WO2005022711A1 - Nitride semiconductor light emitting element and process for fabricating the same - Google Patents

Nitride semiconductor light emitting element and process for fabricating the same Download PDF

Info

Publication number
WO2005022711A1
WO2005022711A1 PCT/JP2004/012216 JP2004012216W WO2005022711A1 WO 2005022711 A1 WO2005022711 A1 WO 2005022711A1 JP 2004012216 W JP2004012216 W JP 2004012216W WO 2005022711 A1 WO2005022711 A1 WO 2005022711A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
nitride semiconductor
emitting device
active layer
semiconductor light
Prior art date
Application number
PCT/JP2004/012216
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuhisa Fukuda
Atsushi Yamaguchi
Chiaki Sasaoka
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to JP2005513448A priority Critical patent/JPWO2005022711A1/en
Publication of WO2005022711A1 publication Critical patent/WO2005022711A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32341Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm blue laser based on GaN or GaP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/17Semiconductor lasers comprising special layers
    • H01S2301/173The laser chip comprising special buffer layers, e.g. dislocation prevention or reduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2304/00Special growth methods for semiconductor lasers
    • H01S2304/12Pendeo epitaxial lateral overgrowth [ELOG], e.g. for growing GaN based blue laser diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3211Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities

Definitions

  • Nitride semiconductor light emitting device and method of manufacturing the same
  • the present invention relates to a light emitting device having an active layer composed of a nitride semiconductor containing indium and a method for manufacturing the same.
  • FIG. 4 shows a cross-sectional structure diagram of the blue-violet laser reported in Non-Patent Document 1.
  • the laser with this structure has been reported to have a continuous oscillation life of 10,000 hours or more at 2 mW output at room temperature.
  • the structure consists of a double heterostructure formed on a GaN substrate or a heterogeneous substrate, and generally has an active layer using an InGaN quantum well,
  • mV group compound semiconductors containing arsenic arsenide as a group V element have conventionally been used as light emitting elements in the visible-infrared long wavelength region, but AlInGaN-based semiconductors have an In composition ratio of the active layer. Since the emission wavelength can be extended to the infrared by increasing the wavelength, it is attracting attention as a light-emitting element material containing neither phosphorus nor arsenic. for that reason
  • Patent Document 1 JP 2003-152219 A
  • Patent Document 2 Japanese Patent Application Laid-Open No. 9-283799
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2000-236142
  • Patent Document 4 JP-A-8-316528
  • LEDs Light emitting diodes
  • Patent Documents 1 and 2 disclose such long-wavelength light emitting An example of a diode (LED) is shown.
  • the active layer is subjected to a high-temperature treatment for a long time in the upper clad layer forming step and the like, and the quality of the active layer is likely to be significantly deteriorated.
  • problems such as a change in composition due to evaporation of indium are likely to occur.
  • Patent Documents 1 and 2 An effective solution to such a problem peculiar to a semiconductor laser is described in Patent Documents 1 and 2 relating to a light emitting diode.
  • the LED described in Patent Document 1 has a low indium composition of 0.15 in the active layer because it has a low composition.
  • the LED described in Patent Document 2 has an active layer indium composition of 0.9 and a cladding layer indium composition of 0.2.
  • the growth temperature of InGaN with an indium composition of 0.9 is usually about 400-500 ° C
  • the growth temperature of InGaN with an indium composition of 0.2 is usually about 700-800 ° C.
  • the active layer of this LED is subjected to a heat treatment at a temperature 200 ° C. or higher in the cladding layer formation step than that during the growth of the active layer, and the physical properties change greatly in that step, and the light emission characteristics as designed are obtained. It becomes difficult.
  • Patent Document 3 discloses an optical guide layer.
  • Patent Document 4 reports a structure using AlGaN for the cladding but using InGaN for the optical guide layer.
  • InGaN has a softer crystal than AlGaN, so the InGaN light guide layer acts as a buffer layer and can grow an InGaN active layer with a large In composition with good crystallinity. .
  • the structure in which the active layer is sandwiched between the InGaN optical guide layers certainly reduces the lattice strain of the active layer.
  • the crystallinity of the active layer deteriorates.
  • the decomposition temperature of InGaN becomes GaN.
  • the crystallinity of the active layer tends to deteriorate during the high-temperature growth of the optical guide layer and the cladding layer located thereabove, and the above prior art still has room for improvement.
  • the present invention has been made to solve these problems, and an object of the present invention is to provide a light emitting device having an active layer made of an indium-containing semiconductor, particularly a light emitting device that emits light in a long wavelength region.
  • the object is to stably improve the light emission characteristics and the like.
  • Another object of the present invention is to improve the quality of the upper clad layer formed on the active layer and stably improve the light emission characteristics and the like in the light emitting device.
  • the present invention provides the following first means for solving the above problems.
  • the first means is to make a difference in indium composition or a difference in growth temperature between these layers less than a certain value when both the active layer and the cladding layer are made of an indium-containing semiconductor.
  • InN has a low decomposition temperature, so low-temperature crystal growth is required to capture a large amount of In.
  • InGaN used for the active layer of the blue-violet laser is grown at about 800 ° C, and is used for the light guide layer and the cladding layer.
  • the growth temperature of the active layer is further limited to a lower temperature.
  • the active layer is grown during growth of these layers. Is decomposed, and the luminous efficiency is reduced.
  • the quality deterioration of the active layer is suppressed by setting the difference between the indium composition of the active layer and the cladding layer or the difference between the growth temperatures to a certain value or less.
  • the upper cladding layer As described above, in order to suppress the quality deterioration of the active layer, it is effective to configure the upper cladding layer with an indium-containing semiconductor. Alternatively, it is effective to form the upper cladding layer with a semiconductor that can be grown at a low temperature. However, in such a case, there is a problem that the crystal quality of the cladding layer itself is deteriorated. For example, when the upper cladding layer is made of InGaN, many defects occur in the film due to the difference in lattice constant from the substrate material such as GaN or sapphire, and the function as the cladding layer cannot be obtained sufficiently. There is.
  • the present invention provides the following second means for solving the problems that occur when the upper cladding layer is made of an indium-containing semiconductor or the like. That is, the second means is to interpose a lattice relaxation layer between the active layer and the cladding layer.
  • the second means is to interpose a lattice relaxation layer between the active layer and the cladding layer.
  • a lattice relaxation layer is provided, and lattice strain is relaxed there.
  • it is necessary to grow a thick upper cladding layer after the active layer and here also crystallinity is deteriorated due to lattice distortion.
  • the inventors have found through experiments that the upper cladding layer can be grown with good crystallinity by providing the lattice relaxation layer after growing the active layer.
  • the lattice relaxation layer is a layer that relieves lattice distortion between the semiconductor layer serving as an underlayer and the semiconductor layer crystal-grown thereon.
  • the lattice relaxation layer itself is a low-order film, and such a structure reduces strain between semiconductor layers.
  • the active layer and the upper cladding layer are both made of a nitride semiconductor containing indium, and the indium composition of the active layer is x, and the indium composition of the upper cladding layer is y.
  • X force is 3 or more, and (X-y) is 0.4 or less.
  • a nitride semiconductor light emitting device is provided.
  • the indium composition of the active layer is 0.3 or more.
  • the indium composition difference between the active layer and the upper cladding layer is set to 0.4 or less.
  • a layer structure can be suitably formed under the condition that the growth temperature of both is within 100 ° C., and the active layer containing indium can be formed.
  • the upper cladding layer can be formed without deteriorating the quality of the device, and a light emitting device that stably emits light in a long wavelength region can be realized.
  • the activity due to the high-temperature thermal history Deterioration of the quality of the layer can be more effectively suppressed.
  • the life of the light emitting element can be stably improved.
  • the indium composition of the active layer means the indium composition of the well layer.
  • the active layer and the upper cladding layer are both made of a nitride semiconductor containing indium, the growth temperature of the active layer is T (° C.), and the
  • the nitrogen has a T-T force of not more than sioo ° c.
  • a nitride semiconductor light emitting device is provided.
  • a step of forming a lower cladding layer on a substrate a step of forming an active layer made of a nitride semiconductor containing indium on the lower cladding layer, Forming an upper cladding layer made of a nitride semiconductor containing indium on the upper surface of the substrate, setting the growth temperature of the active layer to T (° C.),
  • the nitriding characteristic is that the T-T force is not more than ioo ° c.
  • a method for manufacturing a semiconductor light emitting device is provided.
  • the upper clad layer is formed while suppressing the quality deterioration of the active layer due to the high-temperature thermal history. And a light-emitting element that stably emits light in a long wavelength region can be realized.
  • a substrate a lower cladding layer formed on the substrate, an active layer formed on the lower clad layer, and an upper layer formed on the active layer
  • the active layer is made of a nitride semiconductor containing indium, and a lattice relaxation layer is provided between the active layer and the upper cladding layer or in the upper cladding layer.
  • a nitride semiconductor light emitting device is provided.
  • a step of forming a lower cladding layer on a substrate a step of forming an active layer made of a nitride semiconductor containing indium on the lower cladding layer, Forming a lattice relaxation layer at a temperature equal to or lower than 600 ° C., and forming an upper cladding layer above the lattice relaxation layer.
  • a manufacturing method is provided.
  • the lattice relaxation layer is provided on the active layer, the crystal quality of the cladding layer is improved. As a result, a good light confinement structure is realized.
  • the lattice relaxation layer is preferably made of, for example, a semiconductor containing indium.
  • the quality of the upper cladding layer is improved, the thickness of the cladding layer can be made relatively thin, and as a result, the quality of the active layer can be improved.
  • the upper cladding layer may be made of a nitride semiconductor containing indium. By doing so, quality degradation of the active layer can be suppressed more reliably.
  • the lattice relaxation layer can be a low-temperature growth layer formed at a temperature of 600 ° C. or lower. Further, the lattice relaxation layer can be made of InGaN. By doing so, the lattice relaxation effect can be obtained more reliably, and the quality of the semiconductor layer above the active layer can be more effectively improved.
  • the thickness of the lattice relaxation layer is, for example, not less than lOnm and not more than 100 nm. By doing so, it is possible to surely improve the crystal quality of the semiconductor layer structure.
  • the indium composition ratio of the upper cladding layer can be smaller than the indium composition ratio of the active layer.
  • each of the semiconductor layers above the active layer may be made of a semiconductor having a smaller indium composition ratio than the active layer.
  • the upper cladding layer may be made of InGaN (0 ⁇ y ⁇ l) force. By doing this As a result, quality degradation of the active layer can be suppressed more reliably.
  • the structure of the upper cladding layer is the same as the superlattice structure In Ga N / In Ga N (0 x yl x 1, 0 x y2 x 1, yl ⁇ y2).
  • the In composition y of the clad means the average composition. Note that In Ga N (0 ⁇ y
  • the thickness of the upper cladding layer is preferably, for example, not less than 0.1 and not more than 1. O x m.
  • the structure of the upper cladding layer is different from the superlattice structure.
  • the semiconductor layer located above the active layer may be entirely made of a nitride semiconductor containing indium.
  • a sufficient difference in refractive index for light confinement is also important. From such a viewpoint, for example, it is preferable that the difference between the indium compositions of the active layer and the upper cladding layer be 0.1 or more.
  • the structure further includes a contact layer provided on the active layer and made of a nitride semiconductor containing indium, and an electrode provided in contact with the contact layer.
  • the light emitting device of the present invention can be applied to a light emitting device such as a semiconductor laser and a light emitting diode, and is particularly effective when applied to a semiconductor laser. This is because the problem unique to the semiconductor laser described above can be effectively solved.
  • the light-emitting characteristics and the like can be stably improved.
  • the quality of the upper cladding layer formed on the active layer can be improved, and the light emitting characteristics and the like can be stably improved.
  • FIG. 1 is a sectional structural view of a nitride semiconductor laser device according to the present embodiment.
  • FIG. 2 is a sectional structural view of a nitride semiconductor laser device according to an example.
  • FIG. 3 is a sectional structural view of the nitride semiconductor laser device according to the present embodiment.
  • FIG. 4 is a cross-sectional view showing a structure of a conventional nitride semiconductor laser.
  • FIG. 5 is a graph showing PL characteristics of a nitride semiconductor light emitting device evaluated in an example.
  • FIG. 6 is a force saddle luminescence image of a nitride semiconductor light emitting device evaluated in an example.
  • FIG. 7 is a force saddle luminescence image of a nitride semiconductor light emitting device evaluated in an example.
  • FIG. 8 is a diagram showing a relationship between an indium composition ratio and a band gap energy Eg in an InGaN active layer.
  • FIG. 9 is a graph showing the relationship between the growth temperature of an InGaN active layer and the PL peak energy obtained by PL measurement.
  • FIG. 1 is a schematic cross-sectional view showing one embodiment of the element structure of the present invention, and shows a view when the element is cut in a direction perpendicular to the laser light resonance direction.
  • a GaN film 102, a Si ⁇ 2 mask 103, and an InGaN layer 105 are formed on an ELOG substrate 104 on which n-type GaN is grown on a sapphire substrate 101.
  • the n-type light guide layer 107 and the p-type light guide layer 110 are made of InGaN doped with impurities having respective conductivity types.
  • the mixed crystal ratio b of In is the In mixed b 1-b
  • the p-type cladding layer 111 is made of an InGaN force doped with an impurity exhibiting its conductivity type.
  • the mixed crystal ratio c of the active layer 108 is smaller than the In mixed crystal ratio of the active layer 108.
  • the growth temperature can be set relatively high. Not only aN but also GaN can be used. However, from the viewpoint of improving the quality of the active layer 108, it is more preferable to use InGaN having the same composition as the p-type cladding.
  • the lattice relaxation layer 112 is provided for growing the p-type cladding layer 111 with good crystallinity.
  • the lattice relaxation layer is made of a nitride semiconductor having a lattice constant different from that of an adjacent layer, and is grown at a low temperature of 600 ° C. or less, preferably 400 ° C. and about 10 100 nm. It is preferable that the insertion position be above the active layer. For example, it is preferable to be between the active layer and the upper cladding layer or in the upper cladding layer. By arranging at such a position, introduction of dislocations into the active layer can be suppressed.
  • Examples of a material used for the lattice relaxation layer 112 include InGaN, GaN, and AlGaN. Among them, a material containing indium, particularly InGaN, is preferable. In this case, the In composition is preferably, for example, 0.1 or more and 0.7 or less. This is because the lattice relaxation effect can be reliably obtained. Note that this lattice relaxation layer can be omitted as appropriate.
  • the active layer 108 has a quantum well structure. Increasing the In mixed crystal ratio a of the In Ga N well layer a 1-a
  • a nitride semiconductor laser device oscillating at a long wavelength can be obtained.
  • the In-crystal ratio of the barrier layer should be selected so as to obtain a sufficient energy gap difference for mini-band formation, but the closer the In-crystal ratio to the well layer is as small as possible, the smaller the lattice mismatch, the smaller the active layer. It is expected that the crystallinity of the crystal will be improved, and that the luminous efficiency will be increased and the oscillation threshold will be reduced.
