JPH09148678A - Nitride semiconductor light emitting element - Google Patents

Nitride semiconductor light emitting element

Info

Publication number
JPH09148678A
JPH09148678A JP30528195A JP30528195A JPH09148678A JP H09148678 A JPH09148678 A JP H09148678A JP 30528195 A JP30528195 A JP 30528195A JP 30528195 A JP30528195 A JP 30528195A JP H09148678 A JPH09148678 A JP H09148678A
Authority
JP
Japan
Prior art keywords
layer
type
nitride semiconductor
grown
acting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30528195A
Other languages
Japanese (ja)
Other versions
JP2900990B2 (en
Inventor
Shinichi Nagahama
慎一 長濱
Shigeto Iwasa
成人 岩佐
Shuji Nakamura
修二 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP30528195A priority Critical patent/JP2900990B2/en
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to KR1019960052331A priority patent/KR100267839B1/en
Priority to US08/743,729 priority patent/US5959307A/en
Priority to EP96117792A priority patent/EP0772249B1/en
Priority to CNB961205253A priority patent/CN1160801C/en
Priority to CNB2004100037214A priority patent/CN1264262C/en
Priority to CNB200410003720XA priority patent/CN100350641C/en
Priority to EP06002478A priority patent/EP1653524A1/en
Priority to DE69636088T priority patent/DE69636088T2/en
Publication of JPH09148678A publication Critical patent/JPH09148678A/en
Application granted granted Critical
Publication of JP2900990B2 publication Critical patent/JP2900990B2/en
Priority to US10/229,067 priority patent/US20030015724A1/en
Priority to US10/718,652 priority patent/US7166874B2/en
Priority to US10/801,038 priority patent/US7166869B2/en
Priority to US11/635,613 priority patent/US8304790B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve light emission output of a light emitting element, by forming an active layer of multiple quantum well structure wherein well layers composed of nitride semiconductor containing In and barrier layers composed of nitride semiconductor containg In are laminated. SOLUTION: A buffer layer 2, an N-type contact layer 3, a first N-type layer 4 acting as a buffer layer, a second N-type layer 5 acting as a light confining layer, and a third N-type layer 6 acting as a guide layer are formed on a sapphire substrate 1. An active layer 7 composed of multiple quantum well structure is formed by alternately laminating a plurality of well layers composed of undoped InGaN and a plurality of barrier layers composed of undoped InGaN. A first P-type layer 8 acting as a cap layer, a second P-type layer 9 acting as a light guide layer, and a third P-type layer 10 acting as a light confining layer are formed. A P-type contact layer 11 is formed, selective etching is performed, the surface of the N-type contact layer is exposed, and a positive electrode and a negative electrode are formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は発光ダイオード(LE
D)、レーザダイオード(LD)等に使用される窒化物
半導体(InXAlYGa1-X-YN、0≦X、0≦Y、X+Y
≦1)よりなる発光素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light emitting diode (LE).
D), nitride semiconductors (In X Al Y Ga 1-XY N, 0 ≦ X, 0 ≦ Y, X + Y used for laser diodes (LD), etc.
≦ 1) for a light emitting device.

【0002】[0002]

【従来の技術】InXAlYGa1-X-YN(0≦X、0≦
Y、X+Y≦1)で示される窒化物半導体はMOVPE
(有機金属気相成長法)、MBE(分子線ビーム気相成
長法)、HDVPE(ハライド気相成長法)等の気相成
長法を用いて基板上にエピタキシャル成長されている。
またこの半導体材料は直接遷移型の広ワイドギャップ半
導体であるため、紫外から赤色までの発光素子の材料と
して知られており、最近この材料で高輝度な青色LE
D、緑色LEDが実現され、次の目標としてレーザダイ
オード(LD)の実現が望まれている。
2. Description of the Related Art In X Al Y Ga 1-XY N (0≤X, 0≤
The nitride semiconductor represented by Y, X + Y ≦ 1) is MOVPE.
It is epitaxially grown on the substrate using a vapor phase growth method such as (organic metal vapor phase epitaxy method), MBE (molecular beam vapor phase epitaxy method) and HDVPE (halide vapor phase epitaxy method).
Since this semiconductor material is a direct transition type wide wide-gap semiconductor, it is known as a material for light-emitting elements from ultraviolet to red. Recently, this material has a high brightness of blue LE.
Realization of D and green LEDs, and realization of a laser diode (LD) is desired as the next target.

【0003】窒化物半導体を用いた発光素子として、例
えば特開平6−21511号公報にLED素子が示され
ている。この公報ではInGaNよりなる膜厚100オ
ングストロームの井戸層と、GaNよりなる膜厚100
オングストローム障壁層とを積層した多重量子井戸構造
の活性層を備えるLED素子が示されている。
As a light emitting device using a nitride semiconductor, for example, an LED device is disclosed in Japanese Patent Laid-Open No. 6-21511. In this publication, a well layer made of InGaN and having a thickness of 100 angstroms and a GaN film having a thickness of 100 are formed.
An LED device including an active layer having a multiple quantum well structure stacked with an angstrom barrier layer is shown.

【0004】[0004]

【発明が解決しようとする課題】前記公報によると、I
nGaNとGaNよりなる多重量子井戸構造の活性層を
GaNと、AlGaNよりなるクラッド層で挟んだ分離
閉じ込め型のダブルへテロ構造を有するLED素子が示
されている。活性層を多重量子井戸構造とすることによ
り、発光出力に優れたLED素子を得ることができる。
しかしながら、LDではLEDよりも、さらに発光出力
を高める必要がある。従って本発明はこのような事情を
鑑みて成されたものであって、その目的とするところ
は、窒化物半導体よりなる発光素子の発光出力を高めて
半導体レーザを実現することにあり、特に活性層の構造
を改良することで高出力な発光素子を実現するものであ
る。
According to the above publication, I
An LED element having a double confinement type double hetero structure in which an active layer having a multiple quantum well structure composed of nGaN and GaN is sandwiched between GaN and a cladding layer composed of AlGaN is shown. When the active layer has a multi-quantum well structure, an LED device excellent in light emission output can be obtained.
However, in the LD, it is necessary to further increase the light emission output as compared with the LED. Therefore, the present invention has been made in view of such circumstances, and an object of the present invention is to realize a semiconductor laser by increasing the light emission output of a light emitting element made of a nitride semiconductor. By improving the layer structure, a high-power light emitting device is realized.

【0005】[0005]

【課題を解決するための手段】本発明の発光素子は、I
nを含む窒化物半導体よりなる井戸層と、Inを含む窒
化物半導体よりなる障壁層とが積層された多重量子井戸
構造の活性層を備えることを特徴とする。
The light emitting device of the present invention is I
It is characterized by comprising an active layer having a multiple quantum well structure in which a well layer made of a nitride semiconductor containing n and a barrier layer made of a nitride semiconductor containing In are stacked.

【0006】多重量子井戸構造を有する活性層では、井
戸層の膜厚が70オングストローム以下であり、障壁層
の膜厚が150オングストローム以下であることを特徴
とする。
The active layer having a multiple quantum well structure is characterized in that the well layer has a thickness of 70 Å or less and the barrier layer has a thickness of 150 Å or less.

【0007】さらに、本発明の発光素子は、活性層に少
なくともAlを含むp型窒化物半導体よりなる膜厚1μ
m以下のp型クラッド層が接していることを特徴とす
る。
Further, the light emitting device of the present invention has a film thickness of 1 μm made of a p-type nitride semiconductor containing at least Al in the active layer.
It is characterized in that a p-type clad layer of m or less is in contact.

【0008】本発明の発光素子において、多重量子井戸
構造(MQW:Multi-quantum-well)を構成するInを
含む窒化物半導体よりなる井戸層には、三元混晶のIn
XGa1-XN(0<X≦1)が好ましく、また障壁層も同
様に三元混晶のInYGa1-YN(0<Y<1)が好まし
い。三元混晶のInGaNは四元混晶のものに比べて結
晶性が良い物が得られるので、発光出力が向上する。ま
た障壁層は井戸層よりもバンドギャップエネルギーを大
きくして、井戸+障壁+井戸+・・・+障壁+井戸層と
なるように積層して多重量子井戸構造を構成する。この
ように活性層をInGaNを積層したMQWとすると、
量子準位間発光で約365nm〜660nm間での高出
力なLDを実現することができる。
In the light-emitting device of the present invention, the well layer made of a nitride semiconductor containing In forming a multi-quantum well structure (MQW: Multi-quantum-well) has a ternary mixed crystal of In.
XGa1-XN (0 <X≤1) is preferable, and the barrier layer is also preferably InYGa1-YN (0 <Y <1) of ternary mixed crystal. Since ternary mixed crystal InGaN has a better crystallinity than that of the quaternary mixed crystal, the light emission output is improved. The barrier layer has a bandgap energy larger than that of the well layer and is stacked so as to be well + barrier + well + ... + Barrier + well layer to form a multiple quantum well structure. As described above, when the active layer is an MQW in which InGaN is laminated,
It is possible to realize a high-power LD in the range of about 365 nm to 660 nm by light emission between quantum levels.

【0009】LDを実現する場合、活性層の膜厚、つま
り井戸層と障壁層を積層した活性層の総膜厚は200オ
ングストローム以上に調整することが好ましい。200
オングストロームよりも薄いと、十分に出力が上がら
ず、レーザ発振しにくい傾向にある。また活性層の膜厚
も厚すぎると出力が低下する傾向にあり、0.5μm以
下に調整することが望ましい。
When realizing an LD, it is preferable that the thickness of the active layer, that is, the total thickness of the active layer in which the well layer and the barrier layer are laminated is adjusted to 200 angstroms or more. 200
If the thickness is thinner than angstrom, the output is not sufficiently increased and laser oscillation tends to be difficult. Further, if the thickness of the active layer is too thick, the output tends to decrease, and it is desirable to adjust the thickness to 0.5 μm or less.

【0010】さらに井戸層の膜厚は70オングストロー
ム以下、さらに望ましくは50オングストローム以下に
調整することが好ましい。図2は井戸層の膜厚と発光出
力との関係を示す図であり、発光出力はLED素子につ
いて示している。出力に関してはLDでも同様のことが
云える。これはこの膜厚がInGaN井戸層の臨界膜厚
以下であることを示している。InGaNでは電子のボ
ーア半径が約30オングストロームであり、このためI
nGaNの量子効果が70オングストローム以下で現れ
る。
Further, the thickness of the well layer is preferably adjusted to 70 angstroms or less, and more preferably 50 angstroms or less. FIG. 2 is a diagram showing the relationship between the film thickness of the well layer and the light emission output, and the light emission output is shown for the LED element. Regarding the output, the same can be said for the LD. This indicates that this film thickness is below the critical film thickness of the InGaN well layer. In InGaN, the Bohr radius of electrons is about 30 angstroms, which is why I
The quantum effect of nGaN appears below 70 Å.

【0011】また障壁層の厚さも150オングストロー
ム以下、さらに望ましくは100オングストローム以下
の厚さに調整することが望ましい。図3は障壁層と膜厚
と発光出力との関係を示す図であり、発光出力は図2と
同様に、LED素子について示すものであるが、LDに
関しても同様のことが云える。
The thickness of the barrier layer is preferably adjusted to 150 angstroms or less, more preferably 100 angstroms or less. FIG. 3 is a diagram showing the relationship between the barrier layer, the film thickness, and the light emission output, and the light emission output is shown for the LED element as in FIG. 2, but the same can be said for the LD.

【0012】次に本発明の発光素子では活性層に接して
少なくともAlを含むp型の窒化物半導体、好ましくは
三元混晶若しくは二元混晶のAlZGa1-ZN(0<Z≦
1)よりなるp型クラッド層が形成されていることが望
ましい。さらにこのAlGaNは1μm以下、さらに好
ましくは10オングストローム以上、0.5μm以下に
調整する。このp型クラッド層を活性層に接して形成す
ることにより、素子の出力が格段に向上する。逆に活性
層に接するクラッド層をGaNとすると素子の出力が約
1/3に低下してしまう。これはAlGaNがGaNに
比べてp型になりやすく、またp型クラッド層成長時
に、InGaNが分解するのを抑える作用があるためと
推察されるが、詳しいことは不明である。またp型クラ
ッド層の膜厚は1μmよりも厚いと、クラッド層自体に
クラックが入りやすくなり素子作製が困難となる傾向に
あるからである。
Next, in the light emitting device of the present invention, a p-type nitride semiconductor containing at least Al in contact with the active layer, preferably a ternary mixed crystal or a binary mixed crystal of AlZGa1-ZN (0 <Z≤
It is desirable that the p-type clad layer of 1) be formed. Further, this AlGaN is adjusted to 1 μm or less, more preferably 10 angstroms or more and 0.5 μm or less. By forming the p-type clad layer in contact with the active layer, the output of the device is remarkably improved. On the contrary, if the cladding layer in contact with the active layer is made of GaN, the output of the device will be reduced to about 1/3. It is presumed that this is because AlGaN is more likely to be p-type than GaN and has the effect of suppressing decomposition of InGaN during growth of the p-type cladding layer, but details are unknown. Further, if the thickness of the p-type clad layer is thicker than 1 μm, cracks are likely to occur in the clad layer itself, and it tends to be difficult to manufacture the device.

【0013】[0013]

【作用】本発明の発光素子は活性層がInGaNよりな
る井戸層と、井戸層よりもバンドギャップの大きいIn
GaNよりなる障壁層を積層した多重量子井戸構造であ
る。特開平6−21511号とは障壁層がGaNである
点が異なる。これは薄膜の井戸層と障壁層とを積層した
MQWでは、各層に係るストレスが違う。本発明のよう
に井戸層の上にInGaNよりなる障壁層を積層する
と、InGaNよりなる障壁層はGaN、AlGaN結
晶に比べて結晶が柔らかい。そのためクラッド層のAl
GaNの厚さを厚くできるのでレーザ発振が実現でき
る。一方障壁層をGaNとすると、活性層の上にAlG
aNよりなるクラッド層を成長させると、そのクラッド
層にクラックが発生しやすい傾向にある。
In the light emitting device of the present invention, the active layer is made of InGaN and the In layer has a band gap larger than that of the well layer.
This is a multiple quantum well structure in which barrier layers made of GaN are stacked. It differs from JP-A-6-21511 in that the barrier layer is GaN. This is because the MQW in which a thin film well layer and a barrier layer are stacked has different stresses in each layer. When a barrier layer made of InGaN is stacked on the well layer as in the present invention, the barrier layer made of InGaN has a softer crystal than GaN and AlGaN crystals. Therefore, the Al of the clad layer
Since the thickness of GaN can be increased, laser oscillation can be realized. On the other hand, when the barrier layer is GaN, AlG is formed on the active layer.
When a clad layer made of aN is grown, cracks tend to occur in the clad layer.

【0014】さらにInGaNとGaNとでは結晶の成
長温度が異なる。例えばMOVPE法ではInGaNは
600℃〜800℃で成長させるのに対して、GaNは
800より高い温度で成長させる。従って、InGaN
よりなる井戸層を成長させた後、GaNよりなる障壁層
を成長させようとすれば、成長温度を上げてやる必要が
ある。成長温度を上げると、先に成長させたInGaN
井戸層が分解してしまうので結晶性の良い井戸層を得る
ことは難しい。さらに井戸層の膜厚は数十オングストロ
ームしかなく、薄膜の井戸層が分解するとMQWを作製
するのが困難となる。それに対し本発明では、障壁層も
InGaNであるため、井戸層と障壁層が同一温度で成
長できる。従って、先に形成した井戸層が分解すること
がないので結晶性の良いMQWを形成することができ
る。
Further, the crystal growth temperature is different between InGaN and GaN. For example, in the MOVPE method, InGaN is grown at 600 ° C. to 800 ° C., whereas GaN is grown at a temperature higher than 800. Therefore, InGaN
If a barrier layer made of GaN is to be grown after the growth of a well layer made of GaN, it is necessary to raise the growth temperature. When the growth temperature is raised, the previously grown InGaN
Since the well layer is decomposed, it is difficult to obtain a well layer with good crystallinity. Further, the thickness of the well layer is only several tens of angstroms, and it becomes difficult to manufacture the MQW when the well layer of the thin film is decomposed. On the other hand, in the present invention, since the barrier layer is also InGaN, the well layer and the barrier layer can be grown at the same temperature. Therefore, since the well layer formed earlier does not decompose, an MQW with good crystallinity can be formed.

【0015】[0015]

【実施例】以下、MOVPE法によりLD素子を作成す
る方法を述べるが、本発明の発光素子はMOVPE法だ
けではなく、例えばMBE、HDVPE等の他の知られ
ている窒化物半導体の気相成長法を用いて成長させるこ
とができ、またLDだけでなくLEDにも適用可能であ
る。
EXAMPLES A method for producing an LD element by the MOVPE method will be described below. The light-emitting element of the present invention is not limited to the MOVPE method, but other known nitride semiconductors such as MBE and HDVPE can be vapor-phase grown. It can be grown using the method and is applicable not only to LD but also to LED.

【0016】[実施例1]よく洗浄されたサファイア基
板1(0001面)をMOVPE装置の反応容器内に設
置した後、原料ガスにTMG(トリメチルガリウム)
と、アンモニアを用い、温度500℃でサファイア基板
の表面にGaNよりなるバッファ層2を200オングス
トロームの膜厚で成長させた。
Example 1 A well-cleaned sapphire substrate 1 (0001 surface) was placed in a reaction vessel of a MOVPE apparatus, and then TMG (trimethylgallium) was used as a source gas.
Then, using ammonia, a buffer layer 2 made of GaN was grown to a thickness of 200 angstroms on the surface of the sapphire substrate at a temperature of 500 ° C.

【0017】このバッファ層は基板と窒化物半導体との
格子不整合を緩和する作用があり、他にAlN、AlG
aN等を成長させることも可能である。また基板にはサ
ファイアの他にスピネル111面(MgAl24)、S
iC、MgO、Si、ZnO等の単結晶よりなる従来よ
り知られている基板が用いられる。このバッファ層を成
長させることにより、基板の上に成長させるn型窒化物
半導体の結晶性が良くなることが知られているが、成長
方法、基板の種類等によりバッファ層が成長されない場
合もある。
This buffer layer has a function of alleviating the lattice mismatch between the substrate and the nitride semiconductor, and in addition, AlN and AlG.
It is also possible to grow aN or the like. In addition to sapphire, spinel 111 surface (MgAl 2 O 4 ), S
A conventionally known substrate made of a single crystal of iC, MgO, Si, ZnO or the like is used. It is known that by growing this buffer layer, the crystallinity of the n-type nitride semiconductor grown on the substrate is improved, but the buffer layer may not be grown depending on the growth method, the type of the substrate and the like. .

【0018】続いて温度を1050℃に上げ、原料ガス
にTMG、アンモニア、ドナー不純物としてSiH
4(シラン)ガスを用いて、SiドープGaNよりなる
n型コンタクト層3を4μmの膜厚で成長させた。n型
コンタクト層3はGaNとすることによりキャリア濃度
の高い層が得られ、電極材料と好ましいオーミック接触
が得られる。
Then, the temperature is raised to 1050 ° C., TMG and ammonia are used as a source gas, and SiH is used as a donor impurity.
An n-type contact layer 3 made of Si-doped GaN was grown to a thickness of 4 μm using 4 (silane) gas. By using GaN for the n-type contact layer 3, a layer having a high carrier concentration can be obtained, and a preferable ohmic contact with the electrode material can be obtained.

【0019】次に温度を750℃まで下げ、原料ガスに
TMG、TMI(トリメチルインジウム)、アンモニ
ア、不純物ガスにシランガスを用い、SiドープIn0.
1Ga0.9Nよりなる第一のn型層4を500オングスト
ロームの膜厚で成長させた。
Next, the temperature is lowered to 750 ° C., TMG, TMI (trimethylindium), ammonia is used as a source gas, and silane gas is used as an impurity gas.
A first n-type layer 4 of 1 Ga 0.9 N was grown to a film thickness of 500 Å.

【0020】この第一のn型層4はInを含むn型の窒
化物半導体、好ましくはInGaNで成長させることに
より、次に成長させるAlを含む窒化物半導体を厚膜で
成長させることが可能となる。LDの場合は、光閉じ込
め層、光ガイド層となる層を、例えば0.1μm以上の
膜厚で成長させる必要がある。従来ではGaN、AlG
aN層の上に直接厚膜のAlGaNを成長させると、後
から成長させたAlGaNにクラックが入るので素子作
製が困難であったが、第一のn型層がバッファ層として
作用する。つまり、この層がバッファ層となり次に成長
させるAlを含む窒化物半導体層にクラックが入るのを
防止することができる。しかも次に成長させるAlを含
む窒化物半導体層を厚膜で成長させても膜質良く成長で
きる。なお第一のn型層は100オングストローム以
上、0.5μm以下の膜厚で成長させることが好まし
い。100オングストロームよりも薄いと前記のように
バッファ層として作用しにくく、0.5μmよりも厚い
と、結晶自体が黒変する傾向にある。なお、この第一の
n型層4は省略することもできる。
The first n-type layer 4 is grown from an n-type nitride semiconductor containing In, preferably InGaN, so that a nitride semiconductor containing Al to be grown next can be grown as a thick film. Becomes In the case of LD, it is necessary to grow the layers serving as the light confinement layer and the light guide layer to have a film thickness of, for example, 0.1 μm or more. Conventionally, GaN, AlG
When a thick AlGaN film was grown directly on the aN layer, it was difficult to fabricate the device because the AlGaN grown later had cracks, but the first n-type layer acts as a buffer layer. That is, this layer serves as a buffer layer, and it is possible to prevent cracks from occurring in the nitride semiconductor layer containing Al to be grown next. Moreover, even if the nitride semiconductor layer containing Al to be grown next is grown as a thick film, it can be grown with good film quality. The first n-type layer is preferably grown to a film thickness of 100 angstroms or more and 0.5 μm or less. If it is thinner than 100 angstrom, it is difficult to act as a buffer layer as described above, and if it is thicker than 0.5 μm, the crystal itself tends to turn black. The first n-type layer 4 may be omitted.

【0021】次に、温度を1050℃にして、原料ガス
にTEG、TMA(トリメチルアルミニウム)、アンモ
ニア、不純物ガスにシランガスを用いて、Siドープn
型Al0.3Ga0.7Nよりなる第二のn型層5を0.5μ
mの膜厚で成長させた。この第二のn型層はLDの場合
光閉じ込め層として作用し、通常0.1μm〜1μmの
膜厚で成長させることが望ましい。
Next, the temperature is set to 1050 ° C., TEG, TMA (trimethylaluminum) and ammonia are used as source gases, and silane gas is used as an impurity gas.
0.5 μ of the second n-type layer 5 made of Al0.3Ga0.7N
It was grown to a film thickness of m. In the case of LD, this second n-type layer acts as a light confining layer, and it is usually desirable to grow it to a film thickness of 0.1 μm to 1 μm.

【0022】続いて、原料ガスにTMG、アンモニア、
不純物ガスにシランガスを用い、Siドープn型GaN
よりなる第三のn型層6を500オングストロームの膜
厚で成長させた。この第三のn型層6はLDの場合、光
ガイド層として作用し、通常100オングストローム〜
1μmの膜厚で成長させることが望ましく、GaNの他
にInGaN等のInを含むn型窒化物半導体で成長さ
せることもでき、特にInGaN、GaNとすることに
より次の活性層を量子井戸構造とすることが可能にな
る。
Then, TMG, ammonia, and
Si-doped n-type GaN using silane gas as impurity gas
The third n-type layer 6 was grown to a film thickness of 500 angstroms. In the case of LD, this third n-type layer 6 acts as a light guide layer, and usually has a thickness of 100 Å.
It is desirable to grow it to a film thickness of 1 μm, and it is also possible to grow n-type nitride semiconductors containing In such as InGaN in addition to GaN. In particular, by using InGaN or GaN, the next active layer has a quantum well structure. It becomes possible to do.

【0023】次に原料ガスにTMG、TMI、アンモニ
アを用いて活性層7を成長させた。活性層7は温度を7
50℃に保持して、まずノンドープIn0.2Ga0.8Nよ
りなる井戸層を25オングストロームの膜厚で成長させ
る。次にTMIのモル比を変化させるのみで同一温度
で、ノンドープIn0.01Ga0.95Nよりなる障壁層を5
0オングストロームの膜厚で成長させる。この操作を1
3回繰り返し、最後に井戸層を成長させ総膜厚0.1μ
mの膜厚の多重量子井戸構造よりなる活性層7を成長さ
せた。井戸層の好ましい膜厚は100オングストローム
以下、障壁層は150オングストローム以下の膜厚で成
長することにより、井戸層、障壁層が弾性的に変形して
結晶欠陥が少なくなり、素子の出力が飛躍的に向上する
ので、レーザ発振が可能となる。さらに井戸層はInG
aN等のInGaNを含む窒化物半導体、障壁層はGa
N、InGaN等で構成することが望ましく、特に井戸
層、障壁層ともInGaNとすると、成長温度が一定に
保持できるので生産技術上非常に好ましい。
Next, the active layer 7 was grown using TMG, TMI, and ammonia as source gases. The active layer 7 has a temperature of 7
While maintaining the temperature at 50 ° C., first, a well layer made of non-doped In0.2Ga0.8N is grown to a thickness of 25 Å. Next, a barrier layer made of non-doped In0.01Ga0.95N was deposited at the same temperature by changing only the molar ratio of TMI.
It is grown to a film thickness of 0 angstrom. This operation is 1
Repeat 3 times, and finally grow the well layer to a total film thickness of 0.1μ
An active layer 7 having a multiple quantum well structure with a thickness of m was grown. The preferable thickness of the well layer is 100 angstroms or less, and the thickness of the barrier layer is 150 angstroms or less. By growing the well layer and the barrier layer elastically, crystal defects are reduced, and the output of the device is dramatically increased. Therefore, laser oscillation becomes possible. In addition, the well layer is InG
Nitride semiconductor containing InGaN such as aN, the barrier layer is Ga
It is desirable to use N, InGaN, or the like. In particular, if the well layer and the barrier layer are both InGaN, the growth temperature can be kept constant, which is very preferable in terms of production technology.

【0024】活性層7成長後、温度を1050℃にして
TMG、TMA、アンモニア、アクセプター不純物源と
してCp2Mg(シクロペンタジエニルマグネシウム)
を用い、Mgドープp型Al0.2Ga0.8Nよりなる第一
のp型層8を100オングストロームの膜厚で成長させ
た。この第一のp型層8は1μm以下、さらに好ましく
は0.1μm以下の膜厚で成長させることにより、In
GaNよりなる活性層が分解するのを防止するキャップ
層としての作用があり、また活性層の上にAlを含むp
型窒化物半導体よりなる第一のp型層8を成長させるこ
とにより、発光出力が向上する。またp型窒化物半導体
層はZn、Mg、Cd、Ca、Be、C等のアクセプタ
ー不純物を成長中にドープすることにより得られるが、
その中でもMgが最も好ましいp型特性を示す。さら
に、アクセプター不純物をドープした後、不活性ガス雰
囲気中で400℃以上のアニーリングを行うとさらに好
ましいp型が得られる。
After growth of the active layer 7, the temperature is set to 1050 ° C. and TMG, TMA, ammonia, and Cp 2 Mg (cyclopentadienyl magnesium) as an acceptor impurity source.
Was used to grow a first p-type layer 8 of Mg-doped p-type Al0.2Ga0.8N to a film thickness of 100 angstrom. This first p-type layer 8 is grown to a film thickness of 1 μm or less, more preferably 0.1 μm or less,
It has a function as a cap layer for preventing the active layer made of GaN from being decomposed, and p containing Al on the active layer.
By growing the first p-type layer 8 made of the type nitride semiconductor, the light emission output is improved. The p-type nitride semiconductor layer can be obtained by doping acceptor impurities such as Zn, Mg, Cd, Ca, Be and C during growth.
Among them, Mg exhibits the most preferable p-type characteristics. Furthermore, more preferable p-type is obtained by performing annealing at 400 ° C. or higher in an inert gas atmosphere after doping the acceptor impurities.

【0025】次に温度を1050℃に保持しながら、T
MG、アンモニア、Cp2Mgを用いMgドープp型G
aNよりなる第二のp型層9を500オングストローム
の膜厚で成長させた。この第二のp型層9はLDの場
合、光ガイド層として作用し、通常100オングストロ
ーム〜1μmの膜厚で成長させることが望ましく、Ga
Nの他にInGaN等のInを含むp型窒化物半導体で
成長させることもでき、特にInGaN、GaNとする
ことにより次のAlを含む第三のp型層10を結晶性良
く成長できる。
Next, while maintaining the temperature at 1050 ° C., T
Mg-doped p-type G using MG, ammonia, and Cp2Mg
A second p-type layer 9 made of aN was grown to a film thickness of 500 Å. In the case of LD, this second p-type layer 9 acts as a light guide layer, and it is usually desirable to grow it with a film thickness of 100 angstrom to 1 μm.
It is also possible to grow a p-type nitride semiconductor containing In, such as InGaN, in addition to N. In particular, by using InGaN or GaN, the third p-type layer 10 containing Al can be grown with good crystallinity.

【0026】続いて、TMG、TMA、アンモニア、C
p2Mgを用いてMgドープAl0.3Ga0.7Nよりなる
第三のp型層10を0.5μmの膜厚で成長させた。こ
の第三のp型層10はLDの場合、光閉じ込め層として
作用し、0.1μm〜1μmの膜厚で成長させることが
望ましく、AlGaNのようなAlを含むp型窒化物半
導体とすることにより、好ましく光閉じ込め層として作
用する。
Subsequently, TMG, TMA, ammonia and C
A third p-type layer 10 made of Mg-doped Al0.3Ga0.7N was grown to a thickness of 0.5 μm using p2Mg. In the case of LD, this third p-type layer 10 acts as a light confining layer, and it is desirable to grow it to a film thickness of 0.1 μm to 1 μm, and it is a p-type nitride semiconductor containing Al such as AlGaN. Therefore, it preferably acts as a light confining layer.

【0027】続いて、TMG、アンモニア、Cp2Mg
を用い、Mgドープp型GaNよりなるp型コンタクト
層11を0.5μmの膜厚で成長させた。このp型コン
タクト層はMgを含むGaNとすると、最もキャリア濃
度の高いp型層が得られて、正電極の材料と良好なオー
ミック接触が得られる。
Subsequently, TMG, ammonia, Cp2Mg
Was used to grow a p-type contact layer 11 made of Mg-doped p-type GaN with a film thickness of 0.5 μm. If this p-type contact layer is GaN containing Mg, a p-type layer having the highest carrier concentration can be obtained, and good ohmic contact with the material of the positive electrode can be obtained.

【0028】以上のようにして窒化物半導体を積層した
ウェーハを反応容器から取り出し、図1に示すように最
上層のp型コンタクト層11より選択エッチングを行
い、n型コンタクト層3の表面を露出させ、露出したn
型コンタクト層3と、p型コンタクト層11の表面にそ
れぞれストライプ状の電極を形成した後、ストライプ状
の電極に直交する方向から、さらにエッチングを行い垂
直なエッチング端面を形成して、そのエッチング面に常
法に従って反射鏡を形成して共振面とした。共振面側か
ら見たレーザ素子の断面図が図1に示す断面図である。
このレーザ素子をヒートシンクに設置し、LDとしたと
ころ、非常に優れた結晶が積層できていたため、常温に
おいて、しきい値電流密度4.0kA/cm2で発光波長
410nm、半値幅2nmのレーザ発振を示した。
The wafer in which the nitride semiconductors are laminated as described above is taken out of the reaction container and, as shown in FIG. 1, the uppermost p-type contact layer 11 is selectively etched to expose the surface of the n-type contact layer 3. Let exposed n
After forming striped electrodes on the surfaces of the p-type contact layer 3 and the p-type contact layer 11, respectively, etching is further performed from a direction orthogonal to the striped electrodes to form a vertical etching end face, and the etching surface is formed. A reflecting mirror was formed in accordance with a conventional method to form a resonance surface. A cross-sectional view of the laser device as seen from the resonance surface side is the cross-sectional view shown in FIG.
When this laser element was placed on a heat sink and used as an LD, a very excellent crystal was laminated, so at normal temperature, laser oscillation with a threshold current density of 4.0 kA / cm 2 and an emission wavelength of 410 nm and a half width of 2 nm was obtained. showed that.

【0029】[0029]

【発明の効果】以上説明したように本発明の発光素子は
Inを含む窒化物半導体よりなる井戸層と、Inを含む
窒化物半導体よりなる障壁層とを積層したMQWの活性
層を有しているため、発光素子の出力が向上してレーザ
ダイオードが実現できた。これは膜質の良い活性層が成
長できていることによる。このように本発明で短波長L
Dが実現できたことにより、書き込み光源、読みとり光
源としての容量が従来に比べて飛躍的に向上し、その産
業上の利用価値は非常に大きい。
As described above, the light emitting device of the present invention has an MQW active layer in which a well layer made of a nitride semiconductor containing In and a barrier layer made of a nitride semiconductor containing In are stacked. Therefore, the output of the light emitting element was improved and a laser diode was realized. This is because the active layer with good film quality has been grown. Thus, in the present invention, the short wavelength L
By realizing D, the capacities as a writing light source and a reading light source are dramatically improved as compared with conventional ones, and their industrial utility value is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例に係るLDの構造を示す模
式断面図。
FIG. 1 is a schematic cross-sectional view showing the structure of an LD according to an embodiment of the present invention.

【図2】 本発明の一実施例に係る素子の活性層の井戸
層と発光出力との関係を示す図。
FIG. 2 is a diagram showing a relationship between a well layer of an active layer and a light emission output of an element according to an example of the present invention.

【図3】 本発明の一実施例に係る素子の活性層の障壁
層と発光出力との関係を示す図。
FIG. 3 is a diagram showing a relationship between a barrier layer of an active layer and a light emission output of an element according to an example of the present invention.

【符号の説明】[Explanation of symbols]

1・・・基板 2・・・GaNバッファ層 3・・・n型GaN(n型コンタクト層) 4・・・n型InGaN(第一のn型層) 5・・・n型AlGaN(第二のn型層) 6・・・n型GaN(第三のn型層) 7・・・活性層 8・・・p型AlGaN(第一のp型層) 9・・・p型GaN(第二のp型層) 10・・・p型AlGaN(第三のp型層) 11・・・p型GaN(p型コンタクト層) 1 ... Substrate 2 ... GaN buffer layer 3 ... n-type GaN (n-type contact layer) 4 ... n-type InGaN (first n-type layer) 5 ... n-type AlGaN (second N-type layer) 6 ... n-type GaN (third n-type layer) 7 ... active layer 8 ... p-type AlGaN (first p-type layer) 9 ... p-type GaN (third Second p-type layer) 10 ... p-type AlGaN (third p-type layer) 11 ... p-type GaN (p-type contact layer)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Inを含む窒化物半導体よりなる井戸層
と、Inを含む窒化物半導体よりなる障壁層とが積層さ
れた多重量子井戸構造の活性層を備えることを特徴とす
る窒化物半導体発光素子。
1. A nitride semiconductor light emitting device, comprising: an active layer having a multiple quantum well structure in which a well layer made of a nitride semiconductor containing In and a barrier layer made of a nitride semiconductor containing In are stacked. element.
【請求項2】 前記井戸層の膜厚が70オングストロー
ム以下であり、前記障壁層の膜厚が150オングストロ
ーム以下であることを特徴とする請求項1または請求項
1に記載の窒化物半導体レーザ素子。
2. The nitride semiconductor laser device according to claim 1, wherein the well layer has a thickness of 70 Å or less, and the barrier layer has a thickness of 150 Å or less. .
【請求項3】 前記活性層に少なくともAlを含むp型
窒化物半導体よりなる膜厚1μm以下のp型クラッド層
が接していることを特徴とする請求項1または請求項2
に記載の窒化物半導体レーザ素子。
3. The active layer is in contact with a p-type clad layer having a thickness of 1 μm or less made of a p-type nitride semiconductor containing at least Al.
The nitride semiconductor laser device described in 1 ..
JP30528195A 1995-11-06 1995-11-24 Nitride semiconductor light emitting device Expired - Lifetime JP2900990B2 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP30528195A JP2900990B2 (en) 1995-11-24 1995-11-24 Nitride semiconductor light emitting device
EP06002478A EP1653524A1 (en) 1995-11-06 1996-11-06 Nitride semiconductor device
EP96117792A EP0772249B1 (en) 1995-11-06 1996-11-06 Nitride semiconductor device
CNB961205253A CN1160801C (en) 1995-11-06 1996-11-06 Nitride semiconductor device
CNB2004100037214A CN1264262C (en) 1995-11-06 1996-11-06 Nitride semiconductor device
CNB200410003720XA CN100350641C (en) 1995-11-06 1996-11-06 Nitride semiconductor device
KR1019960052331A KR100267839B1 (en) 1995-11-06 1996-11-06 Nitride semiconductor device
DE69636088T DE69636088T2 (en) 1995-11-06 1996-11-06 A nitride compound semiconductor device
US08/743,729 US5959307A (en) 1995-11-06 1996-11-06 Nitride semiconductor device
US10/229,067 US20030015724A1 (en) 1995-11-06 2002-08-28 Nitride semiconductor device
US10/718,652 US7166874B2 (en) 1995-11-06 2003-11-24 Nitride semiconductor with active layer of quantum well structure with indium-containing nitride semiconductor
US10/801,038 US7166869B2 (en) 1995-11-06 2004-03-16 Nitride semiconductor with active layer of quantum well structure with indium-containing nitride semiconductor
US11/635,613 US8304790B2 (en) 1995-11-06 2006-12-08 Nitride semiconductor with active layer of quantum well structure with indium-containing nitride semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30528195A JP2900990B2 (en) 1995-11-24 1995-11-24 Nitride semiconductor light emitting device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP33719798A Division JP3371830B2 (en) 1995-11-24 1998-11-27 Nitride semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH09148678A true JPH09148678A (en) 1997-06-06
JP2900990B2 JP2900990B2 (en) 1999-06-02

Family

ID=17943217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30528195A Expired - Lifetime JP2900990B2 (en) 1995-11-06 1995-11-24 Nitride semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP2900990B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999009602A1 (en) * 1997-08-20 1999-02-25 Sanyo Electric Co., Ltd. Compound semiconductor device based on gallium nitride
US6172382B1 (en) 1997-01-09 2001-01-09 Nichia Chemical Industries, Ltd. Nitride semiconductor light-emitting and light-receiving devices
JP2002164573A (en) * 1997-11-18 2002-06-07 Nichia Chem Ind Ltd Nitride semiconductor light emitting element
US6677619B1 (en) 1997-01-09 2004-01-13 Nichia Chemical Industries, Ltd. Nitride semiconductor device
US6958497B2 (en) 2001-05-30 2005-10-25 Cree, Inc. Group III nitride based light emitting diode structures with a quantum well and superlattice, group III nitride based quantum well structures and group III nitride based superlattice structures
US7166869B2 (en) 1995-11-06 2007-01-23 Nichia Corporation Nitride semiconductor with active layer of quantum well structure with indium-containing nitride semiconductor
WO2009119498A1 (en) * 2008-03-26 2009-10-01 パナソニック電工株式会社 Nitride semiconductor light emitting element
US7692182B2 (en) 2001-05-30 2010-04-06 Cree, Inc. Group III nitride based quantum well light emitting device structures with an indium containing capping structure
USRE42074E1 (en) 1996-04-26 2011-01-25 Sanyo Electric Co., Ltd. Manufacturing method of light emitting device
US7947994B2 (en) * 1998-03-12 2011-05-24 Nichia Corporation Nitride semiconductor device
US8344398B2 (en) 2007-01-19 2013-01-01 Cree, Inc. Low voltage diode with reduced parasitic resistance and method for fabricating
US8507924B2 (en) 2004-07-02 2013-08-13 Cree, Inc. Light emitting diode with high aspect ratio submicron roughness for light extraction and methods of forming
US8519437B2 (en) 2007-09-14 2013-08-27 Cree, Inc. Polarization doping in nitride based diodes
US8575592B2 (en) 2010-02-03 2013-11-05 Cree, Inc. Group III nitride based light emitting diode structures with multiple quantum well structures having varying well thicknesses
US8679876B2 (en) 2006-11-15 2014-03-25 Cree, Inc. Laser diode and method for fabricating same
US9012937B2 (en) 2007-10-10 2015-04-21 Cree, Inc. Multiple conversion material light emitting diode package and method of fabricating same
JP2018511945A (en) * 2015-03-31 2018-04-26 ソウル バイオシス カンパニー リミテッドSeoul Viosys Co.,Ltd. UV light emitting element

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7166869B2 (en) 1995-11-06 2007-01-23 Nichia Corporation Nitride semiconductor with active layer of quantum well structure with indium-containing nitride semiconductor
US8304790B2 (en) 1995-11-06 2012-11-06 Nichia Corporation Nitride semiconductor with active layer of quantum well structure with indium-containing nitride semiconductor
US7166874B2 (en) 1995-11-06 2007-01-23 Nichia Corporation Nitride semiconductor with active layer of quantum well structure with indium-containing nitride semiconductor
USRE42074E1 (en) 1996-04-26 2011-01-25 Sanyo Electric Co., Ltd. Manufacturing method of light emitting device
US8541794B2 (en) 1997-01-09 2013-09-24 Nichia Chemical Industries, Ltd. Nitride semiconductor light-emitting devices
US6677619B1 (en) 1997-01-09 2004-01-13 Nichia Chemical Industries, Ltd. Nitride semiconductor device
US7211822B2 (en) 1997-01-09 2007-05-01 Nichia Chemical Industries, Ltd. Nitride semiconductor device
EP2264794A2 (en) 1997-01-09 2010-12-22 Nichia Corporation Nitride semiconductor device
US6849864B2 (en) 1997-01-09 2005-02-01 Nichia Chemical Industries, Ltd. Nitride semiconductor device
US7615804B2 (en) 1997-01-09 2009-11-10 Nichia Chemical Industries, Ltd. Superlattice nitride semiconductor LD device
US6172382B1 (en) 1997-01-09 2001-01-09 Nichia Chemical Industries, Ltd. Nitride semiconductor light-emitting and light-receiving devices
EP1018770A1 (en) * 1997-08-20 2000-07-12 Sanyo Electric Co., Ltd. Compound semiconductor device based on gallium nitride
WO1999009602A1 (en) * 1997-08-20 1999-02-25 Sanyo Electric Co., Ltd. Compound semiconductor device based on gallium nitride
EP1018770A4 (en) * 1997-08-20 2006-07-26 Sanyo Electric Co Compound semiconductor device based on gallium nitride
US6388275B1 (en) 1997-08-20 2002-05-14 Sanyo Electric Co., Ltd. Compound semiconductor device based on gallium nitride
JP2002164573A (en) * 1997-11-18 2002-06-07 Nichia Chem Ind Ltd Nitride semiconductor light emitting element
US7947994B2 (en) * 1998-03-12 2011-05-24 Nichia Corporation Nitride semiconductor device
US8227268B2 (en) 2001-05-30 2012-07-24 Cree, Inc. Methods of fabricating group III nitride based light emitting diode structures with a quantum well and superlattice, group III nitride based quantum well structures and group III nitride based superlattice structures
US7312474B2 (en) 2001-05-30 2007-12-25 Cree, Inc. Group III nitride based superlattice structures
US9112083B2 (en) 2001-05-30 2015-08-18 Cree, Inc. Group III nitride based light emitting diode structures with a quantum well and superlattice, group III nitride based quantum well structures and group III nitride based superlattice structures
US8546787B2 (en) 2001-05-30 2013-10-01 Cree, Inc. Group III nitride based quantum well light emitting device structures with an indium containing capping structure
US8044384B2 (en) 2001-05-30 2011-10-25 Cree, Inc. Group III nitride based quantum well light emitting device structures with an indium containing capping structure
US9054253B2 (en) 2001-05-30 2015-06-09 Cree, Inc. Group III nitride based quantum well light emitting device structures with an indium containing capping structure
US7692182B2 (en) 2001-05-30 2010-04-06 Cree, Inc. Group III nitride based quantum well light emitting device structures with an indium containing capping structure
US6958497B2 (en) 2001-05-30 2005-10-25 Cree, Inc. Group III nitride based light emitting diode structures with a quantum well and superlattice, group III nitride based quantum well structures and group III nitride based superlattice structures
US8507924B2 (en) 2004-07-02 2013-08-13 Cree, Inc. Light emitting diode with high aspect ratio submicron roughness for light extraction and methods of forming
US8679876B2 (en) 2006-11-15 2014-03-25 Cree, Inc. Laser diode and method for fabricating same
US9041139B2 (en) 2007-01-19 2015-05-26 Cree, Inc. Low voltage diode with reduced parasitic resistance and method for fabricating
US8344398B2 (en) 2007-01-19 2013-01-01 Cree, Inc. Low voltage diode with reduced parasitic resistance and method for fabricating
US8519437B2 (en) 2007-09-14 2013-08-27 Cree, Inc. Polarization doping in nitride based diodes
US9012937B2 (en) 2007-10-10 2015-04-21 Cree, Inc. Multiple conversion material light emitting diode package and method of fabricating same
KR101238459B1 (en) * 2008-03-26 2013-02-28 파나소닉 주식회사 Nitride Semiconductor Light Emitting Device
US8445938B2 (en) 2008-03-26 2013-05-21 Panasonic Corporation Nitride semi-conductive light emitting device
WO2009119498A1 (en) * 2008-03-26 2009-10-01 パナソニック電工株式会社 Nitride semiconductor light emitting element
JP2009260203A (en) * 2008-03-26 2009-11-05 Panasonic Electric Works Co Ltd Nitride semiconductor light emitting element
US8575592B2 (en) 2010-02-03 2013-11-05 Cree, Inc. Group III nitride based light emitting diode structures with multiple quantum well structures having varying well thicknesses
JP2018511945A (en) * 2015-03-31 2018-04-26 ソウル バイオシス カンパニー リミテッドSeoul Viosys Co.,Ltd. UV light emitting element
US10374123B2 (en) 2015-03-31 2019-08-06 Seoul Viosys Co., Ltd. UV light emitting device

Also Published As

Publication number Publication date
JP2900990B2 (en) 1999-06-02

Similar Documents

Publication Publication Date Title
KR100902109B1 (en) Gallium nitride compound semiconductor element
JP2890396B2 (en) Nitride semiconductor light emitting device
JP3548442B2 (en) Gallium nitride based compound semiconductor light emitting device
JP3292083B2 (en) Method for manufacturing nitride semiconductor substrate and method for manufacturing nitride semiconductor element
JP3660446B2 (en) Nitride semiconductor device and manufacturing method thereof
JP2000068594A (en) Nitride semiconductor element
JP2900990B2 (en) Nitride semiconductor light emitting device
JP2002261014A (en) Method of manufacturing nitride semiconductor element
JP3551751B2 (en) Method for growing nitride semiconductor
JP3446660B2 (en) Nitride semiconductor light emitting device
JP4291960B2 (en) Nitride semiconductor device
JPH10145002A (en) Nitride semiconductor device and method for growing the nitride semiconductor
JP3275810B2 (en) Nitride semiconductor light emitting device
JP2891348B2 (en) Nitride semiconductor laser device
JP3651260B2 (en) Nitride semiconductor device
JP3366188B2 (en) Nitride semiconductor device
JPH11191639A (en) Nitride semiconductor device
JP3371830B2 (en) Nitride semiconductor light emitting device
JP4423969B2 (en) Nitride semiconductor multilayer substrate and nitride semiconductor device and nitride semiconductor laser device using the same
JPH077182A (en) Gallium nitride based compound semiconductor light emitting element
JP3235440B2 (en) Nitride semiconductor laser device and method of manufacturing the same
JPH11195812A (en) Nitride semiconductor light-emitting element
JP3888036B2 (en) Method for growing n-type nitride semiconductor
JPH10326943A (en) Nitride semiconductor element
JP3772651B2 (en) Nitride semiconductor laser device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 15

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term