JP3548442B2 - Gallium nitride based compound semiconductor light emitting device - Google Patents

Gallium nitride based compound semiconductor light emitting device Download PDF

Info

Publication number
JP3548442B2
JP3548442B2 JP32938498A JP32938498A JP3548442B2 JP 3548442 B2 JP3548442 B2 JP 3548442B2 JP 32938498 A JP32938498 A JP 32938498A JP 32938498 A JP32938498 A JP 32938498A JP 3548442 B2 JP3548442 B2 JP 3548442B2
Authority
JP
Japan
Prior art keywords
layer
type
based compound
gallium nitride
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32938498A
Other languages
Japanese (ja)
Other versions
JPH11220173A (en
Inventor
修二 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP22767994A external-priority patent/JP2956489B2/en
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP32938498A priority Critical patent/JP3548442B2/en
Publication of JPH11220173A publication Critical patent/JPH11220173A/en
Priority to JP2000384363A priority patent/JP3646649B2/en
Application granted granted Critical
Publication of JP3548442B2 publication Critical patent/JP3548442B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Description

【0001】
【産業上の利用分野】
本発明は発光ダイオード、レーザダイオード等の電子デバイスに使用されるn型窒化ガリウム系化合物半導体(InAlGa1−X−YN、0≦X、0≦Y、X+Y≦1、以下窒化ガリウム系化合物半導体を窒化物半導体という。)の結晶を用いた窒化ガリウム系化合物半導体発光素子に関する。
【0002】
【従来の技術】
青色、紫外に発光するレーザダイオード、発光ダイオードの材料として窒化物半導体(InX’AlY’Ga1−X’−Y’N、0≦X’、0≦Y’、X’+Y’≦1)が注目されており、最近この材料で光度1cdの青色発光ダイオードが実用化されたばかりである。この青色発光ダイオードは図1に示すように、サファイアよりなる基板1の表面に、GaNよりなるバッファ層2と、GaNよりなるn型層3と、AlGaNよりなるn型クラッド層4と、InGaNよりなる活性層5と、AlGaNよりなるp型クラッド層6と、GaNよりなるp型コンタクト層7とが順に積層された構造を有している。
【0003】
窒化物半導体素子は、一般にMOVPE(有機金属気相エピタキシャル)法、MBE(分子線エピタキシャル)法、HDVPE(ハイドライド気相エピタキシャル)法等の気相成長法を用い、基板表面に窒化物半導体層を積層させることにより得られる。基板にはサファイア、ZnO、SiC、GaAs、MgO等の材料が使用される。基板の表面にはバッファ層を介してn型の窒化物半導体(InAlGa1−X−YN、0≦X、0≦Y、X+Y≦1、その中でも特にn型GaN、n型AlGaNが多い。)が成長される。また、SiC、ZnOのように窒化物半導体と格子定数の近い基板を用いる場合には、バッファ層を形成せず、基板に直接n型窒化物半導体が成長されることもある。基本的には、基板の表面にまずn型窒化物半導体層を成長させることにより、発光素子、受光素子等の窒化物半導体素子が作製される。
【0004】
例えばMOVPE法によると、窒化物半導体は、原料ガスにGa源、Al源、In源となる有機金属化合物ガスと、N源となるアンモニアガスとが用いられる。これらの原料ガスを加熱した基板表面に接触させることにより原料ガスを分解して、基板上に窒化物半導体がエピタキシャル成長される。バッファ層には通常GaN、AlN、GaAlN等が選択され、300℃〜900℃の温度で10オングストローム〜0.1μmの厚さで成長される。バッファ層の上に成長するn型窒化物半導体層は900℃以上の温度で、通常1μm以上、4μm以下の膜厚で成長される。
【0005】
【発明が解決しようとする課題】
窒化物半導体は、完全に格子整合する基板がないため、非常にエピタキシャル成長させにくい結晶であることが知られている。従って、従来ではSiC基板のように、成長させようする窒化物半導体の格子定数に近い基板を利用するか、または格子不整合を緩和するバッファ層を介して無理矢理エピタキシャル成長されてきた。
【0006】
格子整合しない基板の表面に成長したn型窒化物半導体の結晶の模式断面図を一例として図2に示す。これはジャーナル オブ クリスタル グロウス{Jounal of Crystal Growth, 115, (1991) P628−633}より引用したものであり、サファイア基板の表面にAlNよりなるバッファ層を介してn型GaNをエピタキシャル成長させ、その断面をTEM(transmission electron microscopy)で測定して、そのTEM像から結晶の構造を模式的に示したものである。この図によると、基板上に配向性が整っていないバッファ層が柱状に成長されており、そのバッファ層の上にGaNをエピタキシャル成長させると、そのバッファ層の一部が種結晶のような役割を果たして、徐々にGaNの配向性が整うことにより、結晶性がよくなったGaN層が成長されることを示している。
【0007】
しかしながら、完全に結晶欠陥の無いGaNを成長させることは難しく、図2の破線に示すような多数の結晶欠陥が、バッファ層とGaN層との界面から、GaN層表面に達するまで伸びている。この欠陥は結晶の内部で止まるものもあるが、GaN層表面にまで達するものは、表面で例えば10〜10個/cmある。同様に図1の発光ダイオード素子においても、n型層3の結晶中では同様の現象が発生している。
【0008】
基板の表面に成長したn型窒化物半導体層の表面に多数の結晶欠陥があると、その欠陥がn型層の表面に成長するクラッド層、活性層等、全ての半導体層に受け継がれ、素子構造全体に悪影響を及ぼすという問題がある。結晶欠陥の多い素子は、例えば上記のような発光ダイオードとした場合に、発光出力、寿命等の素子性能に悪影響を及ぼすという欠点がある。
【0009】
基板の表面にまずn型窒化物半導体層を成長させるにあたり、結晶欠陥の少ないn型結晶を成長させることが非常に重要であり、それを実現できれば、そのn型結晶の上に成長させるクラッド層、活性層等の結晶欠陥が少なくなるので、窒化物半導体より成るあらゆる素子の性能を向上させることができる。従って、本発明はこのような事情を鑑みなされたものであり、MOVPE、MBE法等の気相成長法により、完全に格子整合していない基板の表面にn型窒化物半導体層を成長させる際に、そのn型窒化物半導体層の格子欠陥を少なくして成長させたn型窒化物半導体を用いた発光素子を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明は、InaGa1-aN(0<a≦1)又はAlbGa1-bN(0<b≦1)を含み、バッファ層として作用する第2のn型窒化ガリウム系化合物半導体層を、第1のn型窒化ガリウム系化合物半導体層と、第3のn型窒化ガリウム系化合物半導体層とで挟んだ構造を有するn型窒化ガリウム系化合物半導体を、基板と活性層との間に有し、前記第1のn型窒化ガリウム系化合物半導体層、前記第2のn型窒化ガリウム系化合物半導体層、及び前記第3の窒化ガリウム系化合物半導体層の組み合わせが、超格子を構成しておらず、前記第1のn型窒化ガリウム系化合物半導体層と前記第3のn型窒化ガリウム系化合物半導体層とのいずれか一方が負電極形成層であることを特徴とする。
【0011】
また本発明の発光素子は、前記活性層がInGaNからなることが好ましく、さらに、前記第1の窒化ガリウム系化合物半導体層と第3の窒化ガリウム系化合物半導体層とが同一組成を有することが好ましい。
【0012】
【作用】
n型窒化物半導体層の中に、組成の異なる第2の窒化物半導体層を形成すると、第2の窒化物半導体が緩衝層、即ちバッファ層として作用するので、バッファ層で結晶欠陥を緩和できると考えられる(以下本明細書において、第2の窒化物半導体層を第2のバッファ層という)。詳しく述べると、n型窒化物半導体層が基板上に成長される場合、基板と窒化物半導体とのミスマッチが大きいため、成長中に図2の破線に示すような結晶欠陥が結晶中に発生する。ところが、成長させようとするn型窒化物半導体層と組成の異なる第2のバッファ層を中間層として介在させることにより、n型窒化物半導体層の連続した結晶欠陥が、組成が異なる第2のバッファ層で一時的に止まる。次に、第2のバッファ層の表面にn型窒化物半導体を成長させる際は、その第2のバッファ層がミスマッチの少ない基板のような作用をするため、第2のバッファ層の上に成長させるn型窒化物半導体の結晶性がよくなると推察される。
【0013】
第2のバッファ層は一層以上形成すればよく、その一層あたりの膜厚は10オングストローム(0.001μm)以上、1μm以下、さらに好ましくは0.001μm以上、0.1μm以下の範囲に調整することが望ましい。0.001μmよりも薄いと、結晶欠陥を第2のバッファ層で結晶欠陥を止めることが困難となる傾向にある。また1μmよりも厚いと第2のバッファ層から新たな結晶欠陥が発生しやすくなる傾向にあるからである。この第2のバッファ層はまた、一層の膜厚が数十オングストロームで、それを2層以上積層した多層膜とすることもできる。
【0014】
第2のバッファ層はInGa1−aN(0<a≦1)、もしくはAlGa1−bN(0<b≦1)、または組成の異なるAlGa1−bN(0≦b≦1)の薄膜を積層した多層膜であることが望ましい。さらに好ましくはa値が0.5以下のInGa1−aNか、またはb値が0.5以下のAlGa1−bNを成長させる。なぜなら、窒化物半導体では四元混晶の半導体層よりも、前記のような三元混晶の方が結晶性がよい。その中でも三元混晶のInGa1−aN、AlGa1−bNにおいて、a値、およびb値を前記範囲に調整したバッファ層が、さらに結晶性のよいものが得られるため、第2のバッファ層の結晶欠陥が少なくなり、第2のバッファ層の上に成長するn型窒化物半導体層の結晶欠陥が少なくなる。さらに、第2のバッファ層を多層膜とすると結晶欠陥を非常によく止めることができる。最も好ましい組み合わせは、n型窒化物半導体層がn型GaN(GaNが最も格子欠陥が少ない。)、第2のバッファ層がn型InGa1−aN(0<a≦0.5)か、若しくはn型AlGa1−bN(0<b≦0.5)か、または組成の異なるAlGa1−bN(0≦b≦1)の薄膜を積層した多層膜(超格子)である。
【0015】
さらに、第2のバッファ層の電子キャリア濃度は先に形成したn型窒化物半導体層とほぼ同一か、またはそれより大きく調整することが望ましい。図3および図4は本発明の方法により得られたn型窒化物半導体層3”の上に、nクラッド層4’、活性層5’、pクラッド層6’、pコンタクト層7’を積層して実際の発光素子として、その発光素子の構造を断面図でもって示した図である。図3は、第2のバッファ層33が、負電極形成用のn型層のエッチング面よりも活性層5’側にあるのに対し、図4は第2のバッファ層33がエッチング面よりも基板1’側に形成された点で異なっている。例えば、図3に示すような発光素子を実現した場合、つまり第2のバッファ層33の位置が、負電極を形成すべきエッチング面よりも活性層側に近い位置にあるような素子を実現した場合、第2のバッファ層33の電子キャリア濃度がn型層3’よりも小さいと、第2のバッファ層でnからpへ供給される電子が阻止されて、n型層からp層に電流が流れにくくなり、素子の性能が悪くなる。逆に、第2のバッファ層33の電子キャリア濃度がn型層3よりも大きいと、電子は第2のバッファ層33に均一に広がりやすくなるので、均一な発光を得ることができる。一方、図4のような素子であると、第2のバッファ層33の電子キャリア濃度は小さくても、電流は電子キャリア濃度の大きいn型層3”の方を流れるので、発光素子の特性にはほとんど影響がないが、逆に第2のバッファ層33の電子キャリア濃度が大きい場合は、電流は第2のバッファ層33の方に流れやすくなって、均一な発光が得られる。従って、第2のバッファ層33の電子キャリア濃度は先に形成したn型窒化物半導体層とほぼ同一か、またはそれより大きく調整することが好ましい。
【0016】
n型窒化物半導体層を5μmよりも厚く成長させることにより、表面に到達する結晶欠陥を少なくすることもできる。図2において、破線がn型層の中間で止まっているのは、結晶欠陥が途中で止まっていることを示している。この途中で止まっている結晶欠陥について、さらによく研究してみると、n型窒化物半導体層が基板からおよそ4μmぐらいで止まるものが多いことを新たに見いだした。そこで、同一材料を連続して成長中であれば、結晶欠陥を成長中に次第に止めることが可能であるので、5μm以上でn層を成長させることにより、n層の表面にまで到達する結晶欠陥を少なくすることができる。さらに好ましいn型窒化物半導体層の厚さは7μm以上である。
【0017】
本発明において、基板上に成長されているn型窒化物半導体(InAlGa1−X−YN、0≦X、0≦Y、X+Y≦1)は、Y値が0≦Y≦0.5の範囲のAlGa1−YN、さらに好ましくは0.3以下のAlGa1−YN、最も好ましくはY=0のGaNを成長させる。なぜなら、前記のように四元混晶の窒化物半導体より、三元混晶の窒化物半導体の方が結晶欠陥が少ないからである。さらに、発光素子、受光素子等の電子デバイスとしてn型窒化物半導体を利用する際には、まず基板上に成長させるn型窒化物半導体は、バンドギャップの小さいInGaNよりもバンドギャップの大きいAlGaN、GaNの方がシングルへテロ、ダブルへテロ等種々の構造を実現する上で好都合であるからである。その中でも、特にAlGaNはAlを含有させるほど結晶欠陥が多くなる傾向にあり、GaNが最も結晶欠陥の少ないn型窒化物半導体層を成長できる傾向にある。
【0018】
基板にはサファイア、GaAs、Si、ZnO、SiC等の材料が使用できるが、一般的にはサファイアを用いる。サファイアを基板とする場合には、基板にはバッファ層を成長させることが好ましいが、サファイア基板の面方位によってはバッファ層無しでも成長可能である。好ましくバッファ層を成長させることにより、格子欠陥を計測できるような平滑で鏡面状のn型窒化物半導体の結晶を得ることができる。また、窒化物半導体をn型にするにはノンドープの状態で、またはSi、Ge、C等のドナー不純物を結晶成長中にドープすることにより実現可能である。
【0019】
【実施例】
以下、MOVPE法による本発明の方法を詳説する。
[実施例1]
▲1▼ まず、よく洗浄したサファイア基板を反応容器内のサセプターの上に設置する。容器内を真空排気した後、水素ガスを容器内に流しながら、基板を1050℃で約20分間加熱し表面の酸化物を除去して、基板のクリーニングを行う。その後サセプターの温度を500℃に調整し、500℃においてGa源としてTMG(トリメチルガリウムガス)、N源としてアンモニアガスを基板の表面に流しながら、GaNよりなるバッファ層を0.02μmの膜厚で成長させる。
【0020】
▲2▼ 次に、TMGガスを止め、温度を1050℃まで上昇させた後、TMGガス、SiHガスを流し、Siドープn型GaN層を2μmの膜厚で成長させる。
【0021】
▲3▼ 次に、TMGガス、SiHガスを止め温度を800℃にする。800℃になったらキャリアガスを窒素に切り替え、TMGガス、TMI(トリメチルインジウム)、SiHガスを流し、第2のバッファ層としてSiドープn型In0.1Ga0.9N層を0.01μmの膜厚で成長させる。
【0022】
▲4▼ In0.1Ga0.9N層成長後、再度温度を1050℃まで上昇させ、キャリアガスを水素に戻してTMGガスおよびSiHガスを流し、同様にしてSiドープn型GaN層を2μmの膜厚で成長させる。なお第2のバッファ層のキャリア濃度とこのn型GaN層のキャリア濃度はほぼ同一とした。
【0023】
成長後、基板を反応容器から取り出し、最上層のn型GaN層の表面をTEMで測定し、そのTEM像より、単位面積あたりの結晶欠陥の数を計測したところ、およそ1×10個/cmであった。
【0024】
[実施例2]
▲2▼および▲4▼のn型窒化物半導体層の工程において、TMG、TMA(トリメチルアルミニウム)、SiHガスを用い、Siドープn型Al0.3Ga0.7N層をそれぞれ2μmの膜厚で成長させて第2のバッファ層を挟む構造とする他は、実施例1と同様に行う。その結果、同様にして計測したところ、Siドープn型Al0.3Ga0.7N層表面に達している結晶欠陥の数はおよそ5×10個/cmであった。なお、Siドープn型Al0.3Ga0.7N層の電子キャリア濃度は第2のバッファ層とほぼ同一とした。
【0025】
[実施例3]
▲2▼のn型窒化物半導体層の工程と同様にしてSiドープn型GaN層を1μmの膜厚で成長させる。次に▲3▼の第2のバッファ層の工程と同様にして、第2のバッファ層としてSiドープn型In0.1Ga0.9N層を50オングストロームの膜厚で成長させる。さらに、▲4▼のn型窒化物半導体層の工程と同様にして同じくSiドープn型GaN層を1μmの膜厚で順に成長させる。
【0026】
さらに、Siドープn型GaN層の上に▲3▼の工程と同様にして、第3のバッファ層としてSiドープn型In0.1Ga0.9N層を50オングストロームの膜厚でもう一度成長させた後、最後に▲4▼の工程と同様にしてSiドープGaN層を2μmの膜厚で成長させる。つまり実施例3では、サファイア基板の表面にGaNバッファ層200オングストローム、n型GaN層1μm、Siドープn型In0.1Ga0.9N第2バッファ層50オングストローム、n型GaN層1μm、Siドープn型In0.1Ga0.9N第3バッファ層50オングストローム、n型GaN層2μmを順に積層した。
【0027】
その結果、最終層のSiドープn型GaN層の表面に達している結晶欠陥の数はおよそ1×10個/cmであった。なお第2のバッファ層と第3のバッファ層とSiドープn型GaN層との電子キャリア濃度はほぼ同一とした。
【0028】
[実施例4]
▲3▼の第2のバッファ層の工程において、成長温度を変化させずTMG、TMA(トリメチルアルミニウム)、SiHガスを用い、Siドープn型Al0.3Ga0.7N層を0.01μmの膜厚で成長させて第2のバッファ層を形成する他は、実施例1と同様に行う。その結果、同様にして計測したところ、Siドープn型GaN層表面に達している結晶欠陥の数はおよそ1×10個/cmであった。なお、第2のバッファ層の電子キャリア濃度はSiドープn型GaN層とほぼ同一とした。
【0029】
[実施例5]
▲3▼の第2のバッファ層の工程において、成長温度を変化させずTMG、TMA、SiHガスを用い、まずSiドープn型Al0.02Ga0.98N層を30オングストロームの膜厚で成長させる。次にTMAガスを止め、Siドープn型GaN層を30オングストロームの膜厚で成長させる。そして、この操作をそれぞれ5回繰り返し、30オングストロームのSiドープn型Al0.02Ga0.98N層と、30オングストロームのn型GaN層とをそれぞれ交互に5層づつ積層した多層膜を形成する。以上のようにして第2のバッファ層を形成する他は、実施例1と同様に行う。その結果、格子欠陥を同様にして計測したところ、Siドープn型GaN層表面に達している結晶欠陥の数はおよそ5×10個/cmであった。なお、第2のバッファ層である多層膜の電子キャリア濃度は、Siドープn型GaN層とほぼ同一とした。
【0030】
[実施例6]
実施例2の工程において、第2のバッファ層としてSiドープn型Al0.1GaGa0.9Nを0.01μmの膜厚で成長させる他は同様にして、Siドープn型Al0.3Ga0.7N層を成長させた。その結果、最表面のn型Al0.3Ga0.7N層に達していた格子欠陥の数はおよそ1×10/cm2であった。なおこの実施例の電子キャリア濃度もほぼ同一とした。
【0031】
[比較例1]
実施例1において、第2のバッファ層を成長させず、連続してSiドープn型GaN層を4μmの膜厚で成長させたところ、n型GaN層の表面に達した結晶欠陥の数はおよそ1×10個/cmであった。
【0032】
[実施例7]
実際の発光素子の構造とした実施例を示す。
実施例1の▲4▼の工程の後に以下の工程を加えた。
▲5▼ Siドープn型GaN層成長後、新たにTMA(トリメチルアルミニウム)ガスを加え、同じく1050℃で、nクラッド層としてSiドープn型Al0.2Ga0.8N層を0.1μmの膜厚で成長させる。
【0033】
▲6▼ nクラッド層成長後、TMG、TMA、SiHガスを止め、再び温度を800℃に設定して、TMG、TMI、SiHガスに加えてDEZ(ジエチルジンク)を流し、活性層としてSiおよびZnドープIn0.05Ga0.95N層を0.1μmの膜厚で成長させる。
【0034】
▲7▼ 活性層成長後、TMG、TMI、SiH、DEZガスを止め、温度を1050℃にした後、TMG、TMA、Cp2Mg(シクロペンタジエニルマグネシウム)ガスを流し、pクラッド層としてMgドープp型Al0.1Ga0.9N層を0.1μmの膜厚で成長させる。
【0035】
▲8▼ p型Al0.1Ga0.9N層成長後、TMAガスを止め、同じく1050℃でpコンタクト層としてMgドープp型GaN層を0.3μmの膜厚で成長させる。
【0036】
▲9▼ 以上のようにして得た素子のエッチングを行い、第2のバッファ層の次に成長したn型GaN層を露出させ、pコンタクト層と、露出したSiドープn型GaN層とに電極を形成した。つまり図4に示すような構造の発光ダイオード素子とした。さらにこの素子をリードフレームに取り付け、樹脂でモールドした。この発光ダイオードは20mAにおいてVf3.6V、発光波長450nmであり、光度3.0cd、発光出力は3.5mWであった。
【0037】
[比較例2]
比較例1で成長させたSiドープGaN層の上に、実施例7と同一の工程を行い、図1に示すような構造の発光ダイオード素子としたところ、この発光ダイオードは20mAにおいてVf3.6V、発光波長450nmであったが、光度は1.0cdであり、発光出力は1.2mWしかなかった。
【0038】
このように本発明の発光素子では、結晶欠陥の少ないn型層を有しているので、その上に積層するクラッド層、活性層等の結晶欠陥が少なくなる。特に活性層の膜厚は約0.2μm以下と薄いため、結晶欠陥の少ない結晶を成長させることは非常に重要である。従って、結晶欠陥の少ない結晶を成長できたことにより、従来の光度1cd以上の光度を有し、発光出力に優れた発光ダイオード素子を実現できる。
【0039】
[実施例8]
▲1▼ 実施例1の▲1▼の工程と同様にしてサファイア基板の表面にGaNよりなるバッファ層を0.02μmの膜厚で成長させる。
【0040】
▲2▼ 実施例1の▲2▼の工程と同様にして、バッファ層の上に、Siドープn型GaN層を10μmの膜厚で成長させる。
【0041】
成長後、基板を反応容器から取り出し、n型GaN層表面をTEMで測定し、そのTEM像より、単位面積あたりの結晶欠陥の数を計測したところ、およそ1×10個/cmであった。
【0042】
[実施例9]
Siドープn型GaN層の膜厚を5μmとする他は実施例5と同様にして結晶成長を行ったところ、n型GaN層表面の結晶欠陥の数はおよそ5×10個であった。
【0043】
[実施例10]
実施例5の▲2▼の工程において、実施例2の▲2▼と同様にしてSiドープn型Al0.3Ga0.7N層を連続して10μmの厚さで成長させる他は同様にして結晶成長を行ったところ、n型Al0.3Ga0.7N層表面の結晶欠陥の数は、およそ3×10個/cmであった。
【0044】
[実施例11]
実施例5で得られたSiドープGaN層の上に実施例7と同様にして、nクラッド層、活性層、pクラッド層、pコンタクト層を積層して、同様にして発光ダイオードとしたところ、その特性は実施例7のものとほぼ同等であった。
【0045】
【発明の効果】
以上説明したように、本発明の発光素子では、基板上に結晶欠陥の少ないn型窒化物半導体層を有している。従って本発明は、格子整合する基板を有していない窒化物半導体発光素子にとって、結晶欠陥の少ない結晶を積層しているので、受光素子等の電子デバイスにも応用でき、非常に有用である。
【図面の簡単な説明】
【図1】従来の発光ダイオード素子の一構造を示す模式断面図。
【図2】基板の表面にAlNバッファ層を介してn型GaN層を成長した際の結晶の構造を示す模式断面図。
【図3】本発明のn型窒化物半導体層を有する発光ダイオード素子の一構造を示す模式断面図。
【図4】本発明のn型窒化物半導体層を有する発光ダイオード素子の一構造を示す模式断面図。
【符号の説明】
1、1’・・・基板 2、2’・・・バッファ層
3、3’、3”・・・n型窒化物半導体層 4、4’・・・n型クラッド層
5、5’・・・活性層 6、6’・・・pクラッド層
7、7’・・・pコンタクト層
33・・・第2のバッファ層(第2の窒化物半導体層)
[0001]
[Industrial applications]
The present invention is a light emitting diode, n-type gallium nitride compound is used in an electronic device such as a laser diode semiconductor (In X Al Y Ga 1- X-Y N, 0 ≦ X, 0 ≦ Y, X + Y ≦ 1, the following nitride The present invention relates to a gallium nitride-based compound semiconductor light-emitting device using a crystal of a gallium-based compound semiconductor).
[0002]
[Prior art]
Blue laser diode that emits ultraviolet, nitride semiconductor as a material for light emitting diodes (In X 'Al Y' Ga 1-X'-Y 'N, 0 ≦ X', 0 ≦ Y ', X' + Y '≦ 1 ), And a blue light emitting diode having a luminous intensity of 1 cd has recently been put to practical use with this material. As shown in FIG. 1, this blue light emitting diode has a buffer layer 2 made of GaN, an n-type layer 3 made of GaN, an n-type cladding layer 4 made of AlGaN, and an InGaN An active layer 5, a p-type clad layer 6 made of AlGaN, and a p-type contact layer 7 made of GaN are sequentially laminated.
[0003]
In general, a nitride semiconductor layer is formed on a substrate surface by a vapor phase growth method such as MOVPE (organic metal vapor phase epitaxy), MBE (molecular beam epitaxy), or HDVPE (hydride vapor phase epitaxy). It is obtained by laminating. Materials such as sapphire, ZnO, SiC, GaAs, and MgO are used for the substrate. On the surface of the substrate, an n-type nitride semiconductor (In X Al Y Ga 1-XY N, 0 ≦ X, 0 ≦ Y, X + Y ≦ 1, particularly n-type GaN, n-type AlGaN is often grown). When a substrate having a lattice constant close to that of a nitride semiconductor such as SiC or ZnO is used, an n-type nitride semiconductor may be directly grown on the substrate without forming a buffer layer. Basically, an n-type nitride semiconductor layer is first grown on the surface of a substrate to produce a nitride semiconductor device such as a light emitting device and a light receiving device.
[0004]
For example, according to the MOVPE method, as a nitride semiconductor, an organic metal compound gas serving as a Ga source, an Al source, and an In source and an ammonia gas serving as an N source are used as source gases. The source gas is decomposed by bringing these source gases into contact with the heated substrate surface, and a nitride semiconductor is epitaxially grown on the substrate. As the buffer layer, GaN, AlN, GaAlN, or the like is usually selected and grown at a temperature of 300 ° C. to 900 ° C. with a thickness of 10 Å to 0.1 μm. The n-type nitride semiconductor layer grown on the buffer layer is grown at a temperature of 900 ° C. or higher, usually with a film thickness of 1 μm or more and 4 μm or less.
[0005]
[Problems to be solved by the invention]
It is known that a nitride semiconductor is a crystal that is extremely difficult to epitaxially grow because there is no substrate that is perfectly lattice-matched. Therefore, conventionally, a substrate close to the lattice constant of a nitride semiconductor to be grown, such as a SiC substrate, has been used, or epitaxial growth has been forcibly performed via a buffer layer for reducing lattice mismatch.
[0006]
FIG. 2 shows, as an example, a schematic cross-sectional view of an n-type nitride semiconductor crystal grown on the surface of a substrate that does not lattice match. This is quoted from the Journal of Crystal Growth, Journal of Crystal Growth, 115, (1991) P628-633, in which n-type GaN is epitaxially grown on the surface of a sapphire substrate via a buffer layer made of AlN, and its cross section is obtained. Is measured by TEM (transmission electron microscopy), and the structure of the crystal is schematically shown from the TEM image. According to this figure, a buffer layer with poor orientation is grown on the substrate in a columnar shape, and when GaN is epitaxially grown on the buffer layer, a part of the buffer layer plays a role like a seed crystal. This shows that the GaN layer with improved crystallinity is grown by gradually adjusting the orientation of GaN.
[0007]
However, it is difficult to grow GaN completely free from crystal defects, and many crystal defects as shown by broken lines in FIG. 2 extend from the interface between the buffer layer and the GaN layer until reaching the GaN layer surface. Some of these defects stop inside the crystal, but those reaching the GaN layer surface are, for example, 10 7 to 10 9 / cm 2 at the surface. Similarly, in the light emitting diode element of FIG. 1, the same phenomenon occurs in the crystal of the n-type layer 3.
[0008]
If there are many crystal defects on the surface of the n-type nitride semiconductor layer grown on the surface of the substrate, the defects are inherited by all semiconductor layers such as the cladding layer and active layer growing on the surface of the n-type layer, and There is a problem that the entire structure is adversely affected. An element having many crystal defects has a drawback that, for example, when the above-mentioned light emitting diode is used, the element performance such as light emission output and life is adversely affected.
[0009]
In growing an n-type nitride semiconductor layer on the surface of a substrate, it is very important to grow an n-type crystal with few crystal defects, and if this can be achieved, a cladding layer grown on the n-type crystal Since the number of crystal defects in the active layer and the like is reduced, the performance of any device made of a nitride semiconductor can be improved. Accordingly, the present invention has been made in view of such circumstances, and is intended for use in growing an n-type nitride semiconductor layer on the surface of a substrate that is not completely lattice-matched by a vapor growth method such as MOVPE or MBE. Another object of the present invention is to provide a light emitting device using an n-type nitride semiconductor grown by reducing lattice defects in the n-type nitride semiconductor layer.
[0010]
[Means for Solving the Problems]
The present invention provides a second n-type gallium nitride-based compound containing In a Ga 1-a N (0 <a ≦ 1) or Al b Ga 1-b N (0 <b ≦ 1) and acting as a buffer layer An n-type gallium nitride-based compound semiconductor having a structure in which a semiconductor layer is sandwiched between a first n-type gallium nitride-based compound semiconductor layer and a third n-type gallium nitride-based compound semiconductor layer is formed by forming an n-type gallium nitride-based compound semiconductor between a substrate and an active layer. And a combination of the first n-type gallium nitride-based compound semiconductor layer, the second n-type gallium nitride-based compound semiconductor layer, and the third gallium nitride-based compound semiconductor layer constitute a superlattice. However, one of the first n-type gallium nitride-based compound semiconductor layer and the third n-type gallium nitride-based compound semiconductor layer is a negative electrode forming layer.
[0011]
In the light-emitting device of the present invention, the active layer is preferably made of InGaN, and the first gallium nitride-based compound semiconductor layer and the third gallium nitride-based compound semiconductor layer preferably have the same composition. .
[0012]
[Action]
When a second nitride semiconductor layer having a different composition is formed in the n-type nitride semiconductor layer, the second nitride semiconductor functions as a buffer layer, that is, a buffer layer, so that crystal defects can be reduced in the buffer layer. (Hereinafter, the second nitride semiconductor layer is referred to as a second buffer layer in the present specification). More specifically, when an n-type nitride semiconductor layer is grown on a substrate, a large mismatch between the substrate and the nitride semiconductor causes crystal defects as shown by broken lines in FIG. 2 to occur in the crystal during the growth. . However, by interposing a second buffer layer having a different composition from the n-type nitride semiconductor layer to be grown as an intermediate layer, continuous crystal defects of the n-type nitride semiconductor layer cause the second buffer layer having a different composition. Stops temporarily in the buffer layer. Next, when an n-type nitride semiconductor is grown on the surface of the second buffer layer, the n-type nitride semiconductor is grown on the second buffer layer because the second buffer layer acts as a substrate having a small mismatch. It is presumed that the n-type nitride semiconductor has improved crystallinity.
[0013]
The second buffer layer may be formed in one or more layers, and the film thickness per layer is adjusted to be in the range of 10 Å (0.001 μm) or more and 1 μm or less, more preferably 0.001 μm or more and 0.1 μm or less. Is desirable. If the thickness is less than 0.001 μm, it tends to be difficult to stop crystal defects in the second buffer layer. If the thickness is larger than 1 μm, new crystal defects tend to be easily generated from the second buffer layer. The second buffer layer may have a thickness of several tens angstroms, and may be a multilayer film in which two or more layers are stacked.
[0014]
The second buffer layer In a Ga 1-a N ( 0 <a ≦ 1), or Al b Ga 1-b N ( 0 <b ≦ 1), or a different Al b Ga 1-b N ( 0 compositions It is desirable to be a multilayer film in which thin films satisfying ≦ b ≦ 1) are stacked. More preferably a value of 0.5 or less In a Ga 1-a N, or b values grow 0.5 following Al b Ga 1-b N. This is because, in a nitride semiconductor, the ternary mixed crystal has better crystallinity than the quaternary mixed crystal semiconductor layer. In a Ga 1-a N ternary mixed crystal Among them, the Al b Ga 1-b N, a value, and the buffer layer a b value was adjusted to the range further for good crystallinity is obtained The crystal defects of the second buffer layer are reduced, and the crystal defects of the n-type nitride semiconductor layer grown on the second buffer layer are reduced. Further, when the second buffer layer is a multilayer film, crystal defects can be stopped very well. The most preferable combination is that the n-type nitride semiconductor layer is n-type GaN (GaN has the fewest lattice defects), and the second buffer layer is n-type In a Ga 1-a N (0 <a ≦ 0.5). or or n-type Al b Ga 1-b n ( 0 <b ≦ 0.5) or different Al b Ga 1-b n ( 0 ≦ b ≦ 1) multilayer thin film has a stack of compositions (ultra Grid).
[0015]
Further, it is desirable that the electron carrier concentration of the second buffer layer is adjusted to be substantially the same as or higher than that of the previously formed n-type nitride semiconductor layer. 3 and 4 show that an n-cladding layer 4 ', an active layer 5', a p-cladding layer 6 ', and a p-contact layer 7' are laminated on the n-type nitride semiconductor layer 3 "obtained by the method of the present invention. 3 is a cross-sectional view showing the structure of the light emitting element as an actual light emitting element, wherein the second buffer layer 33 is more active than the etched surface of the n-type layer for forming the negative electrode. 4 differs from FIG. 4 in that the second buffer layer 33 is formed closer to the substrate 1 'than the etched surface, for example, to realize a light emitting device as shown in FIG. In other words, in the case where an element in which the position of the second buffer layer 33 is closer to the active layer side than the etching surface on which the negative electrode is to be formed is realized, the electron carrier concentration of the second buffer layer 33 is increased. Is smaller than the n-type layer 3 ′, n is supplied from n to p in the second buffer layer. When the electron carrier concentration of the second buffer layer 33 is higher than that of the n-type layer 3, the current is hardly allowed to flow from the n-type layer to the p-type layer, thereby deteriorating the performance of the device. The electrons can easily spread evenly in the second buffer layer 33, so that uniform light emission can be obtained, while in the case of the device as shown in Fig. 4, the electron carrier concentration in the second buffer layer 33 is small. However, since the current flows through the n-type layer 3 ″ having a higher electron carrier concentration, it hardly affects the characteristics of the light emitting element. On the contrary, when the electron carrier concentration of the second buffer layer 33 is high, Becomes easier to flow toward the second buffer layer 33, and uniform light emission is obtained. Therefore, the electron carrier concentration of the second buffer layer 33 is preferably adjusted to be substantially the same as or higher than that of the previously formed n-type nitride semiconductor layer.
[0016]
By growing the n-type nitride semiconductor layer thicker than 5 μm, crystal defects reaching the surface can be reduced. In FIG. 2, the broken line stops in the middle of the n-type layer, which indicates that the crystal defect stops in the middle. When the crystal defects stopped in the middle of the process were further studied, it was newly found that many of the n-type nitride semiconductor layers stopped at about 4 μm from the substrate. Therefore, if the same material is continuously grown, it is possible to gradually stop the crystal defects during the growth. Therefore, by growing the n-layer at 5 μm or more, the crystal defects reaching the surface of the n-layer can be obtained. Can be reduced. More preferably, the thickness of the n-type nitride semiconductor layer is 7 μm or more.
[0017]
In the present invention, n-type nitride semiconductor which is grown on the substrate (In X Al Y Ga 1- X-Y N, 0 ≦ X, 0 ≦ Y, X + Y ≦ 1) is, Y value is 0 ≦ Y ≦ ranging from 0.5 Al Y Ga 1-Y N , more preferably 0.3 or less of Al Y Ga 1-Y N, and most preferably grow GaN of Y = 0. This is because the ternary mixed crystal nitride semiconductor has fewer crystal defects than the quaternary mixed crystal nitride semiconductor as described above. Further, when an n-type nitride semiconductor is used as an electronic device such as a light-emitting element and a light-receiving element, first, an n-type nitride semiconductor grown on a substrate is made of AlGaN having a larger band gap than InGaN having a small band gap, This is because GaN is more convenient for realizing various structures such as single hetero and double hetero. Among them, particularly, AlGaN tends to have more crystal defects as Al is contained, and GaN tends to grow an n-type nitride semiconductor layer having the fewest crystal defects.
[0018]
Materials such as sapphire, GaAs, Si, ZnO, and SiC can be used for the substrate, but sapphire is generally used. When sapphire is used as a substrate, it is preferable to grow a buffer layer on the substrate. However, depending on the plane orientation of the sapphire substrate, growth can be performed without a buffer layer. By preferably growing the buffer layer, it is possible to obtain a smooth and mirror-like n-type nitride semiconductor crystal capable of measuring lattice defects. The n-type nitride semiconductor can be realized in a non-doped state or by doping during the crystal growth with a donor impurity such as Si, Ge, or C.
[0019]
【Example】
Hereinafter, the method of the present invention by the MOVPE method will be described in detail.
[Example 1]
(1) First, a well-washed sapphire substrate is placed on a susceptor in a reaction vessel. After evacuation of the inside of the container, the substrate is heated at 1050 ° C. for about 20 minutes to remove oxides on the surface while flowing hydrogen gas into the container, and the substrate is cleaned. Thereafter, the temperature of the susceptor was adjusted to 500 ° C., and at 500 ° C., a buffer layer made of GaN was formed to a thickness of 0.02 μm while flowing TMG (trimethyl gallium gas) as a Ga source and ammonia gas as an N source over the substrate surface. Let it grow.
[0020]
(2) Next, the TMG gas is stopped, the temperature is raised to 1050 ° C., and then a TMG gas and a SiH 4 gas are flowed to grow a Si-doped n-type GaN layer to a thickness of 2 μm.
[0021]
{Circle around (3)} Next, the TMG gas and the SiH 4 gas are stopped, and the temperature is set to 800 ° C. When the temperature reaches 800 ° C., the carrier gas is switched to nitrogen, TMG gas, TMI (trimethylindium), and SiH 4 gas are flown, and a Si-doped n-type In0.1Ga0.9N layer having a thickness of 0.01 μm is used as a second buffer layer. Grow with.
[0022]
{Circle around (4)} After growing the In0.1Ga0.9N layer, the temperature is raised again to 1050 ° C., the carrier gas is returned to hydrogen, and TMG gas and SiH 4 gas are flown. Similarly, the Si-doped n-type GaN layer is a 2 μm film. Grow in thickness. Note that the carrier concentration of the second buffer layer and the carrier concentration of the n-type GaN layer were almost the same.
[0023]
After the growth, the substrate is taken out of the reaction vessel, the surface of the uppermost n-type GaN layer was measured by TEM, than the TEM images, it was measured number of crystal defects per unit area, approximately 1 × 10 4 cells / cm 2 .
[0024]
[Example 2]
In steps (2) and ( 4 ) of the n-type nitride semiconductor layer, Si-doped n-type Al0.3Ga0.7N layers are grown to a thickness of 2 μm using TMG, TMA (trimethylaluminum), and SiH 4 gas. Except that the second buffer layer is interposed therebetween, the same operation as in the first embodiment is performed. As a result, when measured in the same manner, the number of crystal defects reaching the surface of the Si-doped n-type Al0.3Ga0.7N layer was approximately 5 × 10 5 / cm 2 . Note that the electron carrier concentration of the Si-doped n-type Al0.3Ga0.7N layer was substantially the same as that of the second buffer layer.
[0025]
[Example 3]
A Si-doped n-type GaN layer is grown to a thickness of 1 μm in the same manner as in step (2) of the n-type nitride semiconductor layer. Next, a Si-doped n-type In0.1Ga0.9N layer is grown to a thickness of 50 Å as a second buffer layer in the same manner as in the step (3) of the second buffer layer. Further, similarly to the step of the n-type nitride semiconductor layer of (4), similarly, a Si-doped n-type GaN layer is sequentially grown to a thickness of 1 μm.
[0026]
Further, a Si-doped n-type In0.1Ga0.9N layer as a third buffer layer is grown once more on the Si-doped n-type GaN layer with a thickness of 50 Å in the same manner as in the step (3). Finally, a Si-doped GaN layer is grown to a thickness of 2 μm in the same manner as in step (4). That is, in Example 3, the GaN buffer layer 200 Å, the n-type GaN layer 1 μm, the Si-doped n-type In0.1Ga0.9N second buffer layer 50 Å, the n-type GaN layer 1 μm, the Si-doped n-type In0 .1 Ga 0.9 N third buffer layer 50 Å and n-type GaN layer 2 μm were sequentially stacked.
[0027]
As a result, the number of crystal defects reaching the surface of the final Si-doped n-type GaN layer was about 1 × 10 4 / cm 2 . The electron carrier concentrations of the second buffer layer, the third buffer layer, and the Si-doped n-type GaN layer were almost the same.
[0028]
[Example 4]
In step (3) of the second buffer layer, a Si-doped n-type Al0.3Ga0.7N layer is formed to a thickness of 0.01 μm using TMG, TMA (trimethylaluminum), and SiH 4 gas without changing the growth temperature. Except that the second buffer layer is formed by growing in the same manner as in the first embodiment. As a result, the number of crystal defects reaching the surface of the Si-doped n-type GaN layer was approximately 1 × 10 4 / cm 2 when measured in the same manner. Note that the electron carrier concentration of the second buffer layer was almost the same as that of the Si-doped n-type GaN layer.
[0029]
[Example 5]
In ▲ 3 ▼ step of the second buffer layer, TMG without changing the growth temperature, TMA, using SiH 4 gas, is grown first, the Si-doped n-type Al0.02Ga0.98N layer with a thickness of 30 angstroms. Next, the TMA gas is stopped, and a Si-doped n-type GaN layer is grown to a thickness of 30 Å. This operation is repeated five times to form a multilayer film in which a 30 Å Si-doped n-type Al0.02Ga0.98N layer and a 30 Å n-type GaN layer are alternately laminated in a five-layer structure. Except for forming the second buffer layer as described above, the same operation as in the first embodiment is performed. As a result, when the lattice defects were measured in the same manner, the number of crystal defects reaching the surface of the Si-doped n-type GaN layer was approximately 5 × 10 3 / cm 2 . Note that the electron carrier concentration of the multilayer film as the second buffer layer was substantially the same as that of the Si-doped n-type GaN layer.
[0030]
[Example 6]
In the process of Example 2, a Si-doped n-type Al0.3Ga0.7N layer was grown in the same manner except that a Si-doped n-type Al0.1GaGa0.9N film was grown to a thickness of 0.01 μm as a second buffer layer. I let it. As a result, the number of lattice defects reaching the outermost n-type Al0.3Ga0.7N layer was about 1 × 10 5 / cm 2. Note that the electron carrier concentration in this example was also substantially the same.
[0031]
[Comparative Example 1]
In Example 1, when the second buffer layer was not grown and a Si-doped n-type GaN layer was continuously grown to a thickness of 4 μm, the number of crystal defects reaching the surface of the n-type GaN layer was approximately It was 1 × 10 7 pieces / cm 2 .
[0032]
[Example 7]
An example in which the structure of an actual light emitting element is used will be described.
The following step was added after the step (4) in Example 1.
{Circle around (5)} After the growth of the Si-doped n-type GaN layer, a new TMA (trimethylaluminum) gas is added, and at 1050 ° C., a Si-doped n-type Al0.2Ga0.8N layer having a thickness of 0.1 μm is formed as the n-cladding layer. Let it grow.
[0033]
{Circle around (6)} After growing the n-cladding layer, the TMG, TMA and SiH 4 gases are stopped, the temperature is again set to 800 ° C., and in addition to the TMG, TMI and SiH 4 gases, DEZ (diethyl zinc) is flown to form an active layer. A Si and Zn doped In0.05Ga0.95N layer is grown to a thickness of 0.1 μm.
[0034]
{Circle around (7)} After the active layer is grown, the TMG, TMI, SiH 4 and DEZ gases are stopped, the temperature is set to 1050 ° C., and then TMG, TMA and Cp2Mg (cyclopentadienyl magnesium) gas are flowed to form a p-clad layer doped with Mg. A p-type Al0.1Ga0.9N layer is grown to a thickness of 0.1 μm.
[0035]
{Circle around (8)} After the growth of the p-type Al0.1Ga0.9N layer, the TMA gas is stopped, and an Mg-doped p-type GaN layer is grown at 1050 ° C. as a p-contact layer with a thickness of 0.3 μm.
[0036]
{Circle around (9)} The device obtained as described above is etched to expose the n-type GaN layer grown next to the second buffer layer. Electrodes are formed on the p-contact layer and the exposed Si-doped n-type GaN layer. Was formed. That is, a light emitting diode element having a structure as shown in FIG. 4 was obtained. The device was mounted on a lead frame and molded with resin. This light-emitting diode had a Vf of 3.6 V, an emission wavelength of 450 nm, a luminous intensity of 3.0 cd, and an emission output of 3.5 mW at 20 mA.
[0037]
[Comparative Example 2]
The same process as in Example 7 was performed on the Si-doped GaN layer grown in Comparative Example 1 to obtain a light-emitting diode device having a structure as shown in FIG. 1. The light-emitting diode had a Vf of 3.6 V at 20 mA, Although the emission wavelength was 450 nm, the luminous intensity was 1.0 cd, and the emission output was only 1.2 mW.
[0038]
As described above, since the light-emitting element of the present invention has the n-type layer with few crystal defects, the number of crystal defects such as a clad layer and an active layer laminated thereon is reduced. In particular, since the thickness of the active layer is as thin as about 0.2 μm or less, it is very important to grow a crystal having few crystal defects. Therefore, by growing a crystal having few crystal defects, it is possible to realize a light emitting diode element having a luminous intensity of 1 cd or more and excellent in luminous output in the related art.
[0039]
Example 8
{Circle around (1)} A buffer layer made of GaN is grown to a thickness of 0.02 μm on the surface of the sapphire substrate in the same manner as in step (1) of the first embodiment.
[0040]
{Circle around (2)} A 10 μm-thick Si-doped n-type GaN layer is grown on the buffer layer in the same manner as in step {circle around (2)} of the first embodiment.
[0041]
After the growth, the substrate was taken out of the reaction vessel, the surface of the n-type GaN layer was measured with a TEM, and the number of crystal defects per unit area was measured from the TEM image, which was about 1 × 10 5 / cm 2. Was.
[0042]
[Example 9]
Crystal growth was performed in the same manner as in Example 5 except that the thickness of the Si-doped n-type GaN layer was changed to 5 μm. As a result, the number of crystal defects on the surface of the n-type GaN layer was approximately 5 × 10 6 .
[0043]
[Example 10]
In step (2) of Example 5, crystal growth was performed in the same manner as in (2) of Example 2, except that a Si-doped n-type Al0.3Ga0.7N layer was continuously grown to a thickness of 10 μm. Was performed, the number of crystal defects on the surface of the n-type Al0.3Ga0.7N layer was approximately 3 × 10 6 / cm 2 .
[0044]
[Example 11]
On the Si-doped GaN layer obtained in Example 5, an n-cladding layer, an active layer, a p-cladding layer, and a p-contact layer were laminated in the same manner as in Example 7 to obtain a light emitting diode. Its characteristics were almost equivalent to those of Example 7.
[0045]
【The invention's effect】
As described above, the light emitting element of the present invention has the n-type nitride semiconductor layer with few crystal defects on the substrate. Therefore, the present invention is very useful because it can be applied to an electronic device such as a light-receiving element, because a crystal having few crystal defects is stacked for a nitride semiconductor light-emitting element having no lattice matching substrate.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing one structure of a conventional light emitting diode element.
FIG. 2 is a schematic cross-sectional view showing a crystal structure when an n-type GaN layer is grown on a surface of a substrate via an AlN buffer layer.
FIG. 3 is a schematic cross-sectional view showing one structure of a light emitting diode device having an n-type nitride semiconductor layer of the present invention.
FIG. 4 is a schematic cross-sectional view showing one structure of a light emitting diode device having an n-type nitride semiconductor layer of the present invention.
[Explanation of symbols]
1, 1 '... substrate 2, 2' ... buffer layer 3, 3 ', 3 "... n-type nitride semiconductor layer 4, 4' ... n-type cladding layer 5, 5 '... -Active layer 6, 6 '... p cladding layer 7, 7' ... p contact layer 33 ... second buffer layer (second nitride semiconductor layer)

Claims (3)

InaGa1-aN(0<a≦1)又はAlbGa1-bN(0<b≦1)を含み、バッファ層として作用する第2のn型窒化ガリウム系化合物半導体層を、第1のn型窒化ガリウム系化合物半導体層と、第3のn型窒化ガリウム系化合物半導体層とで挟んだ構造を有するn型窒化ガリウム系化合物半導体を、基板と活性層との間に有し、
前記第1のn型窒化ガリウム系化合物半導体層、前記第2のn型窒化ガリウム系化合物半導体層、及び前記第3の窒化ガリウム系化合物半導体層の組み合わせが、超格子を構成しておらず、前記第1のn型窒化ガリウム系化合物半導体層と前記第3のn型窒化ガリウム系化合物半導体層とのいずれか一方が負電極形成層であるダブルへテロ構造の窒化ガリウム系化合物半導体発光素子。
A second n-type gallium nitride-based compound semiconductor layer containing In a Ga 1-a N (0 <a ≦ 1) or Al b Ga 1-b N (0 <b ≦ 1) and acting as a buffer layer, An n-type gallium nitride-based compound semiconductor having a structure sandwiched between a first n-type gallium nitride-based compound semiconductor layer and a third n-type gallium nitride-based compound semiconductor layer is provided between a substrate and an active layer. ,
A combination of the first n-type gallium nitride-based compound semiconductor layer, the second n-type gallium nitride-based compound semiconductor layer, and the third gallium nitride-based compound semiconductor layer does not constitute a superlattice; A gallium nitride-based compound semiconductor light emitting device having a double hetero structure in which one of the first n-type gallium nitride-based compound semiconductor layer and the third n-type gallium nitride-based compound semiconductor layer is a negative electrode forming layer.
前記活性層がInGaNからなることを特徴とする請求項1に記載の窒化ガリウム系化合物半導体発光素子。The gallium nitride-based compound semiconductor light emitting device according to claim 1, wherein the active layer is made of InGaN. 前記第1の窒化ガリウム系化合物半導体層と、第3の窒化ガリウム系化合物半導体層とが同一組成を有することを特徴とする請求項1に記載の窒化ガリウム系化合物半導体。The gallium nitride-based compound semiconductor according to claim 1, wherein the first gallium nitride-based compound semiconductor layer and the third gallium nitride-based compound semiconductor layer have the same composition.
JP32938498A 1994-09-22 1998-11-19 Gallium nitride based compound semiconductor light emitting device Expired - Lifetime JP3548442B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP32938498A JP3548442B2 (en) 1994-09-22 1998-11-19 Gallium nitride based compound semiconductor light emitting device
JP2000384363A JP3646649B2 (en) 1994-09-22 2000-12-18 Gallium nitride compound semiconductor light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP22767994A JP2956489B2 (en) 1994-06-24 1994-09-22 Crystal growth method of gallium nitride based compound semiconductor
JP32938498A JP3548442B2 (en) 1994-09-22 1998-11-19 Gallium nitride based compound semiconductor light emitting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP22767994A Division JP2956489B2 (en) 1994-06-24 1994-09-22 Crystal growth method of gallium nitride based compound semiconductor

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2000384363A Division JP3646649B2 (en) 1994-09-22 2000-12-18 Gallium nitride compound semiconductor light emitting device
JP2002034089A Division JP3767491B2 (en) 2002-02-12 2002-02-12 Gallium nitride compound semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH11220173A JPH11220173A (en) 1999-08-10
JP3548442B2 true JP3548442B2 (en) 2004-07-28

Family

ID=32852524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32938498A Expired - Lifetime JP3548442B2 (en) 1994-09-22 1998-11-19 Gallium nitride based compound semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3548442B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8395165B2 (en) 2011-07-08 2013-03-12 Bridelux, Inc. Laterally contacted blue LED with superlattice current spreading layer
US8525221B2 (en) 2009-11-25 2013-09-03 Toshiba Techno Center, Inc. LED with improved injection efficiency
US8536601B2 (en) 2009-06-10 2013-09-17 Toshiba Techno Center, Inc. Thin-film LED with P and N contacts electrically isolated from the substrate
US8564010B2 (en) 2011-08-04 2013-10-22 Toshiba Techno Center Inc. Distributed current blocking structures for light emitting diodes
US8581267B2 (en) 2011-11-09 2013-11-12 Toshiba Techno Center Inc. Series connected segmented LED
US8624482B2 (en) 2011-09-01 2014-01-07 Toshiba Techno Center Inc. Distributed bragg reflector for reflecting light of multiple wavelengths from an LED
US8664679B2 (en) 2011-09-29 2014-03-04 Toshiba Techno Center Inc. Light emitting devices having light coupling layers with recessed electrodes
US8686430B2 (en) 2011-09-07 2014-04-01 Toshiba Techno Center Inc. Buffer layer for GaN-on-Si LED
US8698163B2 (en) 2011-09-29 2014-04-15 Toshiba Techno Center Inc. P-type doping layers for use with light emitting devices
US8865565B2 (en) 2011-08-02 2014-10-21 Kabushiki Kaisha Toshiba LED having a low defect N-type layer that has grown on a silicon substrate
US8916906B2 (en) 2011-07-29 2014-12-23 Kabushiki Kaisha Toshiba Boron-containing buffer layer for growing gallium nitride on silicon
US8994064B2 (en) 2011-09-03 2015-03-31 Kabushiki Kaisha Toshiba Led that has bounding silicon-doped regions on either side of a strain release layer
US9012921B2 (en) 2011-09-29 2015-04-21 Kabushiki Kaisha Toshiba Light emitting devices having light coupling layers
US9012939B2 (en) 2011-08-02 2015-04-21 Kabushiki Kaisha Toshiba N-type gallium-nitride layer having multiple conductive intervening layers
US9018643B2 (en) 2011-09-06 2015-04-28 Kabushiki Kaisha Toshiba GaN LEDs with improved area and method for making the same
US9130068B2 (en) 2011-09-29 2015-09-08 Manutius Ip, Inc. Light emitting devices having dislocation density maintaining buffer layers
US9142743B2 (en) 2011-08-02 2015-09-22 Kabushiki Kaisha Toshiba High temperature gold-free wafer bonding for light emitting diodes
US9159869B2 (en) 2011-08-03 2015-10-13 Kabushiki Kaisha Toshiba LED on silicon substrate using zinc-sulfide as buffer layer
US9178114B2 (en) 2011-09-29 2015-11-03 Manutius Ip, Inc. P-type doping layers for use with light emitting devices
US9343641B2 (en) 2011-08-02 2016-05-17 Manutius Ip, Inc. Non-reactive barrier metal for eutectic bonding process
US10174439B2 (en) 2011-07-25 2019-01-08 Samsung Electronics Co., Ltd. Nucleation of aluminum nitride on a silicon substrate using an ammonia preflow

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6822272B2 (en) 2001-07-09 2004-11-23 Nichia Corporation Multilayered reflective membrane and gallium nitride-based light emitting element

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2791448B2 (en) * 1991-04-19 1998-08-27 日亜化学工業 株式会社 Light emitting diode
JP2985908B2 (en) * 1991-10-12 1999-12-06 日亜化学工業株式会社 Crystal growth method of gallium nitride based compound semiconductor
JPH05335622A (en) * 1992-05-27 1993-12-17 Asahi Chem Ind Co Ltd Semiconductor light-emitting device

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9142742B2 (en) 2009-06-10 2015-09-22 Kabushiki Kaisha Toshiba Thin-film LED with P and N contacts electrically isolated from the substrate
US8536601B2 (en) 2009-06-10 2013-09-17 Toshiba Techno Center, Inc. Thin-film LED with P and N contacts electrically isolated from the substrate
US8871539B2 (en) 2009-06-10 2014-10-28 Kabushiki Kaisha Toshiba Thin-film LED with P and N contacts electrically isolated from the substrate
US8525221B2 (en) 2009-11-25 2013-09-03 Toshiba Techno Center, Inc. LED with improved injection efficiency
US9012953B2 (en) 2009-11-25 2015-04-21 Kabushiki Kaisha Toshiba LED with improved injection efficiency
US8684749B2 (en) 2009-11-25 2014-04-01 Toshiba Techno Center Inc. LED with improved injection efficiency
US8395165B2 (en) 2011-07-08 2013-03-12 Bridelux, Inc. Laterally contacted blue LED with superlattice current spreading layer
US10174439B2 (en) 2011-07-25 2019-01-08 Samsung Electronics Co., Ltd. Nucleation of aluminum nitride on a silicon substrate using an ammonia preflow
US8916906B2 (en) 2011-07-29 2014-12-23 Kabushiki Kaisha Toshiba Boron-containing buffer layer for growing gallium nitride on silicon
US8865565B2 (en) 2011-08-02 2014-10-21 Kabushiki Kaisha Toshiba LED having a low defect N-type layer that has grown on a silicon substrate
US9343641B2 (en) 2011-08-02 2016-05-17 Manutius Ip, Inc. Non-reactive barrier metal for eutectic bonding process
US9142743B2 (en) 2011-08-02 2015-09-22 Kabushiki Kaisha Toshiba High temperature gold-free wafer bonding for light emitting diodes
US9012939B2 (en) 2011-08-02 2015-04-21 Kabushiki Kaisha Toshiba N-type gallium-nitride layer having multiple conductive intervening layers
US9159869B2 (en) 2011-08-03 2015-10-13 Kabushiki Kaisha Toshiba LED on silicon substrate using zinc-sulfide as buffer layer
US8564010B2 (en) 2011-08-04 2013-10-22 Toshiba Techno Center Inc. Distributed current blocking structures for light emitting diodes
US9070833B2 (en) 2011-08-04 2015-06-30 Kabushiki Kaisha Toshiba Distributed current blocking structures for light emitting diodes
US8624482B2 (en) 2011-09-01 2014-01-07 Toshiba Techno Center Inc. Distributed bragg reflector for reflecting light of multiple wavelengths from an LED
US8981410B1 (en) 2011-09-01 2015-03-17 Kabushiki Kaisha Toshiba Distributed bragg reflector for reflecting light of multiple wavelengths from an LED
US8994064B2 (en) 2011-09-03 2015-03-31 Kabushiki Kaisha Toshiba Led that has bounding silicon-doped regions on either side of a strain release layer
US9018643B2 (en) 2011-09-06 2015-04-28 Kabushiki Kaisha Toshiba GaN LEDs with improved area and method for making the same
US8686430B2 (en) 2011-09-07 2014-04-01 Toshiba Techno Center Inc. Buffer layer for GaN-on-Si LED
US9130068B2 (en) 2011-09-29 2015-09-08 Manutius Ip, Inc. Light emitting devices having dislocation density maintaining buffer layers
US9012921B2 (en) 2011-09-29 2015-04-21 Kabushiki Kaisha Toshiba Light emitting devices having light coupling layers
US8698163B2 (en) 2011-09-29 2014-04-15 Toshiba Techno Center Inc. P-type doping layers for use with light emitting devices
US9178114B2 (en) 2011-09-29 2015-11-03 Manutius Ip, Inc. P-type doping layers for use with light emitting devices
US9299881B2 (en) 2011-09-29 2016-03-29 Kabishiki Kaisha Toshiba Light emitting devices having light coupling layers
US8664679B2 (en) 2011-09-29 2014-03-04 Toshiba Techno Center Inc. Light emitting devices having light coupling layers with recessed electrodes
US9490392B2 (en) 2011-09-29 2016-11-08 Toshiba Corporation P-type doping layers for use with light emitting devices
US9123853B2 (en) 2011-11-09 2015-09-01 Manutius Ip, Inc. Series connected segmented LED
US9391234B2 (en) 2011-11-09 2016-07-12 Toshiba Corporation Series connected segmented LED
US8581267B2 (en) 2011-11-09 2013-11-12 Toshiba Techno Center Inc. Series connected segmented LED

Also Published As

Publication number Publication date
JPH11220173A (en) 1999-08-10

Similar Documents

Publication Publication Date Title
JP2956489B2 (en) Crystal growth method of gallium nitride based compound semiconductor
JP3548442B2 (en) Gallium nitride based compound semiconductor light emitting device
JP3646649B2 (en) Gallium nitride compound semiconductor light emitting device
JP3656456B2 (en) Nitride semiconductor device
JP2932467B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2917742B2 (en) Gallium nitride based compound semiconductor light emitting device and method of manufacturing the same
JP2890396B2 (en) Nitride semiconductor light emitting device
US7550368B2 (en) Group-III nitride semiconductor stack, method of manufacturing the same, and group-III nitride semiconductor device
JP3890930B2 (en) Nitride semiconductor light emitting device
JP4071308B2 (en) Semiconductor light emitting device, method for manufacturing semiconductor light emitting device, and optical fiber communication system
JP2000232238A (en) Nitride semiconductor light-emitting element and manufacture thereof
JPH06268259A (en) Gallium nitride compound semiconductor light emitting element
JPH08330629A (en) Light-emitting nitride semiconductor element
JPH09153642A (en) Nitride semiconductor light emitting element
JP2900990B2 (en) Nitride semiconductor light emitting device
JP3561536B2 (en) Semiconductor light emitting device
JP2891348B2 (en) Nitride semiconductor laser device
JP3366188B2 (en) Nitride semiconductor device
JP2918139B2 (en) Gallium nitride based compound semiconductor light emitting device
JP3371830B2 (en) Nitride semiconductor light emitting device
JP3767491B2 (en) Gallium nitride compound semiconductor light emitting device
JPH06260682A (en) Blue light-emitting element
JP2004014587A (en) Nitride compound semiconductor epitaxial wafer and light emitting element
JP3235440B2 (en) Nitride semiconductor laser device and method of manufacturing the same
JP3953077B2 (en) Gallium nitride compound semiconductor light emitting device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040416

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080423

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term