallium nitride compound semiconductor according to claim 1, wherein the annealing is performed in a nitrogen atmosphere at a pressure higher than the decomposition pressure of the gallium nitride compound semiconductor at the annealing temperature. Production method.
【請求項3】 前記p型不純物をドープした窒化ガリウ
ム系化合物半導体の上に、さらにキャップ層を形成する
ことを特徴とする請求項1ないし2に記載のp型窒化ガ
リウム系化合物半導体の製造方法。
3. The method for producing a p-type gallium nitride compound semiconductor according to claim 1, further comprising forming a cap layer on the gallium nitride compound semiconductor doped with the p-type impurity. .
【請求項4】 前記キャップ層はGaXAl1-XN(但し
0≦X≦1)、AlN、Si34、SiO2より選択され
たいずれか一種の材料よりなることを特徴とする請求項
3に記載のp型窒化ガリウム系化合物半導体の製造方
法。
4. The cap layer is made of any one material selected from Ga X Al 1 -X N (where 0 ≦ X ≦ 1), AlN, Si 3 N 4 and SiO 2. The method for producing a p-type gallium nitride compound semiconductor according to claim 3.
JP35704691A 1991-11-08 1991-12-24 A method for manufacturing a p-type gallium nitride-based compound semiconductor. Expired - Lifetime JP2540791B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP35704691A JP2540791B2 (en) 1991-11-08 1991-12-24 A method for manufacturing a p-type gallium nitride-based compound semiconductor.
US07/970,145 US5306662A (en) 1991-11-08 1992-11-02 Method of manufacturing P-type compound semiconductor
EP92310132A EP0541373B2 (en) 1991-11-08 1992-11-05 Method of manufacturing p-type compound semiconductor
DE1992627170 DE69227170T3 (en) 1991-11-08 1992-11-05 Process for the production of P-type compound semiconductors
US08/180,326 US5468678A (en) 1991-11-08 1994-01-12 Method of manufacturing P-type compound semiconductor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP32135391 1991-11-08
JP3-321353 1991-11-08
JP35704691A JP2540791B2 (en) 1991-11-08 1991-12-24 A method for manufacturing a p-type gallium nitride-based compound semiconductor.

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP7310804A Division JPH08213656A (en) 1995-11-29 1995-11-29 Gallium nitride based compound semiconductor light emitting element

Publications (2)

Publication Number Publication Date
JPH05183189A JPH05183189A (en) 1993-07-23
JP2540791B2 true JP2540791B2 (en) 1996-10-09

Family

ID=26570442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35704691A Expired - Lifetime JP2540791B2 (en) 1991-11-08 1991-12-24 A method for manufacturing a p-type gallium nitride-based compound semiconductor.

Country Status (1)

Country Link
JP (1) JP2540791B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002057161A (en) * 2000-08-10 2002-02-22 Sony Corp Heat-treating method of nitride compound semiconductor layer and manufacturing method of semiconductor element
US6524882B2 (en) 2000-04-04 2003-02-25 Sony Corporation Method of producing p-type nitride based III-V compound semiconductor and method of fabricating semiconductor device using the same
WO2007108531A1 (en) 2006-03-23 2007-09-27 Showa Denko K.K. Method for manufacturing gallium nitride compound semiconductor light-emitting device, gallium nitride compound semiconductor light-emitting device and lamp using same
JP2007258376A (en) * 2006-03-22 2007-10-04 Rohm Co Ltd Manufacturing method of semiconductor element
EP2264794A2 (en) 1997-01-09 2010-12-22 Nichia Corporation Nitride semiconductor device
US8022436B2 (en) 2008-11-19 2011-09-20 Showa Denko K.K. Light emitting diode, production method thereof and lamp
US8513694B2 (en) 2009-03-04 2013-08-20 Panasonic Corporation Nitride semiconductor device and manufacturing method of the device
US9431260B2 (en) 2013-12-11 2016-08-30 Toyoda Gosei Co., Ltd. Semiconductor device and manufacturing method of the same
US9754783B2 (en) 2013-07-31 2017-09-05 Fuji Electric Co., Ltd. Method for producing a semiconductor device, and semiconductor device
US9805930B2 (en) 2015-08-25 2017-10-31 Fuji Electric Co., Ltd. Method of manufacturing nitride semiconductor device using laminated cap layers
US9905433B2 (en) 2016-07-04 2018-02-27 Fuji Electric Co., Ltd. Manufacturing method of semiconductor device including a nitride semiconductor layer
US10121876B2 (en) 2016-07-13 2018-11-06 Fuji Electric Co., Ltd. Method for high temperature annealing of a nitride semiconductor layer
US10141192B2 (en) 2016-06-23 2018-11-27 Fuji Electric Co., Ltd. Manufacturing method of semiconductor device

Families Citing this family (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5656832A (en) * 1994-03-09 1997-08-12 Kabushiki Kaisha Toshiba Semiconductor heterojunction device with ALN buffer layer of 3nm-10nm average film thickness
JP3672585B2 (en) * 1994-03-22 2005-07-20 豊田合成株式会社 Method for manufacturing group 3 nitride semiconductor
JPH08153933A (en) * 1994-04-20 1996-06-11 Toyoda Gosei Co Ltd Gallium nitride based compound semiconductor laser diode
JPH0851235A (en) * 1994-08-09 1996-02-20 Rohm Co Ltd Manufacture of semiconductor light emitting element
JP3325713B2 (en) * 1994-08-22 2002-09-17 ローム株式会社 Manufacturing method of semiconductor light emitting device
JP3340859B2 (en) * 1994-09-29 2002-11-05 ローム株式会社 Semiconductor light emitting device
US6996150B1 (en) 1994-09-14 2006-02-07 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor
JP3254931B2 (en) * 1994-10-17 2002-02-12 松下電器産業株式会社 Method for producing p-type gallium nitride-based compound semiconductor
JPH08125222A (en) * 1994-10-25 1996-05-17 Toyoda Gosei Co Ltd Method for manufacture of group iii nitride semiconductor
US6617235B2 (en) 1995-03-30 2003-09-09 Sumitomo Chemical Company, Limited Method of manufacturing Group III-V compound semiconductor
JPH098355A (en) * 1995-06-16 1997-01-10 Sumitomo Chem Co Ltd Production of iii-v compound semiconductor
JPH0936424A (en) * 1995-07-25 1997-02-07 Toyoda Gosei Co Ltd Group iii nitride semiconductor light emitting element and fabrication thereof
JP3620105B2 (en) * 1995-07-27 2005-02-16 日立電線株式会社 Method for producing gallium nitride crystal
JP3561057B2 (en) * 1995-10-27 2004-09-02 豊田合成株式会社 Light emitting device manufacturing method
JP3461074B2 (en) * 1995-12-12 2003-10-27 パイオニア株式会社 Method of manufacturing group III nitride semiconductor light emitting device
JP2872096B2 (en) * 1996-01-19 1999-03-17 日本電気株式会社 Vapor phase growth method of low resistance p-type gallium nitride based compound semiconductor
JP3393425B2 (en) * 1996-06-21 2003-04-07 ソニー株式会社 Heat treatment method for nitride-based compound semiconductor
US6608332B2 (en) 1996-07-29 2003-08-19 Nichia Kagaku Kogyo Kabushiki Kaisha Light emitting device and display
TW383508B (en) 1996-07-29 2000-03-01 Nichia Kagaku Kogyo Kk Light emitting device and display
JP3658892B2 (en) * 1996-11-25 2005-06-08 日亜化学工業株式会社 Method for growing p-type nitride semiconductor and nitride semiconductor device
US6291840B1 (en) 1996-11-29 2001-09-18 Toyoda Gosei Co., Ltd. GaN related compound semiconductor light-emitting device
JP3917223B2 (en) * 1996-12-06 2007-05-23 ローム株式会社 Manufacturing method of semiconductor light emitting device
US6677619B1 (en) 1997-01-09 2004-01-13 Nichia Chemical Industries, Ltd. Nitride semiconductor device
JPH10294531A (en) 1997-02-21 1998-11-04 Toshiba Corp Nitride compound semiconductor light emitting element
JP3301345B2 (en) * 1997-03-31 2002-07-15 日亜化学工業株式会社 Method for forming p-type gallium nitride-based compound semiconductor layer
JPH10294490A (en) * 1997-04-17 1998-11-04 Toshiba Electron Eng Corp P-type gallium nitride compound semiconductor, manufacture thereof, and blue light-emitting element
PL183687B1 (en) * 1997-06-06 2002-06-28 Centrum Badan Method of obtaining semiconductive compounds of a3-b5 group and electric conductivity of p and n type
JP3398031B2 (en) * 1997-11-28 2003-04-21 古河電気工業株式会社 Method for manufacturing p-type GaN-based compound semiconductor
JP3555419B2 (en) * 1997-12-18 2004-08-18 豊田合成株式会社 Gallium nitride based compound semiconductor electrode forming method and device manufacturing method
JPH11189496A (en) * 1997-12-25 1999-07-13 Ind Technol Res Inst Production of p-type gallium nitride
JP4100759B2 (en) * 1998-03-24 2008-06-11 住友電気工業株式会社 Method for manufacturing compound semiconductor device
JPH11238692A (en) * 1998-02-23 1999-08-31 Nichia Chem Ind Ltd Method of lowering resistance of semiconductor nitride
JP3408413B2 (en) * 1998-03-06 2003-05-19 松下電器産業株式会社 Semiconductor manufacturing method and semiconductor device
TW417315B (en) 1998-06-18 2001-01-01 Sumitomo Electric Industries GaN single crystal substrate and its manufacture method of the same
JP3833848B2 (en) * 1999-05-10 2006-10-18 パイオニア株式会社 Group 3 nitride semiconductor device manufacturing method
JP2000332362A (en) 1999-05-24 2000-11-30 Sony Corp Semiconductor device and semiconductor light emitting element
JP2001298214A (en) 2000-02-10 2001-10-26 Sharp Corp Semiconductor light-emitting element and method of manufacturing the same
JP4704421B2 (en) * 2000-03-02 2011-06-15 株式会社リコー Group III nitride semiconductor manufacturing method and semiconductor device
US6562129B2 (en) 2000-04-21 2003-05-13 Matsushita Electric Industrial Co., Ltd. Formation method for semiconductor layer
JP2002075910A (en) * 2000-08-24 2002-03-15 Sharp Corp Method of manufacturing electrode structure for nitride-based iii-v compound semiconductor device
CA2449714C (en) 2001-06-06 2011-08-16 Ammono Sp. Z O.O. Process and apparatus for obtaining bulk monocrystalline gallium-containing nitride
US7029939B2 (en) 2001-06-18 2006-04-18 Toyoda Gosei Co., Ltd. P-type semiconductor manufacturing method and semiconductor device
US6897138B2 (en) 2001-06-25 2005-05-24 Toyoda Gosei Co., Ltd. Method and apparatus for producing group III nitride compound semiconductor
JP3622200B2 (en) * 2001-07-02 2005-02-23 ソニー株式会社 Nitride semiconductor manufacturing method and semiconductor device manufacturing method
JP3758537B2 (en) 2001-07-23 2006-03-22 豊田合成株式会社 Method for producing group III nitride compound semiconductor
TW517403B (en) * 2002-01-10 2003-01-11 Epitech Technology Corp Nitride light emitting diode and manufacturing method for the same
TWI295483B (en) 2002-01-31 2008-04-01 Sumitomo Chemical Co 3-5 group compound semiconductor, process for producing the same, and compound semiconductor element using the same
KR101167590B1 (en) 2002-04-15 2012-07-27 더 리전츠 오브 더 유니버시티 오브 캘리포니아 Non-polar A-plane Gallium Nitride Thin Films Grown by Metalorganic Chemical Vapor Deposition
AU2002354467A1 (en) 2002-05-17 2003-12-02 Ammono Sp.Zo.O. Light emitting element structure having nitride bulk single crystal layer
JP2004134750A (en) 2002-09-19 2004-04-30 Toyoda Gosei Co Ltd Manufacturing method of p-type group iii nitride compound semiconductor
JP3884717B2 (en) * 2003-03-10 2007-02-21 日亜化学工業株式会社 Method for producing gallium nitride compound semiconductor
US7498612B2 (en) 2003-10-31 2009-03-03 Showa Denko K.K. Compound semiconductor light-emitting device having pn-junction type hetero structure and forming method thereof
JP3833227B2 (en) 2003-11-04 2006-10-11 昭和電工株式会社 Group III nitride p-type semiconductor manufacturing method and group III nitride semiconductor light emitting device
US7956360B2 (en) 2004-06-03 2011-06-07 The Regents Of The University Of California Growth of planar reduced dislocation density M-plane gallium nitride by hydride vapor phase epitaxy
EP1681712A1 (en) 2005-01-13 2006-07-19 S.O.I. Tec Silicon on Insulator Technologies S.A. Method of producing substrates for optoelectronic applications
US8076165B2 (en) 2005-04-01 2011-12-13 Sharp Kabushiki Kaisha Method of manufacturing p-type nitride semiconductor and semiconductor device fabricated by the method
JP2007042944A (en) * 2005-08-04 2007-02-15 Rohm Co Ltd Method of manufacturing nitride semiconductor element
JP4694395B2 (en) 2006-03-22 2011-06-08 日本オプネクスト株式会社 Nitride semiconductor light emitting device and manufacturing method thereof
EP2023453A1 (en) * 2006-05-31 2009-02-11 Panasonic Corporation Semiconductor light source and light-emitting device drive circuit
JP2007173854A (en) * 2007-01-29 2007-07-05 Sony Corp Method of heat treating nitride compound semiconductor layer, and method of manufacturing semiconductor element
JP5046324B2 (en) * 2007-02-01 2012-10-10 日本碍子株式会社 Method for improving p-type conductivity of Mg-doped group III nitride semiconductor and method for producing p-type group III nitride semiconductor
JP4900126B2 (en) * 2007-08-06 2012-03-21 住友電気工業株式会社 Manufacturing method of semiconductor device
JP2009094337A (en) * 2007-10-10 2009-04-30 Toyota Central R&D Labs Inc Method of manufacturing semiconductor element
JP2009130316A (en) 2007-11-28 2009-06-11 Panasonic Corp Nitride semiconductor device and method of manufacturing the same
JP4416044B1 (en) 2008-10-07 2010-02-17 住友電気工業株式会社 Method for fabricating p-type gallium nitride based semiconductor, method for fabricating nitride based semiconductor element, and method for fabricating epitaxial wafer
JP2009177219A (en) * 2009-05-15 2009-08-06 Mitsubishi Chemicals Corp METHOD FOR MANUFACTURING GaN-BASED SEMICONDUCTOR DEVICE
JP2010021576A (en) * 2009-10-19 2010-01-28 Ricoh Co Ltd Method of manufacturing semiconductor device
JP2011216578A (en) * 2010-03-31 2011-10-27 Advanced Power Device Research Association Nitride semiconductor and nitride semiconductor element
JP6002109B2 (en) * 2013-10-24 2016-10-05 住友電気工業株式会社 Method for manufacturing group III nitride semiconductor device
EP2881982B1 (en) * 2013-12-05 2019-09-04 IMEC vzw Method for fabricating cmos compatible contact layers in semiconductor devices
FR3026556A1 (en) * 2014-09-26 2016-04-01 Commissariat Energie Atomique PROCESS FOR PRODUCING A SEMICONDUCTOR LAYER BASED ON GAN IMPROVED
JP2016054321A (en) * 2015-12-08 2016-04-14 株式会社リコー Semiconductor device
JP6911281B2 (en) * 2016-05-18 2021-07-28 富士電機株式会社 Manufacturing method of semiconductor devices
US11646357B2 (en) 2017-08-25 2023-05-09 Enkris Semiconductor, Inc. Method for preparing a p-type semiconductor structure, enhancement mode device and method for manufacturing the same
WO2019037116A1 (en) * 2017-08-25 2019-02-28 苏州晶湛半导体有限公司 P-type semiconductor manufacturing method, enhancement-type device and manufacturing method therefor
WO2021124549A1 (en) * 2019-12-20 2021-06-24 三菱電機株式会社 Semiconductor element and semiconductor element manufacturing method

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1071068A (en) * 1975-03-19 1980-02-05 Guy-Michel Jacob Method of manufacturing single crystals by growth from the vapour phase
JPS5471589A (en) * 1977-11-17 1979-06-08 Matsushita Electric Ind Co Ltd Production of gan light emitting element
JPS5723284A (en) * 1980-07-16 1982-02-06 Sanyo Electric Co Ltd Manufacture of gan diode
US4382186A (en) * 1981-01-12 1983-05-03 Energy Sciences Inc. Process and apparatus for converged fine line electron beam treatment of objects
JPS6156474A (en) 1984-08-28 1986-03-22 Matsushita Electric Ind Co Ltd Manufacture of gallium nitride semiconductor device
US4615766A (en) 1985-02-27 1986-10-07 International Business Machines Corporation Silicon cap for annealing gallium arsenide
US4820651A (en) * 1985-11-01 1989-04-11 Gte Laboratories Incorporated Method of treating bodies of III-V compound semiconductor material
JPS62119196A (en) * 1985-11-18 1987-05-30 Univ Nagoya Method for growing compound semiconductor
JPS63190329A (en) 1987-02-03 1988-08-05 Toshiba Corp Thin film crystal growth method
JP2617486B2 (en) 1987-09-25 1997-06-04 日本電気株式会社 (III) Heat treatment method for -V compound semiconductor
EP0356059B1 (en) * 1988-08-15 2000-01-26 Gertrude F. Neumark Process for doping crystals of wide band gap semiconductors
JPH02129914A (en) 1988-11-09 1990-05-18 Toshiba Corp Heat treatment of compound semiconductor wafer
JPH02142188A (en) * 1988-11-22 1990-05-31 Toshiba Corp Insulated gate type field effect transistor
JPH069258B2 (en) 1989-03-30 1994-02-02 名古屋大学長 Method for producing gallium nitride compound semiconductor light emitting device
JPH02303064A (en) * 1989-05-17 1990-12-17 Fujitsu Ltd Formation of thin film resistor
JP2623463B2 (en) 1989-09-22 1997-06-25 豊田合成株式会社 Gallium nitride based compound semiconductor electrode forming method
JP2500319B2 (en) 1990-01-11 1996-05-29 名古屋大学長 Method for producing p-type gallium nitride compound semiconductor crystal
US5306662A (en) * 1991-11-08 1994-04-26 Nichia Chemical Industries, Ltd. Method of manufacturing P-type compound semiconductor

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2264794A2 (en) 1997-01-09 2010-12-22 Nichia Corporation Nitride semiconductor device
US6524882B2 (en) 2000-04-04 2003-02-25 Sony Corporation Method of producing p-type nitride based III-V compound semiconductor and method of fabricating semiconductor device using the same
JP4581198B2 (en) * 2000-08-10 2010-11-17 ソニー株式会社 Heat treatment method for nitride compound semiconductor layer and method for manufacturing semiconductor device
JP2002057161A (en) * 2000-08-10 2002-02-22 Sony Corp Heat-treating method of nitride compound semiconductor layer and manufacturing method of semiconductor element
JP2007258376A (en) * 2006-03-22 2007-10-04 Rohm Co Ltd Manufacturing method of semiconductor element
US8143635B2 (en) 2006-03-23 2012-03-27 Showa Denko K.K. Gallium nitride compound semiconductor light-emitting device, method of manufacturing the same, and lamp including the same
WO2007108531A1 (en) 2006-03-23 2007-09-27 Showa Denko K.K. Method for manufacturing gallium nitride compound semiconductor light-emitting device, gallium nitride compound semiconductor light-emitting device and lamp using same
US8022436B2 (en) 2008-11-19 2011-09-20 Showa Denko K.K. Light emitting diode, production method thereof and lamp
US8513694B2 (en) 2009-03-04 2013-08-20 Panasonic Corporation Nitride semiconductor device and manufacturing method of the device
US9754783B2 (en) 2013-07-31 2017-09-05 Fuji Electric Co., Ltd. Method for producing a semiconductor device, and semiconductor device
US9431260B2 (en) 2013-12-11 2016-08-30 Toyoda Gosei Co., Ltd. Semiconductor device and manufacturing method of the same
US9805930B2 (en) 2015-08-25 2017-10-31 Fuji Electric Co., Ltd. Method of manufacturing nitride semiconductor device using laminated cap layers
US10141192B2 (en) 2016-06-23 2018-11-27 Fuji Electric Co., Ltd. Manufacturing method of semiconductor device
US9905433B2 (en) 2016-07-04 2018-02-27 Fuji Electric Co., Ltd. Manufacturing method of semiconductor device including a nitride semiconductor layer
US10121876B2 (en) 2016-07-13 2018-11-06 Fuji Electric Co., Ltd. Method for high temperature annealing of a nitride semiconductor layer

Also Published As

Publication number Publication date
JPH05183189A (en) 1993-07-23

Similar Documents

Publication Publication Date Title
JP2540791B2 (en) A method for manufacturing a p-type gallium nitride-based compound semiconductor.
US5306662A (en) Method of manufacturing P-type compound semiconductor
KR100406200B1 (en) Light-emitting gallium nitride-based compound semiconductor device
JP2932467B2 (en) Gallium nitride based compound semiconductor light emitting device
JPH06232451A (en) Growing method of p-type gallium nitride
US7041519B2 (en) Method for producing p-type group III nitride compound semiconductor
JP2918139B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2985908B2 (en) Crystal growth method of gallium nitride based compound semiconductor
JP2713094B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP3209233B2 (en) Blue light emitting diode and method of manufacturing the same
JP3425357B2 (en) Method for manufacturing p-type gallium nitride-based compound semiconductor layer
JPH09298311A (en) Gallium nitride compd. semiconductor light emitting element
JPH08213656A (en) Gallium nitride based compound semiconductor light emitting element
JP2812375B2 (en) Gallium nitride based compound semiconductor growth method
JP3180710B2 (en) Method of manufacturing gallium nitride based compound semiconductor light emitting device
JP4285337B2 (en) Method for producing gallium nitride compound semiconductor wafer
JPH05198841A (en) Forming method for p-type of gallium nitride compound semiconductor
JP3505167B2 (en) Method of manufacturing gallium nitride based compound semiconductor light emitting device
JP3038806U (en) Gallium nitride based compound semiconductor light emitting device
JP3301345B2 (en) Method for forming p-type gallium nitride-based compound semiconductor layer
JP3298454B2 (en) Method of manufacturing gallium nitride based compound semiconductor light emitting device
JP4293061B2 (en) Gallium nitride compound semiconductor wafer
JP3884717B2 (en) Method for producing gallium nitride compound semiconductor
JP2003347592A (en) Process for fabricating gallium nitride based compound semiconductor light emitting element
JPH10178213A (en) Gallium nitride compound semiconductor light emitting device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 16