JPH077182A - Gallium nitride based compound semiconductor light emitting element - Google Patents

Gallium nitride based compound semiconductor light emitting element

Info

Publication number
JPH077182A
JPH077182A JP14638393A JP14638393A JPH077182A JP H077182 A JPH077182 A JP H077182A JP 14638393 A JP14638393 A JP 14638393A JP 14638393 A JP14638393 A JP 14638393A JP H077182 A JPH077182 A JP H077182A
Authority
JP
Japan
Prior art keywords
layer
type
light emitting
emission
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14638393A
Other languages
Japanese (ja)
Other versions
JP2918139B2 (en
Inventor
Shuji Nakamura
修二 中村
Takashi Mukai
孝志 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15406467&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH077182(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP14638393A priority Critical patent/JP2918139B2/en
Publication of JPH077182A publication Critical patent/JPH077182A/en
Application granted granted Critical
Publication of JP2918139B2 publication Critical patent/JP2918139B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To enhance the luminance and the emission output of a light emitting element by interposing an n-type layer doped with n-type dopant and p-type dopant, as an emission layer, between an n-type layer and a p-type layer. CONSTITUTION:After growth of a buffer layer 2 and an n-type GaN layer 3 on a saphire substrate 1, an n-type Ga1-XAlXN (0<=X<1, X<Y, X<Z) doped with n-type and p-type dopants is grown, as an emission layer, between an n-type clad layer Ga1-YAlYN (0<Y<1) layer 4 and a p-clad layer Ga1-ZAlZN (0<Z<1) layer. Furthermore, the n-type clad layer 4 is laminated on the n-type GaN layer to obtain an emission layer excellent in the crystallinity thus realizing a light emitting element excellent in emission intensity and emission efficiency. When the value of X is increased in the Al mixed crystal ratio of n-type and p-type clad layers, emission output from a preferable double heterostructure can be enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は窒化ガリウム系化合物半
導体を用いた発光素子に係り、特にp−n接合を有する
ダブルへテロ構造の窒化ガリウム系化合物半導体発光素
子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light emitting device using a gallium nitride compound semiconductor, and more particularly to a gallium nitride compound semiconductor light emitting device having a double hetero structure having a pn junction.

【0002】[0002]

【従来の技術】GaN、GaAlN、InGaN、In
AlGaN等の窒化ガリウム系化合物半導体は直接遷移
を有し、バンドギャップが1.95eV〜6eVまで変
化するため、発光ダイオード、レーザダイオード等、発
光素子の材料として有望視されている。現在、この材料
を用いた発光素子には、n型窒化ガリウム系化合物半導
体の上に、p型ドーパントをドープした高抵抗なi型の
窒化ガリウム系化合物半導体を積層したいわゆるMIS
構造の青色発光ダイオードが知られている。
2. Description of the Related Art GaN, GaAlN, InGaN, In
Since gallium nitride-based compound semiconductors such as AlGaN have a direct transition and the bandgap changes from 1.95 eV to 6 eV, they are regarded as promising materials for light emitting devices such as light emitting diodes and laser diodes. At present, a light emitting device using this material is a so-called MIS in which a high-resistance i-type gallium nitride compound semiconductor doped with a p-type dopant is stacked on an n-type gallium nitride compound semiconductor.
Blue light emitting diodes with a structure are known.

【0003】MIS構造の発光素子として、例えば特開
平4−10665号公報、特開平4−10666号公
報、特開平4−10667号公報において、n型GaA
lN層の上に、SiおよびZnをドープしたi型のGa
AlN層を積層して、そのi型層を発光層とする技術が
開示されている。これらの技術によると、Znに対する
Siのドーピング割合を変化させることで、発光色を青
色、白色、赤色と変化させることができる。
As a light-emitting element having a MIS structure, for example, in JP-A-4-10665, JP-A-4-10666 and JP-A-4-10667, n-type GaA is disclosed.
On the 1N layer, i-type Ga doped with Si and Zn
A technique is disclosed in which an AlN layer is laminated and the i-type layer is used as a light emitting layer. According to these techniques, the emission color can be changed to blue, white, or red by changing the doping ratio of Si to Zn.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記技
術のように、p型ドーパントであるZnをドープし、さ
らにn型ドーパントであるSiをドープして高抵抗なi
型GaAlN層を発光層とするMIS構造の発光素子は
輝度、発光出力共低く、発光素子として実用化するには
未だ不十分であった。
However, as in the above-mentioned technique, the p-type dopant Zn and the n-type dopant Si are further doped to obtain a high resistance i.
The light emitting device having the MIS structure using the GaAlN layer as a light emitting layer has low brightness and low light emission output, and is still insufficient for practical use as a light emitting device.

【0005】従って本発明はこのような事情を鑑みて成
されたものであり、その目的とするところは、p−n接
合の窒化ガリウム系化合物半導体を用いて発光素子の輝
度、および発光出力を向上させることにある。
Therefore, the present invention has been made in view of such circumstances, and an object of the present invention is to improve the brightness and the light emission output of a light emitting device by using a gallium nitride-based compound semiconductor having a pn junction. To improve.

