JPH08213653A - Semiconductor device having contact resistance reducing layer - Google Patents

Semiconductor device having contact resistance reducing layer

Info

Publication number
JPH08213653A
JPH08213653A JP28195895A JP28195895A JPH08213653A JP H08213653 A JPH08213653 A JP H08213653A JP 28195895 A JP28195895 A JP 28195895A JP 28195895 A JP28195895 A JP 28195895A JP H08213653 A JPH08213653 A JP H08213653A
Authority
JP
Japan
Prior art keywords
layer
contact resistance
electrode
band gap
algainn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28195895A
Other languages
Japanese (ja)
Other versions
JP3605906B2 (en
Inventor
Kenji Shimoyama
謙司 下山
Hideki Goto
秀樹 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP28195895A priority Critical patent/JP3605906B2/en
Publication of JPH08213653A publication Critical patent/JPH08213653A/en
Application granted granted Critical
Publication of JP3605906B2 publication Critical patent/JP3605906B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To reduce contact resistance, and remarkably reduce the operating voltage of a light emitting device, by forming a thin film GaPN layer between an AlGeInN based layer and an electrode. CONSTITUTION: In order to reduce contact resistance in wide band gap semiconductor, a thin film GaPxN1-x (0.1<=x<=0.9) layer whose band gap is very small or equal to zero is inserted. Thereby a potential barrier formed between an electrode and a surface layer is remarkably reduced, and ohmic contact is very easily obtained. The values of thickness, composition, etc., of the GaPxN1-x (0.1<=x<=0.9) layer between an AlGaInP based layer and the electrode are different from the carrier concentration and the composition (band gap) of a layer composed of AlGaInP based layer, and therefore not specially limited. Usually the desirable thickness is necessary only for satisfying the effect that the contact resistance is reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置に関し、特に
窒化ガリウム系材料を使用した青色〜緑色発光ダイオー
ド、青色〜緑色レーザーダイオード等の発光素子に関
し、特に接触抵抗を大きく低減した半導体装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, and more particularly to a light emitting element such as a blue to green light emitting diode or a blue to green laser diode using a gallium nitride-based material, and more particularly to a semiconductor device having a greatly reduced contact resistance.

【0002】[0002]

【従来の技術】最近の青色及び緑色の発光ダイオード
(LED)の高輝度化の進展には目ざましいものがあ
り、材料として、ZnSSe系やAlGaInN系が用
いられている。現在、サファイア、SiCなどの基板上
への高品質な窒化ガリウム(GaN)系化合物半導体膜
の成長とGaN系への高濃度p型ドーピングが可能とな
ったことにより、高輝度の青色発光ダイオードが実現さ
れており、図2に示すようなダブルヘテロ構造が用いら
れている。
2. Description of the Related Art Recent progress in high brightness of blue and green light emitting diodes (LEDs) is remarkable, and ZnSSe-based or AlGaInN-based materials are used as materials. At present, the growth of high quality gallium nitride (GaN) compound semiconductor films on substrates such as sapphire and SiC and the high concentration p-type doping of GaN have enabled the development of high-luminance blue light emitting diodes. It has been realized and uses a double heterostructure as shown in FIG.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、図2に
示すように、表面コンタクト層にワイドバンドギャップ
のGaN(Eg=3.39eV)を用いているために、電
極との電位障壁が大きくなりやすく、このことが動作電
圧の増加を招いてしまう(図3、n型の場合、E Cは伝
導帯の底のエネルギー、EFはフェルミ準位、EVは価電
子帯の底のエネルギー、qφBは電位障壁)。このよう
なワイドバンドギャップ半導体で、接触抵抗を下げるに
は、まず、ヘビードープした層を電極直下に挿入する、
すなわちmetal-n+-n、metal-p+-pなる構造を形成する手
法がある(図4、ただし、n型の場合)。これにより、
電位障壁は残るが、非常に空乏層が薄くなり、キャリア
が自由にトンネル効果で通過できるため、抵抗を示さな
くなる。n型GaNではホール濃度が1019台という高
濃度までドーピングが可能であるが、一方p型GaNド
ーピングでは、現状では1017台レベルまでしか入らな
い。このために、特にp型AlGaInNからなる層と
は、充分低い接触抵抗の実現は困難である。この動作電
圧の増加は、素子の発熱につながり、これは寿命を短く
するため大きな問題となる。
However, in FIG.
Wide bandgap on the surface contact layer as shown
Of GaN (Eg = 3.39eV)
The potential barrier with the poles tends to increase, which causes
This leads to an increase in pressure (Fig. 3, in the case of n type, E CIs
Energy at the bottom of the band, EFIs the Fermi level, EVIs a charge
Energy of the bottom of the band, qφBIs a potential barrier). like this
Wide bandgap semiconductor for lowering contact resistance
First, insert the heavily doped layer directly under the electrode,
In other words, a method to form a structure called metal-n + -n, metal-p + -p
There is a method (Fig. 4, but for n type). This allows
The potential barrier remains, but the depletion layer becomes very thin and carriers
Can freely pass through the tunnel effect, so do not show resistance.
It becomes. In n-type GaN, the hole concentration is 1019High as a stand
Can be doped to a high concentration, while p-type GaN
In the current situation, 1017Only enter the level
Yes. For this purpose, especially a layer made of p-type AlGaInN
It is difficult to realize a sufficiently low contact resistance. This operating power
Increased pressure leads to heat generation of the element, which shortens life
Therefore, it becomes a big problem.

