JPH08167735A - Light emitting element - Google Patents

Light emitting element

Info

Publication number
JPH08167735A
JPH08167735A JP30743094A JP30743094A JPH08167735A JP H08167735 A JPH08167735 A JP H08167735A JP 30743094 A JP30743094 A JP 30743094A JP 30743094 A JP30743094 A JP 30743094A JP H08167735 A JPH08167735 A JP H08167735A
Authority
JP
Japan
Prior art keywords
layer
type
light emitting
nitrogen compound
mixed crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30743094A
Other languages
Japanese (ja)
Inventor
Tsunehiro Unno
恒弘 海野
Masatomo Shibata
真佐知 柴田
Masatoshi Watanabe
真敏 渡辺
Takeshi Takahashi
高橋  健
Shoji Kuma
彰二 隈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP30743094A priority Critical patent/JPH08167735A/en
Publication of JPH08167735A publication Critical patent/JPH08167735A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To enable a light emitting diode composed of nitrogen compound to emit ultraviolet, blue, and green light rays at superhigh luminance by making it possible to grow a high-quality active layer in the diode. CONSTITUTION: After an AlN buffer layer 6 is formed on a sapphire substrate 7, an n-type InGaN current diffusing layer 5, an n-type InGaN clad layer 4, an InGaN active layer 3, a p-type InGaN clad layer 2, and a p-type InGaN current diffusing layer 1 are successively formed on the buffer layer 6. The GaN mixed crystal ratios of the active layer 3 and current diffusing layers 1 and 5 are respectively set at 0.6 and 0.7 so that the mixed crystal ratio difference between the active layer 3 and current diffusing layers 1 and 5 can be controlled to 0.2. When the composition of the current diffusing layers 1 and 5 are brought near to the composition of the active layer 3 in such a way, the quality of the active layer 3 can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、良質な活性層が得られ
る発光素子に係り、特に、緑色から紫外域の波長の光を
出せる高出力、高輝度発光ダイオードに好適なものに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light emitting device capable of obtaining a good quality active layer, and more particularly to a device suitable for a high output and high brightness light emitting diode capable of emitting light having a wavelength of green to ultraviolet.

【0002】[0002]

【従来の技術】GaN、AlGaN、InGaNを発光
層として用いた発光ダイオード(LED)及び半導体レ
ーザ(LD)は、緑色から紫外域の波長の光を発生させ
ることができる。このため、このような光を出す発光デ
バイスについて長い間研究されてきた。近年、MOCV
D成長法によるバッファ層形成技術の活用及びDH構造
の適用等により、GaNを発光層として用いた1000
mcd 級の高輝度の青色LEDが開発され、製品化される
に至った。
2. Description of the Related Art A light emitting diode (LED) and a semiconductor laser (LD) using GaN, AlGaN, or InGaN as a light emitting layer can generate light in a wavelength range from green to ultraviolet. Therefore, light-emitting devices that emit such light have been studied for a long time. In recent years, MOCV
1000 using GaN as a light emitting layer by utilizing a buffer layer forming technique by the D growth method and applying a DH structure
High-brightness blue LEDs of mcd class have been developed and commercialized.

【0003】しかし、屋外用として太陽光線の順光状態
で使用するためには、2000mcd級の超高輝度が要求
される。赤色LEDは、AlGaAsを用いて、300
0mcd 級が既に開発され製品化されている。このためG
aN青色LEDに関しても、更に高輝度化が要求されて
いる。
However, in order to be used outdoors in the sunlight lit state, ultrahigh brightness of 2000 mcd class is required. The red LED uses AlGaAs and is 300
0mcd class has already been developed and commercialized. Therefore G
Higher brightness is also required for aN blue LEDs.

【0004】また、InGaNを活性層に用いた緑色も
研究が行われ、その高輝度化の研究が進められている。
InGaNでGaN混晶組成の大きな青色に近い緑色は
実現されている。InNに近いInGaNまたはAlI
nNを実現できれば純緑色ができるが、まだ純緑の超高
輝度LEDは実現されていない。さらに、AlGaNを
活性層に用いれば、紫外光のLEDができるが、これも
実現されていない。
A green color using InGaN for the active layer has also been studied, and a study for increasing the brightness thereof is under way.
With InGaN, a green color close to blue with a large GaN mixed crystal composition has been realized. InGaN or AlI close to InN
If nN can be realized, pure green can be obtained, but pure green ultra-high brightness LEDs have not yet been realized. Furthermore, if AlGaN is used for the active layer, an ultraviolet light LED can be produced, but this has not been realized.

【0005】このようにGaNから離れた混晶組成のI
nGaN、AlGaN、またはAlInNを活性層とし
て用いたLEDの開発が待たれていた。
As described above, I having a mixed crystal composition separated from GaN
Development of an LED using nGaN, AlGaN, or AlInN as an active layer has been awaited.

【0006】図4に高輝度化を達成できた従来のチッ素
化合物系青色LEDの構造を示す。このLEDの構造
は、サファイア基板17上にGaNまたはAlNのバッ
ファ層16を形成し、その上にn型のGaN電流拡散層
15を数μm成長させ、更にその上に発光層となるIn
GaN活性層13をn型のAlGaNクラッド層14と
p型のAlGaNクラッド層12で挟んだダブルヘテロ
層をn型AlGaNクラッド層14が下になるように形
成し、その上にp型のGaN電流拡散層11を形成した
エピタキシャル構造をしている。
FIG. 4 shows the structure of a conventional blue LED of a nitrogen compound system which can achieve high brightness. In this LED structure, a GaN or AlN buffer layer 16 is formed on a sapphire substrate 17, an n-type GaN current diffusion layer 15 is grown on the sapphire substrate 17 by several μm, and an In layer to be a light emitting layer is formed thereon.
The GaN active layer 13 is sandwiched between the n-type AlGaN clad layer 14 and the p-type AlGaN clad layer 12, and a double hetero layer is formed so that the n-type AlGaN clad layer 14 is on the lower side, and a p-type GaN current is formed thereon. It has an epitaxial structure in which the diffusion layer 11 is formed.

【0007】このようなLEDで超高輝度化を阻んでい
るのは活性層内の欠陥である。この活性層内に欠陥があ
るため、通常のLEDの活性層厚さである約1μmにす
ると輝度の低いLEDしかできない。このため、従来は
InGaN層を薄くして、注入したキャリアの密度を高
くし、変換効率を高くしている。
It is a defect in the active layer that prevents such an LED from achieving ultra-high brightness. Since there is a defect in this active layer, when the thickness of the active layer of a normal LED is about 1 μm, only LEDs with low brightness can be produced. Therefore, conventionally, the InGaN layer is thinned to increase the density of injected carriers and increase the conversion efficiency.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、輝度を
上げるために、従来のように、InGaN層を薄くし
て、注入したキャリアの密度を高くし、変換効率を高く
するというやり方だと、次のような欠点があった。
However, in order to increase the brightness, as in the conventional method, the InGaN layer is thinned to increase the density of injected carriers and increase the conversion efficiency. There was such a drawback.

【0009】(1)注入キャリアを閉じ込めるため、両
側のクラッド層のバンドギャップエネルギーを高くする
必要がある。このため、更に活性層とクラッド層の格子
定数差が大きくなり、欠陥発生の原因となっている。
(1) In order to confine the injected carriers, it is necessary to increase the band gap energy of the cladding layers on both sides. Therefore, the difference in lattice constant between the active layer and the cladding layer becomes larger, which causes defects.

【0010】(2)純緑色に近いLEDを製作するため
に、InGaNのGaN混晶組成を少なくして行くと、
InGaNを形成できなくなる。
(2) In order to manufacture an LED that is close to pure green, the composition of GaN mixed crystal of InGaN is reduced.
InGaN cannot be formed.

【0011】(3)活性層の厚さが薄いので、活性層の
温度上昇を抑えられず、LEDの信頼性が悪い。
(3) Since the active layer is thin, the temperature rise of the active layer cannot be suppressed and the reliability of the LED is poor.

【0012】(4)活性層の厚さが薄いので、通電電流
の温度上昇に対する発光波長の変化が大きい。
(4) Since the thickness of the active layer is thin, the change in the emission wavelength with respect to the temperature rise of the energizing current is large.

【0013】本発明の目的は、チッ素化合物系の発光素
子において、結晶性の良好な発光層を形成することによ
って、上述した従来技術の問題点を解消し、より高輝度
化な発光素子を提供することにある。また、本発明の目
的は、緑色から紫外域の波長の光を出せる高出力、高輝
度の発光素子を提供することにある。
An object of the present invention is to solve the above-mentioned problems of the prior art by forming a light emitting layer having good crystallinity in a light emitting device of a nitrogen compound type, and to provide a light emitting device having higher brightness. To provide. Another object of the present invention is to provide a high-output, high-luminance light emitting element that can emit light having a wavelength in the green to ultraviolet range.

【0014】[0014]

【課題を解決するための手段】本発明の要旨は、活性層
を挟んでいるクラッド層の外側のn型層とp型層の組成
を活性層に近い組成にすることにより、良質の活性層を
成長させることができるようにしたことにある。すなわ
ち、第1の発明の発光素子は、サファイア基板上にチッ
素化合物半導体のバッファ層を形成し、その上にn型の
チッ素化合物半導体またはチッ素化合物混晶半導体の電
流分散層を形成し、更にその上にチッ素化合物半導体ま
たはチッ素化合物混晶半導体の活性層を、それよりもバ
ンドギャップエネルギーの大きなn型とp型のチッ素化
合物半導体またはチッ素化合物混晶半導体のクラッド層
で挟んだダブルヘテロ層をn型層の方が下になるように
形成し、その上にp型のチッ素化合物半導体またはチッ
素化合物混晶半導体の電流拡散層を形成した発光素子に
おいて、上記ダブルヘテロ層を挟んでいるp型とn型の
チッ素化合物半導体またはチッ素化合物混晶半導体の電
流拡散層と、発光層となるダブルヘテロ層の中央のチッ
素化合物半導体またはチッ素化合物混晶半導体の活性層
との混晶比差が、0.2以下としたものである。
The gist of the present invention is to provide a high-quality active layer by making the composition of the n-type layer and the p-type layer outside the clad layer sandwiching the active layer close to that of the active layer. Is to be able to grow. That is, in the light emitting device of the first invention, a buffer layer of a nitrogen compound semiconductor is formed on a sapphire substrate, and a current spreading layer of an n-type nitrogen compound semiconductor or a nitrogen compound mixed crystal semiconductor is formed thereon. In addition, an active layer of a nitrogen compound semiconductor or a nitrogen compound mixed crystal semiconductor is further formed on the clad layer of an n-type and p-type nitrogen compound semiconductor or a nitrogen compound mixed crystal semiconductor having a larger band gap energy than that. In the light-emitting device, the double hetero layer sandwiched is formed so that the n-type layer is on the lower side, and the current diffusion layer of the p-type nitrogen compound semiconductor or the nitrogen compound mixed crystal semiconductor is formed on the double hetero layer. A current diffusion layer of p-type and n-type nitrogen compound semiconductors or nitrogen compound mixed crystal semiconductors sandwiching the hetero layer, and a nitrogen compound half in the center of the double hetero layer serving as a light emitting layer. Mixed crystal ratio difference between the body or nitrogen compound mixed crystal semiconductor of the active layer, in which was 0.2 or less.

【0015】第2の発明の発光素子は、第1発明の発光
素子において、p型とn型を逆にしたものである。
The light emitting device of the second invention is the light emitting device of the first invention in which the p-type and the n-type are reversed.

【0016】第3の発明の発光素子は、第1発明または
第2発明の発光素子において、チッ素化合物半導体とし
てGaN、AlN、InNのいずれかを、またチッ素化
合物混晶半導体としてAlGaN、InGaN、AlI
nNのいずれかをそれぞれ用いるようにしたものであ
る。
A light emitting device according to a third invention is the light emitting device according to the first or second invention, wherein any one of GaN, AlN and InN is used as a nitrogen compound semiconductor and AlGaN and InGaN are used as a nitrogen compound mixed crystal semiconductor. , AlI
Any one of nN is used.

【0017】第4の発明の発光素子は、サファイア基板
上にチッ素化合物半導体のバッファ層を形成し、その上
にn型のInGaN電流分散層を形成し、更にその上に
InGaN活性層をそれよりもバンドギャップエネルギ
ーの大きなn型とp型のInGaN、GaNまたはAl
GaNのクラッド層で挟んだダブルヘテロ層をn型層の
方が下になるように形成し、その上にp型のInGaN
電流分散層を形成した発光素子において、上記ダブルヘ
テロ層を挟んでいるp型とn型のInGaN電流拡散層
と、発光層となるダブルヘテロ層の中央のInGaN活
性層との混晶比差が0.2以下としたものである。
In the light emitting device of the fourth invention, a buffer layer of a nitrogen compound semiconductor is formed on a sapphire substrate, an n-type InGaN current spreading layer is formed thereon, and an InGaN active layer is further formed thereon. N-type and p-type InGaN, GaN or Al having a bandgap energy larger than that of
A double hetero layer sandwiched between GaN cladding layers is formed so that the n-type layer is on the lower side, and p-type InGaN is formed on the double hetero layer.
In the light emitting device having the current spreading layer, the difference in mixed crystal ratio between the p-type and n-type InGaN current diffusion layers sandwiching the double hetero layer and the central InGaN active layer of the double hetero layer serving as the light emitting layer is It is set to 0.2 or less.