【0006】[0006]

【課題を解決するための手段】我々は、GaAlNを従
来のように高抵抗なi型の発光層とせず、低抵抗なn型
とし、新たにこのn型GaAlN層を発光層としたp−
n接合ダブルへテロ構造の発光素子を実現することによ
り上記課題を解決するに至った。即ち、本発明の窒化ガ
リウム系化合物半導体発光素子はn型Ga1-YAlY
(0<Y<1)層とp型Ga1-ZAlZN(0<Z<1)層
との間に、n型ドーパントとp型ドーパントとがドープ
されたn型Ga1-XAlXN(0≦X<1、X<Y、X<Z)
層を発光層として具備することを特徴とする。
We have decided not to use GaAlN as an i-type light emitting layer having a high resistance as in the past, but as an n-type having a low resistance, and newly using this n-type GaAlN layer as a light emitting layer.
The above problems have been solved by realizing a light emitting device having an n-junction double hetero structure. That is, the gallium nitride-based compound semiconductor light emitting device of the present invention is an n-type Ga 1 -Y Al Y N
N - type Ga 1-X Al doped with an n-type dopant and a p-type dopant between the (0 <Y <1) layer and the p-type Ga 1-Z Al Z N (0 <Z <1) layer X N (0 ≦ X <1, X <Y, X <Z)
A layer is provided as a light emitting layer.

【0007】本発明の窒化ガリウム系化合物半導体発光
素子において、クラッド層であるn型Ga1-YAlYN層
(以下、nクラッド層という。)とは、GaAlNに例
えばSi、Ge、Se、Te等のn型ドーパントをドー
プしてn型特性を示すように成長させた層をいう。ま
た、GaAlNの場合ノンドープでもn型になる性質が
ある。
In the gallium nitride-based compound semiconductor light emitting device of the present invention, the n-type Ga 1 -Y Al Y N layer (hereinafter referred to as the n-clad layer), which is the cladding layer, means GaAlN such as Si, Ge, Se, It is a layer doped with an n-type dopant such as Te and grown to exhibit n-type characteristics. In addition, GaAlN has a property of becoming n-type even if it is not doped.

【0008】さらに、前記nクラッド層はn型GaN層
の上に積層されていることがさらに好ましい。なぜな
ら、結晶性に優れた発光層を具備する発光素子ほど発光
強度、発光効率に優れており、結晶性に優れた発光層を
得るためには、結晶性に優れたnクラッド層の上に発光
層を積層する必要があるからである。我々の実験による
と、窒化ガリウム系化合物半導体は三元混晶、四元混晶
となるに従い、その結晶性が悪くなる傾向にある。従っ
て、結晶性に優れた三元混晶、または四元混晶のnクラ
ッド層を得るためには、そのnクラッド層をn型GaN
層の上に積層することにより、最も結晶性に優れたnク
ラッド層を得ることができる。
Further, it is more preferable that the n-clad layer is laminated on the n-type GaN layer. This is because a light emitting element having a light emitting layer with excellent crystallinity has higher emission intensity and luminous efficiency, and in order to obtain a light emitting layer with excellent crystallinity, light is emitted on the n-clad layer excellent in crystallinity. This is because it is necessary to stack layers. According to our experiments, the crystallinity of gallium nitride-based compound semiconductor tends to deteriorate as the ternary and quaternary mixed crystals are formed. Therefore, in order to obtain an n-clad layer of a ternary mixed crystal or a quaternary mixed crystal having excellent crystallinity, the n-clad layer is formed by n-type GaN.
By stacking on the layer, the n-clad layer having the highest crystallinity can be obtained.

【0009】また、同じくクラッド層であるp型Ga
1-ZAlZN層(以下、pクラッド層という。)とは、G
aAlNにZn、Mg、Cd、Be、Ca等のp型ドー
パントをドープして、p型特性を示すように成長した層
をいう。さらに、p型ドーパントをドープして成長した
GaAlN層を、我々が先に出願した特願平3−357
046号に開示するように、400℃以上でアニーリン
グ処理を行うことにより、抵抗率100Ω・cm以下のp
型が実現でき、さらに好ましい。
Also, a p-type Ga that is also a clad layer
The 1-Z Al Z N layer (hereinafter referred to as the p-clad layer) means G
It is a layer grown by doping aAlN with a p-type dopant such as Zn, Mg, Cd, Be, or Ca to show p-type characteristics. Furthermore, a GaAlN layer grown by doping with a p-type dopant was applied to the Japanese Patent Application No. 3-357 filed previously by the applicant.
As disclosed in Japanese Patent No. 046, by performing an annealing treatment at a temperature of 400 ° C. or higher, a p with a resistivity of 100 Ω · cm or less is obtained.
A mold can be realized, which is more preferable.

【0010】さらにまた、nクラッド層とpクラッド層
のAl混晶比、即ちY値およびZ値ははX値よりも大きく
する必要がある。それらの値をX値よりも大きくするこ
とにより、好ましいダブルへテロ構造として発光出力を
向上させることができる。
Furthermore, the Al mixed crystal ratio of the n-clad layer and the p-clad layer, that is, the Y value and the Z value must be larger than the X value. By making those values larger than the X value, it is possible to improve the light emission output as a preferable double hetero structure.

【0011】一方、発光層であるn型Ga1-XAlXN層
(以下、n発光層という)中の電子キャリア濃度は1×
1017/cm3〜1×1022/cm3の範囲に調整することが
好ましい。電子キャリア濃度が1×1017/cm3より少
ないか、または1×1022/cm3よりも多いと、実用的
に十分な発光出力が得られない傾向にある。また、電子
キャリア濃度と抵抗率とは反比例し、その濃度がおよそ
1×1015/cm3以下であると、n発光層は高抵抗なi
型となる傾向にあり、電子キャリア濃度測定不能とな
る。電子キャリア濃度は、n発光層にドープするn型ド
ーパントとp型ドーパントのドープ量を適宜調整する
か、あるいは成長条件を適宜調整することにより調整す
ることができる。n発光層の電子キャリア濃度の効果に
ついては後に詳しく述べる。また、n型ドーパントをp
型ドーパントよりも多くドープすることによりn発光層
を好ましくn型とすることができる。なお、この発光層
にドープするn型ドーパント、p型ドーパントの種類も
上記したドーパントと同じであることはいうまでもな
い。
On the other hand, the electron carrier concentration in the n-type Ga 1-x Al x N layer (hereinafter referred to as the n-emitting layer) which is the emitting layer is 1 ×.
It is preferable to adjust it in the range of 10 17 / cm 3 to 1 × 10 22 / cm 3 . If the electron carrier concentration is lower than 1 × 10 17 / cm 3 or higher than 1 × 10 22 / cm 3 , a practically sufficient light emission output tends not to be obtained. Further, the electron carrier concentration and the resistivity are inversely proportional, and when the concentration is about 1 × 10 15 / cm 3 or less, the n light emitting layer has a high resistance i.
It tends to become a mold, and it becomes impossible to measure the electron carrier concentration. The electron carrier concentration can be adjusted by appropriately adjusting the doping amounts of the n-type dopant and the p-type dopant with which the n light emitting layer is doped, or by appropriately adjusting the growth conditions. The effect of the electron carrier concentration of the n light emitting layer will be described later in detail. In addition, the n-type dopant is p
By doping more than the type dopant, the n light emitting layer can be preferably made to be n type. Needless to say, the types of n-type dopant and p-type dopant with which the light emitting layer is doped are the same as the above-mentioned dopants.

【0012】また、pクラッド層の上にコンタクト層と
してp型GaN層(以下、pコンタクト層という。)を
形成することにより、正電極とpコンタクト層とのオー
ミック接触が得られやすくなり、発光素子に係る順方向
電圧を下げ、発光効率を向上させることができる。なぜ
なら、我々の実験によるとGaAlN層よりもAlを含
まないGaN層の方が電極とオーミックコンタクトが得
られやすい傾向にあるため、GaN層をpクラッド層の
上に積層することにより、電極とのオーミック性がよく
なる。このp型GaN層のp型ドーパントも上記p型ド
ーパントと変わるものではなく、さらにpクラッド層と
同様に、p型ドーパントをドープして成長したGaN層
を400℃以上でアニーリング処理を行うことにより、
抵抗率100Ω・cm以下のp型が実現でき、さらに好ま
しい。
Further, by forming a p-type GaN layer (hereinafter referred to as a p-contact layer) as a contact layer on the p-clad layer, ohmic contact between the positive electrode and the p-contact layer is easily obtained, and light emission is achieved. It is possible to reduce the forward voltage applied to the device and improve the light emission efficiency. Because, according to our experiments, the GaN layer not containing Al tends to obtain ohmic contact with the electrode more easily than the GaAlN layer. Therefore, by stacking the GaN layer on the p-clad layer, Ohmic characteristics are improved. The p-type dopant of this p-type GaN layer is no different from the above-mentioned p-type dopant, and, similarly to the p-clad layer, the GaN layer grown by doping the p-type dopant is annealed at 400 ° C. or higher. ,
A p-type having a resistivity of 100 Ω · cm or less can be realized, which is more preferable.

【0013】[0013]

【作用】図1に、基板上に、n型GaN層と、nクラッ
ド層としてSiドープn型Ga0.9Al0.2N層と、n発
光層としてZn、Siドープn型Ga0.99Al0.01N層
と、pクラッド層としてMgドープp型Ga0.9Al0.1
N層と、pコンタクト層としてMgドープp型GaN層
とを順に積層したp−n接合のダブルへテロ構造の発光
素子を作製し、その発光素子を発光させた場合に、前記
n型Ga0.99Al0.01N層の電子キャリア濃度と、その
発光素子の相対発光出力との関係を示す。
In FIG. 1, an n-type GaN layer, an Si-doped n-type Ga0.9Al0.2N layer as an n-clad layer, and a Zn, Si-doped n-type Ga0.99Al0.01N layer as an n-light emitting layer are formed on a substrate. , Mg-doped p-type Ga0.9Al0.1 as the p-clad layer
When a light emitting device having a double hetero structure with a pn junction in which an N layer and an Mg-doped p-type GaN layer as a p contact layer are sequentially laminated is manufactured and the light emitting device is caused to emit light, the n-type Ga0. The relationship between the electron carrier concentration of the 99Al0.01N layer and the relative light emission output of the light emitting element is shown.