【0004】[0004]

【課題を解決するための手段】我々は、MOCVDやM
BE法でAlGaInN系LEDを作製するにあたり、
AlGaInN系からなる層と電極との間に薄膜のGa
x1ーx(0.1≦x≦0.9)層を挿入することによ
り、上記の課題を解決するに至った。この理由は、Ga
PNは、GaNからP組成を増加させても、またGaP
からN組成を増加させてもバンドギャップが減少し、中
間組成でバンドギャップがゼロになってしまうという特
殊なバンド構造を有しているからである。そこで、ワイ
ドバンドギャップ半導体で、接触抵抗を下げるために、
非常にバンドギャップが小さいもしくはゼロである薄膜
のGaPx1ーx(0.1≦x≦0.9)層を挿入すること
により、キャリア濃度を非常に高くすることができなく
ても、電極と表面層との間で形成される電位障壁が大幅
に低減され、オーミックコンタクトを非常に取り易くな
るためと考えられる(図5、n型の場合)。
[Means for Solving the Problems] We use MOCVD and M
In manufacturing an AlGaInN LED by the BE method,
A thin Ga film is formed between the AlGaInN-based layer and the electrode.
By inserting a P x N 1-x (0.1 ≦ x ≦ 0.9) layer, the above problems have been solved. The reason for this is Ga
PN has the same composition as GaP even if the P composition is increased from GaN.
The reason is that even if the N composition is increased, the band gap decreases, and the band gap becomes zero in the intermediate composition, which is a special band structure. Therefore, in order to reduce the contact resistance with a wide band gap semiconductor,
By inserting a GaP x N 1 -x (0.1 ≦ x ≦ 0.9) layer of a thin film having a very small or zero band gap, even if the carrier concentration cannot be made very high, It is considered that this is because the potential barrier formed between the electrode and the surface layer is significantly reduced, and ohmic contact becomes very easy (FIG. 5, n-type).

【0005】本発明の要点であるAlGaInN系から
なる層と電極との間の薄膜のGaP x1-x(0.1≦x
≦0.9)層としては、厚さ、組成等の値については、
AlGaInN系からなる層のキャリア濃度と組成(バ
ンドギャップ)により異なるため特に限定されないが、
通常好適な厚さとしては、接触抵抗が低下するという効
果を満たすのに必要な厚さがあればよく、通常1μm以
下であり、しばしば5〜100nm程度の厚さで使用さ
れる。
From the AlGaInN system, which is the main point of the present invention,
Thin film GaP between the layer and the electrode xN1-x(0.1 ≦ x
≦ 0.9) For the layer, the thickness, composition, etc.,
The carrier concentration and composition of the AlGaInN-based layer (Ba
It is not particularly limited because it depends on the band gap),
Usually, the preferable thickness is the effect that the contact resistance decreases.
It only needs to have the thickness necessary to fill the fruit, usually less than 1 μm.
Below, often used in thicknesses of the order of 5-100 nm
Be done.

【0006】又より好適な混晶比xとしては、0.1以
上0.9以下であり、より好ましくは0.2以上0.8
以下である。尚、本明細書においてAlGaInN系か
らなる層とは、Al又はInの組成が0のものを含むも
のとする。以下、本発明を実施例を用いてより詳細に説
明するが、本発明はその要旨を超えない限り、実施例に
限定されるものではない。 (実施例)本発明の成長に使用した装置の構成は図6に
示すように中央に基板搬送室を設け、基板交換室1室と
減圧MOCVD装置3台を設置してある。成長室1は通
常のMOCVD装置であり、AlGaInN系化合物半
導体の成長に用いる。成長室2も通常のMOCVD装置
であるがAlGaInN系以外のIII−V族化合物半
導体の成長に用いる。成長室3は、原料をマイクロ波励
起によりラジカル分解することができ、基板表面の窒化
及びAlGaInN系化合物の成長に用いる。図1に示
すような構造のエピタキシャルウエハを成長手順を示
す。
A more preferable mixed crystal ratio x is 0.1 or more and 0.9 or less, and more preferably 0.2 or more and 0.8 or less.
It is the following. In this specification, the layer made of AlGaInN system includes a layer having a composition of Al or In of 0. Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the examples as long as the gist thereof is not exceeded. (Example) As shown in FIG. 6, the apparatus used for the growth of the present invention has a substrate transfer chamber in the center, one substrate exchange chamber and three decompression MOCVD devices. The growth chamber 1 is an ordinary MOCVD apparatus and is used for growing an AlGaInN-based compound semiconductor. The growth chamber 2 is also an ordinary MOCVD apparatus, but is used for growing III-V group compound semiconductors other than AlGaInN. The growth chamber 3 is capable of radically decomposing the raw material by microwave excitation, and is used for nitriding the substrate surface and growing an AlGaInN-based compound. A procedure for growing an epitaxial wafer having a structure as shown in FIG. 1 will be described.

【0007】まずサファイア基板を成長室3に導入し、
加熱昇温する。500゜Cにおいて、成長前に窒素ガス
(N2)を原料として、マイクロ波励起によりラジカル
窒素を基板表面に供給し、表面の酸素(O)原子をN原
子と置換させる工程、すなわち窒化を行う。この表面上
に、GaNバッファ層20nmを成長させる。この後、
基板を冷却し、搬送室を経て成長室1へ基板を移動させ
る。成長温度1000゜Cで加熱し、前記エピタキシャ
ル膜成長基板上に、n型GaNバッファ層4μm、n型
Al0.2Ga0.8Nクラッド層1μm、ZnドープIn
0.1Ga0.9N活性層0.1μm、p型Al0.2Ga0.8
クラッド層1μm、p型GaNコンタクト層1μmを順
次成長させる。このとき、キャリアガスに水素を用い
て、III族原料ガスに、トリメチルガリウム(TM
G)、トリメチルアルミニウム(TMA)、トリメチル
インジウム(TMI)を用いた。V族原料には、一般的
にはアンモニア(NH3)が用いられるが、成長温度の
低減のために、低温での分解効率のよいジメチルヒドラ
ジンやアジ化エチルなどの有機金属を用いてもよい。n
型ドーパントには、SiまたはGeを、p型ドーパント
には、MgまたはZnを用いた。必要に応じて、成長後
に引き続いて成長室内で熱処理を行い、キャリアを活性
化させる。この後、基板を冷却し、搬送室を経て成長室
2へ基板を移動させる。基板を700゜Cに加熱し、前
記エピタキシャル膜成長基板上に厚み20nmのGaP
0.20.8を接触抵抗低減層として成長させる。このと
き、キャリアガスに水素を用いて、III族原料ガス
に、TMGをV族原料には、NH3及びホスフィン(P
3)を使用した。前記GaP0.20.8接触抵抗低減層
は、余り厚くすると発光した光の吸収を大きくしてしま
うが、上記実施例のように、光吸収の影響のない非常に
薄い薄膜でも接触抵抗の低減に、非常に有効である。ま
た、この接触抵抗低減層は、抵抗率が非常に小さいため
に、表面で電流を広げる役割も果たしてくれる。
First, a sapphire substrate is introduced into the growth chamber 3,
Heat up. At 500 ° C., nitrogen gas (N 2 ) is used as a raw material before growth, radical nitrogen is supplied to the substrate surface by microwave excitation, and oxygen (O) atoms on the surface are replaced with N atoms, that is, nitriding is performed. . A GaN buffer layer 20 nm is grown on this surface. After this,
The substrate is cooled and moved to the growth chamber 1 via the transfer chamber. By heating at a growth temperature of 1000 ° C., an n-type GaN buffer layer 4 μm, an n-type Al 0.2 Ga 0.8 N clad layer 1 μm, and Zn-doped In are formed on the epitaxial film growth substrate.
0.1 Ga 0.9 N active layer 0.1 μm, p-type Al 0.2 Ga 0.8 N
A clad layer 1 μm and a p-type GaN contact layer 1 μm are sequentially grown. At this time, hydrogen was used as a carrier gas, and trimethylgallium (TM
G), trimethylaluminum (TMA), and trimethylindium (TMI) were used. Ammonia (NH3) is generally used as the group V raw material, but an organic metal such as dimethylhydrazine or ethyl azide, which has good decomposition efficiency at low temperatures, may be used in order to reduce the growth temperature. n
Si or Ge was used as the type dopant, and Mg or Zn was used as the p-type dopant. If necessary, after the growth, heat treatment is subsequently performed in the growth chamber to activate the carriers. After that, the substrate is cooled and moved to the growth chamber 2 via the transfer chamber. The substrate is heated to 700 ° C., and a 20 nm thick GaP film is formed on the epitaxial film growth substrate.
0.2 N 0.8 is grown as a contact resistance reducing layer. At this time, hydrogen is used as the carrier gas, TMG is used as the group III source gas, NH 3 and phosphine (P
H 3) was used. The GaP 0.2 N 0.8 contact resistance reduction layer increases absorption of emitted light when it is made too thick. However, as in the above embodiment, contact resistance can be reduced even with a very thin thin film that is not affected by light absorption. It is very effective. Further, the contact resistance reducing layer has a very small resistivity, and therefore plays a role of spreading the current on the surface.

【0008】このようにして成長したエピタキシャルウ
エハの表面側に電極を形成し、チップに加工した。この
チップを発光ダイオードとして組み立てて発光させたと
ころ、順方向電流20mAにおいて、発光波長420n
m、発光出力800μWと非常に良好な値が得られた。
このとき動作電圧は3.3Vであり、比較のために作製
したp−GaN表面上に電極を形成した従来の発光ダイ
オードでは動作電圧が4.0Vであった。この動作電圧
の低減は、素子自体の発熱の低下を意味し、素子の寿命
を大きく改善できた。
Electrodes were formed on the surface side of the epitaxial wafer thus grown and processed into chips. When this chip was assembled as a light emitting diode to emit light, a light emission wavelength of 420n at a forward current of 20 mA.
m, and the emission output was 800 μW, which were very good values.
At this time, the operating voltage was 3.3 V, and the operating voltage was 4.0 V in the conventional light emitting diode having electrodes formed on the p-GaN surface prepared for comparison. This reduction in operating voltage means reduction in heat generation of the element itself, and the life of the element could be greatly improved.

【0009】上記実施例は、発光ダイオードについてで
あったが、半導体レーザにも同様な効果があることは言
うまでもなく、そしてその他AlGaInN系半導体層
の上に直接電極を設置する全ての半導体素子について、
抵抗の減少によるロスを減らすことができ、効果を発揮
する。
Although the above-mentioned embodiment is for the light emitting diode, it goes without saying that the semiconductor laser has the same effect, and for all other semiconductor elements in which electrodes are directly provided on the AlGaInN based semiconductor layer,
The loss due to the reduction of resistance can be reduced, and the effect is demonstrated.

【0010】[0010]

【発明の効果】AlGaInN系からなる層と電極との
間に薄膜のGaPx1ーx(0.1≦x≦0.9)層を挿入
することにより、抵抗を低減し、これを発光装置として
用いた場合には、動作電圧を大きく低減することがで
き、紫外〜赤色のAlGaInN系発光素子の特性及び
素子の寿命も大幅に改善できる。
By inserting a thin GaP x N 1 -x (0.1 ≦ x ≦ 0.9) layer between the AlGaInN-based layer and the electrode, the resistance is reduced and the light is emitted. When used as a device, the operating voltage can be greatly reduced, and the characteristics of the ultraviolet to red AlGaInN-based light emitting device and the device life can be greatly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明の半導体装置の一例を示す説明
図である。
FIG. 1 is an explanatory diagram showing an example of a semiconductor device of the present invention.

【図2】図2は従来の半導体装置の一例を示す説明図で
ある。
FIG. 2 is an explanatory diagram showing an example of a conventional semiconductor device.

【図3】図3は、従来のAlGaInN系半導体層の上
に直接電極を設置した場合のエネルギーバンドの説明図
である。
FIG. 3 is an explanatory diagram of an energy band in the case where an electrode is directly placed on a conventional AlGaInN-based semiconductor layer.

【図4】図4は、従来のAlGaInN系半導体層の上
にヘビードープ層を設けその上に電極を設置した場合の
エネルギーバンドの説明図である。
FIG. 4 is an explanatory diagram of an energy band when a heavy doped layer is provided on a conventional AlGaInN-based semiconductor layer and an electrode is provided thereon.

【図5】図5は、本発明のAlGaInN系半導体層の
上にGaPx1-x(0.1≦x≦0.9)層を挿入して電
極を設置した場合のエネルギーバンドの説明図である。
FIG. 5 is an explanation of an energy band when an electrode is provided by inserting a GaP x N 1-x (0.1 ≦ x ≦ 0.9) layer on the AlGaInN-based semiconductor layer of the present invention. It is a figure.

【図6】図6は、実施例1で用いた製造装置の説明図で
ある。
FIG. 6 is an explanatory diagram of a manufacturing apparatus used in Example 1.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】AlGaInN系からなる層と電極との間
に薄膜のGaPx1-x(0.1≦x≦0.9)層を有する
ことを特徴とする半導体装置。
1. A semiconductor device comprising a thin GaP x N 1-x (0.1 ≦ x ≦ 0.9) layer between an AlGaInN-based layer and an electrode.
【請求項2】該AlGaInN系からなる層がp型であ
ることを特徴とする請求項1記載の半導体装置。
2. The semiconductor device according to claim 1, wherein the AlGaInN-based layer is p-type.
JP28195895A 1994-10-28 1995-10-30 Semiconductor device having contact resistance reduction layer Expired - Fee Related JP3605906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28195895A JP3605906B2 (en) 1994-10-28 1995-10-30 Semiconductor device having contact resistance reduction layer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP26549894 1994-10-28
JP6-265498 1994-10-28
JP28195895A JP3605906B2 (en) 1994-10-28 1995-10-30 Semiconductor device having contact resistance reduction layer

Publications (2)

Publication Number Publication Date
JPH08213653A true JPH08213653A (en) 1996-08-20
JP3605906B2 JP3605906B2 (en) 2004-12-22

Family

ID=26546997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28195895A Expired - Fee Related JP3605906B2 (en) 1994-10-28 1995-10-30 Semiconductor device having contact resistance reduction layer

Country Status (1)

Country Link
JP (1) JP3605906B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0854524A2 (en) * 1997-01-16 1998-07-22 Hewlett-Packard Company Nitride semi-conductor device and method of manufacture
JPH11186601A (en) * 1997-12-19 1999-07-09 Showa Denko Kk Compound semiconductor light-emitting device
JP2002094110A (en) * 2000-09-12 2002-03-29 ▲さん▼圓光電股▲ふん▼有限公司 Structure of light emitting diode
US6849864B2 (en) 1997-01-09 2005-02-01 Nichia Chemical Industries, Ltd. Nitride semiconductor device
JP2007067454A (en) * 1997-01-09 2007-03-15 Nichia Chem Ind Ltd Nitride semiconductor device
JP2007081181A (en) * 2005-09-15 2007-03-29 Matsushita Electric Ind Co Ltd Semiconductor light-emitting element
US7863623B2 (en) 2005-09-15 2011-01-04 Panasonic Corporation Semiconductor light emitting device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6849864B2 (en) 1997-01-09 2005-02-01 Nichia Chemical Industries, Ltd. Nitride semiconductor device
JP2007067454A (en) * 1997-01-09 2007-03-15 Nichia Chem Ind Ltd Nitride semiconductor device
US7211822B2 (en) 1997-01-09 2007-05-01 Nichia Chemical Industries, Ltd. Nitride semiconductor device
US7615804B2 (en) 1997-01-09 2009-11-10 Nichia Chemical Industries, Ltd. Superlattice nitride semiconductor LD device
US8541794B2 (en) 1997-01-09 2013-09-24 Nichia Chemical Industries, Ltd. Nitride semiconductor light-emitting devices
EP0854524A2 (en) * 1997-01-16 1998-07-22 Hewlett-Packard Company Nitride semi-conductor device and method of manufacture
EP0854524A3 (en) * 1997-01-16 1998-12-16 Hewlett-Packard Company Nitride semi-conductor device and method of manufacture
US6150672A (en) * 1997-01-16 2000-11-21 Agilent Technologies P-type group III-nitride semiconductor device
JPH11186601A (en) * 1997-12-19 1999-07-09 Showa Denko Kk Compound semiconductor light-emitting device
JP2002094110A (en) * 2000-09-12 2002-03-29 ▲さん▼圓光電股▲ふん▼有限公司 Structure of light emitting diode
JP2007081181A (en) * 2005-09-15 2007-03-29 Matsushita Electric Ind Co Ltd Semiconductor light-emitting element
US7863623B2 (en) 2005-09-15 2011-01-04 Panasonic Corporation Semiconductor light emitting device

Also Published As

Publication number Publication date
JP3605906B2 (en) 2004-12-22

Similar Documents

Publication Publication Date Title
KR100406201B1 (en) Light-emitting gallium nitride-based compound semiconductor device
US5804834A (en) Semiconductor device having contact resistance reducing layer
US6720570B2 (en) Gallium nitride-based semiconductor light emitting device
JP2785254B2 (en) Gallium nitride based compound semiconductor light emitting device
US11569413B2 (en) Method for manufacturing light-emitting element
US8716048B2 (en) Light emitting device and method for manufacturing the same
JP3509260B2 (en) Group 3-5 compound semiconductor and light emitting device
JPH09293897A (en) Semiconductor element and manufacture thereof
US7041519B2 (en) Method for producing p-type group III nitride compound semiconductor
JP3567926B2 (en) pn junction type boron phosphide-based semiconductor light emitting device, method for manufacturing the same, and light source for display device
US8278129B2 (en) Manufacturing method of nitride semi-conductor layer, and a nitride semi-conductor light emitting device with its manufacturing method
JPH10154829A (en) P-type nitride semiconductor growth method and nitride semiconductor element
JP3605906B2 (en) Semiconductor device having contact resistance reduction layer
JP3458007B2 (en) Semiconductor light emitting device
JPH10144960A (en) Method for manufacturing p-type nitride semiconductor and nitride semiconductor element
JP3605907B2 (en) Semiconductor device having contact resistance reduction layer
JPH05243613A (en) Light-emitting device and its manufacture
JP3216596B2 (en) Gallium nitride based compound semiconductor light emitting device
JPH10144612A (en) Growth of semiconductor
JP2021174813A (en) Method of manufacturing light-emitting element
JP7319559B2 (en) Nitride semiconductor light emitting device
JPH07249821A (en) Semiconductor light-emitting element
JP3481305B2 (en) Group III nitride semiconductor light emitting device
CN114664985A (en) Nitride semiconductor light emitting device
JP2004535687A (en) Gallium nitride based LED and method of manufacturing the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040927

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071015

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees