JPH0715041A - Light emitting element of gallium nitride based compound semiconductor - Google Patents

Light emitting element of gallium nitride based compound semiconductor

Info

Publication number
JPH0715041A
JPH0715041A JP15721993A JP15721993A JPH0715041A JP H0715041 A JPH0715041 A JP H0715041A JP 15721993 A JP15721993 A JP 15721993A JP 15721993 A JP15721993 A JP 15721993A JP H0715041 A JPH0715041 A JP H0715041A
Authority
JP
Japan
Prior art keywords
layer
type
gallium nitride
compound semiconductor
based compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15721993A
Other languages
Japanese (ja)
Other versions
JP2785254B2 (en
Inventor
Shuji Nakamura
修二 中村
Takashi Mukai
孝志 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15644829&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0715041(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP15721993A priority Critical patent/JP2785254B2/en
Publication of JPH0715041A publication Critical patent/JPH0715041A/en
Application granted granted Critical
Publication of JP2785254B2 publication Critical patent/JP2785254B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PURPOSE:To make a gallium nitride based compound semiconductor layer emit light uniformly in the surface and improve light emission output, by adjusting the carrier concentration of an N-type gallium nitride based semiconductor layer and/or a P-type gallium nitride based compound semiconductor layer, so as to be small in accordance with the distance nearer form a light emitting layer. CONSTITUTION:The following are laminated on a substrate 1; an N<+> type GaN layer 2 as an N-type gallium nitride based compound semiconductor layer, and an N-type Ga1-YAlYN layer 3 whose carrier concentration is smaller than the N<+> type GaN layer 2. The value of Y is adjusted in the range of 0<=Y<1. An InXGa1-X layer 4 as a light emitting layer is laminated where the value of X is adjusted in the range of 0<X<1. As a P-type gallium nitride based compound semiconductor layer, a P-type Ga1-ZAlZN layer 5 and a P<+> type GaN layer 6 whose carrier concentration is larger than the P-type Ga1-ZAlZN layer 5 are laminated. The value of Z is adjusted in the range of 0<=Z<1. Thereby a current can be made to flow uniformly in the whole part of the active layer, and uniform light emission is realized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は窒化ガリウム系化合物半
導体を用いた発光素子に係り、特に順方向電圧(Vf)
が低く、さらに発光出力が高い窒化ガリウム系化合物半
導体発光素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light emitting device using a gallium nitride compound semiconductor, and more particularly to a forward voltage (Vf).
And a gallium nitride-based compound semiconductor light emitting device having a high emission output.

【従来の技術】GaN、GaAlN、InGaN、In
AlGaN等の窒化ガリウム系化合物半導体は直接遷移
を有し、バンドギャップが1.95eV〜6eVまで変
化するため、発光ダイオード、レーザダイオード等、発
光素子の材料として有望視されている。現在、この材料
を用いた発光素子には、n型窒化ガリウム系化合物半導
体の上に、p型ドーパントをドープした高抵抗なi型の
窒化ガリウム系化合物半導体を積層したいわゆるMIS
構造の青色発光ダイオードが知られている。
2. Description of the Related Art GaN, GaAlN, InGaN, In
Since gallium nitride-based compound semiconductors such as AlGaN have a direct transition and the bandgap changes from 1.95 eV to 6 eV, they are regarded as promising materials for light emitting devices such as light emitting diodes and laser diodes. At present, a light emitting device using this material is a so-called MIS in which a high-resistance i-type gallium nitride compound semiconductor doped with a p-type dopant is stacked on an n-type gallium nitride compound semiconductor.
Blue light emitting diodes with a structure are known.

【0002】MIS構造の発光素子の一例として、特開
平3−252176号公報、特開平3−252177号
公報、特開平3−252178号公報において、n型窒
化ガリウム系化合物半導体層を、i層に近い順から低キ
ャリア濃度のn層と、高キャリア濃度のn+層との2層
構造とする技術、および/またはi層の不純物濃度をn
層に近い順から低不純物濃度のi層と、高不純物濃度の
+層と2層構造とする技術が開示されている。しかし
ながら、これらMIS構造の発光素子は発光強度、発光
出力共非常に低く、さらに高抵抗なi層を発光層として
いるため順方向電圧(Vf)が20V以上と高いため発
光効率が悪く、実用化するには不十分であった。
As an example of a light emitting device having a MIS structure, in JP-A-3-252176, JP-A-3-252177, and JP-A-3-252178, an n-type gallium nitride-based compound semiconductor layer is formed into an i-layer. A technique of forming a two-layer structure of an n layer having a low carrier concentration and an n + layer having a high carrier concentration in order from the closest order, and / or the impurity concentration of the i layer is n.
A technique of forming a two-layer structure of an i layer having a low impurity concentration and an i + layer having a high impurity concentration in the order of being closer to the layer is disclosed. However, these MIS structure light emitting elements have very low light emission intensity and light emission output, and since the i-layer having high resistance is used as the light emitting layer, the forward voltage (Vf) is as high as 20 V or more, and thus the light emitting efficiency is poor, and the light emitting element is put to practical use. Was insufficient to do so.

【0003】一方、p−n接合を有する窒化ガリウム系
化合物半導体を利用した発光素子のアイデアとして、例
えば、特開昭59−228776号公報では、GaAl
N層を発光層とするダブルへテロ構造のLEDが提案さ
れており、また、特開平4−209577号公報では、
ノンドープのInGaNを発光層とするダブルへテロ構
造のLEDが提案されている。またこれら公報の他、従
来p−n接合を用いたダブルヘテロ構造の発光素子は数
々の構造が提案されている。しかしながら、これらの技
術は、窒化ガリウム系化合物半導体層のp型化が困難で
あったため、実現されてはいなかった。
On the other hand, as an idea of a light emitting device using a gallium nitride-based compound semiconductor having a pn junction, for example, Japanese Patent Laid-Open No. 59-228776 discloses GaAl.
An LED having a double hetero structure having an N layer as a light emitting layer has been proposed, and in Japanese Patent Laid-Open No. 4-209577,
An LED having a double hetero structure, which uses non-doped InGaN as a light emitting layer, has been proposed. In addition to these publications, various structures of double hetero structure light emitting elements using a pn junction have been proposed in the related art. However, these techniques have not been realized because it was difficult to make the gallium nitride-based compound semiconductor layer into p-type.

【0004】高抵抗なi型を低抵抗なp型とし、発光出
力を向上させたp−n接合の発光素子を実現するための
技術として、我々は特願平3−357046号で、i型
窒化ガリウム系化合物半導体層を400℃以上でアニー
リングすることにより低抵抗なp型とする技術を提案し
た。
As a technique for realizing a pn junction light-emitting device having an improved light emission output by changing a high-resistance i-type to a low-resistance p-type, we have proposed in Japanese Patent Application No. 3-357046, i-type. A technique has been proposed in which a gallium nitride-based compound semiconductor layer is annealed at 400 ° C. or higher to make it a low-resistance p-type.

【0005】[0005]

【発明が解決しようとする課題】我々は、上記技術によ
り窒化ガリウム系化合物半導体のp型化を行い、初めて
p−n接合を用いたダブルヘテロ構造の発光素子を実現
したところ、従来提案されていたダブルヘテロ構造で
は、n型層とp型層との間に電流が均一に流れず、窒化
ガリウム系化合物半導体が面内均一に発光しないことを
発見した。また、我々の実験によると、積層する窒化ガ
リウム系化合物半導体の組み合わせ、組成比等の要因で
発光出力に大きな差が現れた。しかも、p型窒化ガリウ
ム系化合物半導体に形成する電極のオーミック性が、そ
のp型層の結晶性、種類等の要因によって左右され、定
められた順方向電流に対し、順方向電圧(Vf)が高く
なり、発光効率が低下するという問題があった。
SUMMARY OF THE INVENTION We have previously proposed a double heterostructure light emitting device using a pn junction by converting a gallium nitride-based compound semiconductor into a p-type by the above-mentioned technique, and have been conventionally proposed. In the double heterostructure, it was discovered that current does not flow evenly between the n-type layer and the p-type layer, and the gallium nitride-based compound semiconductor does not emit light uniformly in the plane. In addition, according to our experiments, a large difference appears in the light emission output due to factors such as the combination of stacked gallium nitride compound semiconductors and the composition ratio. Moreover, the ohmic property of the electrode formed on the p-type gallium nitride-based compound semiconductor depends on factors such as the crystallinity and type of the p-type layer, and the forward voltage (Vf) with respect to the determined forward current is There is a problem that the light emission efficiency becomes high and the light emission efficiency decreases.

【0006】従って、本発明は上記問題点を解決するこ
とを目的として成されたものであり第1の目的は、新規
なダブルヘテロ構造の発光素子の構造を提供することに
より、窒化ガリウム系化合物半導体層を面内均一に発光
させ、発光素子の発光出力を向上させることにあり、第
2の目的は、窒化ガリウム系化合物半導体発光素子のV
fを低下させ、発光効率を向上させることにある。
Therefore, the present invention has been made for the purpose of solving the above-mentioned problems, and the first object is to provide a structure of a light emitting device having a novel double hetero structure, thereby providing a gallium nitride-based compound. A second object is to make the semiconductor layer emit light uniformly in the plane and improve the light emission output of the light emitting device.
The purpose is to reduce f and improve luminous efficiency.

【0007】[0007]

【課題を解決するための手段】我々は特定の窒化ガリウ
ム系化合物半導体を発光層とするダブルヘテロ構造の発
光素子をさらに改良し、その発光層を挟むn型クラッド
層および/またはpクラッド層のキャリア濃度を調整す
ることにより、上記問題を解決できることを見いだし
た。即ち、本発明の窒化ガリウム系化合物半導体発光素
子は、n型窒化ガリウム系化合物半導体層と、p型窒化
ガリウム系化合物半導体層との間にn型InXGa1-X
(0<X<1)層を発光層として具備するダブルへテロ
構造の窒化ガリウム系化合物半導体発光素子であって、
前記n型窒化ガリウム系化合物半導体層、および/また
は前記p型窒化ガリウム系化合物半導体層のキャリア濃
度が、前記InXGa1-XN層に接近するにつれて、小さ
くなるように調整されていることを特徴とする。
We have further improved a light emitting device having a double hetero structure using a specific gallium nitride compound semiconductor as a light emitting layer, and have an n-type clad layer and / or a p clad layer sandwiching the light emitting layer. It was found that the above problems can be solved by adjusting the carrier concentration. That is, in the gallium nitride-based compound semiconductor light-emitting device of the present invention, the n-type In X Ga 1-X N is provided between the n-type gallium nitride-based compound semiconductor layer and the p-type gallium nitride-based compound semiconductor layer.
A gallium nitride-based compound semiconductor light-emitting device having a double hetero structure, comprising a (0 <X <1) layer as a light-emitting layer,
The carrier concentration of the n-type gallium nitride-based compound semiconductor layer and / or the p-type gallium nitride-based compound semiconductor layer is adjusted so as to become smaller as it approaches the In x Ga 1 -x N layer. Is characterized by.

【0008】図1は本発明の一実施例の発光素子の構造
を示す模式断面図であり、基板1の上に、n型窒化ガリ
ウム系化合物半導体層(以下、nクラッド層という。)
として、n+型GaN層2と、n+GaN層2よりもキャ
リア濃度の小さいn型Ga1-YAlYN層3とを積層し、
その上に発光層としてInXGa1-XN層4を積層し、そ
の上にp型窒化ガリウム系化合物半導体層(以下、pク
ラッド層という。)として、p型Ga1-ZAlZN層5
と、p型Ga1-ZAlZN層よりもキャリア濃度の大きい
+型GaN層6とを順に積層したダブルヘテロ構造と
している。
FIG. 1 is a schematic cross-sectional view showing the structure of a light emitting device according to an embodiment of the present invention. An n-type gallium nitride compound semiconductor layer (hereinafter referred to as an n-clad layer) is formed on a substrate 1.
As the n + -type GaN layer 2 and the n - type Ga 1 -Y Al Y N layer 3 having a carrier concentration smaller than that of the n + GaN layer 2,
An In x Ga 1-x N layer 4 is laminated thereon as a light emitting layer, and a p-type gallium nitride-based compound semiconductor layer (hereinafter referred to as a p-clad layer) is formed on the p-type Ga 1-z Al z N 4 layer. Layer 5
And a p + -type GaN layer 6 having a carrier concentration higher than that of the p-type Ga 1 -Z Al Z N layer are sequentially stacked to form a double hetero structure.