【0018】第5の発明の発光素子は、サファイア基板
上にチッ素化合物半導体のバッファ層を形成し、その上
にn型のAlGaN電流拡散層を形成し、更にその上に
AlGaN活性層をそれよりもバンドギャップエネルギ
ーの大きなn型とp型のAlGaNクラッド層で挟んだ
ダブルヘテロ層をn型層の方が下になるように形成し、
その上にp型のAlGaN電流拡散層を形成した発光素
子において、上記ダブルヘテロ層を挟んでいるp型とn
型のAlGaN電流拡散層と、発光層となるダブルヘテ
ロ層の中央のAlGaN活性層との混晶比差が0.1以
下としたものである。
In the light emitting device of the fifth invention, a buffer layer of a nitrogen compound semiconductor is formed on a sapphire substrate, an n-type AlGaN current diffusion layer is formed thereon, and an AlGaN active layer is formed thereon. A double hetero layer sandwiched between n-type and p-type AlGaN cladding layers having a larger band gap energy than that of the n-type layer,
In a light emitting device having a p-type AlGaN current diffusion layer formed thereon, a p-type and n-type sandwiching the double hetero layer are provided.
Type AlGaN current spreading layer and the difference in the mixed crystal ratio between the central AlGaN active layer of the double hetero layer serving as the light emitting layer is 0.1 or less.

【0019】第6の発明の発光素子は、サファイア基板
上にチッ素化合物半導体のバッファ層を形成し、その上
にn型のAlInN電流拡散層を形成し、更にその上に
AlInN活性層をそれよりもバンドギャップエネルギ
ーの大きなn型とp型のAlInNまたはAlGaNク
ラッド層で挟んだダブルヘテロ層をn型層の方が下にな
るように形成し、その上にp型のAlInN電流拡散層
を形成した発光素子において、ダブルヘテロ層を挟んで
いるp型とn型のAlInN電流拡散層と、発光層とな
るダブルヘテロ層の中央のAlInN活性層との混晶比
差が0.1以下としたものである。
In the light emitting device of the sixth invention, a buffer layer of a nitrogen compound semiconductor is formed on a sapphire substrate, an n-type AlInN current diffusion layer is formed thereon, and an AlInN active layer is formed thereon. A double hetero layer sandwiched between n-type and p-type AlInN or AlGaN cladding layers having a larger bandgap energy than that of the n-type layer is formed on the lower side, and a p-type AlInN current diffusion layer is formed thereon. In the formed light emitting device, the difference in mixed crystal ratio between the p-type and n-type AlInN current diffusion layers sandwiching the double hetero layer and the central AlInN active layer of the double hetero layer serving as the light emitting layer is 0.1 or less. It was done.

【0020】第7の発明の発光素子は、第1ないし第6
の発明の発光素子をLEDとしたものである。
The light emitting device of the seventh invention is the first to sixth inventions.
The light emitting element of the invention is a LED.

【0021】第8の発明の発光素子は、第1ないし第6
の発明の発光素子を半導体レーザとしたものである。
The light emitting element of the eighth invention is the first to sixth embodiments.
A semiconductor laser is used as the light emitting device of the invention.

【0022】[0022]

【作用】エピタキシャル成長で、結晶の上に良質な結晶
層を成長させるための最も重要な点は、成長させるべき
結晶層を、成長温度において、その結晶と同じかまたは
その結晶に近い格子定数の層の上に成長させることであ
る。
In the epitaxial growth, the most important point for growing a good quality crystal layer on the crystal is that the crystal layer to be grown has a lattice constant which is the same as or close to that crystal at the growth temperature. Is to grow on.

【0023】チッ素化合物系の発光素子の構造は、一般
に、サファイア基板上に形成したバッファ層の上に、電
流拡散層、クラッド層、活性層、クラッド層、電流拡散
層を順次形成していくようになっている。このうち活性
層を良質にするには、それを挟むクラッド層の活性層に
対する混晶比差(格子定数差)を可能な範囲で小さくす
ることが好ましい。
In the structure of a light emitting element of a nitrogen compound type, generally, a current diffusion layer, a clad layer, an active layer, a clad layer and a current diffusion layer are sequentially formed on a buffer layer formed on a sapphire substrate. It is like this. Of these, in order to improve the quality of the active layer, it is preferable to reduce the mixed crystal ratio difference (lattice constant difference) of the cladding layer sandwiching the active layer with respect to the active layer as much as possible.

【0024】一方、クラッド層を挟む電流拡散層も活性
層に関係してくる。この電流拡散層と活性層との関係に
ついては、従来全くといってよいほど検討されてこなか
った。
On the other hand, the current spreading layers sandwiching the clad layer are also related to the active layer. The relationship between the current spreading layer and the active layer has never been studied so far.

【0025】本発明は、電流拡散層についても検討を行
い、高輝度を得るには、活性層に近い組成の電流分散層
でクラッド層を挟むようにすればよいことがわかった。
このことは、電流分散層に関しても、クラッド層と同様
に、活性層に近い格子定数のもので形成すれば、良質の
活性層が形成しやすくなることを意味する。すなわち、
良質の活性層が形成しやすくなると、活性層の厚さを厚
くできる。したがって注入電流密度が小さくなるため、
活性層を挟んでいるクラッド層のバンドギャップエネル
ギーを活性層より、それほど高くすることが必要なくな
り、クラッド層の組成つまり格子定数を、活性層に近づ
けることができる。このため、より高品質の活性層を形
成しやすくなる。
In the present invention, the current diffusion layer was also examined, and it was found that the clad layer should be sandwiched between the current diffusion layers having a composition close to that of the active layer in order to obtain high brightness.
This means that, similarly to the clad layer, if the current spreading layer is formed with a lattice constant close to that of the active layer, a good quality active layer can be easily formed. That is,
If a good quality active layer is easily formed, the thickness of the active layer can be increased. Therefore, the injection current density becomes smaller,
It is not necessary to make the bandgap energy of the clad layer sandwiching the active layer much higher than that of the active layer, and the composition of the clad layer, that is, the lattice constant can be made closer to that of the active layer. Therefore, it becomes easy to form a higher quality active layer.

【0026】このようにクラッド層を挟んでいる電流分
散層と活性層との混晶比差を小さくすることにより、結
晶性の良好な活性層を形成することができるので高出力
化、高輝度化が容易となる。
By reducing the mixed crystal ratio difference between the current spreading layer and the active layer sandwiching the cladding layer in this way, an active layer having good crystallinity can be formed, so that high output and high brightness can be obtained. It becomes easy to convert.

【0027】また、活性層の混晶組成の幅広い範囲に対
しても良質な混晶層を容易に成長できるようになる。例
えば、GaN混晶比組成が小さなInGaNでも、結晶
性の良好なエピタキシャル層を成長できるようになるた
め、従来のようにInGaNのGaN混晶組成を少なく
して行くと、InGaNを形成できないというような不
都合がなくなり、純緑色に近い発光素子を容易に製作す
るこができる。したがって、波長制御が容易になり、緑
色、青色、紫外域の波長の光を出せる高輝度または高出
力の発光素子を製作できる。
Further, it becomes possible to easily grow a good quality mixed crystal layer over a wide range of the mixed crystal composition of the active layer. For example, even with InGaN having a small GaN mixed crystal composition, an epitaxial layer having good crystallinity can be grown. Therefore, if the GaN mixed crystal composition of InGaN is reduced as in the conventional case, InGaN cannot be formed. Such inconvenience is eliminated, and a light emitting element close to pure green can be easily manufactured. Therefore, the wavelength control becomes easy, and a high-intensity or high-power light emitting device capable of emitting light of wavelengths in the green, blue, and ultraviolet regions can be manufactured.

【0028】また、活性層の良質化により活性層の厚さ
を厚くできるようになるため、通電電流による活性層の
温度上昇を抑えて、発光波長の変化を少なくすることが
でき、LEDの信頼性も向上できる。
Further, as the quality of the active layer is improved, it becomes possible to increase the thickness of the active layer, so that the temperature rise of the active layer due to the applied current can be suppressed and the change of the emission wavelength can be reduced, and the reliability of the LED can be improved. The property can also be improved.

【0029】[0029]

【実施例】以下、本発明の実施例を図面を用いて説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0030】(実施例1)図1はチッ素化合物混晶半導
体としてInGaNを用いた緑色LEDチップの構造を
示す。LEDの構造は、サファイア基板7上にAlNの
バッファ層6を形成し、その上にn型のInGaN電流
分散層5を5μm形成している。このInGaN電流分
散層5は、Siドープであり、GaN混晶組成は0.6
である。
Example 1 FIG. 1 shows the structure of a green LED chip using InGaN as a nitrogen compound mixed crystal semiconductor. In the LED structure, an AlN buffer layer 6 is formed on a sapphire substrate 7, and an n-type InGaN current dispersion layer 5 is formed thereon to a thickness of 5 μm. This InGaN current spreading layer 5 is Si-doped and has a GaN mixed crystal composition of 0.6.
Is.

【0031】この上に活性層をクラッド層で挟んだ3層
構造のダブルヘテロ層を形成している。すなわち、ま
ず、n型のInGaNクラッド層4を形成している。こ
のInGaNクラッド層4は、Siドープであり、Ga
N混晶比は0.7であり、厚さは200nmである。次に
発光層となるZnをドープしたInGaN活性層3を形
成している。このInGaN活性層3のGaN混晶比
は、0.6である。厚さは500nmである。そして、p
型のInGaNクラッド層2を形成している。このIn
GaNクラッド層2は、Mgドープであり、GaN混晶
比は0.7であり、厚さは200nmである。
On this, a double hetero layer having a three-layer structure in which the active layer is sandwiched by clad layers is formed. That is, first, the n-type InGaN cladding layer 4 is formed. The InGaN cladding layer 4 is Si-doped and has a Ga content.
The N mixed crystal ratio is 0.7 and the thickness is 200 nm. Next, a Zn-doped InGaN active layer 3 to be a light emitting layer is formed. The GaN mixed crystal ratio of this InGaN active layer 3 is 0.6. The thickness is 500 nm. And p
Type InGaN clad layer 2 is formed. This In
The GaN cladding layer 2 is Mg-doped, has a GaN mixed crystal ratio of 0.7, and has a thickness of 200 nm.

【0032】その上にp型のInGaN層電流拡散層1
を形成している。このInGaN電流拡散層1は、Mg
ドープであり、GaN混晶比は0.7であり、厚さは5
00nmである。このエピタキシャルウェハのp型InG
aN電流拡散層1の上にp側電極8を形成した。また、
上記のように形成したp型InGaN電流拡散層1およ
びダブルヘテロ層の一部をドライエッチングにより除去
してn型InGaN電流拡散層5を露出させ、この露出
させたn型InGaN電流拡散層5の上にn側電極9を
形成している。チップの大きさは、600μm×600
μmである。
On top of that, a p-type InGaN layer current spreading layer 1 is formed.
Is formed. This InGaN current spreading layer 1 is made of Mg
It is doped, the GaN mixed crystal ratio is 0.7, and the thickness is 5
It is 00 nm. P-type InG of this epitaxial wafer
A p-side electrode 8 was formed on the aN current diffusion layer 1. Also,
Part of the p-type InGaN current diffusion layer 1 and the double hetero layer formed as described above is removed by dry etching to expose the n-type InGaN current diffusion layer 5, and the exposed n-type InGaN current diffusion layer 5 is exposed. An n-side electrode 9 is formed on top. Chip size is 600 μm x 600
μm.

【0033】このエピタキシャルウェハのAlNバッフ
ァ層6及びその上に形成したInGaN混晶層は、従来
と同様にMOCVD法により成長させた。またドーパン
トであるn型用のSi及びp型用のMg及び活性層に用
いたZnも従来と同様に制御した。
The AlN buffer layer 6 of this epitaxial wafer and the InGaN mixed crystal layer formed thereon were grown by the MOCVD method as in the conventional method. Further, the n-type Si and the p-type Mg, which are dopants, and the Zn used in the active layer were controlled in the same manner as in the conventional case.

【0034】このLEDの特性を調べてみたところ、波
長515nmの純緑色であり、また発光光度として400
0mcd が得られた。
When the characteristics of this LED were examined, it was a pure green color with a wavelength of 515 nm, and the luminous intensity was 400.
0 mcd was obtained.

【0035】ここで、まず、クラッド層の混晶比が輝度
に与える影響を調べるために、活性層3(混晶比0.6
に固定)を挟んでいるp型クラッド層2とn型クラッド
層4とのGaN混晶比を変化させたLEDを製作し、そ
の輝度を測定した。その結果を図2に示す。これより、
クラッド層のGaN混晶比が0.7から0.8で、最大
の発光光度が得られていることがわかる。因みに上記実
施例の両クラッド層の混晶比は0.7である。
First, in order to investigate the influence of the mixed crystal ratio of the cladding layer on the brightness, the active layer 3 (mixed crystal ratio of 0.6) was used.
An LED in which the GaN mixed crystal ratio of the p-type clad layer 2 and the n-type clad layer 4 sandwiching (fixed to) was changed was manufactured, and the brightness thereof was measured. The result is shown in FIG. Than this,
It can be seen that the maximum luminous intensity is obtained when the GaN mixed crystal ratio of the clad layer is 0.7 to 0.8. Incidentally, the mixed crystal ratio of both clad layers in the above embodiment is 0.7.

【0036】これから言えることは、クラッド層は、活
性層に対して、GaN混晶比差が0.1から0.2付近
が最もよく、GaN混晶比差がそれより大きいと発光光
度が低下するということである。またGaN混晶比差が
それより小さくなると当然発光光度は低くなる。これら
の事実は、従来のAlGaAs系のDH構造LEDでも
言われていることであり、特に新しい事実ではない。し
かし、InGaN系のLEDにおいても、AlGaAs
系LEDの活性層に対するクラッド層の混晶比差におけ
る事実がほぼ一致することは興味深い。
What can be said from this is that the clad layer has the best GaN mixed crystal ratio difference of about 0.1 to 0.2 with respect to the active layer, and if the GaN mixed crystal ratio difference is larger than that, the luminous intensity decreases. Is to do. Further, when the difference in GaN mixed crystal ratio becomes smaller than that, naturally the luminous intensity becomes low. These facts are also said in the conventional AlGaAs-based DH structure LED, and are not particularly new facts. However, even in InGaN-based LEDs, AlGaAs
It is interesting that the facts about the difference in the mixed crystal ratio of the clad layer to the active layer of the LED system are almost the same.

【0037】次に、電流拡散層の混晶比が輝度に与える
影響を調べるために、InGaNクラッド層2、4のG
aN混晶比をInGaN活性層3のGaN混晶比より
も、0.1高く固定した。そして、このダブルヘテロ層
を挟んでいるp型InGaN電流拡散層1とn型InG
aN電流拡散層5とのGaN混晶比を変化させたエピタ
キシャルウェハを成長させた。そのエピタキシャルウェ
ハよりLEDを作製し、発光光度を測定した。測定結果
を図3に示す。同図に示すように、n型とp型のInG
aN電流拡散層1、5のGaN組成がInGaN活性層
2のGaN組成とほぼ同じ付近が最も発光光度が高く、
それよりもGaN混晶比組成が高くてもまた低くても、
発光光度が低下する傾向にある。このため、2000mc
d 級の超高輝度を得るためには、電流拡散層と活性層と
におけるGaN組成のずれが、約0.2以下である必要
がある。
Next, in order to investigate the influence of the mixed crystal ratio of the current diffusion layer on the brightness, the G of InGaN cladding layers 2 and 4 was examined.
The aN mixed crystal ratio was fixed to be 0.1 higher than the GaN mixed crystal ratio of the InGaN active layer 3. Then, the p-type InGaN current diffusion layer 1 and the n-type InG sandwiching the double hetero layer are provided.
Epitaxial wafers with different GaN mixed crystal ratios with the aN current diffusion layer 5 were grown. An LED was produced from the epitaxial wafer and the luminous intensity was measured. The measurement result is shown in FIG. As shown in the figure, n-type and p-type InG
The luminous intensity is highest when the GaN composition of the aN current diffusion layers 1 and 5 is almost the same as the GaN composition of the InGaN active layer 2.
Whether the GaN mixed crystal composition is higher or lower than that,
The luminous intensity tends to decrease. Therefore, 2000 mc
To obtain d-class ultra-high brightness, the GaN composition difference between the current diffusion layer and the active layer must be about 0.2 or less.

【0038】(実施例2)実施例1のチッ素化合物混晶
半導体であるInGaNに変えてAlGaNを用いた。
その場合について、クラッド層の外側を挟んだAlGa
N電流拡散層のGaN混晶比組成を変化させ、実施例1
と同じように発光光度を調べた。その結果、GaN混晶
比の組成差が0.1以下で、高輝度のLEDが得られる
ことがわかった。そのときの波長は400nmの紫外光で
あり、また発光出力として8mWが得られた。
Example 2 AlGaN was used in place of InGaN which is a nitrogen compound mixed crystal semiconductor of Example 1.
In that case, AlGa sandwiching the outside of the cladding layer
The GaN mixed crystal ratio composition of the N current diffusion layer was changed, and Example 1 was used.
The luminous intensity was examined in the same manner as in. As a result, it was found that a high-brightness LED can be obtained with a composition difference of the GaN mixed crystal ratio of 0.1 or less. At that time, the wavelength was 400 nm ultraviolet light, and an emission output of 8 mW was obtained.

【0039】(実施例3)実施例1のチッ素化合物混晶
半導体であるInGaNに変えてAlInNを用いた。
その場合について、クラッド層の外側を挟んだAlIn
N電流拡散層のAlN混晶比組成を変化させ、実施例1
と同じように発光光度を調べた。その結果、GaN混晶
比の組成差が0.1以下で、高輝度のLEDが得られる
ことがわかった。そのときの波長は420nmの緑色であ
り、また発光光度として3500mcd が得られた。
Example 3 AlInN was used instead of InGaN which is a nitrogen compound mixed crystal semiconductor of Example 1.
In that case, AlIn sandwiching the outside of the cladding layer
The AlN mixed crystal ratio composition of the N current diffusion layer was changed, and Example 1 was used.
The luminous intensity was examined in the same manner as in. As a result, it was found that a high-brightness LED can be obtained with a composition difference of the GaN mixed crystal ratio of 0.1 or less. At that time, the wavelength was 420 nm, which was green, and the emission luminous intensity was 3500 mcd.

【0040】(実施例の効果)このように赤色以外に青
色及び緑色で2000mcd 以上のLEDを製作すること
ができるようになった。このため3色合せて高輝度のフ
ルカラーディスプレイを製作することができる。また交
通信号のように青色で高輝度が必要とされるところに用
いることができる。
(Effect of Example) As described above, it has become possible to manufacture LEDs of 2000 mcd or more in blue and green in addition to red. Therefore, a high-luminance full-color display can be manufactured by combining three colors. It can also be used in places where blue and high brightness are required, such as traffic signals.

【0041】[0041]

【発明の効果】請求項1に記載の発明によれば、クラッ
ド層を挟んでいる電流分散層と活性層との混晶比差を小
さくすることにより、良質な発光層となる活性層を容易
に成長させ、より高輝度化を図ることができる。
According to the first aspect of the present invention, by reducing the mixed crystal ratio difference between the current spreading layer and the active layer sandwiching the cladding layer, it is possible to easily form an active layer which becomes a high quality light emitting layer. It is possible to increase the brightness by further growing.

【0042】請求項2に記載の発明によれば、p、n逆
であっても上記効果を奏することができる。
According to the second aspect of the invention, the above effect can be obtained even if p and n are reversed.

【0043】請求項3に記載の発明によれば、チッ素化
合物半導体としてGaN、AlN、InNを、チッ素化
合物混晶半導体としてAlGaN、InGaN、AlI
nNをそれぞれ用いるようにしたので、波長制御が容易
になり、緑色、青色、紫外域の波長の光を出せる高輝度
または高出力の発光素子を製作できる。。
According to the third aspect of the invention, GaN, AlN and InN are used as the nitrogen compound semiconductor and AlGaN, InGaN and AlI are used as the nitrogen compound mixed crystal semiconductor.
Since each nN is used, wavelength control is facilitated, and a high-luminance or high-power light emitting device capable of emitting light of wavelengths in the green, blue, and ultraviolet regions can be manufactured. .

【0044】請求項4に記載の発明によれば、InGa
N電流拡散層と、InGaN活性層との混晶比差を0.
2以下とすることにより、GaN混晶比組成が小さなI
nGaNでも、結晶性の良好なInGaNエピタキシャ
ル層を成長できるため、純緑色に近い発光素子を容易に
製作することができる。
According to the invention of claim 4, InGa
The mixed crystal ratio difference between the N current diffusion layer and the InGaN active layer was set to 0.
By setting the ratio to 2 or less, I having a small GaN mixed crystal ratio composition
Even with nGaN, an InGaN epitaxial layer having good crystallinity can be grown, so that a light emitting element having a color close to pure green can be easily manufactured.

【0045】請求項5に記載の発光素子によれば、Al
GaN電流拡散層と、AlGaN活性層との混晶比差を
0.1以下とすることにより、良質なAlGaN活性層
を形成することができる。
According to the light emitting device of the fifth aspect, Al
By setting the mixed crystal ratio difference between the GaN current spreading layer and the AlGaN active layer to be 0.1 or less, a good quality AlGaN active layer can be formed.

【0046】請求項6に記載の発光素子によれば、Al
InN電流拡散層と、AlInN活性層との混晶比差を
0.1以下としたので、良質なAlInN活性層を形成
することができる。
According to the light emitting device of the sixth aspect, Al
Since the mixed crystal ratio difference between the InN current diffusion layer and the AlInN active layer is 0.1 or less, a good quality AlInN active layer can be formed.

【0047】請求項7に記載の発光素子によれば、発光
素子をLEDとしたので、紫外、青色、緑色の波長の光
を出せる高輝度または高出力のLED光が得られる。
According to the light emitting device of the seventh aspect, since the light emitting device is an LED, high brightness or high output LED light capable of emitting light of wavelengths of ultraviolet, blue and green is obtained.

【0048】請求項8に記載の発光素子によれば、発光
素子を半導体レーザとしたので、紫外、青色、緑色の波
長の光を出せる高輝度または高出力のレーザ光が得られ
る。
According to the light emitting device of the eighth aspect, since the light emitting device is a semiconductor laser, high-intensity or high-power laser light capable of emitting light of ultraviolet, blue, and green wavelengths can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の発光素子の実施例を説明するためにI
nGaN緑色LEDチップの断面図。
FIG. 1 is a graph for explaining an embodiment of a light emitting device of the present invention.
Sectional drawing of an nGaN green LED chip.

【図2】本実施例に係るInGaN緑色LEDの発光光
度のInGaNクラッド層のGaN混晶比依存性を示す
図。
FIG. 2 is a diagram showing the GaN mixed crystal ratio dependence of the luminous intensity of the InGaN green LED according to this example.

【図3】本実施例に係るInGaN緑色LEDの発光光
度のInGaN電流拡散層のGaN混晶比依存性を示す
図。
FIG. 3 is a diagram showing the GaN mixed crystal ratio dependence of the luminous intensity of the InGaN green LED according to this example in the InGaN current diffusion layer.

【図4】従来のチッ素化合物系青色LEDチップの断面
図。
FIG. 4 is a sectional view of a conventional nitrogen compound-based blue LED chip.

【符号の説明】[Explanation of symbols]

1 p型InGaN電流拡散層 2 p型InGaNクラッド層 3 InGaN活性層 4 n型InGaNクラッド層 5 n型InGaN電流拡散層 6 AlNバッファ層 7 サファイア基板 8 p側電極 9 n側電極 1 p-type InGaN current diffusion layer 2 p-type InGaN clad layer 3 InGaN active layer 4 n-type InGaN clad layer 5 n-type InGaN current diffusion layer 6 AlN buffer layer 7 sapphire substrate 8 p-side electrode 9 n-side electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 健 茨城県土浦市木田余町3550番地 日立電線 株式会社アドバンスリサーチセンタ内 (72)発明者 隈 彰二 茨城県土浦市木田余町3550番地 日立電線 株式会社アドバンスリサーチセンタ内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Ken Takahashi, 3550 Kidayomachi, Tsuchiura City, Ibaraki Prefecture, Hitachi Cable Ltd. Advanced Research Center (72) Shoji Kuma, 3550, Kidayomachi, Tsuchiura City, Ibaraki Hitachi Cable Shares Company Advance Research Center

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】サファイア基板上にチッ素化合物半導体の
バッファ層を形成し、その上にn型のチッ素化合物半導
体またはチッ素化合物混晶半導体の電流分散層を形成
し、更にその上にチッ素化合物半導体またはチッ素化合
物混晶半導体の活性層を、それよりもバンドギャップエ
ネルギーの大きなn型とp型のチッ素化合物半導体また
はチッ素化合物混晶半導体のクラッド層で挟んだダブル
ヘテロ層をn型層の方が下になるように形成し、その上
にp型のチッ素化合物半導体またはチッ素化合物混晶半
導体の電流分散層を形成した発光素子において、上記ダ
ブルヘテロ層を挟んでいるp型とn型のチッ素化合物半
導体またはチッ素化合物混晶半導体の電流拡散層と、発
光層となるダブルヘテロ層の中央のチッ素化合物半導体
またはチッ素化合物混晶半導体の活性層との混晶比差
が、0.2以下であることを特徴とする発光素子。
1. A buffer layer of a nitrogen compound semiconductor is formed on a sapphire substrate, a current spreading layer of an n-type nitrogen compound semiconductor or a nitrogen compound mixed crystal semiconductor is formed on the buffer layer, and a nitrogen layer is further formed thereon. A double hetero layer is formed by sandwiching an active layer of an element compound semiconductor or a nitrogen compound mixed crystal semiconductor with a clad layer of an n-type and a p-type nitrogen compound semiconductor or a nitrogen compound mixed crystal semiconductor having a larger band gap energy than that. In a light emitting device in which the n-type layer is formed downward, and the current spreading layer of a p-type nitrogen compound semiconductor or a nitrogen compound mixed crystal semiconductor is formed thereon, the double hetero layer is sandwiched. Current diffusion layers of p-type and n-type nitrogen compound semiconductors or nitrogen compound mixed crystal semiconductors, and nitrogen compound semiconductors or nitrogen compounds in the center of the double hetero layer serving as the light emitting layer Mixed crystal ratio difference between the active layer of the crystal semiconductor light-emitting element, characterized in that not more than 0.2.
【請求項2】請求項1に記載の発光素子において、上記
p型とn型が逆であることを特徴とする発光素子。
2. The light emitting device according to claim 1, wherein the p-type and the n-type are opposite to each other.
【請求項3】請求項1または2に記載の発光素子におい
て、上記チッ素化合物半導体としてGaN、AlN、I
nNのいずれかを、またチッ素化合物混晶半導体として
AlGaN、InGaN、AlInNのいずれかをそれ
ぞれ用いることを特徴とする発光素子。
3. The light emitting device according to claim 1, wherein the nitrogen compound semiconductor is GaN, AlN, or I.
A light-emitting device characterized by using any one of nN and AlGaN, InGaN, or AlInN as a nitrogen compound mixed crystal semiconductor.
【請求項4】サファイア基板上にチッ素化合物半導体の
バッファ層を形成し、その上にn型のInGaN電流分
散層を形成し、更にその上にInGaN活性層をそれよ
りもバンドギャップエネルギーの大きなn型とp型のI
nGaN、GaNまたはAlGaNのクラッド層で挟ん
だダブルヘテロ層をn型層の方が下になるように形成
し、その上にp型のInGaN電流分散層を形成した発
光素子において、上記ダブルヘテロ層を挟んでいるp型
とn型のInGaN電流拡散層と、発光層となるダブル
ヘテロ層の中央のInGaN活性層との混晶比差が0.
2以下であることを特徴とする発光素子。
4. A buffer layer of a nitrogen compound semiconductor is formed on a sapphire substrate, an n-type InGaN current spreading layer is formed on the buffer layer, and an InGaN active layer having a band gap energy larger than that is formed thereon. n-type and p-type I
In the light-emitting device, a double hetero layer sandwiched between nGaN, GaN, or AlGaN cladding layers is formed so that the n-type layer is lower, and a p-type InGaN current spreading layer is formed on the double hetero layer. The difference in the mixed crystal ratio between the p-type and n-type InGaN current diffusion layers sandwiching the gap and the InGaN active layer at the center of the double hetero layer serving as the light emitting layer is 0.
A light emitting device having a number of 2 or less.
【請求項5】サファイア基板上にチッ素化合物半導体の
バッファ層を形成し、その上にn型のAlGaN電流拡
散層を形成し、更にその上にAlGaN活性層をそれよ
りもバンドギャップエネルギーの大きなn型とp型のA
lGaNクラッド層で挟んだダブルヘテロ層をn型層の
方が下になるように形成し、その上にp型のAlGaN
電流拡散層を形成した発光素子において、上記ダブルヘ
テロ層を挟んでいるp型とn型のAlGaN電流拡散層
と、発光層となるダブルヘテロ層の中央のAlGaN活
性層との混晶比差が0.1以下であることを特徴とする
発光素子。
5. A buffer layer made of a nitrogen compound semiconductor is formed on a sapphire substrate, an n-type AlGaN current diffusion layer is formed on the buffer layer, and an AlGaN active layer is further formed on the sapphire substrate. n-type and p-type A
A double hetero layer sandwiched between lGaN cladding layers is formed so that the n-type layer is on the lower side, and p-type AlGaN is formed on the double hetero layer.
In the light emitting device having the current diffusion layer formed, the difference in mixed crystal ratio between the p-type and n-type AlGaN current diffusion layers sandwiching the double hetero layer and the central AlGaN active layer of the double hetero layer serving as the light emitting layer is A light emitting device having a ratio of 0.1 or less.
【請求項6】サファイア基板上にチッ素化合物半導体の
バッファ層を形成し、その上にn型のAlInN電流拡
散層を形成し、更にその上にAlInN活性層をそれよ
りもバンドギャップエネルギーの大きなn型とp型のA
lInNまたはAlGaNクラッド層で挟んだダブルヘ
テロ層をn型層の方が下になるように形成し、その上に
p型のAlInN電流拡散層を形成した発光素子におい
て、ダブルヘテロ層を挟んでいるp型とn型のAlIn
N電流拡散層と、発光層となるダブルヘテロ層の中央の
AlInN活性層との混晶比差が0.1以下であること
を特徴とする発光素子。
6. A buffer layer made of a nitrogen compound semiconductor is formed on a sapphire substrate, an n-type AlInN current diffusion layer is formed on the buffer layer, and an AlInN active layer having a band gap energy larger than that is formed thereon. n-type and p-type A
In a light-emitting device, a double hetero layer sandwiched between lInN or AlGaN cladding layers is formed so that the n-type layer is on the lower side, and a p-type AlInN current diffusion layer is formed on the double hetero layer. p-type and n-type AlIn
A light-emitting device characterized by having a mixed crystal ratio difference of 0.1 or less between an N current diffusion layer and an AlInN active layer at the center of a double hetero layer serving as a light-emitting layer.
【請求項7】上記発光素子が発光ダイオードであること
を特徴とする請求項1ないし6に記載の発光素子。
7. The light emitting device according to claim 1, wherein the light emitting device is a light emitting diode.
【請求項8】上記発光素子が半導体レーザであることを
特徴とする請求項1ないし6に記載の発光素子。
8. The light emitting device according to claim 1, wherein the light emitting device is a semiconductor laser.
JP30743094A 1994-12-12 1994-12-12 Light emitting element Pending JPH08167735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30743094A JPH08167735A (en) 1994-12-12 1994-12-12 Light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30743094A JPH08167735A (en) 1994-12-12 1994-12-12 Light emitting element

Publications (1)

Publication Number Publication Date
JPH08167735A true JPH08167735A (en) 1996-06-25

Family

ID=17968976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30743094A Pending JPH08167735A (en) 1994-12-12 1994-12-12 Light emitting element

Country Status (1)

Country Link
JP (1) JPH08167735A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960025292A (en) * 1994-12-26 1996-07-20 윤종용 Gallium nitrogen light emitting device having a light emitting source of phosphor
JPH08228025A (en) * 1994-12-22 1996-09-03 Nichia Chem Ind Ltd Nitride semiconductor light emitting element
EP0800214A1 (en) * 1996-04-02 1997-10-08 Siemens Aktiengesellschaft Device in nitrogen containing semiconductor material
WO1998019290A1 (en) * 1996-10-31 1998-05-07 Siemens Aktiengesellschaft Image-display device emitting multicoloured light
JP2000228537A (en) * 1999-02-05 2000-08-15 Agilent Technol Inc InXAlYGaZn LIGHT EMITTING ELEMENT AND ITS MANUFACTURE
US6233265B1 (en) * 1998-07-31 2001-05-15 Xerox Corporation AlGaInN LED and laser diode structures for pure blue or green emission
US6441393B2 (en) * 1999-11-17 2002-08-27 Lumileds Lighting U.S., Llc Semiconductor devices with selectively doped III-V nitride layers
US6734091B2 (en) 2002-06-28 2004-05-11 Kopin Corporation Electrode for p-type gallium nitride-based semiconductors
WO2005022711A1 (en) * 2003-08-29 2005-03-10 Nec Corporation Nitride semiconductor light emitting element and process for fabricating the same
US6881983B2 (en) 2002-02-25 2005-04-19 Kopin Corporation Efficient light emitting diodes and lasers
US6911079B2 (en) 2002-04-19 2005-06-28 Kopin Corporation Method for reducing the resistivity of p-type II-VI and III-V semiconductors
KR100691283B1 (en) * 2005-09-23 2007-03-12 삼성전기주식회사 Nitride semiconductor device
JP2007221146A (en) * 2006-02-16 2007-08-30 Lg Electronics Inc Vertical light emitting device and its manufacturing method
JP2009026956A (en) * 2007-07-19 2009-02-05 Sumitomo Electric Ind Ltd Light emitting device, substrate product for light emitting device, and method of fabricating light emitting device
JP2009541989A (en) * 2006-06-23 2009-11-26 エルジー エレクトロニクス インコーポレイティド Vertical light emitting device and manufacturing method thereof
US7939349B2 (en) 2002-04-23 2011-05-10 Sharp Kabushiki Kaisha Nitride-based semiconductor light emitting device and manufacturing method thereof
CN105789388A (en) * 2016-04-25 2016-07-20 湘能华磊光电股份有限公司 LED growth method capable of improving quality of epitaxial crystal
CN111769187A (en) * 2020-07-31 2020-10-13 佛山紫熙慧众科技有限公司 Ultraviolet LED chip structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04321280A (en) * 1991-04-19 1992-11-11 Nichia Chem Ind Ltd Blue color light-emitting diode
JPH05283744A (en) * 1991-12-20 1993-10-29 Toshiba Corp Semiconductor element
JPH06268259A (en) * 1993-03-12 1994-09-22 Nichia Chem Ind Ltd Gallium nitride compound semiconductor light emitting element
JPH077182A (en) * 1993-06-17 1995-01-10 Nichia Chem Ind Ltd Gallium nitride based compound semiconductor light emitting element
JPH0888441A (en) * 1994-09-19 1996-04-02 Nichia Chem Ind Ltd Gan series compound semiconductor laser element and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04321280A (en) * 1991-04-19 1992-11-11 Nichia Chem Ind Ltd Blue color light-emitting diode
JPH05283744A (en) * 1991-12-20 1993-10-29 Toshiba Corp Semiconductor element
JPH06268259A (en) * 1993-03-12 1994-09-22 Nichia Chem Ind Ltd Gallium nitride compound semiconductor light emitting element
JPH077182A (en) * 1993-06-17 1995-01-10 Nichia Chem Ind Ltd Gallium nitride based compound semiconductor light emitting element
JPH0888441A (en) * 1994-09-19 1996-04-02 Nichia Chem Ind Ltd Gan series compound semiconductor laser element and its manufacturing method

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08228025A (en) * 1994-12-22 1996-09-03 Nichia Chem Ind Ltd Nitride semiconductor light emitting element
KR960025292A (en) * 1994-12-26 1996-07-20 윤종용 Gallium nitrogen light emitting device having a light emitting source of phosphor
EP0800214A1 (en) * 1996-04-02 1997-10-08 Siemens Aktiengesellschaft Device in nitrogen containing semiconductor material
WO1998019290A1 (en) * 1996-10-31 1998-05-07 Siemens Aktiengesellschaft Image-display device emitting multicoloured light
US6233265B1 (en) * 1998-07-31 2001-05-15 Xerox Corporation AlGaInN LED and laser diode structures for pure blue or green emission
JP2000228537A (en) * 1999-02-05 2000-08-15 Agilent Technol Inc InXAlYGaZn LIGHT EMITTING ELEMENT AND ITS MANUFACTURE
US6441393B2 (en) * 1999-11-17 2002-08-27 Lumileds Lighting U.S., Llc Semiconductor devices with selectively doped III-V nitride layers
US6881983B2 (en) 2002-02-25 2005-04-19 Kopin Corporation Efficient light emitting diodes and lasers
US6911079B2 (en) 2002-04-19 2005-06-28 Kopin Corporation Method for reducing the resistivity of p-type II-VI and III-V semiconductors
US7939349B2 (en) 2002-04-23 2011-05-10 Sharp Kabushiki Kaisha Nitride-based semiconductor light emitting device and manufacturing method thereof
US6734091B2 (en) 2002-06-28 2004-05-11 Kopin Corporation Electrode for p-type gallium nitride-based semiconductors
WO2005022711A1 (en) * 2003-08-29 2005-03-10 Nec Corporation Nitride semiconductor light emitting element and process for fabricating the same
JP2007088481A (en) * 2005-09-23 2007-04-05 Samsung Electro Mech Co Ltd Nitride semiconductor device
KR100691283B1 (en) * 2005-09-23 2007-03-12 삼성전기주식회사 Nitride semiconductor device
US7718992B2 (en) 2005-09-23 2010-05-18 Samsung Electro-Mechanics Co., Ltd. Nitride semiconductor device
JP2007221146A (en) * 2006-02-16 2007-08-30 Lg Electronics Inc Vertical light emitting device and its manufacturing method
JP2013034010A (en) * 2006-02-16 2013-02-14 Lg Electronics Inc Vertical light-emitting device
JP2009541989A (en) * 2006-06-23 2009-11-26 エルジー エレクトロニクス インコーポレイティド Vertical light emitting device and manufacturing method thereof
US7768025B2 (en) * 2006-06-23 2010-08-03 Lg Electronics Inc. Light emitting diode having vertical topology and method of making the same
US7834374B2 (en) 2006-06-23 2010-11-16 Lg Electronics Inc. Light emitting diode having vertical topology and method of making the same
US8039281B2 (en) 2006-06-23 2011-10-18 Lg Electronics Inc. Light emitting diode having vertical topology and method of making the same
US8624288B2 (en) 2006-06-23 2014-01-07 Lg Electronics, Inc. Light emitting diode having vertical topology and method of making the same
US9530936B2 (en) 2006-06-23 2016-12-27 Lg Electronics Inc. Light emitting diode having vertical topology and method of making the same
JP2009026956A (en) * 2007-07-19 2009-02-05 Sumitomo Electric Ind Ltd Light emitting device, substrate product for light emitting device, and method of fabricating light emitting device
CN105789388A (en) * 2016-04-25 2016-07-20 湘能华磊光电股份有限公司 LED growth method capable of improving quality of epitaxial crystal
CN111769187A (en) * 2020-07-31 2020-10-13 佛山紫熙慧众科技有限公司 Ultraviolet LED chip structure

Similar Documents

Publication Publication Date Title
US6163038A (en) White light-emitting diode and method of manufacturing the same
JP3063756B1 (en) Nitride semiconductor device
USRE40485E1 (en) Semiconductor light-emitting element
USRE40163E1 (en) Semiconductor light-emitting element
JPH08167735A (en) Light emitting element
JP2785254B2 (en) Gallium nitride based compound semiconductor light emitting device
US7884351B2 (en) Nitride semiconductor light-emitting device
US20080111123A1 (en) High Efficiency Light-Emitting Diodes
JP2002176198A (en) Multi-wavelength light emitting element
US20180351039A1 (en) Light-emitting device and lighting device including the same
US7955881B2 (en) Method of fabricating quantum well structure
JP2000244013A (en) Nitride semiconductor element
JPH0823124A (en) Light-emitting element of gallium nitride compound semiconductor
JP3152708B2 (en) Semiconductor light emitting device
JPH08102548A (en) Semiconductor light-emitting element and its manufacture
JPH10261818A (en) Light-emitting semiconductor device
JP2900754B2 (en) AlGaInP light emitting device
Mukai et al. InGaN-based UV/blue/green/amber LEDs
US5917196A (en) Group III-V type nitride compound semiconductor light-emitting device
JP3484997B2 (en) Gallium nitride based compound semiconductor light emitting device
JP3216596B2 (en) Gallium nitride based compound semiconductor light emitting device
CN114520279A (en) LED epitaxial wafer, preparation method and semiconductor device
JPH08213653A (en) Semiconductor device having contact resistance reducing layer
JP3500762B2 (en) Gallium nitride based compound semiconductor light emitting device
KR101241331B1 (en) Nitride based LED and method of manufacturing the same

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030212