  • the In-crystal ratio in the well layer of the active layer is 0.44, the In-crystal ratio of the barrier layer with a band gap energy difference of 0.3 eV from this well layer is 0.34.
  • the mixed crystal ratio x of In consisting of InGaN (0 ⁇ x ⁇ 1)
  • the photon energy (Eg) at a wavelength of 650 nm is 1.91 eV
  • the value of X is calculated to be 0.44 from the above relational expression, and is set as the In mixed crystal ratio of the well layer.
  • the p-type cap layer 109 is an InGaN force doped with an impurity exhibiting p-type conductivity.
  • the In crystal ratio d is set to be smaller than the In crystal ratio of the p-type cladding layer.
  • This p-type cap layer Although GaN or AlGaN may be used, InGaN is preferable to suppress the thermal decomposition of the active layer.
  • the p-side cap layer can be omitted.
  • the p-type contact layer 113 is made of GaN or InGaN which is doped with an impurity exhibiting p-type conductivity.
  • GaN makes it easier to obtain a preferable ohmic material with the electrode material, but the use of InGaN suppresses the thermal decomposition of the active layer and reduces the threshold current.
  • MOCVD metal organic chemical vapor deposition apparatus
  • Ammonia was used as a group V element source
  • TMG trimethylgallium
  • TMA trimethylaluminum
  • TMI trimethylindium
  • FIG. 1 is a sectional structural view of the nitride semiconductor laser device according to the present embodiment.
  • This semiconductor laser device is manufactured as follows. First, a GaN film 102 is grown on a sapphire substrate 101 by MOCVD. Thereafter, a stripe-shaped SiO film (mask) is formed on the GaN film 102.
  • n-type GaN with Si is selectively grown on it by MOCVD, and low dislocation density GaN is grown laterally on the mask. Then, an n-type GaN-ELOG substrate 104 is manufactured.
  • Si-doped n-type InGaN layer 105 Si-doped n-type In
  • N-type cladding layer 106 composed of GaN (thickness 0.6 ⁇ ), Si-doped n-type InGaN (thickness 0.1 ⁇ )
  • the temperature is set to 700 ° C and the InGaN quantum well
  • the active layer 108 is grown. Subsequently, the temperature is set to 750 ° C and the Mg-doped p-type In GaN cap layer
  • p-type light guide layer 110 made of Mg-doped p-type InGaN (0.1 ⁇ m thickness) 110
  • a strong P-type lattice relaxation layer 112 is grown, the temperature is again raised to 750 ° C, and a p-type cladding layer 111 made of Mg-doped p-type InGaN (0.6 xm thick) and a Mg-doped p-type InGaN ( Thickness 0.05
  • a p-type contact layer 113 made of zm) is grown in order. Thereafter, a ridge structure as shown in FIG. 1 is formed by dry etching or the like, and finally, a p-electrode 114 composed of Ni and Au, and Ti and A1 are formed. An n-electrode 115 is deposited.
  • the indium composition of the active layer 108 (the indium composition of the quantum well layer) is x
  • the indium composition of the p-type cladding layer 111 is y
  • X is 0. 44 and (X-y) force SO.
  • the sapphire substrate of the wafer on which the n-electrode and the p-electrode are formed is polished to 70 zm, and then cleaved into a bar from the substrate side in a direction perpendicular to the laser stripe.
  • a resonator is manufactured.
  • a dielectric multilayer film consisting of TiO and A10 is formed on the resonator surface.
  • the bar is cut in the direction parallel to the p-electrode to obtain a laser device as shown in FIG.
  • the resonator length is desirably 300 to 500 am.
  • the obtained laser element was set on a heat sink, and each electrode was wire-bonded, and laser oscillation was attempted at room temperature. As a result, the threshold current density at room temperature
  • all of the semiconductor layers located above the active layer were made of InGaN having a smaller In composition ratio than the active layer.
  • a p-type lattice relaxation layer 112 which is a low-temperature growth layer, is provided between the active layer 108 and the p-type cladding layer 111. With such a configuration, a good and stable laser element was obtained even at a long wavelength.
  • FIG. 2 is a sectional structural view of the nitride semiconductor laser device according to the present embodiment. This semiconductor laser device differs from the device of Example 1 in that a GaN substrate is used.
  • This semiconductor laser device is manufactured as follows. First, an n-type low dislocation GaN substrate 201 was used as a substrate, and a Si-doped n-type InGaN layer 105 and a Si
  • N-type cladding layer 106 consisting of n-type InGaN layer (1.5 ⁇ m thick), Si-doped n-type InGaN
  • the temperature is increased to 700 ° C and the undoped InGaN quantum well layer (thickness: 3 nm) and the undoped InGaN barrier layer (thickness: 3 nm). Thickness 5nm)
  • Active layer 108 with multiple quantum well structure consisting of Mg-doped p-type InGaN carrier at 750 ° C
  • a Si ⁇ mask (thickness 0.3 ⁇ ) 202 is formed on the p-type light guide layer 110.
  • An opening is formed in a stripe shape with a width of 2 / m by etching. Furthermore, following this opening, a Mg-doped p-type InGaN layer was formed as a p-type lattice relaxation layer 112 with a thickness of 500 p.
  • a ridge structure is formed by selectively growing the p-type contact layer 113. SiO on top
  • a p-electrode 114 made of Ni and Au is deposited. Thereafter, the back surface of the n-type GaN substrate 201 is polished to deposit the n-electrode 115 of Ti and A. As described above, the wafer on which the n-electrode and the p-electrode are formed is cleaved in a bar shape in the direction perpendicular to the stripe-shaped electrodes, and a resonator is formed on the cleavage plane. A dielectric multilayer film consisting of TiO and A10 is formed on the resonator surface.
  • the resonator length is desirably 500 800 ⁇ m.
  • the indium composition of the active layer 108 (the indium composition of the quantum well layer) is x
  • the indium composition of the p-type cladding layer 111 is y
  • X is equal to 0. 44 and (xy) force SO.
  • the obtained laser element was set on a heat sink, each electrode was wire-bonded, and laser oscillation was attempted at room temperature. As a result, the threshold current density at room temperature
  • all the semiconductor layers located above the active layer were made of InGaN having a smaller In composition ratio than the active layer.
  • a p-type lattice relaxation layer 112 which is a low-temperature growth layer, is provided between the active layer 108 and the p-type cladding layer 111.
  • a semiconductor laser structure is formed on a GaN substrate. With such a configuration, a good and stable laser element was obtained even at a long wavelength.
  • FIG. 3 is a sectional structural view of the nitride semiconductor laser device according to the present embodiment.
  • Embodiments 1 and 2 Force using a lattice relaxation layer made of InGaN
  • a lattice relaxation layer made of GaN is used.
  • This semiconductor laser device is manufactured as follows. First, an n-type low dislocation GaN substrate 201 was used as a substrate, and a Si-doped n-type InGaN layer 105 and a Si
  • N-type cladding layer 106 consisting of n-type InGaN layer (1.5 / im thick), Si-doped n-type InGaN
  • the temperature is increased to 700 ° C and the undoped InGaN quantum well layer (thickness: 3 nm) and the undoped InGaN barrier layer (thickness: 3 nm). Thickness 5nm)
  • Active layer 108 with multiple quantum well structure consisting of Mg-doped p-type InGaN carrier at 750 ° C
  • a Si ⁇ mask (thickness 0.3 ⁇ ) 202 is formed on the p-type light guide layer 110.
  • An opening is formed in a stripe shape with a width of 2 m by etching. Further, after this opening, a Mg-doped p-type GaN layer is grown as a p-type lattice relaxation layer 120 at a low temperature of 500 ° C to a thickness of 10 nm. Thickness 0.6
  • a ridge structure is formed by selectively growing the contact layer 113. SiO mask on top
  • n-electrode 115 made of Ti and ⁇ .
  • the wafer on which the n-electrode and the p-electrode are formed is cleaved in a bar shape in a direction perpendicular to the stripe-shaped electrodes, and a resonator is formed on the cleavage plane.
  • a dielectric multilayer film composed of TiO and A10 is formed on the resonator surface, and finally a bar is formed in the direction parallel to the p-electrode.
  • the resonator length is desirably 500-800 ⁇ m.
  • the indium composition of the active layer 108 (the indium composition of the quantum well layer) is x
  • the indium composition of the p-type cladding layer 111 is y
  • X is 0. 44 and (X-y) force SO.
  • FIG. 2 shows a cross-sectional structure of the nitride semiconductor laser device according to the present example.
  • the cross-sectional structure is similar to that of the second embodiment, the n-type cladding layer is made of InGaN in the second embodiment, whereas GaN is used in the present embodiment.
  • This semiconductor laser device is manufactured as follows. N-type low dislocation as substrate
  • a Si-doped n-type InGaN layer 105 was grown on this substrate at 800 ° C.
  • the temperature was raised to 900 ° C to grow an ⁇ -type cladding layer 106 composed of a Si-doped n-type GaN layer (1.5 ⁇ m thick), and then the temperature was lowered to 750 ° C to reduce the Si-doped ⁇ -type InGa From N (thickness ⁇ . ⁇ ⁇ ⁇ )
  • the ⁇ -type light guide layer 107 is grown. Subsequently, the temperature was set to 700 ° C and undoped In Ga
  • N quantum well layer thinness 3nm
  • undoped InGaN barrier layer thinness 5nm
  • An active layer 108 having a well structure is grown, and a Mg-doped p-type InGaN cap layer (750 ° C) is formed.
  • an SiO mask (thickness 0.3 ⁇ ) 202 is formed on the p-type light guide layer 110 by sputtering.
  • an opening is formed in a stripe shape having a width of 2 / m by etching.
  • an Mg-doped p-type InGaN layer was formed as a p-type lattice relaxation layer 112 at a low temperature of 500 ° C to a thickness of 10 nm.
  • the temperature was raised to 750 ° C and the Mg-doped p-type InGaN layer (thickness: 0.6 ⁇ m) was removed.
  • P-type cladding layer 1 1 1 1, p-type contact layer 1 made of Mg-doped p-type InGaN (0.05 ⁇ m thick)
  • a ridge structure is formed by selectively growing 13. Form a SiO mask on top
  • the indium composition of the active layer 108 (the indium of the quantum well layer) Assuming that x is the composition) and y is the indium composition of the p-type cladding layer 111, X is 0.44 and the (X-y) force is SO.
  • the wafer on which the n-electrode and the p-electrode are formed is cleaved in a bar shape in a direction perpendicular to the stripe-shaped electrodes, and a resonator is formed on the cleavage plane. More than TiO and Al 0 on the cavity surface
  • a bar is cut in a direction parallel to the P electrode to obtain a laser device as shown in FIG.
  • the length of the resonator is desirably 500-800 zm. Obtained
  • the laser element thus obtained was placed on a heat sink, and the respective electrodes were wire-bonded, and laser oscillation was attempted at room temperature. As a result, continuous oscillation with an oscillation wavelength of approximately 650 nm was confirmed at room temperature with a threshold current density of 6 kA m 2 and a threshold voltage of 7 V, and showed a life of 1000 hours or more at room temperature.
  • the force in which the n-type cladding layer is made of GaN instead of InGaN is made of GaN instead of InGaN.
  • FIG. 2 shows a cross-sectional structure of the nitride semiconductor laser device according to the present example.
  • the cross-sectional structure is similar to that of the second embodiment.
  • the p-type contact layer is made of InGaN, whereas in this embodiment, GaN is used.
  • This semiconductor laser device is manufactured as follows. N-type low dislocation as substrate
  • N-type cladding layer 106 consisting of n-type InGaN layer (1.5 / im thick), Si-doped n-type InGaN (
  • the temperature is increased to 700 ° C and the undoped In Ga N quantum well layer (thickness 3 nm) and undoped In Ga N Barrier layer (5nm thickness)
  • Active layer 108 with multiple quantum well structure consisting of Mg-doped p-type InGaN carrier at 750 ° C
  • An opening is formed in a stripe shape with a width of 2 / m by etching. Furthermore, following this opening, an Mg-doped p-type InGaN layer is formed as a p-type lattice relaxation layer 112 for 500 ⁇ m.
  • a ridge structure is formed by selectively growing a p-type cladding layer 111 composed of 0.27 0.73 and 0.6 ⁇ m) and a p-type contact layer 113 composed of Mg-doped p-type GaN (thickness 0.05 ⁇ m). On top of that, a SiO mask
  • a p-electrode 114 made of Ni and Au is deposited. Thereafter, the back surface of the n-type GaN substrate 201 is polished to deposit an n-electrode 115 of Ti and A.
  • the indium composition of the active layer 108 (quantum well Assuming that x is the indium composition of the door layer and y is the indium composition of the p-type cladding layer 111, X is 0.44 and the (xy) force is SO.
  • the wafer on which the n-electrode and the p-electrode are formed is cleaved in a bar shape in a direction perpendicular to the stripe-shaped electrodes, and a resonator is formed on the cleavage plane. More than TiO and A10 on the cavity surface
  • a bar is cut in a direction parallel to the P electrode to obtain a laser device as shown in FIG.
  • the length of the resonator is desirably 500-800 zm.
  • the obtained laser element was placed on a heat sink, and the respective electrodes were wire-bonded, and laser oscillation was attempted at room temperature.
  • continuous oscillation with an oscillation wavelength of approximately 650 nm was confirmed at room temperature with a threshold current density of 6 kA m 2 and a threshold voltage of 6 V, and showed a life of 1000 hours or more at room temperature.
  • the force at which the p-type contact layer is made of GaN instead of InGaN is made of GaN instead of InGaN.
  • the PL (photoluminescence) characteristics of the quantum well active layer made of InGaN were evaluated.
  • a structure in which a quantum well active layer was formed on a GaN substrate was used as a measurement sample.
  • a quantum well layer was formed by the same structure and formation method as in Example 2. The growth temperature is 700 ° C.
  • the composition and thickness of the well layer and barrier layer are as follows
  • the sample was obtained by cooling to room temperature without raising the temperature.
  • heat treatment was performed at 900 ° C for 10 minutes and then cooled to room temperature to obtain Sample 2.
  • FIG. 5 shows the result.
  • a corresponds to sample 1
  • b corresponds to sample 2.
  • sample 1 good emission was observed in the long wavelength region
  • sample 2 emission in both the long wavelength region and the short wavelength region was observed.
  • FIG. 6 and FIG. 7 are diagrams showing CL (force saddle luminescence image) observation results of these samples.
  • CL force saddle luminescence image
  • a plurality of filters for observing red light emission and blue light emission were prepared, and the light emission state was observed by observing through these filters.
  • Fig. 6 corresponds to sample 1, and only red light emission of 500 nm or more was observed.
  • FIG. 7 corresponds to Sample 2, in which blue light emission of less than 50 Onm and red light emission of 500 nm or more were observed.
  • FIG. 8 is a diagram showing the relationship between the indium composition ratio and the band gap energy Eg in the InGaN active layer.
  • FIG. 9 is a diagram showing the relationship between the growth temperature of the InGaN active layer and the PL peak energy obtained by PL measurement.
  • the PL peak energy ideally matches the band gap Eg.
  • E indicates Eg, that is, band gap energy.
  • X indicates the In composition ratio.
  • Ts is the growth temperature.
  • Indium composition 0.2 Growth temperature about 750 ° C
  • Indium composition 0.4 Growth temperature about 700 ° C
  • Indium composition 0.6 Growth temperature about 650 ° C
  • the InGaN active layer it is important to lower the growth temperature of the clad layer and the like located thereon. Specifically, it is preferable to set the temperature not to exceed (active layer growth temperature + 100 ° C.). By doing so, quality degradation of the active layer due to heat history can be effectively suppressed.
  • the composition ratio is 0.41, that is, the difference between the indium composition ratio of the active layer and the indium composition of the cladding layer is 0.41 or less.
  • the difference between the indium compositions of the active layer and the upper cladding layer is preferably set to 0.41 or less, whereby the power for realizing stable long-wavelength light emission can be obtained.
  • a laser device was obtained in the same manner as in Example 1, except that the materials and the growth temperatures of the active layer 108 and the p-type cladding layer 111 were changed as follows.
  • InGaN quantum well layer (3.5nm thick) and InGaN barrier layer (10.5nm thick)
  • the obtained laser element was placed on a heat sink, each electrode was wire-bottled, and laser oscillation was attempted at room temperature.
  • the threshold current density at room temperature At 6.5 kA / cm 2 and a threshold voltage of 7 V, continuous oscillation with an oscillation wavelength of approximately 680 nm was confirmed.
  • a laser device was obtained in the same manner as in Example 1, except that the materials and the growth temperatures of the active layer 108 and the p-type cladding layer 111 were changed as follows.
  • InGaN quantum well layer (3.5nm thick) and InGaN barrier layer (10.5nm thick)
  • the obtained laser device was placed on a heat sink, and each electrode was wire-bonded, and laser oscillation was attempted at room temperature. As a result, the threshold current density at room temperature
  • Example 1 At 10 kA m 2 and a threshold voltage of 9 V, continuous oscillation with an oscillation wavelength of approximately 680 nm was confirmed.
  • the threshold current density was slightly higher than in Example 1. It is considered that the structure of Example 1 was more effectively suppressed from deteriorating the film quality of the active layer and the like during wire bonding.
  • the structure of the laser element is not limited to the ridge type shown in the above-described embodiment.
  • an inner stripe type in which a current blocking layer is provided in the laser structure may be used.
  • a structure in which the lattice relaxation layer 112 is not provided may be employed.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

A p-type clad layer (111) is composed of IncGa1-cN. Mixed crystal ratio c of In is set lower than that of an active layer (108). A lattice relaxation layer (112) is provided between the active layer (108) and the p-type clad layer (111). The lattice relaxation layer (112) is provided in order to grow the p-type clad layer (111) with good crystallinity. The lattice relaxation layer is composed of a nitride semiconductor having a lattice constant different from that of an adjacent layer and grows about 5-10 nm at a temperature as low as 500-600˚C. Inserting position may be on the interface of p-type light guide layer/clad layer or in the middle of the p-type clad layer. The nitride semiconductor to be inserted may be made of InGaN, GaN, AlGaN, and the like, and InGaN is especially preferable.

Description

明 細 書  Specification
窒化物半導体発光素子およびその製造方法  Nitride semiconductor light emitting device and method of manufacturing the same
技術分野  Technical field
[0001] 本発明は、インジウムを含む窒化物半導体により構成された活性層を有する発光 素子およびその製造方法に関する。  The present invention relates to a light emitting device having an active layer composed of a nitride semiconductor containing indium and a method for manufacturing the same.
背景技術  Background art
[0002] DVD等の高密度記録装置用の光源として研究が進められてきた青紫色 (405nm)半 導体レーザは、窒化物半導体 AlInGaNを用いて既にその実用化が現実のものとなつ た。図 4に非特許文献 1で報告している青紫色レーザの断面構造図を示す。この構 造のレーザは、室温において 2mW出力で 1万時間以上の連続発振寿命が報告され ている。その構成は GaN基板上、あるいは異種基板上に形成されたダブルへテロ構 造からなり、一般的に In Ga N量子井戸を用いた活性層を有し、それを GaNによる n  [0002] A blue-violet (405 nm) semiconductor laser, which has been studied as a light source for high-density recording devices such as DVDs, has already become practical with the use of nitride semiconductor AlInGaN. FIG. 4 shows a cross-sectional structure diagram of the blue-violet laser reported in Non-Patent Document 1. The laser with this structure has been reported to have a continuous oscillation life of 10,000 hours or more at 2 mW output at room temperature. The structure consists of a double heterostructure formed on a GaN substrate or a heterogeneous substrate, and generally has an active layer using an InGaN quantum well,
0.1 0.9  0.1 0.9
型、 p型光ガイド層と AlGaNを含む n型、 p型クラッド層で挟んだ構造が用いられている  Structure between n-type and p-type cladding layers containing AlGaN and p-type light guide layer
[0003] 一方、可視一赤外の長波長領域における発光素子としては V族元素として燐ゃ砒 素を含む m-V族化合物半導体が従来用いられてきたが、 AlInGaN系半導体は活性 層の In組成比を大きくすることによって発光波長を赤外まで長波化すること可能であ ることから、燐や砒素を含まない発光素子材料として注目されている。そのため [0003] On the other hand, mV group compound semiconductors containing arsenic arsenide as a group V element have conventionally been used as light emitting elements in the visible-infrared long wavelength region, but AlInGaN-based semiconductors have an In composition ratio of the active layer. Since the emission wavelength can be extended to the infrared by increasing the wavelength, it is attracting attention as a light-emitting element material containing neither phosphorus nor arsenic. for that reason
AlInGaNを用いた長波長領域の発光素子に関しても研究が進められている。  Research is also being conducted on a long wavelength light emitting device using AlInGaN.
非特許文献 l :Jpn. J. Appl. Phys.vol. 36 (1997), Nakamura etc., pp. L1568-1571 特許文献 1 :特開 2003 - 152219号公報  Non-Patent Document l: Jpn.J. Appl. Phys. Vol. 36 (1997), Nakamura etc., pp. L1568-1571 Patent Document 1: JP 2003-152219 A
特許文献 2:特開平 9 - 283799号公報  Patent Document 2: Japanese Patent Application Laid-Open No. 9-283799
特許文献 3:特開 2000 - 236142号公報  Patent Document 3: Japanese Patent Application Laid-Open No. 2000-236142
特許文献 4 :特開平 8— 316528号公報  Patent Document 4: JP-A-8-316528
発明の開示  Disclosure of the invention
[0004] こうした AlInGaN系長波長領域の発光素子にっレ、ては、発光ダイオード (LED)が すでに開発されている。特許文献 1および特許文献 2には、そうした長波長の発光ダ ィオード(LED)の例が示されてレ、る。 [0004] Light emitting diodes (LEDs) have already been developed for such AlInGaN-based long-wavelength light emitting devices. Patent Documents 1 and 2 disclose such long-wavelength light emitting An example of a diode (LED) is shown.
[0005] し力しながら、 AlInGaN系長波長半導体レーザについては、未だ実用段階の素子 は得られていない。半導体レーザの場合、活性層の In組成比を大きくして発光波長 を長波化すると、発光効率が顕著に低下するという課題がある。これは、 In組成比を 大きくすると GaNや AlGaNとの格子不整合が大きくなり、結晶性の良い活性層を得る ことが困難になることによる。  [0005] However, AlInGaN-based long-wavelength semiconductor lasers have not yet been manufactured in practical use. In the case of a semiconductor laser, there is a problem that when the In composition ratio of the active layer is increased to increase the emission wavelength, the emission efficiency is significantly reduced. This is because when the In composition ratio is increased, the lattice mismatch with GaN or AlGaN increases, and it becomes difficult to obtain an active layer with good crystallinity.
[0006] また、半導体レーザの設計にあたっては、活性層上部の光閉じ込め効率をより向上 させる必要があり、上部クラッド層の厚みを充分に確保することが望まれる。ところがこ のようにした場合、上部クラッド層形成工程等において活性層が長時間高温処理を 受けることになり、活性層の品質劣化が顕著となりやすい。特にインジウムを含む半 導体では、インジウムの蒸発により組成が変動する等の問題が生じやすい。  [0006] In designing a semiconductor laser, it is necessary to further improve the light confinement efficiency above the active layer, and it is desired to ensure a sufficient thickness of the upper cladding layer. However, in this case, the active layer is subjected to a high-temperature treatment for a long time in the upper clad layer forming step and the like, and the quality of the active layer is likely to be significantly deteriorated. Particularly, in a semiconductor containing indium, problems such as a change in composition due to evaporation of indium are likely to occur.
[0007] 以上のように、インジウムを含む活性層を備えた半導体レーザの設計にあっては、 良好な品質の活性層を安定的に形成することが重要な技術的課題となる。  [0007] As described above, in designing a semiconductor laser having an active layer containing indium, it is an important technical problem to stably form an active layer of good quality.
[0008] こうした半導体レーザ特有の課題に対する有効な解決策は、発光ダイオードに関 する先述の特許文献 1、 2には何ら記載されてレ、なレ、。  [0008] An effective solution to such a problem peculiar to a semiconductor laser is described in Patent Documents 1 and 2 relating to a light emitting diode.
[0009] また、特許文献 1記載の LEDは活性層インジウム組成が 0. 15と低組成であるからAlso, the LED described in Patent Document 1 has a low indium composition of 0.15 in the active layer because it has a low composition.
、上記したような活性層の品質劣化の課題が生じない。 Thus, the problem of quality deterioration of the active layer as described above does not occur.
一方、特許文献 2記載の LEDは活性層インジウム組成が 0. 9、クラッド層インジウム 組成が 0. 2である。インジウム組成が 0. 9の InGaNの成長温度は、通常、 400— 50 0°C程度であり、インジウム組成が 0. 2の InGaNの成長温度は、通常、 700— 800°C 程度であるので、この LEDの活性層は、クラッド層形成工程で活性層成長時よりも 2 00°C以上高い温度で熱処理を受けることになり、その工程で物性が大きく変動し、設 計通りの発光特性を得ることが困難となる。  On the other hand, the LED described in Patent Document 2 has an active layer indium composition of 0.9 and a cladding layer indium composition of 0.2. The growth temperature of InGaN with an indium composition of 0.9 is usually about 400-500 ° C, and the growth temperature of InGaN with an indium composition of 0.2 is usually about 700-800 ° C. The active layer of this LED is subjected to a heat treatment at a temperature 200 ° C. or higher in the cladding layer formation step than that during the growth of the active layer, and the physical properties change greatly in that step, and the light emission characteristics as designed are obtained. It becomes difficult.
[0010] 一方、長波長半導体レーザに関する技術として、特許文献 3には、光ガイド層が[0010] On the other hand, as a technique relating to a long wavelength semiconductor laser, Patent Document 3 discloses an optical guide layer.
InGaN,クラッド層が GaN、コンタクト層が GaN力、らなる SCH構造、すなわち A1を使わな い素子構造の半導体レーザが記載されている。同文献によれば、 A1を使わないこと で活性層とクラッド層の格子定数差が小さくなるため、結晶性の良い InGaN活性層が 成長できることが示されてレ、る。 [0011] また特許文献 4には、クラッドには AlGaNを用いるものの光ガイド層には InGaNを用 いた構造が報告されている。同文献によると、 InGaNは AlGaNに比べて結晶が柔らか いので、 InGaN光ガイド層が緩衝層の役目を果たし、 In組成の大きな InGaN活性層を 結晶性良く成長することができると記載されている。このように活性層を InGaN光ガイ ド層で挟んだ構造では、確かに活性層の格子歪みを減らすことできる力 さらに In組 成比が大きくなると GaN、 AlGaNクラッド層との格子定数差が大きくなつてしまレ、、活性 層の結晶性が悪化する。くわえて In組成比が大きくなると In Ga Nの分解温度は GaN A semiconductor laser having a SCH structure in which InGaN is used, the cladding layer is GaN, and the contact layer is GaN power, that is, a device structure that does not use A1 is described. According to the literature, it is shown that the absence of A1 reduces the difference in lattice constant between the active layer and the cladding layer, so that an InGaN active layer with good crystallinity can be grown. [0011] Patent Document 4 reports a structure using AlGaN for the cladding but using InGaN for the optical guide layer. According to the document, InGaN has a softer crystal than AlGaN, so the InGaN light guide layer acts as a buffer layer and can grow an InGaN active layer with a large In composition with good crystallinity. . In this way, the structure in which the active layer is sandwiched between the InGaN optical guide layers certainly reduces the lattice strain of the active layer. The crystallinity of the active layer deteriorates. In addition, as the In composition ratio increases, the decomposition temperature of InGaN becomes GaN.
1  1
及び AlGaNに比べて極めて低くなるため、良質な In Ga N活性層を成長させたとして  And a very low quality compared to AlGaN.
1  1
も、その上層に位置する光ガイド層ゃクラッド層の高温成長中に活性層の結晶性が 劣化する傾向があり、上記従来技術はなお改善の余地を有していた。  However, the crystallinity of the active layer tends to deteriorate during the high-temperature growth of the optical guide layer and the cladding layer located thereabove, and the above prior art still has room for improvement.
[0012] 本発明はこれらの課題を解決するためになされたものであり、その目的とするところ は、インジウム含有半導体からなる活性層を有する発光素子、特に長波長領域の発 光を示す発光素子において、その発光特性等を安定的に向上させることにある。  The present invention has been made to solve these problems, and an object of the present invention is to provide a light emitting device having an active layer made of an indium-containing semiconductor, particularly a light emitting device that emits light in a long wavelength region. In the above, the object is to stably improve the light emission characteristics and the like.
[0013] また本発明の別な目的は、上記発光素子において、活性層上に形成された上部ク ラッド層の品質を向上させ、発光特性等を安定的に向上させることにある。  [0013] Another object of the present invention is to improve the quality of the upper clad layer formed on the active layer and stably improve the light emission characteristics and the like in the light emitting device.
[0014] インジウム含有窒化物半導体からなる活性層を有する発光素子において、充分な 発光特性が得られない理由は、活性層形成後、その上部の半導体層を形成するェ 程で活性層の品質劣化が起こることによるものと考えられる(実施例 7にて後述)。  [0014] In a light emitting device having an active layer made of an indium-containing nitride semiconductor, sufficient light emitting characteristics cannot be obtained because, after the active layer is formed, the quality of the active layer deteriorates during the process of forming a semiconductor layer on the active layer. This is considered to be caused by the occurrence of (described later in Example 7).
[0015] こうした課題に対し、本発明は以下の第一の解決手段を提供する。  [0015] The present invention provides the following first means for solving the above problems.
[0016] 第一の手段は、活性層およびクラッド層をともにインジウム含有半導体で構成した 場合において、これらの層のインジウム組成差あるいは成長温度の差を一定値以下 にするものである。窒化物半導体のなかでも InNは分解温度が低いために、 Inを多く 取り込むためには低温での結晶成長が必要となる。青紫色レーザの活性層に用いら れている In Ga Nでさえ 800°C程度で成長されており、光ガイド層ゃクラッド層に用  [0016] The first means is to make a difference in indium composition or a difference in growth temperature between these layers less than a certain value when both the active layer and the cladding layer are made of an indium-containing semiconductor. Among the nitride semiconductors, InN has a low decomposition temperature, so low-temperature crystal growth is required to capture a large amount of In. Even InGaN used for the active layer of the blue-violet laser is grown at about 800 ° C, and is used for the light guide layer and the cladding layer.
0.1 0.9  0.1 0.9
いられている GaNや AlGaNの成長温度に比べると 100— 200°C程度低い。発光波長を より長波化するためには活性層の In含有量を増やす必要があるが、その場合活性層 の成長温度はますます低温に制限される。だ力 その上に GaN や AlGaNによる光ガ イド層およびクラッド層を 900 1000°Cで成長させると、これらの層の成長中に活性層 が分解してしまい、発光効率が低下してしまう。これに対し本発明では、活性層およ びクラッド層のインジウム組成差あるいは成長温度の差を一定値以下とすることにより 、活性層の品質劣化を抑制している。 It is about 100-200 ° C lower than the growth temperature of GaN and AlGaN. In order to increase the emission wavelength, it is necessary to increase the In content of the active layer. In this case, the growth temperature of the active layer is further limited to a lower temperature. When a light guide layer and a cladding layer made of GaN or AlGaN are grown at 900-1000 ° C, the active layer is grown during growth of these layers. Is decomposed, and the luminous efficiency is reduced. On the other hand, in the present invention, the quality deterioration of the active layer is suppressed by setting the difference between the indium composition of the active layer and the cladding layer or the difference between the growth temperatures to a certain value or less.
[0017] このように、活性層の品質劣化を抑制するためには、上部クラッド層をインジウム含 有半導体で構成することが有効である。あるいは、上部クラッド層を、低温成長可能 な半導体で構成することが有効である。しかし、このようにした場合、今度はクラッド層 自体の結晶品質の低下が問題となる。たとえば InGaNにより上部クラッド層を構成し た場合、 GaNやサファイア等の基板材料との格子定数の相違に起因して膜中に多く の欠陥が生じ、クラッド層としての機能が充分に得られないことがある。そこで本発明 は、上部クラッド層をインジウム含有半導体等により構成した場合に生じる課題を解 決すべぐ以下の第二の手段を提供する。すなわち、第二の手段は、活性層とクラッ ド層の間に、格子緩和層を介在させることである。一般に GaNの上に格子定数の異な る InGaNを成長させるような場合には格子緩和層を設け、そこで格子歪を緩和させる ことが行われる。しかし、半導体レーザの設計にあっては、厚い上部クラッド層を活性 層よりも後に成長する必要があり、ここではやはり格子歪が原因で結晶性が悪化する 。発明者らは実験により、活性層を成長させた後に格子緩和層を設けることで、上部 クラッド層を結晶性良く成長できることを見出した。格子緩和層とは、下地となる半導 体層と、その上に結晶成長させた半導体層との間の格子歪みを緩和する層である。 格子緩和層自体は秩序性の低い膜であり、そうした構造により半導体層間の歪みを 緩和する。こうした層を設けることにより、上部クラッド層をインジウム含有半導体等に より構成した場合にも、当該クラッド層の結晶品質を良好に維持し、優れた発光特性 を安定的に示す素子を提供することができる。  As described above, in order to suppress the quality deterioration of the active layer, it is effective to configure the upper cladding layer with an indium-containing semiconductor. Alternatively, it is effective to form the upper cladding layer with a semiconductor that can be grown at a low temperature. However, in such a case, there is a problem that the crystal quality of the cladding layer itself is deteriorated. For example, when the upper cladding layer is made of InGaN, many defects occur in the film due to the difference in lattice constant from the substrate material such as GaN or sapphire, and the function as the cladding layer cannot be obtained sufficiently. There is. Therefore, the present invention provides the following second means for solving the problems that occur when the upper cladding layer is made of an indium-containing semiconductor or the like. That is, the second means is to interpose a lattice relaxation layer between the active layer and the cladding layer. In general, when growing InGaN with a different lattice constant on GaN, a lattice relaxation layer is provided, and lattice strain is relaxed there. However, in designing a semiconductor laser, it is necessary to grow a thick upper cladding layer after the active layer, and here also crystallinity is deteriorated due to lattice distortion. The inventors have found through experiments that the upper cladding layer can be grown with good crystallinity by providing the lattice relaxation layer after growing the active layer. The lattice relaxation layer is a layer that relieves lattice distortion between the semiconductor layer serving as an underlayer and the semiconductor layer crystal-grown thereon. The lattice relaxation layer itself is a low-order film, and such a structure reduces strain between semiconductor layers. By providing such a layer, even when the upper clad layer is made of an indium-containing semiconductor or the like, it is possible to provide a device that maintains the crystal quality of the clad layer well and stably exhibits excellent light emitting characteristics. it can.
[0018] 以下、本発明の構成をより具体的に説明する。  Hereinafter, the configuration of the present invention will be described more specifically.
[0019] 本発明によれば、基板と、該基板上に形成された下部クラッド層と、前記下部クラッ ド層の上部に形成された活性層と、前記活性層の上部に形成された上部クラッド層と 、を備え、前記活性層および前記上部クラッド層は、いずれもインジウムを含む窒化 物半導体からなり、前記活性層のインジウム組成を x、前記上部クラッド層のインジゥ ム組成を yとしたとき、 X力 3以上であり、 (X— y)が 0. 4以下であることを特徴とする 窒化物半導体発光素子が提供される。 According to the present invention, a substrate, a lower cladding layer formed on the substrate, an active layer formed on the lower cladding layer, and an upper cladding formed on the active layer Wherein the active layer and the upper cladding layer are both made of a nitride semiconductor containing indium, and the indium composition of the active layer is x, and the indium composition of the upper cladding layer is y. X force is 3 or more, and (X-y) is 0.4 or less. A nitride semiconductor light emitting device is provided.
[0020] 本発明では、活性層インジウム組成を 0. 3以上としている。このような長波長発光 組成とした場合、その上部の半導体層成長時における活性層の品質劣化が顕在化 する。本発明によれば、活性層と上部クラッド層とのインジウム組成差を 0. 4以下とし ている。実施例にて後述するように、このような組成差であれば、両者の成長温度を 1 00°C以内とする条件にて好適に層構造を形成することができ、インジウムを含む活 性層の品質を劣化することなく上部クラッド層を形成することができ、安定的に長波長 領域の発光を示す発光素子を実現できる。  In the present invention, the indium composition of the active layer is 0.3 or more. When such a long-wavelength light-emitting composition is used, quality degradation of the active layer during the growth of the semiconductor layer above the light-emitting composition becomes apparent. According to the present invention, the indium composition difference between the active layer and the upper cladding layer is set to 0.4 or less. As will be described later in the examples, with such a composition difference, a layer structure can be suitably formed under the condition that the growth temperature of both is within 100 ° C., and the active layer containing indium can be formed. The upper cladding layer can be formed without deteriorating the quality of the device, and a light emitting device that stably emits light in a long wavelength region can be realized.
[0021] ここで、活性層および上部クラッドとのインジウム組成差を 0. 2以下とする構成、ま たは両者の成長温度を 70°C以内とする構成を採用すれば、高温熱履歴による活性 層の品質低下を、より一層効果的に抑制することができる。特に、発光素子の寿命を 安定的に向上させることができる。  Here, by adopting a configuration in which the indium composition difference between the active layer and the upper clad is 0.2 or less, or a configuration in which the growth temperature of both is within 70 ° C., the activity due to the high-temperature thermal history Deterioration of the quality of the layer can be more effectively suppressed. In particular, the life of the light emitting element can be stably improved.
[0022] なお、活性層のインジウム組成とは、量子井戸構造の場合、井戸層のインジウム組 成を意味するものとする。  [0022] In the case of a quantum well structure, the indium composition of the active layer means the indium composition of the well layer.
[0023] また本発明によれば、基板と、該基板上に形成された下部クラッド層と、前記下部ク ラッド層の上部に形成された活性層と、前記活性層の上部に形成された上部クラッド 層と、を備え、前記活性層および前記上部クラッド層は、いずれもインジウムを含む窒 化物半導体からなり、前記活性層の成長温度を T (°C)、前記上部クラッド層のインジ  Further, according to the present invention, a substrate, a lower cladding layer formed on the substrate, an active layer formed on the lower clad layer, and an upper layer formed on the active layer Wherein the active layer and the upper cladding layer are both made of a nitride semiconductor containing indium, the growth temperature of the active layer is T (° C.), and the
2  2
ゥムの成長温度を T (°C)としたとき、 T -T力 sioo°c以下であることを特徴とする窒  Assuming that the growth temperature of the film is T (° C), the nitrogen has a T-T force of not more than sioo ° c.
1 1 2  1 1 2
化物半導体発光素子が提供される。  A nitride semiconductor light emitting device is provided.
[0024] また本発明によれば、基板上に下部クラッド層を形成する工程と、前記下部クラッド 層の上部に、インジウムを含む窒化物半導体からなる活性層を形成する工程と、前 記活性層の上部に、インジウムを含む窒化物半導体からなる上部クラッド層を形成す る工程と、を含み、前記活性層の成長温度を T (°c)、前記上部クラッド層のインジゥ  Further, according to the present invention, a step of forming a lower cladding layer on a substrate, a step of forming an active layer made of a nitride semiconductor containing indium on the lower cladding layer, Forming an upper cladding layer made of a nitride semiconductor containing indium on the upper surface of the substrate, setting the growth temperature of the active layer to T (° C.),
2  2
ムの成長温度を T (°C)としたとき、 T -T力 ioo°c以下であることを特徴とする窒化  When the growth temperature of the system is T (° C), the nitriding characteristic is that the T-T force is not more than ioo ° c.
1 1 2  1 1 2
物半導体発光素子の製造方法が提供される。  A method for manufacturing a semiconductor light emitting device is provided.
[0025] 本発明によれば、活性層および上部クラッド層の成長温度の差が 100°C以下であ るため、高温の熱履歴による活性層の品質低下を抑制しつつ上部クラッド層を形成 することができ、安定的に長波長領域の発光を示す発光素子を実現できる。 According to the present invention, since the difference between the growth temperatures of the active layer and the upper clad layer is 100 ° C. or less, the upper clad layer is formed while suppressing the quality deterioration of the active layer due to the high-temperature thermal history. And a light-emitting element that stably emits light in a long wavelength region can be realized.
[0026] また本発明によれば、基板と、該基板上に形成された下部クラッド層と、前記下部ク ラッド層の上部に形成された活性層と、前記活性層の上部に形成された上部クラッド 層と、を備え、前記活性層はインジウムを含む窒化物半導体からなり、前記活性層と 前記上部クラッド層との間、または前記上部クラッド層中に格子緩和層を設けたことを 特徴とする窒化物半導体発光素子が提供される。  Further, according to the present invention, a substrate, a lower cladding layer formed on the substrate, an active layer formed on the lower clad layer, and an upper layer formed on the active layer A cladding layer, wherein the active layer is made of a nitride semiconductor containing indium, and a lattice relaxation layer is provided between the active layer and the upper cladding layer or in the upper cladding layer. A nitride semiconductor light emitting device is provided.
[0027] また本発明によれば、基板上に下部クラッド層を形成する工程と、前記下部クラッド 層の上部に、インジウムを含む窒化物半導体からなる活性層を形成する工程と、前 記活性層の上部に、 600°C以下の温度で格子緩和層を形成する工程と、前記格子 緩和層の上部に上部クラッド層を形成する工程と、を含むことを特徴とする窒化物半 導体発光素子の製造方法が提供される。  Further, according to the present invention, a step of forming a lower cladding layer on a substrate, a step of forming an active layer made of a nitride semiconductor containing indium on the lower cladding layer, Forming a lattice relaxation layer at a temperature equal to or lower than 600 ° C., and forming an upper cladding layer above the lattice relaxation layer. A manufacturing method is provided.
[0028] 本発明では、活性層上に格子緩和層を設けているため、クラッド層の結晶品質が 向上する。この結果、良好な光閉じ込め構造が実現される。格子緩和層は、たとえば インジウムを含む半導体により構成することが好ましい。また、上部クラッド層の品質 が向上するため、当該クラッド層の厚みを比較的薄くすることができ、結果として活性 層の品質を向上させることができる。ここで、上部クラッド層はインジウムを含む窒化 物半導体からなるものとしてもよい。こうすることにより、活性層の品質劣化をより確実 に抑制することができる。  [0028] In the present invention, since the lattice relaxation layer is provided on the active layer, the crystal quality of the cladding layer is improved. As a result, a good light confinement structure is realized. The lattice relaxation layer is preferably made of, for example, a semiconductor containing indium. Further, since the quality of the upper cladding layer is improved, the thickness of the cladding layer can be made relatively thin, and as a result, the quality of the active layer can be improved. Here, the upper cladding layer may be made of a nitride semiconductor containing indium. By doing so, quality degradation of the active layer can be suppressed more reliably.
[0029] 本発明において、格子緩和層は、 600°C以下の温度で形成された低温成長層とす ること力 Sできる。また、格子緩和層は、 InGaNからなるものとすることができる。こうする ことにより格子緩和効果をより確実に得ることができ、活性層上部の半導体層の品質 を一層効果的に向上させることができる。格子緩和層の厚みは、たとえば lOnm以上 lOOnm以下とする。こうすることにより、半導体層構造の結晶品質を確実に向上させ ること力 Sできる。  In the present invention, the lattice relaxation layer can be a low-temperature growth layer formed at a temperature of 600 ° C. or lower. Further, the lattice relaxation layer can be made of InGaN. By doing so, the lattice relaxation effect can be obtained more reliably, and the quality of the semiconductor layer above the active layer can be more effectively improved. The thickness of the lattice relaxation layer is, for example, not less than lOnm and not more than 100 nm. By doing so, it is possible to surely improve the crystal quality of the semiconductor layer structure.
[0030] 本発明において、上部クラッド層のインジウム組成比が前記活性層のインジウム組 成比よりも小さいものとすることができる。ここで、活性層の上部の半導体層が、いず れも活性層よりインジウム組成比の小さい半導体からなるものとしてもよい。  [0030] In the present invention, the indium composition ratio of the upper cladding layer can be smaller than the indium composition ratio of the active layer. Here, each of the semiconductor layers above the active layer may be made of a semiconductor having a smaller indium composition ratio than the active layer.
上部クラッド層は、 In Ga N (0<y< l)力 なるものとしてもよレ、。こうすることによ り、活性層の品質劣化をより確実に抑制することができる。上部クラッド層の構造は、 超格子構造 In Ga N/In Ga N (0く ylく 1 , 0く y2く 1, yl≠y2)としても The upper cladding layer may be made of InGaN (0 <y <l) force. By doing this As a result, quality degradation of the active layer can be suppressed more reliably. The structure of the upper cladding layer is the same as the superlattice structure In Ga N / In Ga N (0 x yl x 1, 0 x y2 x 1, yl ≠ y2).
yl 1-yl y2 l-y2  yl 1-yl y2 l-y2
よぐこの場合クラッドの In組成 yとは平均組成を意味する。なお、 In Ga N (0<y  In this case, the In composition y of the clad means the average composition. Note that In Ga N (0 <y
y i— y  y i— y
く 1)力、らなる上部クラッド層の厚みは、たとえば 0. 以上 1. O x m以下とするこ とが好ましい。こうすることにより、上部クラッド層の品質を安定的に向上させ、発光特 性等を安定的に向上させることができる。  (1) The thickness of the upper cladding layer is preferably, for example, not less than 0.1 and not more than 1. O x m. By doing so, the quality of the upper cladding layer can be stably improved, and the light emission characteristics and the like can be stably improved.
なお、上部クラッド層の構造は、超格子構造ではなぐバルタ In Ga N (0<y< 1)  In addition, the structure of the upper cladding layer is different from the superlattice structure.
y l— y  y l— y
力 なるものとすれば、より安定的な光閉じ込め効果が得られることがある。  If it is powerful, a more stable light confinement effect may be obtained.
また、活性層の上部に位置する半導体層を、すべてインジウムを含む窒化物半導 体により構成してもよい。本発明において、光閉じこめのための十分な屈折率差も重 要である。こうした観点からは、たとえば活性層および上部クラッド層のインジウム組 成の差が 0. 1以上とすることが好ましい。  Further, the semiconductor layer located above the active layer may be entirely made of a nitride semiconductor containing indium. In the present invention, a sufficient difference in refractive index for light confinement is also important. From such a viewpoint, for example, it is preferable that the difference between the indium compositions of the active layer and the upper cladding layer be 0.1 or more.
本発明において、活性層の上部に設けられ、インジウムを含む窒化物半導体により 構成されたコンタクト層と、該コンタクト層と接して設けられた電極とをさらに備える構 成とすることちでさる。  In the present invention, it is preferable that the structure further includes a contact layer provided on the active layer and made of a nitride semiconductor containing indium, and an electrode provided in contact with the contact layer.
本発明の発光素子は、半導体レーザ、発光ダイオード等の発光素子に適用するこ とができるが、特に半導体レーザに適用した場合、効果的である。前述した半導体レ 一ザ特有の課題を効果的に解決することができるからである。  The light emitting device of the present invention can be applied to a light emitting device such as a semiconductor laser and a light emitting diode, and is particularly effective when applied to a semiconductor laser. This is because the problem unique to the semiconductor laser described above can be effectively solved.
[0031] 本発明によれば、インジウム含有半導体からなる活性層を有する発光素子、特に長 波長領域の発光を示す発光素子において、その発光特性等を安定的に向上させる こと力 Sできる。  According to the present invention, in a light-emitting element having an active layer made of an indium-containing semiconductor, particularly in a light-emitting element that emits light in a long wavelength region, the light-emitting characteristics and the like can be stably improved.
また本発明によれば、上記発光素子において、活性層上に形成された上部クラッド 層の品質を向上させ、発光特性等を安定的に向上させることができる。  Further, according to the present invention, in the above light emitting device, the quality of the upper cladding layer formed on the active layer can be improved, and the light emitting characteristics and the like can be stably improved.
[0032] 以上、本発明の構成および好ましい態様について説明したが、上記構成を適宜組 合せてもよレ、。たとえば、上述の第一の手段と第二の手段とを組み合わせて素子を 構成することちできる。 Although the configuration and the preferred embodiment of the present invention have been described above, the above configuration may be appropriately combined. For example, an element can be configured by combining the above-described first means and second means.
図面の簡単な説明  Brief Description of Drawings
[0033] 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実 施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 [0033] The above-mentioned objects, and other objects, features, and advantages will be described in more detail below. The embodiments will be further clarified by the following drawings accompanying the embodiments.
[0034] [図 1]本実施例に係る窒化物半導体レーザ素子の断面構造図である。  FIG. 1 is a sectional structural view of a nitride semiconductor laser device according to the present embodiment.
[図 2]実施例に係る窒化物半導体レーザ素子の断面構造図である。  FIG. 2 is a sectional structural view of a nitride semiconductor laser device according to an example.
[図 3]本実施例に係る窒化物半導体レーザ素子の断面構造図である。  FIG. 3 is a sectional structural view of the nitride semiconductor laser device according to the present embodiment.
[図 4]従来の窒化物半導体レーザの構造を示す断面図である。  FIG. 4 is a cross-sectional view showing a structure of a conventional nitride semiconductor laser.
[図 5]実施例で評価した窒化物半導体発光素子の PL特性を示すグラフである。  FIG. 5 is a graph showing PL characteristics of a nitride semiconductor light emitting device evaluated in an example.
[図 6]実施例で評価した窒化物半導体発光素子の力ソードルミネッセンス像である。  FIG. 6 is a force saddle luminescence image of a nitride semiconductor light emitting device evaluated in an example.
[図 7]実施例で評価した窒化物半導体発光素子の力ソードルミネッセンス像である。  FIG. 7 is a force saddle luminescence image of a nitride semiconductor light emitting device evaluated in an example.
[図 8]InGaN活性層におけるインジウム組成比とバンドギャップエネルギー Egとの関 係を示す図である。  FIG. 8 is a diagram showing a relationship between an indium composition ratio and a band gap energy Eg in an InGaN active layer.
[図 9]InGaN活性層成長温度と、 PL測定により得られた PLピークエネルギーとの関 係を示す図である。  FIG. 9 is a graph showing the relationship between the growth temperature of an InGaN active layer and the PL peak energy obtained by PL measurement.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0035] 図 1は本発明の素子構造の一実施形態を示した模式的な断面図であり、レーザ光 の共振方向に垂直な方向で素子を切断した際の図を示している。本実施の形態の 窒化物半導体レーザ素子では、この図のようにサファイア基板 101上に GaN膜 102、 Si〇2マスク 103、 n型 GaNを成長させた ELOG基板 104上に、 In Ga N層 105、 n型ク FIG. 1 is a schematic cross-sectional view showing one embodiment of the element structure of the present invention, and shows a view when the element is cut in a direction perpendicular to the laser light resonance direction. In the nitride semiconductor laser device of the present embodiment, as shown in this figure, a GaN film 102, a Si〇2 mask 103, and an InGaN layer 105 are formed on an ELOG substrate 104 on which n-type GaN is grown on a sapphire substrate 101. , N-type
0.1 0.9  0.1 0.9
ラッド層 106、 n型光ガイド層 107、 InGaN多重量子井戸からなる活性層 108、 p型キ ヤップ層 109、 p型光ガイド層 110、 p型クラッド層 111、格子緩和層 112、 p型コンタク ト層 113が順に形成され、リッジストライプとなつた p型コンタクト層 113上に p電極 114 、 p側層からエッチングすることによって露出された n型 ELOG基板 104上に n電極 11 5が形成されている。  Lad layer 106, n-type optical guide layer 107, active layer 108 composed of InGaN multiple quantum wells, p-type cap layer 109, p-type optical guide layer 110, p-type cladding layer 111, lattice relaxation layer 112, p-type contact A layer 113 is formed in order, and a p-electrode 114 is formed on the p-type contact layer 113 serving as a ridge stripe, and an n-electrode 115 is formed on the n-type ELOG substrate 104 exposed by etching from the p-side layer. .
[0036] n型光ガイド層 107および p型光ガイド層 110はそれぞれの導電型を示す不純物を ドープした In Ga Nとする。 Inの混晶比 bは、活性層中の InGaN力もなる井戸層の In混 b 1-b  [0036] The n-type light guide layer 107 and the p-type light guide layer 110 are made of InGaN doped with impurities having respective conductivity types. The mixed crystal ratio b of In is the In mixed b 1-b
晶比より小さくする。  Smaller than the crystal ratio.
[0037] p型クラッド層 111は、その導電型を示す不純物をドープした In Ga N力らなる。 In  [0037] The p-type cladding layer 111 is made of an InGaN force doped with an impurity exhibiting its conductivity type. In
c 1-c  c 1-c
の混晶比 cは活性層 108の In混晶比より小さくする。一方、 n型クラッド層 106は、活性 層 108よりも前に成長させるため、成長温度を比較的高くすることも可能であり、 InG aNに限らず GaN等を用いることもできる。ただし、活性層 108の品質を向上させる観 点から、上記 p型クラッドと同じ組成の InGaNとするほうがより望ましい。 The mixed crystal ratio c of the active layer 108 is smaller than the In mixed crystal ratio of the active layer 108. On the other hand, since the n-type cladding layer 106 is grown before the active layer 108, the growth temperature can be set relatively high. Not only aN but also GaN can be used. However, from the viewpoint of improving the quality of the active layer 108, it is more preferable to use InGaN having the same composition as the p-type cladding.
[0038] 格子緩和層 112は、 p型クラッド層 111を結晶性よく成長させるために設けられてい る。格子緩和層は隣接する層と格子定数の異なる窒化物半導体よりなり、 600°C以 下、好ましくは 400 600°Cの低温で 10 lOOnm程度成長するものとする。揷入する 位置は活性層の上部とすることが好ましい。たとえば、活性層と上部クラッド層との間 、あるいは上部クラッド層中とすることが好ましい。このような位置に配置することにより 、活性層へ転位が導入することを抑制できるからである。格子緩和層 112に用いられ る材料としては InGaN、 GaN、 AlGaN等が挙げられ、このうち、インジウムを含む材料、 特に InGaNが好ましい。この場合、 In組成は、たとえば 0. 1以上 0. 7以下とすること が好ましい。格子緩和効果が確実に得られるからである。なお、この格子緩和層は適 宜省略することもできる。  The lattice relaxation layer 112 is provided for growing the p-type cladding layer 111 with good crystallinity. The lattice relaxation layer is made of a nitride semiconductor having a lattice constant different from that of an adjacent layer, and is grown at a low temperature of 600 ° C. or less, preferably 400 ° C. and about 10 100 nm. It is preferable that the insertion position be above the active layer. For example, it is preferable to be between the active layer and the upper cladding layer or in the upper cladding layer. By arranging at such a position, introduction of dislocations into the active layer can be suppressed. Examples of a material used for the lattice relaxation layer 112 include InGaN, GaN, and AlGaN. Among them, a material containing indium, particularly InGaN, is preferable. In this case, the In composition is preferably, for example, 0.1 or more and 0.7 or less. This is because the lattice relaxation effect can be reliably obtained. Note that this lattice relaxation layer can be omitted as appropriate.
[0039] 活性層 108は量子井戸構造からなる。 In Ga N井戸層の In混晶比 aを大きくするこ a 1- a  The active layer 108 has a quantum well structure. Increasing the In mixed crystal ratio a of the In Ga N well layer a 1-a
とで、長波長で発振する窒化物半導体レーザ素子を得ることができるが、その場合、 障壁層に関しても In混晶比を変えることが望ましい。障壁層の In混晶比はミニバンド 形成のために十分なエネルギーギャップ差を得られるように選択すべきだが、井戸層 との In混晶比がなるべく近いほうが格子不整合が小さくなるため活性層の結晶性が 良くなり、発光効率の増大や発振閾値の低減が期待できる。  Thus, a nitride semiconductor laser device oscillating at a long wavelength can be obtained. In this case, it is desirable to change the In mixed crystal ratio of the barrier layer as well. The In-crystal ratio of the barrier layer should be selected so as to obtain a sufficient energy gap difference for mini-band formation, but the closer the In-crystal ratio to the well layer is as small as possible, the smaller the lattice mismatch, the smaller the active layer. It is expected that the crystallinity of the crystal will be improved, and that the luminous efficiency will be increased and the oscillation threshold will be reduced.
活性層の井戸層に含まれる Inの混晶比を 0.44とした場合、この井戸層とのバンドギ ヤップエネルギーの差が 0.3eVとなる障壁層の In混晶比は 0.34となる。  If the In-crystal ratio in the well layer of the active layer is 0.44, the In-crystal ratio of the barrier layer with a band gap energy difference of 0.3 eV from this well layer is 0.34.
[0040] 本実施形態において、 In Ga N(0≤x≤ 1)からなる Inの混晶比 xは、以下に示すバ [0040] In the present embodiment, the mixed crystal ratio x of In consisting of InGaN (0≤x≤1)
1- ンドギャップエネルギーとの関係式、  1- Relational formula with the gap energy,
Eg=x*0.77+(l-x)*3.42-1.43*(l-x)*x  Eg = x * 0.77 + (l-x) * 3.42-1.43 * (l-x) * x
を用いて概算された値である。例えば、波長が 650nmでのフオトンエネルギー (Eg)は 1.91eVであり、上記関係式から Xの値として 0.44を算出し、井戸層の In混晶比としてい る。  It is a value estimated using For example, the photon energy (Eg) at a wavelength of 650 nm is 1.91 eV, and the value of X is calculated to be 0.44 from the above relational expression, and is set as the In mixed crystal ratio of the well layer.
[0041] p型キャップ層 109は、 p型の導電性を示す不純物をドープした In Ga N力 なる。  The p-type cap layer 109 is an InGaN force doped with an impurity exhibiting p-type conductivity.
d 1- d  d 1- d
Inの混晶比 dは、上記 p型クラッド層の In混晶比より小さくする。この p型キャップ層は GaNあるいは AlGaNを用いてもょレ、が、活性層の熱分解を押さえるためには InGaNで あることが望ましい。また、この p側キャップ層は省略が可能である。 The In crystal ratio d is set to be smaller than the In crystal ratio of the p-type cladding layer. This p-type cap layer Although GaN or AlGaN may be used, InGaN is preferable to suppress the thermal decomposition of the active layer. The p-side cap layer can be omitted.
[0042] p型コンタクト層 113は、 p型の導電性を示す不純物をドープした GaNもしくは InGaN 力、らなる。 GaNを用いた方が電極材料と好ましいォーミックが得られやすレ、が、 InGaN を用いた方が活性層の熱分解をおさえられ、閾値電流を低減できる。 [0042] The p-type contact layer 113 is made of GaN or InGaN which is doped with an impurity exhibiting p-type conductivity. The use of GaN makes it easier to obtain a preferable ohmic material with the electrode material, but the use of InGaN suppresses the thermal decomposition of the active layer and reduces the threshold current.
(実施例)  (Example)
[0043] 以下、本発明を実施例により詳細に説明する。なお、各実施例において、各半導 体層の形成には有機金属化学気相成長装置 (以下 MOCVD)を用いた。 V族元素供 給源としてアンモニアを、 III族元素供給源としてトリメチルガリウム (TMG)、トリメチルァ ルミニゥム (TMA)、トリメチルインジウム (TMI)を用いた。  Hereinafter, the present invention will be described in detail with reference to Examples. In each example, a metal organic chemical vapor deposition apparatus (hereinafter referred to as MOCVD) was used to form each semiconductor layer. Ammonia was used as a group V element source, and trimethylgallium (TMG), trimethylaluminum (TMA), and trimethylindium (TMI) were used as group III element sources.
[0044] [実施例 1]  [Example 1]
図 1は、本実施例に係る窒化物半導体レーザ素子の断面構造図である。この半導 体レーザ素子は以下のようにして作製される。まず、サファイア基板 101上 GaN膜 10 2を MOCVDにより成長する。その後、 GaN膜 102上に、ストライプ状の SiO膜(マスク  FIG. 1 is a sectional structural view of the nitride semiconductor laser device according to the present embodiment. This semiconductor laser device is manufactured as follows. First, a GaN film 102 is grown on a sapphire substrate 101 by MOCVD. Thereafter, a stripe-shaped SiO film (mask) is formed on the GaN film 102.
2  2
) 103を [1, -1, 0, 0]方向に形成し、その上に Siを添加した n型 GaNを MOCVD成長 することによって選択成長させ、マスク上に横方向成長した低転位密度の GaNを形成 し、 n型 GaN-ELOG基板 104を作製する。  ) 103 is formed in the [1, -1, 0, 0] direction, n-type GaN with Si is selectively grown on it by MOCVD, and low dislocation density GaN is grown laterally on the mask. Then, an n-type GaN-ELOG substrate 104 is manufactured.
この基板上に引き続き、 800°Cで Siドープ n型 In Ga N層 105、 Siドープ n型 In  On this substrate, at 800 ° C, Si-doped n-type InGaN layer 105, Si-doped n-type In
0.1 0.9 0.27 0.1 0.9 0.27
Ga N (厚さ 0.6 μ πι)からなる n型クラッド層 106、 Siドープ n型 In Ga N (厚さ 0·1 μ πιN-type cladding layer 106 composed of GaN (thickness 0.6 μππι), Si-doped n-type InGaN (thickness 0.1 μππι)
0.73 0.31 0.69 0.73 0.31 0.69
)力 なる η型光ガイド層 107を成長させた後、温度を 700°Cにして In Ga N量子井  ) After growing the η-type optical guide layer 107, the temperature is set to 700 ° C and the InGaN quantum well
0.44 0.56 戸層(厚さ 3.5nm)と In Ga N障壁層(厚さ 10.5nm)からなる多重量子井戸構造の活  0.44 0.56 The activity of a multiple quantum well structure consisting of a door layer (3.5 nm thick) and an InGaN barrier layer (10.5 nm thick)
0.34 0.66  0.34 0.66
性層 108を成長させる。続いて温度を 750°Cにして Mgドープ p型 In Ga Nキャップ層  The active layer 108 is grown. Subsequently, the temperature is set to 750 ° C and the Mg-doped p-type In GaN cap layer
0.2 0.8  0.2 0.8
(厚さ 20nm) 109、 Mgドープ p型 In Ga N (厚さ 0.1 μ m)からなる p型光ガイド層 110  (Thickness 20 nm) 109, p-type light guide layer 110 made of Mg-doped p-type InGaN (0.1 μm thickness) 110
0.31 0.69  0.31 0.69
を成長させる。その後ー且温度を 500°Cに下げて Mgドープ p型 In Ga N (厚さ 10nm)  Grow. After that, the temperature was lowered to 500 ° C, and Mg-doped p-type InGaN (10 nm thick)
0.1 0.9  0.1 0.9
力 なる P型格子緩和層 112を成長し、再び温度を 750°Cに上げて Mgドープ p型 In Ga N (厚さ 0.6 x m)からなる p型クラッド層 111、 Mgドープ p型 In Ga N (厚さ 0.05 A strong P-type lattice relaxation layer 112 is grown, the temperature is again raised to 750 ° C, and a p-type cladding layer 111 made of Mg-doped p-type InGaN (0.6 xm thick) and a Mg-doped p-type InGaN ( Thickness 0.05
0.27 0.73 0.1 0.90.27 0.73 0.1 0.9
z m)からなる p型コンタクト層 113を順に成長する。その後に、ドライエッチングなどに より図 1に示すようなリッジ構造を形成し、最後に Niと Auからなる p電極 114と Tiと A1か らなる n電極 115を蒸着する。 A p-type contact layer 113 made of zm) is grown in order. Thereafter, a ridge structure as shown in FIG. 1 is formed by dry etching or the like, and finally, a p-electrode 114 composed of Ni and Au, and Ti and A1 are formed. An n-electrode 115 is deposited.
以上のように、本実施例に係る層構造では、活性層 108のインジウム組成(量子井 戸層のインジウム組成)を x、 p型クラッド層 111のインジウム組成を yとしたとき、 Xが 0 . 44であり、(X— y)力 SO. 17である。  As described above, in the layer structure according to the present embodiment, when the indium composition of the active layer 108 (the indium composition of the quantum well layer) is x, and the indium composition of the p-type cladding layer 111 is y, X is 0. 44 and (X-y) force SO.
[0045] 以上のようにして、 n電極と p電極とを形成したウェハのサファイア基板を研磨して 70 z mとした後、レーザストライプに垂直な方向で基板側からバー状に劈開し、劈開面 に共振器を作製する。共振器面に TiOと A1 0よりなる誘電体多層膜を形成し、最後  [0045] As described above, the sapphire substrate of the wafer on which the n-electrode and the p-electrode are formed is polished to 70 zm, and then cleaved into a bar from the substrate side in a direction perpendicular to the laser stripe. Next, a resonator is manufactured. A dielectric multilayer film consisting of TiO and A10 is formed on the resonator surface.
2 2 3  2 2 3
に p電極に平行な方向で、バーを切断して図 1に示すようなレーザ素子とする。なお 共振器長は 300 500 a mとすることが望ましレ、。  Then, the bar is cut in the direction parallel to the p-electrode to obtain a laser device as shown in FIG. Note that the resonator length is desirably 300 to 500 am.
[0046] 得られたレーザ素子をヒートシンクに設置し、それぞれの電極をワイヤーボンディン グして、室温でレーザ発振を試みた。その結果、室温において閾値電流密度  The obtained laser element was set on a heat sink, and each electrode was wire-bonded, and laser oscillation was attempted at room temperature. As a result, the threshold current density at room temperature
5kAん m2、閾値電圧 6Vで、発振波長がほぼ 650nmの連続発振が確認され、室温で 1000時間以上の寿命を示した。 At 5 kA m 2 and a threshold voltage of 6 V, continuous oscillation with an oscillation wavelength of approximately 650 nm was confirmed, and a lifetime of 1000 hours or more was shown at room temperature.
[0047] 本実施例では、活性層より上層に位置する半導体層のすべてを、活性層よりも In組 成比の小さい InGaNとした。また、活性層 108と p型クラッド層 111との間に低温成長 層である p型格子緩和層 112を設けている。こうした構成とすることにより、長波長でも 良好で安定したレーザ素子を得ることができた。  In this example, all of the semiconductor layers located above the active layer were made of InGaN having a smaller In composition ratio than the active layer. Further, a p-type lattice relaxation layer 112, which is a low-temperature growth layer, is provided between the active layer 108 and the p-type cladding layer 111. With such a configuration, a good and stable laser element was obtained even at a long wavelength.
[0048] [実施例 2]  [Example 2]
図 2は、本実施例に係る窒化物半導体レーザ素子の断面構造図である。この半導 体レーザ素子は GaN基板を用いる点で実施例 1の素子と相違する。  FIG. 2 is a sectional structural view of the nitride semiconductor laser device according to the present embodiment. This semiconductor laser device differs from the device of Example 1 in that a GaN substrate is used.
[0049] この半導体レーザ素子は以下のようにして作製される。まず、基板としては n型低転 位 GaN基板 201を用レ、、この基板上に 800°Cで Siドープ n型 In Ga N層 105、 Siドー  This semiconductor laser device is manufactured as follows. First, an n-type low dislocation GaN substrate 201 was used as a substrate, and a Si-doped n-type InGaN layer 105 and a Si
0.1 0.9  0.1 0.9
プ n型 In Ga N層(厚さ 1.5 μ m)からなる n型クラッド層 106、 Siドープ n型 In Ga N N-type cladding layer 106 consisting of n-type InGaN layer (1.5 μm thick), Si-doped n-type InGaN
0.27 0.73 0.31 0.690.27 0.73 0.31 0.69
(厚さ 0.1 μ m)からなる η型光ガイド層 107を成長させた後、温度を 700°Cにしてアンド ープ In Ga N量子井戸層(厚さ 3nm)とアンドープ In Ga N障壁層(厚さ 5nm)かAfter growing the η-type optical guide layer 107 (thickness: 0.1 μm), the temperature is increased to 700 ° C and the undoped InGaN quantum well layer (thickness: 3 nm) and the undoped InGaN barrier layer (thickness: 3 nm). Thickness 5nm)
0.44 0.56 0.34 0.66 0.44 0.56 0.34 0.66
らなる多重量子井戸構造を有する活性層 108、 750°Cで Mgドープ p型 In Ga Nキヤ  Active layer 108 with multiple quantum well structure consisting of Mg-doped p-type InGaN carrier at 750 ° C
0.2 0.8 ップ層(厚さ 20nm) 109、 Mgドープ p型 In Ga N (厚さ 0.16 μ m)力、らなる p型光ガイド  0.2 0.8 p-layer (thickness: 20 nm) 109, Mg-doped p-type InGaN (0.16 μm thickness)
0.31 0.69  0.31 0.69
層 110を成長する。その後、 p型光ガイド層 110上に Si〇マスク (厚さ 0.3 μ ηι)202をス  Grow layer 110. Then, a Si〇 mask (thickness 0.3 μηι) 202 is formed on the p-type light guide layer 110.
2 パッタにより形成し、エッチングにより幅 2 / mのストライプ状に開口部を作製する。さら にこの開口部に引き続き、 p型格子緩和層 1 12として Mgドープ p型 In Ga N層を 500 2 An opening is formed in a stripe shape with a width of 2 / m by etching. Furthermore, following this opening, a Mg-doped p-type InGaN layer was formed as a p-type lattice relaxation layer 112 with a thickness of 500 p.
0.1 0.9  0.1 0.9
°Cの低温で 10nm成長した後、温度を 750°Cに上げて Mgドープ p型 In Ga N層(厚  After growing 10nm at a low temperature of ° C, raise the temperature to 750 ° C to increase the Mg-doped p-type InGaN layer (thickness
0.27 0.73 さ 0.6 μ πι)からなる p型クラッド層 111、 Mgドープ p型 In Ga N (厚さ 0.05 μ m)からなる  0.27 0.73 0.6 μπι) p-type cladding layer 111, Mg-doped p-type InGaN (0.05 μm thick)
0.1 0.9  0.1 0.9
p型コンタクト層 113を選択成長することによりリッジ構造を形成する。その上に SiOマ  A ridge structure is formed by selectively growing the p-type contact layer 113. SiO on top
2 スクを形成してエッチングによりストライプ部分に開口部を設けた後に Niと Auからなる p電極 114を蒸着する。その後 n型 GaN基板 201の裏面を研磨して Tiと A なる n電 極 115を蒸着する。以上のようにして、 n電極と p電極とを形成したウェハをストライプ 状の電極に垂直な方向でバー状に劈開し、劈開面に共振器を作製する。共振器面 に TiOと A1 0よりなる誘電体多層膜を形成し、最後に p電極に平行な方向で、バー After forming a mask and forming an opening in the stripe portion by etching, a p-electrode 114 made of Ni and Au is deposited. Thereafter, the back surface of the n-type GaN substrate 201 is polished to deposit the n-electrode 115 of Ti and A. As described above, the wafer on which the n-electrode and the p-electrode are formed is cleaved in a bar shape in the direction perpendicular to the stripe-shaped electrodes, and a resonator is formed on the cleavage plane. A dielectric multilayer film consisting of TiO and A10 is formed on the resonator surface.
2 2 3 2 2 3
を切断して図 2に示すようなレーザ素子とする。なお共振器長は 500 800 μ mとする ことが望ましい。  Is cut into a laser device as shown in FIG. Note that the resonator length is desirably 500 800 μm.
以上のように、本実施例に係る層構造では、活性層 108のインジウム組成(量子井 戸層のインジウム組成)を x、 p型クラッド層 111のインジウム組成を yとしたとき、 Xが 0 . 44であり、(x-y)力 SO. 17である。  As described above, in the layer structure according to the present embodiment, when the indium composition of the active layer 108 (the indium composition of the quantum well layer) is x, and the indium composition of the p-type cladding layer 111 is y, X is equal to 0. 44 and (xy) force SO.
[0050] 得られたレーザ素子をヒートシンクに設置し、それぞれの電極をワイヤーボンディン グして、室温でレーザ発振を試みた。その結果、室温において閾値電流密度  [0050] The obtained laser element was set on a heat sink, each electrode was wire-bonded, and laser oscillation was attempted at room temperature. As a result, the threshold current density at room temperature
4kAん m2、閾値電圧 7Vで、発振波長がほぼ 650nmの連続発振が確認され、室温で 1000時間以上の寿命を示した。 At 4 kA m 2 and a threshold voltage of 7 V, continuous oscillation with an oscillation wavelength of approximately 650 nm was confirmed, and a lifetime of 1000 hours or more was shown at room temperature.
[0051] 本実施例では、活性層より上層に位置する半導体層のすべてを、活性層よりも In組 成比の小さい InGaNとした。また、活性層 108と p型クラッド層 111との間に低温成長 層である p型格子緩和層 112を設けている。また、 GaN基板を用い、その上に半導体 レーザ構造を形成している。こうした構成とすることにより、長波長でも良好で安定し たレーザ素子を得ることができた。  In this example, all the semiconductor layers located above the active layer were made of InGaN having a smaller In composition ratio than the active layer. Further, a p-type lattice relaxation layer 112, which is a low-temperature growth layer, is provided between the active layer 108 and the p-type cladding layer 111. A semiconductor laser structure is formed on a GaN substrate. With such a configuration, a good and stable laser element was obtained even at a long wavelength.
[0052] [実施例 3]  [Example 3]
図 3は、本実施例に係る窒化物半導体レーザ素子の断面構造図である。実施例 1 一 2では InGaNからなる格子緩和層を用いた力 本実施例では GaNからなる格子緩 和層を用いる。 [0053] この半導体レーザ素子は以下のようにして作製される。まず、基板としては n型低転 位 GaN基板 201を用レ、、この基板上に 800°Cで Siドープ n型 In Ga N層 105、 Siドー FIG. 3 is a sectional structural view of the nitride semiconductor laser device according to the present embodiment. Embodiments 1 and 2 Force using a lattice relaxation layer made of InGaN In this embodiment, a lattice relaxation layer made of GaN is used. This semiconductor laser device is manufactured as follows. First, an n-type low dislocation GaN substrate 201 was used as a substrate, and a Si-doped n-type InGaN layer 105 and a Si
0.1 0.9  0.1 0.9
プ n型 In Ga N層(厚さ 1.5 /i m)からなる n型クラッド層 106、 Siドープ n型 In Ga N N-type cladding layer 106 consisting of n-type InGaN layer (1.5 / im thick), Si-doped n-type InGaN
0.27 0.73 0.31 0.690.27 0.73 0.31 0.69
(厚さ 0.1 μ m)からなる η型光ガイド層 107を成長させた後、温度を 700°Cにしてアンド ープ In Ga N量子井戸層(厚さ 3nm)とアンドープ In Ga N障壁層(厚さ 5nm)かAfter growing the η-type optical guide layer 107 (thickness: 0.1 μm), the temperature is increased to 700 ° C and the undoped InGaN quantum well layer (thickness: 3 nm) and the undoped InGaN barrier layer (thickness: 3 nm). Thickness 5nm)
0.44 0.56 0.34 0.66 0.44 0.56 0.34 0.66
らなる多重量子井戸構造を有する活性層 108、 750°Cで Mgドープ p型 In Ga Nキヤ  Active layer 108 with multiple quantum well structure consisting of Mg-doped p-type InGaN carrier at 750 ° C
0.2 0.8 ップ層(厚さ 20nm) 109、 Mgドープ p型 In Ga N (厚さ 0.16 μ m)力、らなる p型光ガイド  0.2 0.8 p-layer (thickness: 20 nm) 109, Mg-doped p-type InGaN (0.16 μm thickness)
0.31 0.69  0.31 0.69
層 110を成長する。その後、 p型光ガイド層 110上に Si〇マスク (厚さ 0.3 μ ηι)202をス  Grow layer 110. Then, a Si〇 mask (thickness 0.3 μηι) 202 is formed on the p-type light guide layer 110.
2  2
パッタにより形成し、エッチングにより幅 2 z mのストライプ状に開口部を作製する。さら にこの開口部に引き続き、 p型格子緩和層 120として Mgドープ p型 GaN層を 500°Cの 低温で 10nm成長した後、温度を 750°Cに上げて Mgドープ p型 In Ga N層(厚さ 0.6  An opening is formed in a stripe shape with a width of 2 m by etching. Further, after this opening, a Mg-doped p-type GaN layer is grown as a p-type lattice relaxation layer 120 at a low temperature of 500 ° C to a thickness of 10 nm. Thickness 0.6
0.27 0.73 0.27 0.73
m)からなる p型クラッド層 111、 Mgドープ p型 In Ga N (厚さ 0.05 μ m)からなる p型  m) p-type cladding layer 111, Mg-doped p-type InGaN (thickness 0.05 μm) p-type
0.1 0.9  0.1 0.9
コンタクト層 113を選択成長することによりリッジ構造を形成する。その上に SiOマスク  A ridge structure is formed by selectively growing the contact layer 113. SiO mask on top
2 を形成してエッチングによりストライプ部分に開口部を設けた後に Niと Auからなる p電 極 114を蒸着する。その後 n型 GaN基板 201の裏面を研磨して Tiと^からなる n電極 1 15を蒸着する。以上のようにして、 n電極と p電極とを形成したウェハをストライプ状の 電極に垂直な方向でバー状に劈開し、劈開面に共振器を作製する。共振器面に TiOと A1 0よりなる誘電体多層膜を形成し、最後に p電極に平行な方向で、バーを 2 is formed, and an opening is provided in the stripe portion by etching, and then a p-electrode 114 made of Ni and Au is deposited. Thereafter, the back surface of the n-type GaN substrate 201 is polished to deposit an n-electrode 115 made of Ti and ^. As described above, the wafer on which the n-electrode and the p-electrode are formed is cleaved in a bar shape in a direction perpendicular to the stripe-shaped electrodes, and a resonator is formed on the cleavage plane. A dielectric multilayer film composed of TiO and A10 is formed on the resonator surface, and finally a bar is formed in the direction parallel to the p-electrode.
2 2 3 2 2 3
切断して図 3に示すようなレーザ素子とする。なお共振器長は 500— 800 μ mとするこ とが望ましい。  It is cut into a laser device as shown in FIG. The resonator length is desirably 500-800 μm.
以上のように、本実施例に係る層構造では、活性層 108のインジウム組成(量子井 戸層のインジウム組成)を x、 p型クラッド層 111のインジウム組成を yとしたとき、 Xが 0 . 44であり、(X— y)力 SO. 17である。  As described above, in the layer structure according to the present embodiment, when the indium composition of the active layer 108 (the indium composition of the quantum well layer) is x, and the indium composition of the p-type cladding layer 111 is y, X is 0. 44 and (X-y) force SO.
[0054] 得られたレーザ素子をヒートシンクに設置し、それぞれの電極をワイヤーボンディン グして、室温でレーザ発振を試みた。その結果、室温において閾値電流密度  [0054] The obtained laser element was placed on a heat sink, each electrode was wire-bonded, and laser oscillation was attempted at room temperature. As a result, the threshold current density at room temperature
4kAん m2、閾値電圧 7Vで、発振波長がほぼ 650nmの連続発振が確認され、室温で 1000時間以上の寿命を示した。 At 4 kA m 2 and a threshold voltage of 7 V, continuous oscillation with an oscillation wavelength of approximately 650 nm was confirmed, and a lifetime of 1000 hours or more was shown at room temperature.
[0055] [実施例 4] 本実施例に係る窒化物半導体レーザ素子の断面構造を図 2に示す。断面構造は 概略実施例 2と類似しているが、実施例 2では n型クラッド層を InGaNにより構成して レ、るのに対し本実施例では GaNを用いる。 [Example 4] FIG. 2 shows a cross-sectional structure of the nitride semiconductor laser device according to the present example. Although the cross-sectional structure is similar to that of the second embodiment, the n-type cladding layer is made of InGaN in the second embodiment, whereas GaN is used in the present embodiment.
[0056] この半導体レーザ素子は以下のようにして作製される。基板としては n型低転位 This semiconductor laser device is manufactured as follows. N-type low dislocation as substrate
GaN基板 201を用レ、、この基板上に 800°Cで Siドープ n型 In Ga N層 105を成長した Using a GaN substrate 201, a Si-doped n-type InGaN layer 105 was grown on this substrate at 800 ° C.
0.1 0.9  0.1 0.9
後、温度を 900°Cに上げて Siドープ n型 GaN層(厚さ 1.5 μ m)からなる η型クラッド層 10 6を成長し、その後温度を 750°Cに下げて Siドープ η型 In Ga N (厚さ Ο. ΐ μ πι)から  Thereafter, the temperature was raised to 900 ° C to grow an η-type cladding layer 106 composed of a Si-doped n-type GaN layer (1.5 μm thick), and then the temperature was lowered to 750 ° C to reduce the Si-doped η-type InGa From N (thickness Ο. Ϊ́ μ πι)
0.31 0.69  0.31 0.69
なる η型光ガイド層 107を成長させる。続いて温度を 700°Cにしてアンドープ In Ga  The η-type light guide layer 107 is grown. Subsequently, the temperature was set to 700 ° C and undoped In Ga
0.44 0.56 0.44 0.56
N量子井戸層(厚さ 3nm)とアンドープ In Ga N障壁層(厚さ 5nm)からなる多重量子 Multiple quantum consisting of N quantum well layer (thickness 3nm) and undoped InGaN barrier layer (thickness 5nm)
0.34 0.66  0.34 0.66
井戸構造を有する活性層 108を成長し、 750°Cで Mgドープ p型 In Ga Nキャップ層(  An active layer 108 having a well structure is grown, and a Mg-doped p-type InGaN cap layer (750 ° C) is formed.
0.2 0.8  0.2 0.8
厚さ 20nm) 109、 Mgドープ p型 In Ga N (厚さ 0.16 μ m)力、らなる p型光ガイド層 1 10  20 nm thick) 109, Mg-doped p-type InGaN (0.16 μm thick) force, p-type light guide layer 1 10
0.31 0.69  0.31 0.69
を成長する。  Grow.
[0057] その後、 p型光ガイド層 1 10上に SiOマスク (厚さ 0·3 μ πι)202をスパッタにより形成し  After that, an SiO mask (thickness 0.3 μπι) 202 is formed on the p-type light guide layer 110 by sputtering.
2  2
、エッチングにより幅 2 / mのストライプ状に開口部を作製する。さらにこの開口部に引 き続き、 P型格子緩和層 1 12として Mgドープ p型 In Ga N層を 500°Cの低温で 10nm  Then, an opening is formed in a stripe shape having a width of 2 / m by etching. Following this opening, an Mg-doped p-type InGaN layer was formed as a p-type lattice relaxation layer 112 at a low temperature of 500 ° C to a thickness of 10 nm.
0.1 0.9  0.1 0.9
成長した後、温度を 750°Cに上げて Mgドープ p型 In Ga N層(厚さ 0.6 μ m)力 な  After the growth, the temperature was raised to 750 ° C and the Mg-doped p-type InGaN layer (thickness: 0.6 μm) was removed.
0.27 0.73  0.27 0.73
る p型クラッド層 1 1 1、 Mgドープ p型 In Ga N (厚さ 0.05 μ m)からなる p型コンタクト層 1  P-type cladding layer 1 1 1, p-type contact layer 1 made of Mg-doped p-type InGaN (0.05 μm thick)
0.1 0.9  0.1 0.9
13を選択成長することによりリッジ構造を形成する。その上に SiOマスクを形成してェ  A ridge structure is formed by selectively growing 13. Form a SiO mask on top
2  2
ツチングによりストライプ部分に開口部を設けた後に Mと Auからなる p電極 1 14を蒸着 する。その後 n型 GaN基板 201の裏面を研磨して Tiと からなる n電極 1 15を蒸着する 以上のように、本実施例に係る層構造では、活性層 108のインジウム組成(量子井 戸層のインジウム組成)を x、 p型クラッド層 1 1 1のインジウム組成を yとしたとき、 Xが 0 . 44であり、(X— y)力 SO. 17である。  After an opening is provided in the stripe portion by tuning, a p-electrode 114 made of M and Au is deposited. Thereafter, the back surface of the n-type GaN substrate 201 is polished to deposit the n-electrode 115 made of Ti. As described above, in the layer structure according to the present embodiment, the indium composition of the active layer 108 (the indium of the quantum well layer) Assuming that x is the composition) and y is the indium composition of the p-type cladding layer 111, X is 0.44 and the (X-y) force is SO.
[0058] 以上のようにして、 n電極と p電極とを形成したウェハをストライプ状の電極に垂直な 方向でバー状に劈開し、劈開面に共振器を作製する。共振器面に TiOと Al 0よりな  [0058] As described above, the wafer on which the n-electrode and the p-electrode are formed is cleaved in a bar shape in a direction perpendicular to the stripe-shaped electrodes, and a resonator is formed on the cleavage plane. More than TiO and Al 0 on the cavity surface
2 2 3 る誘電体多層膜を形成し、最後に P電極に平行な方向で、バーを切断して図 2に示 すようなレーザ素子とする。なお共振器長は 500— 800 z mとすることが望ましい。得ら れたレーザ素子をヒートシンクに設置し、それぞれの電極をワイヤーボンディングして 、室温でレーザ発振を試みた。その結果、室温において閾値電流密度 6kAん m2、閾 値電圧 7Vで、発振波長がほぼ 650nmの連続発振が確認され、室温で 1000時間以上 の寿命を示した。 After forming a dielectric multilayer film, a bar is cut in a direction parallel to the P electrode to obtain a laser device as shown in FIG. The length of the resonator is desirably 500-800 zm. Obtained The laser element thus obtained was placed on a heat sink, and the respective electrodes were wire-bonded, and laser oscillation was attempted at room temperature. As a result, continuous oscillation with an oscillation wavelength of approximately 650 nm was confirmed at room temperature with a threshold current density of 6 kA m 2 and a threshold voltage of 7 V, and showed a life of 1000 hours or more at room temperature.
[0059] 本実施例では n型クラッド層を InGaNではなく GaNにより構成している力 このよう に活性層 108よりも基板側に InGaN以外の半導体層を設けても、活性層 108上部の 層が InGaNにより構成されていれば、良好な素子性能が得られる。  In the present embodiment, the force in which the n-type cladding layer is made of GaN instead of InGaN. Thus, even if a semiconductor layer other than InGaN is provided on the substrate side with respect to the active layer 108, the layer above the active layer 108 If it is made of InGaN, good device performance can be obtained.
[0060] [実施例 5]  [Example 5]
本実施例に係る窒化物半導体レーザ素子の断面構造を図 2に示す。断面構造は 概略実施例 2と類似しているが、実施例 2では p型コンタクト層を InGaNにより構成し ているのに対し本実施例では GaNを用いる。  FIG. 2 shows a cross-sectional structure of the nitride semiconductor laser device according to the present example. The cross-sectional structure is similar to that of the second embodiment. However, in the second embodiment, the p-type contact layer is made of InGaN, whereas in this embodiment, GaN is used.
[0061] この半導体レーザ素子は以下のようにして作製される。基板としては n型低転位[0061] This semiconductor laser device is manufactured as follows. N-type low dislocation as substrate
GaN基板 201を用レ、、この基板上に 800°Cで Siドープ n型 In Ga N層 105、 Siドープ n Using a GaN substrate 201, a Si-doped n-type InGaN layer 105 and a Si-doped n
0.1 0.9  0.1 0.9
型 In Ga N層(厚さ 1.5 /i m)からなる n型クラッド層 106、 Siドープ n型 In Ga N ( N-type cladding layer 106 consisting of n-type InGaN layer (1.5 / im thick), Si-doped n-type InGaN (
0.27 0.73 0.31 0.69 厚さ 0.1 μ m)からなる η型光ガイド層 107を成長させた後、温度を 700°Cにしてアンド ープ In Ga N量子井戸層(厚さ 3nm)とアンドープ In Ga N障壁層(厚さ 5nm)かAfter growing an η-type optical guide layer 107 of 0.27 0.73 0.31 0.69 thickness 0.1 μm), the temperature is increased to 700 ° C and the undoped In Ga N quantum well layer (thickness 3 nm) and undoped In Ga N Barrier layer (5nm thickness)
0.44 0.56 0.34 0.66 0.44 0.56 0.34 0.66
らなる多重量子井戸構造を有する活性層 108、 750°Cで Mgドープ p型 In Ga Nキヤ  Active layer 108 with multiple quantum well structure consisting of Mg-doped p-type InGaN carrier at 750 ° C
0.2 0.8 ップ層(厚さ 20nm) 109、 Mgドープ p型 In Ga N (厚さ 0.16 μ m)力らなる p型光ガイド  0.2 0.8 P-layer (20 nm thick) 109, Mg-doped p-type InGaN (0.16 μm thick)
0.31 0.69  0.31 0.69
層 110を成長する。その後、 p型光ガイド層 110上に Si〇マスク (厚さ 0.3 / m)2O2をス  Grow layer 110. Then, a Si〇 mask (thickness 0.3 / m) 2O2 is placed on the p-type light guide layer 110.
2  2
パッタにより形成し、エッチングにより幅 2 / mのストライプ状に開口部を作製する。さら にこの開口部に引き続き、 p型格子緩和層 112として Mgドープ p型 In Ga N層を 500  An opening is formed in a stripe shape with a width of 2 / m by etching. Furthermore, following this opening, an Mg-doped p-type InGaN layer is formed as a p-type lattice relaxation layer 112 for 500 μm.
0.1 0.9  0.1 0.9
°Cの低温で 10nm成長した後、温度を 750°Cに上げて Mgドープ p型 In Ga N層(厚  After growing 10nm at a low temperature of ° C, raise the temperature to 750 ° C to increase the Mg-doped p-type InGaN layer (thickness
0.27 0.73 さ 0.6 μ m)力、らなる p型クラッド層 111、 Mgドープ p型 GaN (厚さ 0.05 μ m)からなる p型コ ンタクト層 113を選択成長することによりリッジ構造を形成する。その上に SiOマスクを  A ridge structure is formed by selectively growing a p-type cladding layer 111 composed of 0.27 0.73 and 0.6 μm) and a p-type contact layer 113 composed of Mg-doped p-type GaN (thickness 0.05 μm). On top of that, a SiO mask
2 形成してエッチングによりストライプ部分に開口部を設けた後に Niと Auからなる p電極 114を蒸着する。その後 n型 GaN基板 201の裏面を研磨して Tiと A なる n電極 115 を蒸着する。  2 After forming and opening an opening in the stripe portion by etching, a p-electrode 114 made of Ni and Au is deposited. Thereafter, the back surface of the n-type GaN substrate 201 is polished to deposit an n-electrode 115 of Ti and A.
以上のように、本実施例に係る層構造では、活性層 108のインジウム組成(量子井 戸層のインジウム組成)を x、 p型クラッド層 111のインジウム組成を yとしたとき、 Xが 0 . 44であり、(x-y)力 SO. 17である。 As described above, in the layer structure according to the present embodiment, the indium composition of the active layer 108 (quantum well Assuming that x is the indium composition of the door layer and y is the indium composition of the p-type cladding layer 111, X is 0.44 and the (xy) force is SO.
[0062] 以上のようにして、 n電極と p電極とを形成したウェハをストライプ状の電極に垂直な 方向でバー状に劈開し、劈開面に共振器を作製する。共振器面に TiOと A1 0よりな  [0062] As described above, the wafer on which the n-electrode and the p-electrode are formed is cleaved in a bar shape in a direction perpendicular to the stripe-shaped electrodes, and a resonator is formed on the cleavage plane. More than TiO and A10 on the cavity surface
2 2 3 る誘電体多層膜を形成し、最後に P電極に平行な方向で、バーを切断して図 2に示 すようなレーザ素子とする。なお共振器長は 500— 800 z mとすることが望ましい。得ら れたレーザ素子をヒートシンクに設置し、それぞれの電極をワイヤーボンディングして 、室温でレーザ発振を試みた。その結果、室温において閾値電流密度 6kAん m2、閾 値電圧 6Vで、発振波長がほぼ 650nmの連続発振が確認され、室温で 1000時間以上 の寿命を示した。 After forming a dielectric multilayer film, a bar is cut in a direction parallel to the P electrode to obtain a laser device as shown in FIG. The length of the resonator is desirably 500-800 zm. The obtained laser element was placed on a heat sink, and the respective electrodes were wire-bonded, and laser oscillation was attempted at room temperature. As a result, continuous oscillation with an oscillation wavelength of approximately 650 nm was confirmed at room temperature with a threshold current density of 6 kA m 2 and a threshold voltage of 6 V, and showed a life of 1000 hours or more at room temperature.
[0063] 本実施例では p型コンタクト層を InGaNではなく GaNにより構成している力 このよ うに活性層 108から離れた位置にある薄い膜が InGaN以外の半導体により構成され ていても、活性層 108上部の層の大部分が InGaNにより構成されていれば、良好な 素子性能が得られる。  In the present embodiment, the force at which the p-type contact layer is made of GaN instead of InGaN. Thus, even if the thin film at a position away from the active layer 108 is made of a semiconductor other than InGaN, If most of the upper layer is made of InGaN, good device performance can be obtained.
[0064] [実施例 6]  Example 6
本実施例では、 InGaNからなる量子井戸活性層の PL (フォトルミネッセンス)特性 を評価した。評価にあたっては、 GaN基板上に量子井戸活性層を形成した構造体を 測定試料とした。実施例 2と同様の構造、形成方法で量子井戸層を形成した。成長 温度は 700°Cである。井戸層および障壁層の組成および膜厚は以下のとおりである  In this example, the PL (photoluminescence) characteristics of the quantum well active layer made of InGaN were evaluated. In the evaluation, a structure in which a quantum well active layer was formed on a GaN substrate was used as a measurement sample. A quantum well layer was formed by the same structure and formation method as in Example 2. The growth temperature is 700 ° C. The composition and thickness of the well layer and barrier layer are as follows
[0065] アンドープ In Ga N量子井戸層(厚さ 3nm) [0065] Undoped InGaN quantum well layer (thickness: 3 nm)
0.44 0.56  0.44 0.56
アンドープ In Ga N障壁層(厚さ 5nm)  Undoped In GaN barrier layer (5 nm thick)
0.34 0.66  0.34 0.66
成長後、温度を上げずに室温まで冷却して得られたものを試料 1とする。一方、成 長後、レ、つたん 900°C10分の熱処理をカ卩えた後、室温まで冷却して得られたものを 試料 2とする。  After growth, the sample was obtained by cooling to room temperature without raising the temperature. On the other hand, after growth, heat treatment was performed at 900 ° C for 10 minutes and then cooled to room temperature to obtain Sample 2.
[0066] 試料 1および 2について PL特性を評価した。図 5はその結果を示す図である。図 5 中、 aが試料 1、 bが試料 2にそれぞれ対応する。試料 1は長波長領域で良好な発光 が観測されたのに対し、試料 2では長波長領域と短波長領域の両方の発光が観測さ れた。 [0066] PL characteristics of Samples 1 and 2 were evaluated. FIG. 5 shows the result. In FIG. 5, a corresponds to sample 1 and b corresponds to sample 2. In sample 1, good emission was observed in the long wavelength region, whereas in sample 2, emission in both the long wavelength region and the short wavelength region was observed. Was.
[0067] 図 6および図 7は、これらの試料の CL (力ソードルミネッセンス像)観測結果を示す 図である。ここでは、赤色発光および青色発光を観測するための複数のフィルタを用 意し、これら通して観察することで発光状態を観測した。図 6は試料 1に対応するもの で、 500nm以上の赤色発光のみが観測された。図 7は試料 2に対応するもので、 50 Onm未満の青色発光および 500nm以上の赤色発光が観測された。  FIG. 6 and FIG. 7 are diagrams showing CL (force saddle luminescence image) observation results of these samples. Here, a plurality of filters for observing red light emission and blue light emission were prepared, and the light emission state was observed by observing through these filters. Fig. 6 corresponds to sample 1, and only red light emission of 500 nm or more was observed. FIG. 7 corresponds to Sample 2, in which blue light emission of less than 50 Onm and red light emission of 500 nm or more were observed.
[0068] 本実施例の結果から、成長温度 700°Cで形成された InGaN活性層を、その後、 90 0°Cで熱処理すると、活性層の性状が変化し、 目的とする発光特性が得られないこと が確認された。  [0068] According to the results of this example, when the InGaN active layer formed at a growth temperature of 700 ° C is subsequently heat-treated at 900 ° C, the properties of the active layer are changed, and the desired light emitting characteristics can be obtained. It was confirmed that there was not.
[0069] [実施例 7]  [Example 7]
本実施例では、 InGaN活性層のインジウム組成比と、その活性層を形成するのに 好適な成長温度との関係を検討した例を示す。  In the present embodiment, an example is shown in which the relationship between the indium composition ratio of the InGaN active layer and the growth temperature suitable for forming the active layer is examined.
[0070] 図 8は、 InGaN活性層におけるインジウム組成比とバンドギャップエネルギー Egと の関係を示す図である。  FIG. 8 is a diagram showing the relationship between the indium composition ratio and the band gap energy Eg in the InGaN active layer.
[0071] 図 9は、 InGaN活性層成長温度と、 PL測定により得られた PLピークエネルギーと の関係を示す図である。 PLピークエネルギーは、理想的にはバンドギャップ Egと一 致する。  FIG. 9 is a diagram showing the relationship between the growth temperature of the InGaN active layer and the PL peak energy obtained by PL measurement. The PL peak energy ideally matches the band gap Eg.
[0072] 図 8のグラフから、以下の近似式が得られる。  The following approximate expression is obtained from the graph of FIG.
E=-2. 9x + 3. 2  E = -2.9x + 3.2
Eは Eg、すなわちバンドギャップエネルギーを示す。  E indicates Eg, that is, band gap energy.
Xは In組成比を示す。  X indicates the In composition ratio.
[0073] 一方、図 9のグラフから、以下の近似式が得られる。 On the other hand, the following approximate expression is obtained from the graph of FIG.
E = 0. 012Ts-6. 42  E = 0.012Ts-6.42
Tsは成長温度である。  Ts is the growth temperature.
[0074] 以上から、 [0074] From the above,
Ts=-240x + 800 …式(A)  Ts = -240x + 800… Equation (A)
なる関係式が得られる。なお、上記取扱では、バンドギャップエネルギーおよび PLピ ークエネルギーをいずれも Eとして同一に取り扱った。 [0075] 上記式 (A)より、 InGaN活性層のインジウム組成比と、その活性層を形成するのに 好適な成長温度との関係は、以下のようになる。 The following relational expression is obtained. In the above treatment, both band gap energy and PL peak energy were treated the same as E. From the above formula (A), the relationship between the indium composition ratio of the InGaN active layer and the growth temperature suitable for forming the active layer is as follows.
[0076] インジウム組成 0. 2 :成長温度 約 750°C  [0076] Indium composition 0.2: Growth temperature about 750 ° C
インジウム組成 0. 4 :成長温度 約 700°C  Indium composition 0.4: Growth temperature about 700 ° C
インジウム組成 0. 6 :成長温度 約 650°C  Indium composition 0.6: Growth temperature about 650 ° C
InGaN活性層を好適に形成するには、その上部に位置するクラッド層等の成長温 度を低くすることが重要となる。具体的には、(活性層成長温度 + 100°C)を超えない 温度とすることが好ましい。こうすることにより、熱履歴による活性層の品質劣化を効 果的に抑制できる。これを式 (A)を用いて組成に換算すると、組成比で 0. 41、すな わち、活性層インジウム組成比とクラッド層インジウム組成比との差が 0. 41以下であ ることに対応する。したがって、活性層および上部クラッド層のインジウム組成の差は 、 0. 41以下とすることが好ましぐこうすることにより、安定した長波長発光を実現す ること力 Sできる。  In order to suitably form the InGaN active layer, it is important to lower the growth temperature of the clad layer and the like located thereon. Specifically, it is preferable to set the temperature not to exceed (active layer growth temperature + 100 ° C.). By doing so, quality degradation of the active layer due to heat history can be effectively suppressed. When this is converted into the composition by using the formula (A), the composition ratio is 0.41, that is, the difference between the indium composition ratio of the active layer and the indium composition of the cladding layer is 0.41 or less. Corresponding. Therefore, the difference between the indium compositions of the active layer and the upper cladding layer is preferably set to 0.41 or less, whereby the power for realizing stable long-wavelength light emission can be obtained.
[実施例 8]  [Example 8]
活性層 108および p型クラッド層 111の材料および成長温度を以下のように変更し たこと以外は実施例 1と同様にしてレーザ素子を得た。  A laser device was obtained in the same manner as in Example 1, except that the materials and the growth temperatures of the active layer 108 and the p-type cladding layer 111 were changed as follows.
(i)活性層 108  (i) Active layer 108
構造: In Ga N量子井戸層(厚さ 3.5nm)と In Ga N障壁層(厚さ 10.5nm)力 な Structure: InGaN quantum well layer (3.5nm thick) and InGaN barrier layer (10.5nm thick)
0.47 0.53 0.36 0.64 0.47 0.53 0.36 0.64
る多重量子井戸構造  Multiple quantum well structure
成長温度: 680°C  Growth temperature: 680 ° C
(ii) p型クラッド層 111  (ii) p-type cladding layer 111
構造: Mgドープ p型 In Ga N (厚さ Ο.δ μ πι)  Structure: Mg-doped p-type In GaN (thickness Ο.δ μ πι)
0.07 0.93  0.07 0.93
成長温度: 780°C  Growth temperature: 780 ° C
以上のように、本実施例に係る層構造では、活性層 108のインジウム組成(量子井 戸層のインジウム組成)を x、 p型クラッド層 111のインジウム組成を yとしたとき、 Xが 0.47であり、(X— y)が 0. 4である。  As described above, in the layer structure according to the present embodiment, when the indium composition of the active layer 108 (the indium composition of the quantum well layer) is x and the indium composition of the p-type cladding layer 111 is y, X is 0.47. Yes, and (X-y) is 0.4.
得られたレーザ素子をヒートシンクに設置し、それぞれの電極をワイヤーボ: グして、室温でレーザ発振を試みた。その結果、室温において閾値電流密度 6.5kA/cm2,閾値電圧 7Vで、発振波長がほぼ 680nmの連続発振が確認された。 The obtained laser element was placed on a heat sink, each electrode was wire-bottled, and laser oscillation was attempted at room temperature. As a result, the threshold current density at room temperature At 6.5 kA / cm 2 and a threshold voltage of 7 V, continuous oscillation with an oscillation wavelength of approximately 680 nm was confirmed.
[実施例 9]  [Example 9]
活性層 108および p型クラッド層 111の材料および成長温度を以下のように変更し たこと以外は実施例 1と同様にしてレーザ素子を得た。  A laser device was obtained in the same manner as in Example 1, except that the materials and the growth temperatures of the active layer 108 and the p-type cladding layer 111 were changed as follows.
(i)活性層 108  (i) Active layer 108
構造: In Ga N量子井戸層(厚さ 3.5nm)と In Ga N障壁層(厚さ 10.5nm)力 なStructure: InGaN quantum well layer (3.5nm thick) and InGaN barrier layer (10.5nm thick)
0.47 0.53 0.36 0.64 0.47 0.53 0.36 0.64
る多重量子井戸構造 Multiple quantum well structure
成長温度: 680°C Growth temperature: 680 ° C
(ii) p型クラッド層 111  (ii) p-type cladding layer 111
構造: Mgドープ p型 In Ga N (厚さ Ο.δ μ πι) Structure: Mg-doped p-type In GaN (thickness Ο.δ μ πι)
0.04 0.96  0.04 0.96
成長温度: 780°C Growth temperature: 780 ° C
以上のように、本実施例に係る層構造では、活性層 108のインジウム組成(量子井 戸層のインジウム組成)を x、 p型クラッド層 111のインジウム組成を yとしたとき、 Xが 0.47であり、(X— y)が 0.43である。  As described above, in the layer structure according to the present embodiment, when the indium composition of the active layer 108 (the indium composition of the quantum well layer) is x and the indium composition of the p-type cladding layer 111 is y, X is 0.47. Yes, and (X-y) is 0.43.
得られたレーザ素子をヒートシンクに設置し、それぞれの電極をワイヤーボンディン グして、室温でレーザ発振を試みた。その結果、室温において閾値電流密度  The obtained laser device was placed on a heat sink, and each electrode was wire-bonded, and laser oscillation was attempted at room temperature. As a result, the threshold current density at room temperature
10kAん m2、閾値電圧 9Vで、発振波長がほぼ 680nmの連続発振が確認された。実施 例 1と比較して若干閾値電流密度が高めの値となった。実施例 1の構造の方が、ワイ ヤーボンディング時における活性層等の膜質低下がより効果的に抑制されたためと 考えられる。 At 10 kA m 2 and a threshold voltage of 9 V, continuous oscillation with an oscillation wavelength of approximately 680 nm was confirmed. The threshold current density was slightly higher than in Example 1. It is considered that the structure of Example 1 was more effectively suppressed from deteriorating the film quality of the active layer and the like during wire bonding.
上記実施例 8、 9の比較からわかるように、(X— y)が 0· 4を超える場合に比べ、(X— y)が 0. 4以下とした場合、閾値電流密度が改善される。この傾向は、xを 0. 3以上の 範囲内で行った幾つかの実験結果でも同様であった。  As can be seen from the comparison between Examples 8 and 9, when (X−y) is 0.4 or less, the threshold current density is improved as compared with the case where (X−y) exceeds 0.4. This tendency was the same in some experimental results when x was in the range of 0.3 or more.
以上、図面を参照して本発明の実施例について述べた力 これらは本発明の例示 であり、上記以外の様々な構成を採用することもできる。  As described above, the forces described in the embodiments of the present invention with reference to the drawings are merely examples of the present invention, and various configurations other than those described above can be adopted.
たとえば、レーザ素子の構造は、上述の実施例で示したリッジ型のものに限定され ず、たとえば、レーザ構造中に電流ブロック層を設けたインナーストライプ型のものを 用いてもよい。 また、レーザ構造中、格子緩和層 112を設けない構成としてもよい For example, the structure of the laser element is not limited to the ridge type shown in the above-described embodiment. For example, an inner stripe type in which a current blocking layer is provided in the laser structure may be used. In the laser structure, a structure in which the lattice relaxation layer 112 is not provided may be employed.

Claims

請求の範囲 The scope of the claims
[1] 基板と、  [1] a substrate,
該基板上に形成された下部クラッド層と、  A lower cladding layer formed on the substrate,
前記下部クラッド層の上部に形成された活性層と、  An active layer formed on the lower cladding layer,
前記活性層の上部に形成された上部クラッド層と、  An upper cladding layer formed on the active layer,
を備え、  With
前記活性層および前記上部クラッド層は、いずれもインジウムを含む窒化物半導体 からなり、  Both the active layer and the upper cladding layer are made of a nitride semiconductor containing indium,
前記活性層のインジウム組成を x、前記上部クラッド層のインジウム組成を yとしたと さ、  The indium composition of the active layer is x, and the indium composition of the upper cladding layer is y.
Xが 0. 3以上であり、 (X— y)が 0. 4以下であることを特徴とする窒化物半導体発光 素子。  X is 0.3 or more, and (X−y) is 0.4 or less, a nitride semiconductor light emitting device.
[2] 請求の範囲第 1項に記載の窒化物半導体発光素子において、  [2] The nitride semiconductor light-emitting device according to claim 1,
前記活性層の成長温度を T (°C)、前記上部クラッド層のインジウムの成長温度を T  The growth temperature of the active layer is T (° C), and the growth temperature of indium in the upper cladding layer is T
2  2
(°c)としたとき、  (° c),
T -T力 sioo°c以下であることを特徴とする窒化物半導体発光素子。  A nitride semiconductor light-emitting device having a T-T force of at most sioo ° c.
1 2  1 2
[3] 請求の範囲第 1項に記載の窒化物半導体発光素子において、  [3] The nitride semiconductor light-emitting device according to claim 1,
前記活性層と前記上部クラッド層との間、または前記上部クラッド層中に格子緩和 層を設けたことを特徴とする窒化物半導体発光素子。  A nitride semiconductor light emitting device comprising a lattice relaxation layer provided between the active layer and the upper cladding layer or in the upper cladding layer.
[4] 請求の範囲第 3項に記載の窒化物半導体発光素子において、  [4] The nitride semiconductor light-emitting device according to claim 3,
前記格子緩和層は、 600°C以下の温度で形成された低温成長層であることを特徴 とする窒化物半導体発光素子。  The nitride semiconductor light emitting device, wherein the lattice relaxation layer is a low-temperature growth layer formed at a temperature of 600 ° C. or less.
[5] 請求の範囲第 3項に記載の窒化物半導体発光素子において、 [5] The nitride semiconductor light-emitting device according to claim 3,
前記格子緩和層は、インジウムを含むことを特徴とする窒化物半導体発光素子。  The nitride semiconductor light emitting device, wherein the lattice relaxation layer contains indium.
[6] 請求の範囲第 3項に記載の窒化物半導体発光素子において、 [6] The nitride semiconductor light-emitting device according to claim 3,
前記格子緩和層の厚みが 10nm以上 lOOnm以下であることを特徴とする窒化物 半導体発光素子。  A nitride semiconductor light emitting device, wherein the thickness of the lattice relaxation layer is 10 nm or more and 100 nm or less.
[7] 請求の範囲第 1項に記載の窒化物半導体発光素子において、 前記上部クラッド層のインジウム組成比が前記活性層のインジウム組成比よりも小さ いことを特徴とする窒化物半導体発光素子。 [7] The nitride semiconductor light emitting device according to claim 1, A nitride semiconductor light emitting device, wherein an indium composition ratio of the upper cladding layer is smaller than an indium composition ratio of the active layer.
[8] 請求の範囲第 1項に記載の窒化物半導体発光素子において、  [8] The nitride semiconductor light emitting device according to claim 1,
前記活性層の上部に設けられ、インジウムを含む窒化物半導体により構成されたコ ンタクト層と、  A contact layer provided on the active layer and made of a nitride semiconductor containing indium;
該コンタクト層と接して設けられた電極と  An electrode provided in contact with the contact layer;
を備えることを特徴とする窒化物半導体発光素子。  A nitride semiconductor light emitting device comprising:
[9] 請求の範囲第 1項に記載の窒化物半導体発光素子において、 [9] The nitride semiconductor light-emitting device according to claim 1,
前記活性層の上部に位置する半導体層が、いずれもインジウムを含む窒化物半導 体により構成されていることを特徴とする窒化物半導体発光素子。  The nitride semiconductor light emitting device, wherein each of the semiconductor layers located above the active layer is made of a nitride semiconductor containing indium.
[10] 請求の範囲第 1項に記載の窒化物半導体発光素子において、 [10] The nitride semiconductor light-emitting device according to claim 1,
前記上部クラッド層は、 In Ga N (0 < y< l )からなることを特徴とする窒化物半導 y 1— y  The upper cladding layer is made of InGaN (0 <y <l), and the nitride semiconductor y 1—y
体発光素子。  Body light emitting element.
[11] 請求の範囲第 10項に記載の窒化物半導体発光素子において、  [11] The nitride semiconductor light emitting device according to claim 10, wherein
In Ga N (0 < y< l )からなる前記上部クラッド層の厚み力 0· 4 μ ΐη以上 1 · Ο μ y y  Thickness of the upper cladding layer composed of In GaN (0 <y <l) 0.4 μ · ≥η or more 1 · y μ y y
m以下であることを特徴とする窒化物半導体発光素子。  m or less.
[12] 基板と、 [12] a substrate,
該基板上に形成された下部クラッド層と、  A lower cladding layer formed on the substrate,
前記下部クラッド層の上部に形成された活性層と、  An active layer formed on the lower cladding layer,
前記活性層の上部に形成された上部クラッド層と、  An upper cladding layer formed on the active layer,
を備え、  With
前記活性層および前記上部クラッド層は、いずれもインジウムを含む窒化物半導体 からなり、  Both the active layer and the upper cladding layer are made of a nitride semiconductor containing indium,
前記活性層の成長温度を T (°C)、前記上部クラッド層のインジウムの成長温度を T  The growth temperature of the active layer is T (° C), and the growth temperature of indium in the upper cladding layer is T
2  2
(°C)としたとき、  (° C),
T -T力 sioo°c以下であることを特徴とする窒化物半導体発光素子。  A nitride semiconductor light-emitting device having a T-T force of at most sioo ° c.
1 2  1 2
[13] 基板と、  [13] a substrate,
該基板上に形成された下部クラッド層と、 前記下部クラッド層の上部に形成された活性層と、 A lower cladding layer formed on the substrate, An active layer formed on the lower cladding layer,
前記活性層の上部に形成された上部クラッド層と、  An upper cladding layer formed on the active layer,
を備え、  With
前記活性層はインジウムを含む窒化物半導体からなり、  The active layer is made of a nitride semiconductor containing indium,
前記活性層と前記上部クラッド層との間、または前記上部クラッド層中に格子緩和 層を設けたことを特徴とする窒化物半導体発光素子。  A nitride semiconductor light emitting device comprising a lattice relaxation layer provided between the active layer and the upper cladding layer or in the upper cladding layer.
[14] 請求の範囲第 13項に記載の窒化物半導体発光素子において、 [14] The nitride semiconductor light emitting device according to claim 13, wherein
前記上部クラッド層はインジウムを含む窒化物半導体からなることを特徴とする窒化 物半導体発光素子。  The nitride semiconductor light emitting device, wherein the upper cladding layer is made of a nitride semiconductor containing indium.
[15] 請求の範囲第 13項に記載の窒化物半導体発光素子において、 [15] The nitride semiconductor light emitting device according to claim 13, wherein
前記格子緩和層は、 600°C以下の温度で形成された低温成長層であることを特徴 とする窒化物半導体発光素子。  The nitride semiconductor light emitting device, wherein the lattice relaxation layer is a low-temperature growth layer formed at a temperature of 600 ° C. or less.
[16] 請求の範囲第 13項に記載の窒化物半導体発光素子において、 [16] The nitride semiconductor light-emitting device according to claim 13,
前記格子緩和層は、インジウムを含むことを特徴とする窒化物半導体発光素子。  The nitride semiconductor light emitting device, wherein the lattice relaxation layer contains indium.
[17] 請求の範囲第 13項に記載の窒化物半導体発光素子において、 [17] The nitride semiconductor light-emitting device according to claim 13, wherein
前記格子緩和層の厚みが 10nm以上 lOOnm以下であることを特徴とする窒化物 半導体発光素子。  A nitride semiconductor light emitting device, wherein the thickness of the lattice relaxation layer is 10 nm or more and 100 nm or less.
[18] 請求の範囲第 12項または 13項に記載の窒化物半導体発光素子において、  [18] The nitride semiconductor light-emitting device according to claim 12 or 13,
前記上部クラッド層のインジウム組成比が前記活性層のインジウム組成比よりも小さ いことを特徴とする窒化物半導体発光素子。  A nitride semiconductor light emitting device, wherein an indium composition ratio of the upper cladding layer is smaller than an indium composition ratio of the active layer.
[19] 請求の範囲第 12項または 13項に記載の窒化物半導体発光素子において、 [19] The nitride semiconductor light-emitting device according to claim 12 or 13,
前記活性層の上部に設けられ、インジウムを含む窒化物半導体により構成されたコ ンタクト層と、  A contact layer provided on the active layer and made of a nitride semiconductor containing indium;
該コンタクト層と接して設けられた電極と  An electrode provided in contact with the contact layer;
を備えることを特徴とする窒化物半導体発光素子。  A nitride semiconductor light emitting device comprising:
[20] 請求の範囲第 12項または 13項に記載の窒化物半導体発光素子において、 [20] The nitride semiconductor light-emitting device according to claim 12 or 13,
前記活性層の上部に位置する半導体層が、いずれもインジウムを含む窒化物半導 体により構成されていることを特徴とする窒化物半導体発光素子。 A nitride semiconductor light emitting device, wherein each of the semiconductor layers located above the active layer is made of a nitride semiconductor containing indium.
[21] 請求の範囲第 12項または 13項に記載の窒化物半導体発光素子において、 前記上部クラッド層は、 In Ga N (0 < y< l)からなることを特徴とする窒化物半導 [21] The nitride semiconductor light emitting device according to claim 12, wherein the upper cladding layer is made of InGaN (0 <y <l).
y 1— y  y 1— y
体発光素子。  Body light emitting element.
[22] 請求の範囲第 12項または 13項に記載の窒化物半導体発光素子において、  [22] The nitride semiconductor light emitting device according to claim 12 or 13,
In Ga N (0 < y< l)力 なる前記上部クラッド層の厚み力 0. 4 111以上1. Ο μ y i— y  In GaN (0 <y <l) force, the thickness of the upper cladding layer is 0.4 111 or more 1. Ο μ y i— y
m以下であることを特徴とする窒化物半導体発光素子。  m or less.
[23] 基板上に下部クラッド層を形成する工程と、 [23] forming a lower cladding layer on the substrate;
前記下部クラッド層の上部に、インジウムを含む窒化物半導体からなる活性層を形 成する工程と、  Forming an active layer made of a nitride semiconductor containing indium on the lower clad layer;
前記活性層の上部に、インジウムを含む窒化物半導体からなる上部クラッド層を形 成する工程と、  Forming an upper cladding layer made of a nitride semiconductor containing indium on the active layer;
を含み、  Including
前記活性層の成長温度を T (°C)、前記上部クラッド層のインジウムの成長温度を T  The growth temperature of the active layer is T (° C), and the growth temperature of indium in the upper cladding layer is T
2  2
(°C)としたとき、  (° C),
T -T力 sioo°c以下であることを特徴とする窒化物半導体発光素子の製造方法。  A method for producing a nitride semiconductor light emitting device, wherein the TT force is not more than sioo ° c.
1 2  1 2
[24] 基板上に下部クラッド層を形成する工程と、  [24] forming a lower cladding layer on the substrate,
前記下部クラッド層の上部に、インジウムを含む窒化物半導体からなる活性層を形 成する工程と、  Forming an active layer made of a nitride semiconductor containing indium on the lower clad layer;
前記活性層の上部に、 600°C以下の温度で格子緩和層を形成する工程と、 前記格子緩和層の上部に上部クラッド層を形成する工程と、  Forming a lattice relaxation layer on the active layer at a temperature of 600 ° C. or lower; forming an upper cladding layer on the lattice relaxation layer;
を含むことを特徴とする窒化物半導体発光素子の製造方法。  A method for manufacturing a nitride semiconductor light emitting device, comprising:
PCT/JP2004/012216 2003-08-29 2004-08-25 Nitride semiconductor light emitting element and process for fabricating the same WO2005022711A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005513448A JPWO2005022711A1 (en) 2003-08-29 2004-08-25 Nitride semiconductor light emitting device and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-307668 2003-08-29
JP2003307668 2003-08-29

Publications (1)

Publication Number Publication Date
WO2005022711A1 true WO2005022711A1 (en) 2005-03-10

Family

ID=34269455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/012216 WO2005022711A1 (en) 2003-08-29 2004-08-25 Nitride semiconductor light emitting element and process for fabricating the same

Country Status (2)

Country Link
JP (1) JPWO2005022711A1 (en)
WO (1) WO2005022711A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010501117A (en) * 2006-08-16 2010-01-14 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Method for depositing magnesium doped (Al, In, Ga, B) N layer
US8956896B2 (en) 2006-12-11 2015-02-17 The Regents Of The University Of California Metalorganic chemical vapor deposition (MOCVD) growth of high performance non-polar III-nitride optical devices

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08167735A (en) * 1994-12-12 1996-06-25 Hitachi Cable Ltd Light emitting element
JP2000261099A (en) * 1999-03-10 2000-09-22 Fuji Electric Co Ltd Group iii nitride laser diode and its manufacture
JP2000299530A (en) * 1999-02-08 2000-10-24 Fuji Photo Film Co Ltd Semiconductor light-emitting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08167735A (en) * 1994-12-12 1996-06-25 Hitachi Cable Ltd Light emitting element
JP2000299530A (en) * 1999-02-08 2000-10-24 Fuji Photo Film Co Ltd Semiconductor light-emitting device
JP2000261099A (en) * 1999-03-10 2000-09-22 Fuji Electric Co Ltd Group iii nitride laser diode and its manufacture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010501117A (en) * 2006-08-16 2010-01-14 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Method for depositing magnesium doped (Al, In, Ga, B) N layer
US8956896B2 (en) 2006-12-11 2015-02-17 The Regents Of The University Of California Metalorganic chemical vapor deposition (MOCVD) growth of high performance non-polar III-nitride optical devices

Also Published As

Publication number Publication date
JPWO2005022711A1 (en) 2007-11-01

Similar Documents

Publication Publication Date Title
US6829273B2 (en) Nitride semiconductor layer structure and a nitride semiconductor laser incorporating a portion of same
KR100906760B1 (en) Nitride semiconductor device
JP4328366B2 (en) Semiconductor element
US7751455B2 (en) Blue and green laser diodes with gallium nitride or indium gallium nitride cladding laser structure
US6690700B2 (en) Nitride semiconductor device
JP4032803B2 (en) Gallium nitride compound semiconductor device and manufacturing method thereof
JP3705047B2 (en) Nitride semiconductor light emitting device
KR101179319B1 (en) Group-iii nitride semiconductor laser
US7456034B2 (en) Nitride semiconductor device and method for fabricating the same
JP4074290B2 (en) Semiconductor light emitting device and manufacturing method thereof
EP1196971B1 (en) Nitride semiconductor layer structure and a nitride semiconductor laser incorporating a portion of same
JP3311275B2 (en) Nitride based semiconductor light emitting device
JP6128138B2 (en) Semiconductor light emitting device
JP5257967B2 (en) Semiconductor optical device
JP4646359B2 (en) Manufacturing method of nitride semiconductor light emitting device
JP4877294B2 (en) Manufacturing method of semiconductor light emitting device
JP2003086903A (en) Semiconductor light emitting device and its manufacturing method
EP1553669A1 (en) Group iii nitride semiconductor light-emitting device and method for manufacturing same
JP3763701B2 (en) Gallium nitride semiconductor light emitting device
JP5332955B2 (en) Group III nitride semiconductor laser
JP4481385B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP2008177438A (en) Nitride semiconductor light-emitting element
JP2002289914A (en) Nitride semiconductor element
WO2000024097A1 (en) Improved far-field nitride based semiconductor device
JP4179280B2 (en) Manufacturing method of semiconductor light emitting device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005513448

Country of ref document: JP

122 Ep: pct application non-entry in european phase