【0009】基板1にはサファイア、SiC、Si、Z
nO等の材料が使用されるが、通常はサファイアが用い
られる。また、n+GaN層2を成長させる前に、基板
1の上にGaN、AlN等からなるバッファ層を成長さ
せてもよい。
On the substrate 1, sapphire, SiC, Si, Z
A material such as nO is used, but sapphire is usually used. Further, before growing the n + GaN layer 2, a buffer layer made of GaN, AlN or the like may be grown on the substrate 1.

【0010】図1では、nクラッド層はn+型GaN層
2と、n型Ga1-YAlYN層3とを積層した2層構造と
しているが、特にこの層を2層構造とする必要はなく、
このnクラッド層のキャリア濃度を発光層4に接近する
ほど小さく調整してあれば、nクラッド層を3層以上積
層した多層膜層構造としてもよいことはいうまでもな
い。好ましくは、最初に成長する層をキャリア濃度の最
も大きいn+型GaNとすることにより、結晶性が最も
良くなるため、そのn+型GaN層の上に成長するn型
Ga1-YAlYN層の結晶性も良くなり発光素子の発光出
力が向上する。nクラッド層のキャリア濃度は、窒化ガ
リウム系化合物半導体にドープするSi、Ge、Se、
Te、C等のn型ドーパントのドープ量を適宜変更する
ことにより変化させることができ、前記ドーパントをド
ープして、キャリア濃度を1×1016/cm3〜1×10
22/cm3の範囲に調整することが好ましい。
In FIG. 1, the n-clad layer has a two-layer structure in which an n + -type GaN layer 2 and an n-type Ga 1 -Y Al Y N layer 3 are laminated, but this layer is particularly a two-layer structure. No need to
Needless to say, a multi-layer film layer structure in which three or more n-clad layers are laminated may be used as long as the carrier concentration of the n-clad layer is adjusted to be smaller as it approaches the light emitting layer 4. Preferably, the first growth layer is made of n + -type GaN having the highest carrier concentration, so that the crystallinity is the best, and therefore the n-type Ga 1 -Y Al Y layer grown on the n + -type GaN layer. The crystallinity of the N layer is also improved, and the light emission output of the light emitting element is improved. The carrier concentration of the n-clad layer is Si, Ge, Se, which is used to dope the gallium nitride-based compound semiconductor.
It can be changed by appropriately changing the doping amount of an n-type dopant such as Te, C, etc., and the carrier concentration is 1 × 10 16 / cm 3 to 1 × 10 6 by doping the dopant.
It is preferable to adjust to the range of 22 / cm3.

【0011】発光層3はn型InXGa1-XNとし、X値
は0より大きければ特に限定しないが、0<X<0.5
の範囲に調整することが好ましい。X値を増加するに従
い発光色は短波長側から長波長側に移行し、X値が1付
近で赤色にまで変化させることができる。しかしなが
ら、X値が0.5以上では結晶性に優れたInGaNが
得られにくくなり、発光効率に優れた発光素子が得られ
にくくなるため、X値は0.5未満が好ましい。
The light emitting layer 3 is an n-type In X Ga 1-X N, and if the X value is larger than 0, it is not particularly limited, but 0 <X <0.5.
It is preferable to adjust to the range. As the X value increases, the emission color shifts from the short wavelength side to the long wavelength side, and can be changed to red when the X value is around 1. However, when the X value is 0.5 or more, it becomes difficult to obtain InGaN having excellent crystallinity and it becomes difficult to obtain a light emitting device having excellent light emitting efficiency. Therefore, the X value is preferably less than 0.5.

【0012】また、n型InXGa1-XN層3はノンドー
プでもn型となる性質があるが、前記したn型ドーパン
ト、またはn型ドーパントと、Zn、Mg、Be、C
a、Sr、Ba等のp型ドーパントとをドープしてn型
とする方がさらに好ましい。図2は、Znを1×1018
/cm3ドープしたn型In0.15Ga0.85N層と、Znを
1×1019/cm3およびSiを5×1019/cm3ドープし
たn型In0.15Ga0.85N層とにHe−Cdレーザーを
照射して、室温でフォトルミネッセンス(PL)を測定
し、それらの発光強度を比較して示す図である。Znの
みをドープしたInGaN層のスペクトル強度は実際の
強度を10倍に拡大して示している。この図に示すよう
に、Znのみをドープしたn型InGaNのPLスペク
トル(b)よりも、SiおよびZnをドープしたn型I
nGaNのPLスペクトル(a)の方がその発光強度は
(a)の方が10倍以上大きくなり、n型ドーパントと
p型ドーパントとを同時にドープしてn型としたInG
aN層を発光層とする素子が最も発光出力に優れてい
る。なおSiのみを1×1019/cm3ドープしたIn0.1
5Ga0.85N層の発光スペクトルは410nm付近に発
光ピークがあり、その発光強度は(a)のおよそ1/2
であった。
The n-type In x Ga 1 -x n layer 3 has a property of becoming n-type even when it is undoped. However, the n-type dopant described above or the n-type dopant and Zn, Mg, Be or C are used.
It is more preferable to make it n-type by doping with a p-type dopant such as a, Sr, or Ba. FIG. 2 shows that Zn is 1 × 10 18
/ Cm 3 doped n-type In0.15Ga0.85N layer and Zn 1 × 10 19 / cm 3 and Si 5 × 10 19 / cm 3 doped n-type In0.15Ga0.85N layer He-Cd laser FIG. 3 is a diagram showing the photoluminescence (PL) measured at room temperature by irradiating with, and comparing the emission intensities thereof. The spectral intensity of the InGaN layer doped only with Zn is shown by enlarging the actual intensity ten times. As shown in this figure, rather than the PL spectrum (b) of n-type InGaN doped with only Zn, the n-type I doped with Si and Zn was used.
The PL spectrum (a) of nGaN has an emission intensity 10 times or more higher than that of (a), and InG made into n-type by simultaneously doping an n-type dopant and a p-type dopant.
An element using the aN layer as a light emitting layer has the best light emission output. In0.1 doped with Si only at 1 × 10 19 / cm 3
The emission spectrum of the 5Ga0.85N layer has an emission peak near 410 nm, and its emission intensity is about half that of (a).
Met.

【0013】図1において、pクラッド層はp型Ga
1-ZAlZN層4と、p+型GaN層5とを積層した2層
構造としているが、nクラッド層と同じく、特にこの層
を2層構造とする必要はなく、このpクラッド層のキャ
リア濃度を発光層4に接近するほど小さく調整してあれ
ば、pクラッド層を3層以上積層した多層膜層構造とし
てもよい。好ましくは、電極を形成する層をキャリア濃
度の最も大きいp+型GaNとすることにより、電極材
料と好ましいオーミックコンタクトが得られ、発光素子
のVfを低下させて、発光効率を向上させることができ
る。また、pクラッド層のキャリア濃度を変化させるに
は、前記したp型ドーパントのドープ量を適宜変更する
ことにより実現でき、キャリア濃度を1×1016/cm3
〜1×1022/cm3の範囲に調整することが好ましい。
In FIG. 1, the p-clad layer is p-type Ga.
The 1-Z Al Z N layer 4 and the p + -type GaN layer 5 are laminated to form a two-layer structure. However, like the n-clad layer, this layer need not be a two-layer structure. If the carrier concentration is adjusted to be smaller as it gets closer to the light emitting layer 4, a multilayer film layer structure in which three or more p-clad layers are stacked may be used. Preferably, the layer forming the electrode is made of p + -type GaN having the highest carrier concentration, whereby a preferable ohmic contact with the electrode material can be obtained, Vf of the light emitting element can be lowered, and the light emission efficiency can be improved. . The carrier concentration of the p-clad layer can be changed by appropriately changing the doping amount of the p-type dopant described above, and the carrier concentration is 1 × 10 16 / cm 3.
It is preferable to adjust to the range of 1 × 10 22 / cm 3.

【0014】さらに、前記pクラッド層は、前にも述べ
たように我々が先に出願した特願平3−357046号
に開示するように、400℃以上でアニーリングするこ
とにより、さらに低抵抗なp型を得ることができ、発光
素子の発光出力を向上させることができる。
Further, as described above, the p-cladding layer has a lower resistance by annealing at 400 ° C. or higher as disclosed in Japanese Patent Application No. 3-357046 previously filed by us. A p-type can be obtained, and the light emission output of the light emitting element can be improved.

【0015】[0015]

【作用】図1を元に本発明の発光素子の作用を説明す
る。正電極8と、負電極7とに通電すると、電流は高キ
ャリア濃度のp+型GaN層6で面内均一に広がる。電
流値を増加させ、ある程度の電界がかかると、p+型G
aN層6に広がった電流は低キャリア濃度のp型Ga
1-ZAlZN層にも均一に広がり、InXGa1-XN層3を
均一に発光させることができる。nクラッド層について
も同様の作用があり、nクラッド層をn+型GaN層2
とn型Ga1-YAlYN層3とに分けることにより、In
XGa1-XN層3に均一に電流が流れて均一な発光が得ら
れ、発光出力を増大させることができる。
The operation of the light emitting device of the present invention will be described with reference to FIG. When the positive electrode 8 and the negative electrode 7 are energized, the current spreads in-plane uniformly in the p + -type GaN layer 6 having a high carrier concentration. When the current value is increased and an electric field is applied to some extent, p + type G
The current spread to the aN layer 6 is p-type Ga with a low carrier concentration.
It can evenly spread to the 1-Z Al Z N layer, and the In X Ga 1-X N layer 3 can be made to uniformly emit light. there is a similar effect also for n cladding layer, an n-cladding layer n + -type GaN layer 2
And n-type Ga 1 -Y Al Y N layer 3
An electric current flows evenly through the X Ga 1 -X N layer 3, uniform light emission is obtained, and the light emission output can be increased.

【0016】さらに、nクラッド層で最もキャリア濃度
の大きい層をGaNと限定することにより、その上に積
層するn型Ga1-YAlYN層の結晶性が向上し、結晶性
が向上することにより、発光出力を増大させることがで
きる。
Further, by limiting the layer having the highest carrier concentration in the n-clad layer to GaN, the crystallinity of the n-type Ga 1 -Y Al Y N layer laminated thereon is improved and the crystallinity is improved. As a result, the light emission output can be increased.

【0017】また、pクラッド層で最もキャリア濃度の
大きい層をGaNと限定することにより、そのp+型G
aN層の上に形成する正電極とのオーミック性が良くな
り、Vfを低下させて発光効率を向上させることができ
る。
Further, by limiting the layer having the highest carrier concentration in the p-clad layer to GaN, the p + -type G
The ohmic property with the positive electrode formed on the aN layer is improved, and Vf can be reduced to improve the light emission efficiency.

【0018】[0018]

【実施例】以下有機金属気相成長法により、本発明の発
光素子を製造する方法を述べる。
EXAMPLES A method of manufacturing the light emitting device of the present invention by the metal organic chemical vapor deposition method will be described below.

【0019】[実施例1]よく洗浄したサファイア基板
を反応容器内にセットし、反応容器内を水素で十分置換
した後、水素を流しながら、基板の温度を1050℃ま
で上昇させサファイア基板のクリーニングを行う。
[Example 1] A well-cleaned sapphire substrate was set in a reaction vessel, the inside of the reaction vessel was sufficiently replaced with hydrogen, and then the temperature of the substrate was raised to 1050 ° C while flowing hydrogen to clean the sapphire substrate. I do.

【0020】続いて、温度を510℃まで下げ、キャリ
アガスとして水素、原料ガスとしてアンモニアとTMG
(トリメチルガリウム)とを用い、サファイア基板上に
GaNよりなるバッファ層を約200オングストローム
の膜厚で成長させる。
Then, the temperature is lowered to 510 ° C., hydrogen is used as a carrier gas, and ammonia and TMG are used as a source gas.
(Trimethylgallium), a buffer layer made of GaN is grown on the sapphire substrate to a thickness of about 200 Å.

【0021】バッファ層成長後、TMGのみ止めて、温
度を1030℃まで上昇させる。1030℃になった
ら、同じく原料ガスにTMGとアンモニアガス、ドーパ
ントガスにシランガスを用い、Siをドープしたn+
GaN層を3.5μm成長させる。なお、このSiドー
プn+GaN層のキャリア濃度は1×1019/cm3であっ
た。
After the growth of the buffer layer, only TMG is stopped and the temperature is raised to 1030.degree. When the temperature reaches 1030 ° C., similarly, TMG and ammonia gas are used as source gases, and silane gas is used as a dopant gas, and an Si + -doped n + -type GaN layer is grown to 3.5 μm. The carrier concentration of this Si-doped n + GaN layer was 1 × 10 19 / cm 3.

【0022】続いて、シランガスの流量を少なくして、
キャリア濃度1×1018/cm3のn型GaN層を0.5
μm成長させる。このようにして、nクラッド層をキャ
リア濃度の異なる2層構造とする。
Subsequently, the flow rate of silane gas is reduced,
0.5 n-type GaN layer with a carrier concentration of 1 × 10 18 / cm 3
Grow μm. Thus, the n-clad layer has a two-layer structure having different carrier concentrations.

【0023】n型GaN層成長後、原料ガス、ドーパン
トガスを止め、温度を800℃にして、キャリアガスを
窒素に切り替え、原料ガスとしてTMGとTMI(トリ
メチルインジウム)とアンモニア、ドーパントガスとし
てDEZ(ジエチルジンク)とシランガスとを用い、Z
nおよびSiをドープしたn型In0.15Ga0.85N層を
100オングストローム成長させる。
After the growth of the n-type GaN layer, the source gas and the dopant gas are stopped, the temperature is set to 800 ° C., the carrier gas is switched to nitrogen, TMG, TMI (trimethylindium) and ammonia are used as the source gases, and DEZ ( Diethyl zinc) and silane gas, Z
An n-type In0.15Ga0.85N layer doped with n and Si is grown to 100 angstroms.

【0024】次に、原料ガス、ドーパントガスを止め、
再び温度を1020℃まで上昇させ、原料ガスとしてT
MGとアンモニア、ドーパントガスとしてCp2Mg
(シクロペンタジエニルマグネシウム)とを用い、Mg
をドープしたp型GaN層を0.2μm成長させる。
Then, the raw material gas and the dopant gas are stopped,
The temperature is again raised to 1020 ° C. and T
MG and ammonia, Cp2Mg as dopant gas
(Cyclopentadienyl magnesium) and Mg
A p-type GaN layer doped with is grown to 0.2 μm.

【0025】続いてCp2Mgガスの流量を多くして、
Mgをp型GaN層よりも多くドープしたp+型GaN
層を0.3μm成長させる。このようにしてpクラッド
層をキャリア濃度の異なる2層構造とする。
Subsequently, the flow rate of Cp2Mg gas was increased,
P + type GaN in which Mg is more heavily doped than the p type GaN layer
The layer is grown 0.3 μm. In this way, the p-clad layer has a two-layer structure with different carrier concentrations.

【0026】p+型GaN層成長後、基板を反応容器か
ら取り出し、アニーリング装置にて窒素雰囲気中、70
0℃で20分間アニーリングを行い、p型GaN層、お
よびp+型GaN層をさらに低抵抗化する。なお、p型
GaN層のキャリア濃度は1×1016/cm3、p+GaN
層のキャリア濃度は1×1017/cm3であった。
After the growth of the p + -type GaN layer, the substrate was taken out from the reaction vessel and was annealed at 70 in a nitrogen atmosphere.
Annealing is performed at 0 ° C. for 20 minutes to further reduce the resistance of the p-type GaN layer and the p + -type GaN layer. The carrier concentration of the p-type GaN layer is 1 × 10 16 / cm 3, p + GaN
The carrier concentration of the layer was 1 × 10 17 / cm 3.

【0027】以上のようにして得られたウエハーのpク
ラッド層、n型In0.15Ga0.85N層、およびn型Ga
N層の一部をエッチングにより取り除き、n+型GaN
層を露出させ、p+型GaN層と、n+型GaN層とにオ
ーミック電極を設け、500μm角のチップにカットし
た後、常法に従い発光ダイオードとしたところ、サファ
イア基板面から観測して全面に均一な発光が得られ、2
0mAにおいてVf4.0V、発光出力700μW、発
光波長490nm、輝度1.1cdが得られた。
The p-clad layer, the n-type In0.15Ga0.85N layer, and the n-type Ga of the wafer thus obtained were obtained.
Part of the N layer is removed by etching to remove n + -type GaN
The layer was exposed, and ohmic electrodes were provided on the p + -type GaN layer and the n + -type GaN layer, and after cutting into chips of 500 μm square, a light emitting diode was formed according to a conventional method. The entire surface was observed from the sapphire substrate surface. Uniform light emission is obtained, and
At 0 mA, Vf4.0V, emission output 700 μW, emission wavelength 490 nm, and brightness 1.1 cd were obtained.

【0028】[実施例2]実施例1において、n型Ga
N層を成長する際、新たに原料ガスにTMA(トリメチ
ルアルミニウム)を加え、同じくキャリア濃度1×10
18/cm3のSiドープn型Ga0.9Al0.1N層を3.5
μm成長させる。
[Embodiment 2] In Embodiment 1, the n-type Ga is used.
When growing the N layer, TMA (trimethylaluminum) is newly added to the source gas, and the carrier concentration is 1 × 10.
18 / cm 3 of Si-doped n-type Ga0.9Al0.1N layer with 3.5
Grow μm.

【0029】さらに、p型GaN層を成長する際、新た
に原料ガスにTMA(トリメチルアルミニウム)を加
え、同じくキャリア濃度1×1016/cm3のMgドープ
p型Ga0.9Al0.1N層を0.2μm成長させる。
Further, when growing the p-type GaN layer, TMA (trimethylaluminum) is newly added to the source gas, and a Mg-doped p-type Ga0.9Al0.1N layer having a carrier concentration of 1 × 10 16 / cm 3 is also added. Grow to 2 μm.

【0030】以上の他は実施例1と同様にして青色発光
ダイオードを得たところ、同じく均一な全面発光が得ら
れ、20mAにおいてVf4.0V、発光出力700μ
W、発光波長490nm、輝度1.1cdであった。
When a blue light emitting diode was obtained in the same manner as in Example 1 except for the above, uniform uniform overall light emission was obtained, Vf 4.0 V at 20 mA, and light emission output 700 μ.
W, emission wavelength was 490 nm, and brightness was 1.1 cd.

【0031】[実施例3]実施例1において、nクラッ
ド層をキャリア濃度1×18/cm3、膜厚4μmのSiド
ープn型GaN層1層とする他は、同様にして青色発光
ダイオードを得たところ、同じく均一な全面発光が得ら
れ、20mAにおいてVf4.2V、発光出力500μ
W、発光波長490nm、輝度1cdであった。
[Embodiment 3] A blue light emitting diode is obtained in the same manner as in Embodiment 1, except that the n-clad layer is one Si-doped n-type GaN layer having a carrier concentration of 1 × 18 / cm 3 and a film thickness of 4 μm. As a result, the same uniform overall light emission was obtained, Vf4.2V at 20 mA, and light emission output of 500 μ.
W, emission wavelength was 490 nm, and brightness was 1 cd.

【0032】[実施例4]実施例1において、pクラッ
ド層をキャリア濃度1×17/cm3、膜厚0.5μmのM
gドープp+型GaN層1層とする他は、同様にして青
色発光ダイオードを得たところ、同じく均一な全面発光
が得られ、20mAにおいてVf4.2V、発光出力5
00μW、発光波長490nm、輝度1cdであった。
[Embodiment 4] In Embodiment 1, the p-clad layer is formed of M having a carrier concentration of 1 × 17 / cm 3 and a film thickness of 0.5 μm.
A blue light emitting diode was obtained in the same manner except that the g-doped p + -type GaN layer was formed as a single layer. As a result, uniform uniform light emission was obtained, and Vf4.2V at 20 mA and light emission output 5
The emission was 00 μW, the emission wavelength was 490 nm, and the brightness was 1 cd.

【0033】[実施例5]実施例1において、pクラッ
ド層をキャリア濃度1×1016/cm3、膜厚0.2μm
のMgドープp型Ga0.9Al0.1N層1層とする他は同
様にして青色発光ダイオードを得たところ、同じく均一
な全面発光が得られ、20mAにおいてVf10V、発
光出力500μW、発光波長490nm、輝度1cdで
あった。Vfが増加したのは、pクラッド層をGaAl
Nとしたためにオーミック性が悪くなったからである。
[Embodiment 5] In the embodiment 1, the p-cladding layer has a carrier concentration of 1 × 10 16 / cm 3 and a film thickness of 0.2 μm.
A blue light emitting diode was obtained in the same manner except that the Mg-doped p-type Ga0.9Al0.1N layer was used as a single layer, and the same uniform overall light emission was obtained. At 20 mA, Vf10V, light emission output 500 μW, light emission wavelength 490 nm, and brightness were obtained. It was 1 cd. Vf increased because the p-clad layer was made of GaAl.
This is because the ohmic property deteriorates because of N.

【0034】[0034]

【発明の効果】以上説明したように、本発明の窒化ガリ
ウム系化合物半導体発光素子は、n型InGaNを発光
層とするp−n接合のダブルへテロ構造としているた
め、従来のMIS構造の発光素子に比して、格段に発光
効率、発光出力が増大する。また好ましくはn型InG
aN層は、p型ドーパントおよびn型ドーパントがドー
プされたn型であれば、さらに発光出力が増大する。
As described above, since the gallium nitride compound semiconductor light emitting device of the present invention has the double hetero structure of the pn junction having n-type InGaN as the light emitting layer, it emits light of the conventional MIS structure. The luminous efficiency and the luminous output are remarkably increased as compared with the device. Also preferably n-type InG
If the aN layer is n-type doped with a p-type dopant and an n-type dopant, the emission output is further increased.

【0035】さらに本発明の発光素子は、InGaN層
を挟むnクラッド層、および/またはpクラッド層のキ
ャリア濃度を活性層であるInGaNに接近するほど小
さくしているため、活性層全体に均一に電流が流れ、均
一な発光が得られる。発光素子の発光出力を最大にする
ためには、nクラッド層、pクラッド層とも前記構造と
することが好ましいが、いずれか一方でもよい。このよ
うにクラッド層を変化させることにより、発光素子の発
光出力を格段に向上させることができる。また、好まし
くpクラッド層の電極形成層をp+GaN層とすること
により、電極とのオーミック性が良くなりVfを低下さ
せて発光効率を向上させることができる。
Further, in the light emitting device of the present invention, the carrier concentration of the n-clad layer and / or the p-clad layer sandwiching the InGaN layer is made smaller so as to approach InGaN which is the active layer, so that the entire active layer is made uniform. A current flows and uniform light emission is obtained. In order to maximize the light emission output of the light emitting device, it is preferable that both the n-clad layer and the p-clad layer have the above structure, but either one may be used. By changing the clad layer in this way, the light emission output of the light emitting element can be significantly improved. Further, by preferably forming the p + GaN layer as the electrode forming layer of the p-clad layer, the ohmic property with the electrode is improved, Vf can be lowered, and the luminous efficiency can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例の窒化ガリウム系化合物半
導体発光素子の構造を示す模式断面図。
FIG. 1 is a schematic cross-sectional view showing the structure of a gallium nitride-based compound semiconductor light emitting device of one embodiment of the present invention.

【図2】 ドーパントの違いによるn型InGaN層の
フォトルミネッセンス強度を比較して示す図。
FIG. 2 is a diagram showing a comparison of photoluminescence intensities of n-type InGaN layers due to differences in dopants.

【符号の説明】[Explanation of symbols]

1・・・・ 基板 2・・・・ n
+型GaN層 3・・・・ n型Ga1-YAlYN層 4・・・・ n
型InXGa1-XN層 5・・・・ p型Ga1-ZAlZN層 6・・・・ p
+型GaN層 7、8・・ 電極
1 ... substrate 2 ... n
+ -Type GaN layer 3 ... N-type Ga 1-Y Al Y N layer 4 ...
Type In X Ga 1-X N layer 5 ... P-type Ga 1-Z Al Z N layer 6 ...
+ Type GaN layer 7, 8 ... Electrode

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 n型窒化ガリウム系化合物半導体層と、
p型窒化ガリウム系化合物半導体層との間にn型InX
Ga1-XN(0<X<1)層を発光層として具備するダブ
ルへテロ構造の窒化ガリウム系化合物半導体発光素子で
あって、前記n型窒化ガリウム系化合物半導体層、およ
び/または前記p型窒化ガリウム系化合物半導体層のキ
ャリア濃度が、前記InXGa1-XN層に接近するにつれ
て、小さくなるように調整されていることを特徴とする
窒化ガリウム系化合物半導体発光素子。
1. An n-type gallium nitride-based compound semiconductor layer,
n-type In X between the p-type gallium nitride-based compound semiconductor layer
A gallium nitride-based compound semiconductor light-emitting device having a double hetero structure, which comprises a Ga 1-X N (0 <X <1) layer as a light-emitting layer, wherein the n-type gallium nitride-based compound semiconductor layer and / or the p-type A gallium nitride-based compound semiconductor light-emitting device, wherein the carrier concentration of the type gallium nitride-based compound semiconductor layer is adjusted so as to become smaller as it approaches the In x Ga 1-x N layer.
【請求項2】 前記n型窒化ガリウム系化合物半導体層
は、キャリア濃度の大きいn+型GaN層と、n+型Ga
N層よりもキャリア濃度の小さいn型Ga1-YAlY
(0≦Y<1)層とからなることを特徴とする請求項1
に記載の窒化ガリウム系化合物半導体発光素子。
2. The n-type gallium nitride-based compound semiconductor layer comprises an n + -type GaN layer having a high carrier concentration and an n + -type Ga.
N - type Ga 1 -Y Al Y N with carrier concentration smaller than that of N layer
2. A layer comprising (0 ≦ Y <1) layers.
2. A gallium nitride-based compound semiconductor light emitting device according to.
【請求項3】 前記p型窒化ガリウム系化合物半導体層
は、キャリア濃度の大きいp+型GaN層と、p+型Ga
N層よりもキャリア濃度の小さいp型Ga1-ZAlZ
(0≦Z<1)層とからなることを特徴とする請求項1
に記載の窒化ガリウム系化合物半導体発光素子。
3. The p-type gallium nitride compound semiconductor layer comprises a p + -type GaN layer having a high carrier concentration and a p + -type Ga.
P-type Ga 1-Z Al Z N having a carrier concentration smaller than that of the N layer
2. A (0 ≦ Z <1) layer.
2. A gallium nitride-based compound semiconductor light emitting device according to.
【請求項4】 前記n型InXGa1-XN層は、n型ドー
パントとp型ドーパントとがドープされてn型とされて
いることを特徴とする請求項1に記載の窒化ガリウム系
化合物半導体発光素子。
4. The gallium nitride-based material according to claim 1, wherein the n-type In x Ga 1 -x N layer is n-type by being doped with an n-type dopant and a p-type dopant. Compound semiconductor light emitting device.
【請求項5】 前記p型窒化ガリウム系化合物半導体層
は400℃以上でアニーリングされて低抵抗化されてい
ることを特徴とする請求項1、または請求項3に記載の
窒化ガリウム系化合物半導体発光素子。
5. The gallium nitride-based compound semiconductor light emission according to claim 1, wherein the p-type gallium nitride-based compound semiconductor layer is annealed at 400 ° C. or higher to reduce the resistance. element.
JP15721993A 1993-06-28 1993-06-28 Gallium nitride based compound semiconductor light emitting device Expired - Lifetime JP2785254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15721993A JP2785254B2 (en) 1993-06-28 1993-06-28 Gallium nitride based compound semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15721993A JP2785254B2 (en) 1993-06-28 1993-06-28 Gallium nitride based compound semiconductor light emitting device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP254698A Division JP3216596B2 (en) 1998-01-08 1998-01-08 Gallium nitride based compound semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH0715041A true JPH0715041A (en) 1995-01-17
JP2785254B2 JP2785254B2 (en) 1998-08-13

Family

ID=15644829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15721993A Expired - Lifetime JP2785254B2 (en) 1993-06-28 1993-06-28 Gallium nitride based compound semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP2785254B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6133058A (en) * 1994-07-21 2000-10-17 Matsushita Electric Industrial Co., Ltd. Fabrication of semiconductor light-emitting device
US6580099B2 (en) 1994-12-02 2003-06-17 Nichia Chemical Industries, Ltd. Nitride semiconductor light-emitting devices
US6900465B2 (en) 1994-12-02 2005-05-31 Nichia Corporation Nitride semiconductor light-emitting device
US7098484B2 (en) 2002-07-08 2006-08-29 Sumitomo Chemical Company Limited Epitaxial substrate for compound semiconductor light-emitting device, method for producing the same and light-emitting device
USRE42074E1 (en) 1996-04-26 2011-01-25 Sanyo Electric Co., Ltd. Manufacturing method of light emitting device
US7897993B2 (en) 2004-08-31 2011-03-01 Sumitomo Chemical Company, Limited GaN based luminescent device on a metal substrate
WO2014030670A1 (en) 2012-08-21 2014-02-27 王子ホールディングス株式会社 Substrate for semiconductor light emitting elements, semiconductor light emitting element, method for producing substrate for semiconductor light emitting elements, and method for manufacturing semiconductor light emitting element
US8934513B2 (en) 1994-09-14 2015-01-13 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8044430B2 (en) 2006-01-18 2011-10-25 Panasonic Corporation Nitride semiconductor light-emitting device comprising multiple semiconductor layers having substantially uniform N-type dopant concentration
US8207547B2 (en) 2009-06-10 2012-06-26 Brudgelux, Inc. Thin-film LED with P and N contacts electrically isolated from the substrate
US8525221B2 (en) 2009-11-25 2013-09-03 Toshiba Techno Center, Inc. LED with improved injection efficiency
US8395165B2 (en) 2011-07-08 2013-03-12 Bridelux, Inc. Laterally contacted blue LED with superlattice current spreading layer
US20130026480A1 (en) 2011-07-25 2013-01-31 Bridgelux, Inc. Nucleation of Aluminum Nitride on a Silicon Substrate Using an Ammonia Preflow
US8916906B2 (en) 2011-07-29 2014-12-23 Kabushiki Kaisha Toshiba Boron-containing buffer layer for growing gallium nitride on silicon
US8865565B2 (en) 2011-08-02 2014-10-21 Kabushiki Kaisha Toshiba LED having a low defect N-type layer that has grown on a silicon substrate
US9142743B2 (en) 2011-08-02 2015-09-22 Kabushiki Kaisha Toshiba High temperature gold-free wafer bonding for light emitting diodes
US9012939B2 (en) 2011-08-02 2015-04-21 Kabushiki Kaisha Toshiba N-type gallium-nitride layer having multiple conductive intervening layers
US9343641B2 (en) 2011-08-02 2016-05-17 Manutius Ip, Inc. Non-reactive barrier metal for eutectic bonding process
US20130032810A1 (en) 2011-08-03 2013-02-07 Bridgelux, Inc. Led on silicon substrate using zinc-sulfide as buffer layer
US8564010B2 (en) 2011-08-04 2013-10-22 Toshiba Techno Center Inc. Distributed current blocking structures for light emitting diodes
US8624482B2 (en) 2011-09-01 2014-01-07 Toshiba Techno Center Inc. Distributed bragg reflector for reflecting light of multiple wavelengths from an LED
US8669585B1 (en) 2011-09-03 2014-03-11 Toshiba Techno Center Inc. LED that has bounding silicon-doped regions on either side of a strain release layer
US8558247B2 (en) 2011-09-06 2013-10-15 Toshiba Techno Center Inc. GaN LEDs with improved area and method for making the same
US8686430B2 (en) 2011-09-07 2014-04-01 Toshiba Techno Center Inc. Buffer layer for GaN-on-Si LED
US9178114B2 (en) 2011-09-29 2015-11-03 Manutius Ip, Inc. P-type doping layers for use with light emitting devices
US8664679B2 (en) 2011-09-29 2014-03-04 Toshiba Techno Center Inc. Light emitting devices having light coupling layers with recessed electrodes
US8698163B2 (en) 2011-09-29 2014-04-15 Toshiba Techno Center Inc. P-type doping layers for use with light emitting devices
US20130082274A1 (en) 2011-09-29 2013-04-04 Bridgelux, Inc. Light emitting devices having dislocation density maintaining buffer layers
US9012921B2 (en) 2011-09-29 2015-04-21 Kabushiki Kaisha Toshiba Light emitting devices having light coupling layers
US8581267B2 (en) 2011-11-09 2013-11-12 Toshiba Techno Center Inc. Series connected segmented LED

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04242985A (en) * 1990-12-26 1992-08-31 Toyoda Gosei Co Ltd Gallium nitride group compound semiconductor laser diode

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04242985A (en) * 1990-12-26 1992-08-31 Toyoda Gosei Co Ltd Gallium nitride group compound semiconductor laser diode

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6133058A (en) * 1994-07-21 2000-10-17 Matsushita Electric Industrial Co., Ltd. Fabrication of semiconductor light-emitting device
US8934513B2 (en) 1994-09-14 2015-01-13 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor
US6580099B2 (en) 1994-12-02 2003-06-17 Nichia Chemical Industries, Ltd. Nitride semiconductor light-emitting devices
US6900465B2 (en) 1994-12-02 2005-05-31 Nichia Corporation Nitride semiconductor light-emitting device
USRE42074E1 (en) 1996-04-26 2011-01-25 Sanyo Electric Co., Ltd. Manufacturing method of light emitting device
US7098484B2 (en) 2002-07-08 2006-08-29 Sumitomo Chemical Company Limited Epitaxial substrate for compound semiconductor light-emitting device, method for producing the same and light-emitting device
US7459326B2 (en) 2002-07-08 2008-12-02 Sumitomo Chemical Company Limited Method for producing and epitaxial substrate for compound semiconductor light-emitting device
US7897993B2 (en) 2004-08-31 2011-03-01 Sumitomo Chemical Company, Limited GaN based luminescent device on a metal substrate
WO2014030670A1 (en) 2012-08-21 2014-02-27 王子ホールディングス株式会社 Substrate for semiconductor light emitting elements, semiconductor light emitting element, method for producing substrate for semiconductor light emitting elements, and method for manufacturing semiconductor light emitting element
EP2922103A1 (en) 2012-08-21 2015-09-23 Oji Holdings Corporation Substrate for semiconductor light emitting elements, semiconductor light emitting element, method for producing substrate for semiconductor light emitting elements, and method for manufacturing semiconductor emitting element
US9515223B2 (en) 2012-08-21 2016-12-06 Oji Holdings Corporation Semiconductor light emitting device substrate including an uneven structure having convex portions, and a flat surface therebetween
US9748441B2 (en) 2012-08-21 2017-08-29 Oji Holdings Corporation Dry etching method of manufacturing semiconductor light emitting device substrate

Also Published As

Publication number Publication date
JP2785254B2 (en) 1998-08-13

Similar Documents

Publication Publication Date Title
JP2785254B2 (en) Gallium nitride based compound semiconductor light emitting device
KR100406200B1 (en) Light-emitting gallium nitride-based compound semiconductor device
JP2778405B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2917742B2 (en) Gallium nitride based compound semiconductor light emitting device and method of manufacturing the same
JP3250438B2 (en) Nitride semiconductor light emitting device
JP2890396B2 (en) Nitride semiconductor light emitting device
JP3890930B2 (en) Nitride semiconductor light emitting device
JP2890390B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2560963B2 (en) Gallium nitride compound semiconductor light emitting device
JP2008118049A (en) GaN-BASED SEMICONDUCTOR LIGHT EMITTING DEVICE
JP2713095B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP2918139B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2713094B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP3216596B2 (en) Gallium nitride based compound semiconductor light emitting device
JPH10144960A (en) Method for manufacturing p-type nitride semiconductor and nitride semiconductor element
JP3484997B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2560964B2 (en) Gallium nitride compound semiconductor light emitting device
JP3605907B2 (en) Semiconductor device having contact resistance reduction layer
JP3267250B2 (en) Nitride semiconductor light emitting device
JP2576819B1 (en) Gallium nitride based compound semiconductor light emitting device
JP2560963C (en)
JP2002329886A (en) Gallium nitride-based compound semiconductor light- emitting element
JP2576819C (en)
JP2713095C (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080529

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090529

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090529

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090529

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100529

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100529

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110529

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110529

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140529

Year of fee payment: 16

EXPY Cancellation because of completion of term