【0014】この図に示すように、p型ドーパントとn
型ドーパントをドープしたn発光層を具備するダブルへ
テロ構造窒化ガリウム系化合物半導体発光素子の場合、
n発光層の電子キャリア濃度により発光素子の発光出力
が変化する。発光出力はn発光層の電子キャリア濃度が
1016/cm3付近より急激に増加し、およそ1×101 9
〜1020/cm3付近で最大となり、それを超えると再び
急激に減少する傾向にある。現在実用化されているn型
GaNとi型GaNよりなるMIS構造の発光素子の発
光出力は、本発明の発光素子の最大値の発光出力のおよ
そ1/100以下でしかなく、また実用範囲を考慮した
結果、電子キャリア濃度は1×1017/cm 3〜5×10
22/cm3の範囲が好ましい。また、この図はZn、Si
ドープGa0.99Al0.01Nについて示したものである
が、他のp型ドーパント、n型ドーパントを同時にドー
プしたn型Ga0.99Al0.01N発光層についても同様の
相対発光出力が得られた。さらに、Alの混晶比を大き
くしたGaAlNについても、発光波長が短くなるだけ
で相対発光出力に関しては同様の結果が得られた。この
ように、本発明の発光素子において、n発光層の電子キ
ャリア濃度の変化により、発光出力が変化するのは以下
の理由であると推察される。
As shown in this figure, p-type dopant and n
Double with n-emissive layer doped with type dopant
In the case of terror structure gallium nitride compound semiconductor light emitting device,
n Light-emission output of light-emitting device depending on electron carrier concentration in light-emitting layer
Changes. The emission output depends on the electron carrier concentration of the n emission layer.
1016/cm3It increases sharply from the vicinity and is approximately 1 × 101 9
-1020/cm3It becomes the maximum near, and when it exceeds it again
It tends to decrease sharply. N type currently in practical use
Emitting a MIS structure light emitting device composed of GaN and i-type GaN
The light output depends on the maximum light emission output of the light emitting device of the present invention.
Only 1/100 or less, and considering the practical range
As a result, the electron carrier concentration is 1 x 1017/cm 3~ 5 x 10
twenty two/cm3Is preferred. In addition, this figure shows Zn, Si
It is shown about doped Ga0.99Al0.01N.
However, other p-type dopants and n-type dopants are doped at the same time.
The same applies to the n-type Ga0.99Al0.01N light emitting layer
Relative emission output was obtained. Furthermore, increase the Al mixed crystal ratio.
With GaAlN, which has been messed up, the emission wavelength is shortened.
With respect to the relative light emission output, similar results were obtained. this
As described above, in the light emitting device of the present invention, the electronic key of the n light emitting layer is
The light emission output changes as follows depending on the carrier concentration.
It is presumed that this is the reason.

【0015】GaNはノンドープ(無添加)で成長する
と、窒素空孔ができることによりn型を示すことは知ら
れている。このノンドープn型GaNの残留電子キャリ
ア濃度は、成長条件によりおよそ1×1017/cm3〜1
×1022/cm3ぐらいの値を示す。さらに、このn型G
aN層に発光中心となるp型ドーパント(図1の場合は
Zn)をドープすることにより、n型GaN層中の電子
キャリア濃度が減少する。このため、p型ドーパントを
電子キャリア濃度が極端に減少するようにドープする
と、n型GaNは高抵抗なi型となってしまう。この電
子キャリア濃度を調整することにより発光出力が変化す
るのは、p型ドーパントであるZnの発光中心がドナー
不純物とペアを作って発光するD−Aペア発光の可能性
を示唆しているが、詳細なメカニズムはよくわからな
い。重要なことは、ある程度の電子キャリアを作るドナ
ー不純物(例えばn型ドーパント、ノンドープGaAl
N)と、アクセプター不純物であるp型ドーパントとが
両方存在するn型GaAlNでは、ダブルへテロ構造の
発光素子において、発光中心の強度が明らかに増大する
ということである。
It is known that when GaN grows undoped (no addition), it exhibits n-type due to the formation of nitrogen vacancies. The residual electron carrier concentration of this non-doped n-type GaN is about 1 × 10 17 / cm 3 to 1 depending on the growth conditions.
It shows a value of approximately 10 22 / cm 3 . Furthermore, this n-type G
Doping the aN layer with a p-type dopant (Zn in the case of FIG. 1) that serves as the emission center reduces the electron carrier concentration in the n-type GaN layer. For this reason, if the p-type dopant is doped so that the electron carrier concentration is extremely reduced, the n-type GaN becomes i-type with high resistance. The emission output changes by adjusting the electron carrier concentration, suggesting the possibility of DA pair emission in which the emission center of Zn, which is a p-type dopant, forms a pair with a donor impurity to emit light. , I'm not sure about the detailed mechanism. Importantly, donor impurities (eg, n-type dopant, non-doped GaAl) that create some electron carriers are used.
N-type GaAlN in which both N) and a p-type dopant that is an acceptor impurity are present significantly increases the intensity of the emission center in a light emitting device having a double hetero structure.

【0016】[0016]

【実施例】図2は本発明の一実施例の窒化ガリウム系化
合物半導体発光素子の構造を示す断面図であり、以下こ
の図に基づき、本発明の発光素子を有機金属気相成長法
により製造する方法を述べる。
FIG. 2 is a sectional view showing the structure of a gallium nitride-based compound semiconductor light emitting device according to an embodiment of the present invention. The light emitting device of the present invention will be manufactured by the metal organic chemical vapor deposition method based on this drawing. Describe how to do.

【0017】[実施例1]サファイア基板1を反応容器
内に設置し、サファイア基板1のクリーニングを行った
後、成長温度を510℃にセットし、キャリアガスとし
て水素、原料ガスとしてアンモニアとTMG(トリメチ
ルガリウム)とを用い、サファイア基板上にGaNバッ
ファ層2を約200オングストロームの膜厚で成長させ
る。
Example 1 The sapphire substrate 1 was placed in a reaction vessel, the sapphire substrate 1 was cleaned, the growth temperature was set to 510 ° C., hydrogen was used as a carrier gas, and ammonia and TMG ( Trimethylgallium) is used to grow the GaN buffer layer 2 on the sapphire substrate to a film thickness of about 200 Å.

【0018】バッファ層2成長後、TMGのみ止めて、
温度を1030℃まで上昇させる。1030℃になった
ら、同じく原料ガスにTMGとアンモニアガス、ドーパ
ントガスにシランガスを用い、Siをドープしたn型G
aN層3を4μm成長させる。
After growing the buffer layer 2, stop only TMG,
The temperature is raised to 1030 ° C. When the temperature reached 1030 ° C, n-type G doped with Si using TMG and ammonia gas as the source gas and silane gas as the dopant gas.
The aN layer 3 is grown to 4 μm.

【0019】n型GaN層3成長後、原料ガスとしてT
MGとTMA(トリメチルアルミニウム)とアンモニ
ア、ドーパントガスとしてシランガスを用い、nクラッ
ド層4としてSiドープGa0.8Al0.2N層を0.15
μm成長させる。
After the growth of the n-type GaN layer 3, T is used as a source gas.
MG, TMA (trimethylaluminum) and ammonia, silane gas as a dopant gas, and Si-doped Ga0.8Al0.2N layer of 0.15 as the n-clad layer 4.
Grow μm.

【0020】nクラッド層4成長後、TMAガスの流量
を絞り、ドーパントガスとしてシランガス、およびDE
Z(シエチルジンク)を用い、n発光層5としてSi、
ZnドープGa0.99Al0.01N層を500オングストロ
ーム成長させる。なお、このn発光層5層の電子キャリ
ア濃度は1×1019/cm3であった。
After the growth of the n-clad layer 4, the flow rate of the TMA gas is reduced and silane gas as a dopant gas and DE are added.
Z (Ciethyl zinc) is used as the n light emitting layer 5, and Si,
A Zn-doped Ga0.99Al0.01N layer is grown to 500 Å. The electron carrier concentration of the five n light emitting layers was 1 × 10 19 / cm 3 .

【0021】次に、ドーパントガスを止め、原料ガスと
してTMGと、TMAと、アンモニア、ドーパントガス
としてCp2Mg(シクロペンタジエニルマグネシウ
ム)とを用い、pクラッド層6として、Mgをドープし
たp型Ga0.8Al0.2N層を0.2μm成長させる。
Next, the dopant gas is stopped, and TMG, TMA, ammonia as a source gas, and Cp2Mg (cyclopentadienylmagnesium) as a dopant gas are used, and Mg-doped p-type Ga0 is used as the p-clad layer 6. A 0.8 Al 0.2 N layer is grown to 0.2 μm.

【0022】さらにpクラッド層6成長後、TMAガス
を止め、pコンタクト層7として、Mgをドープしたp
型GaN層を0.5μm成長させる。
After the p-clad layer 6 is further grown, the TMA gas is stopped and the p-contact layer 7 is made of p-doped Mg.
-Type GaN layer is grown by 0.5 μm.

【0023】成長後、ウエハーを反応容器から取り出
し、アニーリング装置にて窒素雰囲気中、700℃で2
0分間アニーリングを行い、最上層のpコンタクト層7
と、pクラッド層6とをさらに低抵抗化し、それぞれ抵
抗率10Ω・cm以下にする。
After the growth, the wafer was taken out from the reaction container and was annealed at 700 ° C. for 2 hours in a nitrogen atmosphere.
Annealing is performed for 0 minutes to form the uppermost p-contact layer 7
And the p-clad layer 6 are further reduced in resistance to have a resistivity of 10 Ω · cm or less.

【0024】以上のようにして得られたウエハーのpコ
ンタクト層7、pクラッド層6、n発光層5、およびn
クラッド層4の一部をエッチングにより取り除き、n型
GaN層3を露出させ、pコンタクト層7と、n型Ga
N層3とにそれぞれオーミック電極8、9を設け、50
0μm角のチップにカットした後、常法に従い発光ダイ
オードとしたところ、発光出力は20mAにおいて40
0μW、順方向電圧5V、発光波長490nmであっ
た。
The p-contact layer 7, p-cladding layer 6, n-emissive layer 5, and n-layer of the wafer obtained as described above
A part of the clad layer 4 is removed by etching to expose the n-type GaN layer 3, the p-contact layer 7 and the n-type Ga.
Ohmic electrodes 8 and 9 are provided on the N layer 3 and 50, respectively.
After cutting into a chip of 0 μm square, it was made into a light emitting diode by an ordinary method, and the light emission output was 40 at 20 mA.
The voltage was 0 μW, the forward voltage was 5 V, and the emission wavelength was 490 nm.

【0025】[実施例2]実施例1のn発光層5である
n型Ga0.99Al0.01N層を成長する際、SiおよびZ
nのドープ量を調整して、電子キャリア濃度を2×10
17/cm3とする他は、実施例1と同様にして青色発光ダ
イオードを得たところ、20mAにおいて発光出力40
μW、順方向電圧、発光波長とも実施例1と同一であっ
た。
Example 2 When growing the n-type Ga0.99Al0.01N layer, which is the n-emissive layer 5 of Example 1, Si and Z were grown.
The electron carrier concentration is adjusted to 2 × 10 by adjusting the doping amount of n.
Except that the 17 / cm 3, was obtained a blue light-emitting diodes in the same manner as in Example 1, the light output at 20 mA 40
The μW, forward voltage and emission wavelength were the same as in Example 1.

【0026】[実施例3]実施例1のn発光層5である
n型Ga0.99Al0.01N層を成長する際、SiおよびZ
nのドープ量を調整して、電子キャリア濃度を2×10
21/cm3とする他は、実施例1と同様にして青色発光ダ
イオードを得たところ、20mAにおいて発光出力40
μW、順方向電圧、発光波長とも実施例1と同一であっ
た。
Example 3 When growing the n-type Ga0.99Al0.01N layer, which is the n-emissive layer 5 of Example 1, Si and Z were grown.
The electron carrier concentration is adjusted to 2 × 10 by adjusting the doping amount of n.
Except that the 21 / cm 3, was obtained a blue light-emitting diodes in the same manner as in Example 1, the light output at 20 mA 40
The μW, forward voltage and emission wavelength were the same as in Example 1.

【0027】[実施例4]実施例1のn発光層5である
n型Ga0.99Al0.01N層を成長する際、SiおよびZ
nのドープ量を調整して、電子キャリア濃度を1×10
17/cm3とする他は、実施例1と同様にして青色発光ダ
イオードを得たところ、20mAにおいて発光出力10
μW、順方向電圧、発光波長とも実施例1と同一であっ
た。
Example 4 When growing the n-type Ga0.99Al0.01N layer, which is the n-emissive layer 5 of Example 1, Si and Z were grown.
The electron carrier concentration is adjusted to 1 × 10 by adjusting the doping amount of n.
17 / addition to the cm 3 is where to obtain a blue light-emitting diodes in the same manner as in Example 1, the light output at 20 mA 10
The μW, forward voltage and emission wavelength were the same as in Example 1.

【0028】[実施例5]実施例1のn発光層5である
n型Ga0.99Al0.01N層を成長する際、SiおよびZ
nのドープ量を調整して、電子キャリア濃度を1×10
22/cm3とする他は、実施例1と同様にして青色発光ダ
イオードを得たところ、20mAにおいて発光出力10
μW、順方向電圧、発光波長とも実施例1と同一であっ
た。
Example 5 When growing the n-type Ga0.99Al0.01N layer, which is the n-emission layer 5 of Example 1, Si and Z are grown.
The electron carrier concentration is adjusted to 1 × 10 by adjusting the doping amount of n.
22 / addition to the cm 3 is where to obtain a blue light-emitting diodes in the same manner as in Example 1, the light output at 20 mA 10
The μW, forward voltage and emission wavelength were the same as in Example 1.

【0029】[実施例6]実施例1のn型GaN層3を
成長させず、GaNバッファ層2の上に直接nクラッド
層4を成長させる他は、実施例1と同様にして発光ダイ
オードとしたところ、20mAにおいて発光出力100
μW、順方向電圧、発光波長とも実施例1と同一であっ
た。なお、電極9はnクラッド層4に形成したことはい
うまでもない。
[Embodiment 6] A light emitting diode is manufactured in the same manner as in Embodiment 1, except that the n-type GaN layer 3 of Embodiment 1 is not grown and the n-clad layer 4 is grown directly on the GaN buffer layer 2. The emission output was 100 at 20 mA.
The μW, forward voltage and emission wavelength were the same as in Example 1. Needless to say, the electrode 9 is formed on the n-clad layer 4.

【0030】[実施例7]実施例1のpコンタクト層7
を成長させず、pクラッド層6の上に電極8を形成する
他は実施例1と同様にして発光ダイオードとしたとこ
ろ、20mAにおいて発光出力400μW、発光波長4
90nmであったが、順方向電圧が10Vであった。
[Embodiment 7] p-contact layer 7 of Embodiment 1
Was grown, and an electrode 8 was formed on the p-clad layer 6 to form a light emitting diode in the same manner as in Example 1. The light emitting diode had a light emission output of 400 μW and a light emission wavelength of 4 at 20 mA.
Although it was 90 nm, the forward voltage was 10 V.

【0031】[実施例8]実施例1において、n型発光
層5のp型ドーパントとしてCp2Mg(シクロペンタ
ジエニルマグネシウム)ガス、n型ドーパントとしてゲ
ルマンガスを用い、電子キャリア濃度1×1019/cm3
のMg、GeドープGa0.99Al0.01N層を成長させる
他は同様にして発光ダイオードとしたところ、発光出力
400μW、順方向電圧5V、発光波長480nmであ
った。
[Embodiment 8] In Embodiment 1, Cp2Mg (cyclopentadienylmagnesium) gas is used as the p-type dopant of the n-type light emitting layer 5 and germane gas is used as the n-type dopant, and the electron carrier concentration is 1 × 10 19 / cm 3
When a light emitting diode was prepared in the same manner except that the Mg and Ge-doped Ga0.99Al0.01N layers were grown, the light emitting output was 400 μW, the forward voltage was 5 V, and the emission wavelength was 480 nm.

【0032】[比較例1]実施例1のn型GaN層3の
上に、Znドープi型GaN層を成長させる。i型Ga
N層成長後、i型GaN層の一部をエッチングし、n型
GaN層を露出させ、n型GaN層とi型GaN層とに
電極を設けて、MIS構造の発光ダイオードとしたとこ
ろ、発光出力は20mAにおいて1μW、順方向電圧2
0V、輝度2mcdしかなかった。
[Comparative Example 1] A Zn-doped i-type GaN layer is grown on the n-type GaN layer 3 of Example 1. i type Ga
After growth of the N layer, a part of the i-type GaN layer was etched to expose the n-type GaN layer, and electrodes were provided on the n-type GaN layer and the i-type GaN layer to form a MIS structure light emitting diode. Output is 1 μW at 20 mA, forward voltage 2
There were only 0 V and a brightness of 2 mcd.

【0033】[比較例2]実施例1のn型GaN層3の
上に、Si、Znドープi型GaN層を成長させる。i
型GaN層成長後、比較例1と同様にして電極を設け、
MIS構造の発光ダイオードところ、発光出力は20m
Aにおいて1μW、順方向電圧20V、輝度0.1mc
dしかなかった。
Comparative Example 2 A Si-Zn-doped i-type GaN layer is grown on the n-type GaN layer 3 of Example 1. i
After the growth of the GaN layer, electrodes are provided in the same manner as in Comparative Example 1,
MIS structure light emitting diode, the light output is 20m
A, 1 μW, forward voltage 20 V, brightness 0.1 mc
There was only d.

【0034】[0034]

【発明の効果】以上説明したように、本発明の窒化ガリ
ウム系化合物半導体発光素子は、p型ドーパントおよび
n型ドーパントをドープしたn型Ga1-XAlXN層を発
光層とするダブルへテロ構造としているため、従来のM
IS構造の発光素子に比して、格段に発光出力が増大す
る。また、pコンタクト層をpクラッド層の上に積層す
ることにより発光素子の順方向電圧が下がり、発光効率
が向上する。これにより、SiC、MIS構造GaNし
か利用されていなかった従来の青色発光素子にとってか
わり、本発明の発光素子が十分に実用可能となり、平面
ディスプレイ、フルカラー発光ダイオード等が実現でき
る。
As described above, the gallium nitride-based compound semiconductor light emitting device of the present invention has a double hetero structure having an n-type Ga 1 -X AlX N layer doped with a p-type dopant and an n-type dopant as a light-emitting layer. Therefore, the conventional M
The light emission output is remarkably increased as compared with the light emitting element having the IS structure. Further, by stacking the p-contact layer on the p-clad layer, the forward voltage of the light emitting element is lowered and the light emission efficiency is improved. As a result, the conventional blue light emitting device, which uses only SiC or MIS structure GaN, is replaced with the light emitting device of the present invention, and a flat display, a full-color light emitting diode or the like can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例に係る発光素子のn型Ga
AlN層の電子キャリア濃度と、相対発光出力との関係
を示す図。
FIG. 1 is an n-type Ga of a light emitting device according to an embodiment of the present invention.
The figure which shows the relationship between the electron carrier density of an AlN layer, and relative light emission output.

【図2】 本発明の一実施例に係る発光素子構造を示す
模式断面図。
FIG. 2 is a schematic cross-sectional view showing a light emitting device structure according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1・・・サファイア基板 2・・・GaNバッファ層 3・・・n型GaN層 4・・・nクラッド層 5・・・n発光層 6・・・pクラッド層 7・・・pコンタクト層 DESCRIPTION OF SYMBOLS 1 ... Sapphire substrate 2 ... GaN buffer layer 3 ... n-type GaN layer 4 ... n cladding layer 5 ... n light emitting layer 6 ... p cladding layer 7 ... p contact layer

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 n型Ga1-YAlYN(0<Y<1)層と
p型Ga1-ZAlZN(0<Z<1)層との間に、n型ド
ーパントとp型ドーパントとがドープされたn型Ga
1-XAlXN(0≦X<1、X<Y、X<Z)層を発光層とし
て具備することを特徴とする窒化ガリウム系化合物半導
体発光素子。
1. An n-type dopant and a p-type layer are provided between an n - type Ga 1 -Y Al Y N (0 <Y <1) layer and a p-type Ga 1 -Z Al Z N (0 <Z <1) layer. N-type Ga doped with a type dopant
A gallium nitride-based compound semiconductor light emitting device comprising a 1-X Al X N (0≤X <1, X <Y, X <Z) layer as a light emitting layer.
【請求項2】 前記n型Ga1-XAlXN層の電子キャリ
ア濃度は1×1017/cm3〜1×1022/cm3の範囲にあ
ることを特徴とする請求項1に記載の窒化ガリウム系化
合物半導体発光素子。
2. The electron carrier concentration of the n-type Ga 1-x Al x N layer is in the range of 1 × 10 17 / cm 3 to 1 × 10 22 / cm 3. Gallium nitride compound semiconductor light emitting device.
【請求項3】 前記p型Ga1-ZAlZNの上に、さらに
コンタクト層としてp型GaN層が積層されていること
を特徴とする請求項1に記載の窒化ガリウム系化合物半
導体発光素子。
3. The gallium nitride-based compound semiconductor light-emitting device according to claim 1, further comprising a p-type GaN layer stacked on the p-type Ga 1 -Z Al Z N as a contact layer. .
【請求項4】 前記p型Ga1-ZAlZNおよび/または
前記p型GaN層は400℃以上でアニーリングされて
抵抗率100Ω・cm以下に調整されていることを特徴と
する請求項1または請求項3に記載の窒化ガリウム系化
合物半導体発光素子。
4. The p-type Ga 1 -Z Al Z N and / or the p-type GaN layer is annealed at 400 ° C. or higher and adjusted to have a resistivity of 100 Ω · cm or less. Alternatively, the gallium nitride-based compound semiconductor light emitting device according to claim 3.
【請求項5】 前記n型Ga1-YAlYN層はn型GaN
層の上に積層されていることを特徴とする請求項1に記
載の窒化ガリウム系化合物半導体発光素子。
5. The n-type Ga 1 -Y Al Y N layer is n-type GaN.
The gallium nitride-based compound semiconductor light emitting device according to claim 1, which is laminated on the layer.
JP14638393A 1993-06-17 1993-06-17 Gallium nitride based compound semiconductor light emitting device Expired - Fee Related JP2918139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14638393A JP2918139B2 (en) 1993-06-17 1993-06-17 Gallium nitride based compound semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14638393A JP2918139B2 (en) 1993-06-17 1993-06-17 Gallium nitride based compound semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH077182A true JPH077182A (en) 1995-01-10
JP2918139B2 JP2918139B2 (en) 1999-07-12

Family

ID=15406467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14638393A Expired - Fee Related JP2918139B2 (en) 1993-06-17 1993-06-17 Gallium nitride based compound semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP2918139B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08167735A (en) * 1994-12-12 1996-06-25 Hitachi Cable Ltd Light emitting element
WO1996036080A1 (en) * 1995-05-08 1996-11-14 Cree Research, Inc. Double heterojunction light emitting diode with gallium nitride active layer
JPH09153644A (en) * 1995-11-30 1997-06-10 Toyoda Gosei Co Ltd Group-iii nitride semiconductor display device
US5751013A (en) * 1994-07-21 1998-05-12 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device and production method thereof
US6136626A (en) * 1994-06-09 2000-10-24 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device and production method thereof
JP2002050796A (en) * 2000-08-02 2002-02-15 Rohm Co Ltd Iii-v compound semiconductor device having p-n junction
JP2005225693A (en) * 2004-02-12 2005-08-25 Hitachi Cable Ltd Production method for nitride semiconductor
US7045809B2 (en) 1998-09-10 2006-05-16 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using gallium nitride compound semiconductor
US7271243B2 (en) 1999-12-08 2007-09-18 Serono Genetics Institute S.A. Full-length human cDNAs encoding potentially secreted proteins
US8934513B2 (en) 1994-09-14 2015-01-13 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6136626A (en) * 1994-06-09 2000-10-24 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device and production method thereof
US6133058A (en) * 1994-07-21 2000-10-17 Matsushita Electric Industrial Co., Ltd. Fabrication of semiconductor light-emitting device
US5751013A (en) * 1994-07-21 1998-05-12 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device and production method thereof
US5895225A (en) * 1994-07-21 1999-04-20 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device and production method thereof
US8934513B2 (en) 1994-09-14 2015-01-13 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor
JPH08167735A (en) * 1994-12-12 1996-06-25 Hitachi Cable Ltd Light emitting element
US6120600A (en) * 1995-05-08 2000-09-19 Cree, Inc. Double heterojunction light emitting diode with gallium nitride active layer
US5739554A (en) * 1995-05-08 1998-04-14 Cree Research, Inc. Double heterojunction light emitting diode with gallium nitride active layer
WO1996036080A1 (en) * 1995-05-08 1996-11-14 Cree Research, Inc. Double heterojunction light emitting diode with gallium nitride active layer
JPH09153644A (en) * 1995-11-30 1997-06-10 Toyoda Gosei Co Ltd Group-iii nitride semiconductor display device
US7045809B2 (en) 1998-09-10 2006-05-16 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using gallium nitride compound semiconductor
US7271243B2 (en) 1999-12-08 2007-09-18 Serono Genetics Institute S.A. Full-length human cDNAs encoding potentially secreted proteins
JP2002050796A (en) * 2000-08-02 2002-02-15 Rohm Co Ltd Iii-v compound semiconductor device having p-n junction
JP2005225693A (en) * 2004-02-12 2005-08-25 Hitachi Cable Ltd Production method for nitride semiconductor

Also Published As

Publication number Publication date
JP2918139B2 (en) 1999-07-12

Similar Documents

Publication Publication Date Title
JP3250438B2 (en) Nitride semiconductor light emitting device
JP2778405B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2890396B2 (en) Nitride semiconductor light emitting device
JP3890930B2 (en) Nitride semiconductor light emitting device
KR970007135B1 (en) Light-emitting gallium nitride-based compound semiconductor device
JP3656456B2 (en) Nitride semiconductor device
JP3551101B2 (en) Nitride semiconductor device
JP2917742B2 (en) Gallium nitride based compound semiconductor light emitting device and method of manufacturing the same
JP2785254B2 (en) Gallium nitride based compound semiconductor light emitting device
JP3868136B2 (en) Gallium nitride compound semiconductor light emitting device
JP2560963B2 (en) Gallium nitride compound semiconductor light emitting device
JPH07162038A (en) Gallium nitride compound semiconductor light emitting diode
JPH09148678A (en) Nitride semiconductor light emitting element
JP3620292B2 (en) Nitride semiconductor device
JP3651260B2 (en) Nitride semiconductor device
JP2713095B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP2918139B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2713094B2 (en) Semiconductor light emitting device and method of manufacturing the same
JPH10144960A (en) Method for manufacturing p-type nitride semiconductor and nitride semiconductor element
JP3371830B2 (en) Nitride semiconductor light emitting device
JPH08162671A (en) Nitride semiconductor light emitting diode
JP2809045B2 (en) Nitride semiconductor light emitting device
JPH11195812A (en) Nitride semiconductor light-emitting element
JP2560964B2 (en) Gallium nitride compound semiconductor light emitting device
JP3216596B2 (en) Gallium nitride based compound semiconductor light emitting device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees