JP3311275B2 - Nitride based semiconductor light emitting device - Google Patents

Nitride based semiconductor light emitting device

Info

Publication number
JP3311275B2
JP3311275B2 JP23488297A JP23488297A JP3311275B2 JP 3311275 B2 JP3311275 B2 JP 3311275B2 JP 23488297 A JP23488297 A JP 23488297A JP 23488297 A JP23488297 A JP 23488297A JP 3311275 B2 JP3311275 B2 JP 3311275B2
Authority
JP
Japan
Prior art keywords
layer
type
well
layers
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23488297A
Other languages
Japanese (ja)
Other versions
JPH1174622A (en
Inventor
理砂 杉浦
正行 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP23488297A priority Critical patent/JP3311275B2/en
Publication of JPH1174622A publication Critical patent/JPH1174622A/en
Application granted granted Critical
Publication of JP3311275B2 publication Critical patent/JP3311275B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光情報処理,光通
信,光計測などの技術分野で用いられる窒化物系半導体
発光素子に係わり、特に分離閉じ込めヘテロ構造(SC
H:Separate Confinement Heterostructure)を有する
窒化物系半導体発光素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nitride semiconductor light emitting device used in technical fields such as optical information processing, optical communication, and optical measurement.
H: a nitride-based semiconductor light-emitting device having a Separate Confinement Heterostructure.

【0002】[0002]

【従来の技術】近年、短波長発光素子の需要が高まり、
ZnSe系或いはGaN系材料を用いた短波長発光素子
の研究開発が活発に行われている。ZnSe系材料では
発振波長500nm前後の短波長半導体レーザの室温連
続発振が達成されているが、結晶欠陥の増殖に起因する
素子劣化が問題となり、素子の長寿命化が達成できず、
実用化には至っていない。
2. Description of the Related Art In recent years, demand for short-wavelength light emitting devices has increased,
Research and development of short-wavelength light emitting devices using ZnSe-based or GaN-based materials have been actively conducted. In a ZnSe-based material, continuous oscillation at room temperature of a short-wavelength semiconductor laser having an oscillation wavelength of about 500 nm has been achieved. However, device deterioration due to growth of crystal defects has become a problem, and a longer lifetime of the device has not been achieved.
It has not been put to practical use.

【0003】一方、GaN系材料では近年、青色発光ダ
イオード(LED)が実用化され、現在GaN系青色半
導体レーザの研究開発が精力的に行われている。また最
近、GaN系半導体レーザにおいても室温連続発振が達
成されたが、この材料系においては、いまだ物性に関し
て未知な部分が多く、実用化に際して解決すべき問題も
多い。その主なものとして、しきい値電流が高いという
問題がある。
On the other hand, in recent years, a blue light emitting diode (LED) has been put to practical use as a GaN-based material, and research and development of a GaN-based blue semiconductor laser are currently being vigorously conducted. Recently, continuous oscillation at room temperature has also been achieved in a GaN-based semiconductor laser. However, in this material system, there are still many unknown parts regarding physical properties, and there are many problems to be solved in practical use. The main problem is that the threshold current is high.

【0004】GaN系青色半導体レーザでは、従来、p
型及びn型伝導を有するAlGaNクラッド層の間に、
多重量子井戸構造(MQW)を有するInGaN系活性
層を有するSCH構造が多く用いられている。この場合
のしきい値電流が高い理由として、電子やホールのキャ
リアが多重量子井戸の中に有効に閉じ込められず、オー
バーフローしてしまうことや、電圧を印加した際に生じ
る内部電界のために電子とホールが異なった井戸層に局
在してしまい、再結合する確率が下がってしまうことな
どが挙げられる。
In a GaN-based blue semiconductor laser, conventionally, p
Between an AlGaN cladding layer having n-type and n-type conduction,
An SCH structure having an InGaN-based active layer having a multiple quantum well structure (MQW) is often used. The reason why the threshold current in this case is high is that electrons and holes are not effectively confined in the multiple quantum well and overflow, and the electron field is generated due to an internal electric field generated when a voltage is applied. And holes are localized in different well layers, and the probability of recombination decreases.

【0005】[0005]

【発明が解決しようとする課題】このように従来、SC
H構造を採用した窒化物系半導体発光素子においては、
キャリアのオーバーフローや再結合確率の低下を招き、
これがしきい値電流の低下を妨げる要因となっていた。
As described above, the conventional SC
In a nitride semiconductor light emitting device employing an H structure,
Leading to carrier overflow and lower recombination probability,
This has been a factor that hinders a decrease in the threshold current.

【0006】本発明は、上記の事情を考慮して成された
もので、その目的とするところは、SCH構造を採用し
た場合のキャリアのオーバーフローや再結合確率の低下
を抑制することができ、しきい値電流の低減をはかり得
る窒化物系半導体発光素子を提供することにある。
The present invention has been made in consideration of the above circumstances, and an object of the present invention is to suppress carrier overflow and a decrease in recombination probability when an SCH structure is employed. An object of the present invention is to provide a nitride-based semiconductor light emitting device capable of reducing a threshold current.

【0007】[0007]

【課題を解決するための手段】[Means for Solving the Problems]

(構成) 上記課題を解決するために本発明は、基板上に、多重量
子井戸構造の活性層をp型及びn型の一対のクラッド層
で挟んだヘテロ構造を有する窒化物系半導体発光素子に
おいて、前記活性層を構成する多重量子井戸構造の井戸
層の一部を、p型クラッド層に近い方から1層又は複数
層だけn型不純物が添加された半導体層にしてなること
を特徴とする。
(Constitution) In order to solve the above problems, the present invention provides a nitride semiconductor light emitting device having a hetero structure in which an active layer having a multiple quantum well structure is sandwiched between a pair of p-type and n-type cladding layers on a substrate. A part or a plurality of well layers of the multiple quantum well structure forming the active layer, starting from the one closer to the p-type cladding layer;
It is characterized in that only the layer is a semiconductor layer to which an n-type impurity is added.

【0008】また本発明は、基板上に、多重量子井戸構
造の活性層をp型及びn型の一対のクラッド層で挟んだ
ヘテロ構造を有する窒化物系半導体発光素子において、
前記活性層を構成する多重量子井戸構造の井戸層の一部
を、n型クラッド層に近い方から1層又は複数層だけ
型不純物が添加された半導体層にしてなることを特徴と
する。
The present invention also provides a nitride semiconductor light emitting device having a hetero structure in which an active layer having a multiple quantum well structure is sandwiched between a pair of p-type and n-type cladding layers on a substrate.
A part of the well layer of the multiple quantum well structure that constitutes the active layer is changed by one or more layers from the side closer to the n-type cladding layer.
And a semiconductor layer to which a type impurity is added.

【0009】また本発明は、基板上に、多重量子井戸構
造の活性層をp型及びn型の一対のクラッド層で挟んだ
ヘテロ構造を有する窒化物系半導体発光素子において、
前記活性層を構成する多重量子井戸構造の井戸層の一部
を、p型クラッド層に近い方から1層又は複数層だけ
型不純物が添加された半導体層にし、かつn型クラッド
層に近い方から1層又は複数層だけp型不純物が添加さ
れた半導体層にしてなることを特徴とする。
The present invention also provides a nitride semiconductor light emitting device having a hetero structure in which an active layer having a multiple quantum well structure is sandwiched between a pair of p-type and n-type cladding layers on a substrate.
A part of the well layer of the multiple quantum well structure constituting the active layer is formed by n or more layers from the side closer to the p-type cladding layer.
A semiconductor layer to which a p-type impurity is added, and a semiconductor layer to which only one or a plurality of p-type impurities are added from the side closer to the n-type cladding layer.

【0010】ここで、本発明の望ましい実施態様として
は次のものがあげられる。 (1) 多重量子井戸構造の活性層は、クラッド層よりも内
側の一対の光閉じ込め層で挟まれていること。 (2) 活性層を構成する多重量子井戸構造は、InGaN
系材料であること。 (3) 光閉じ込め層はGaNであること。 (4) クラッド層はAlGaNであること。 (5) 基板は、サファイア又はSiCであること。
Here, preferred embodiments of the present invention include the following. (1) The active layer having a multiple quantum well structure is sandwiched between a pair of optical confinement layers inside the cladding layer. (2) The multiple quantum well structure constituting the active layer is made of InGaN
Be a system material. (3) The light confinement layer is GaN. (4) The cladding layer is made of AlGaN. (5) The substrate is sapphire or SiC.

【0011】(作用)前述したようにSCH構造を有す
る窒化物系半導体発光素子において、キャリアを電気的
に注入した場合、例えばレーザ発振に必要なだけの十分
な反転層が量子井戸の中で形成されるためには、かなり
高い注入電流(しきい値電流)を必要とする。しきい値
電流を下げるために、注入井戸層のエネルギー深さを深
くして井戸内のキャリア密度を上げることが有効と考え
られるが、そのためにはInGaN井戸層のIn組成を
増やさねばならない。ところが、In組成を20〜30
%若しくはそれ以上に増やことは、InNのスピノダル
分解や、モフォロジーの悪化などを引き起こすため、非
常に困難である。
(Operation) As described above, in the nitride semiconductor light emitting device having the SCH structure, when carriers are electrically injected, for example, a sufficient inversion layer necessary for laser oscillation is formed in the quantum well. To do so requires a fairly high injection current (threshold current). In order to lower the threshold current, it is considered effective to increase the energy depth of the injection well layer to increase the carrier density in the well, but for that purpose, the In composition of the InGaN well layer must be increased. However, when the In composition is 20 to 30
% Or more is very difficult because it causes spinodal decomposition of InN and deterioration of morphology.

【0012】そこで本発明では、p型クラッド層に近い
井戸層に高濃度n型ドーピングを施すこと、n型クラッ
ド層に近い井戸層に高濃度p型ドーピングを施すこと、
又はこれらの両方を採用することによって、量子井戸の
深さを実効的に深くすると共に、クラッド層端で、量子
井戸内の電子又はホールのエネルギーよりも高いエネル
ギーの準位密度を増やし、キャリアのオーバーフロー
(キャリアがクラッド層を乗り越えて活性層の外側に流
れ出すこと)が起きにくくしており、これによりしきい
値電流を下げることを可能にしている。
Therefore, in the present invention, high concentration n-type doping is performed on a well layer near a p-type cladding layer, and high concentration p-type doping is performed on a well layer near an n-type cladding layer.
Alternatively, by adopting both of them, the depth of the quantum well is effectively increased, and the level density of energy higher than the energy of electrons or holes in the quantum well is increased at the end of the cladding layer, so that the carrier of the carrier is increased. Overflow (carrier flowing over the cladding layer and flowing out of the active layer) is less likely to occur, thereby making it possible to lower the threshold current.

【0013】以下に、p型クラッド層に近い層に高濃度
n型ドーピングを施す場合を例にしてその原理を説明す
る。まず、一番単純な、p型クラッド層に一番近い井戸
層を1層だけ高濃度n型ドーピングした場合を考える。
Hereinafter, the principle will be described by taking as an example a case where a layer near the p-type cladding layer is heavily doped with n-type doping. First, consider the case where the simplest well layer closest to the p-type cladding layer is doped with only one high-concentration n-type layer.

【0014】キャリアのバンドエネルギー図を、図1に
示す。この図は、発光させるために素子に電圧を加えた
状態を示している。GaN系の薄膜を使った半導体レー
ザでは、一般に発振に要する印加電圧は大きく、図に示
すようにn型クラッド層の伝導電子エネルギーの方が大
きくなることに注意を要する。
FIG. 1 shows a band energy diagram of carriers. This figure shows a state in which a voltage is applied to the element to emit light. It should be noted that in a semiconductor laser using a GaN-based thin film, the applied voltage required for oscillation is generally large, and the conduction electron energy of the n-type cladding layer is larger as shown in the figure.

【0015】図1(a)は井戸層に不純物ドーピングし
ない従来の構造に対応し、図1(b)は井戸層の一つだ
けにn型不純物ドーピングした本発明の構造に対応する
図である。図1(b)においては、井戸層の一つがn型
になるため、内部電界を生じてバンドは著しく曲がり、
またその領域の井戸層とバリア層の伝導帯端の電子エネ
ルギーが下がる。そして、以下に述べる2つの理由か
ら、このバンドの曲がりにより発振しきい値を下げるこ
とに結びつく。
FIG. 1A corresponds to a conventional structure in which a well layer is not doped with an impurity, and FIG. 1B corresponds to a structure of the present invention in which only one of the well layers is doped with an n-type impurity. . In FIG. 1B, since one of the well layers becomes n-type, an internal electric field is generated, and the band is significantly bent.
In addition, the electron energy at the conduction band edge of the well layer and the barrier layer in that region decreases. And, for the following two reasons, bending of this band leads to lowering of the oscillation threshold.

【0016】第1の理由は、図1(b)に示すように実
効的に井戸層が深くなるため、井戸層内のキャリア準位
が増えると共に、一度井戸層に捕獲されたキャリアが外
側に流失することが少なくなるためである。
The first reason is that the well layer is effectively deepened as shown in FIG. 1 (b), so that the carrier level in the well layer increases and the carrier once trapped in the well layer becomes outward. This is because the loss is reduced.

【0017】次に、第2の理由を述べる。図1(b)に
示すように、実効的に井戸層又はバリア層の伝導電子エ
ネルギーとクラッド層の伝導電子エネルギーとの差が大
きくなり、クラッド層と量子井戸構造の活性層との境界
部の電子の状態密度が大きくなる。これにより、この部
分に存在する電子は、既に井戸層にある電子が再結合し
て消滅すると、井戸層に落ちて来て、次の再結合に寄与
する。従って、クラッド層と量子井戸構造の活性層との
境界部の密度が増えると、注入電流を増やさなくても、
発光確率が大きくなる(レーザ発振の反転層が形成し易
くなる)ので、結果的にしきい値電流密度が下がる。
Next, the second reason will be described. As shown in FIG. 1B, the difference between the conduction electron energy of the well layer or the barrier layer and the conduction electron energy of the cladding layer is increased, and the boundary between the cladding layer and the active layer of the quantum well structure is effectively reduced. The density of states of electrons increases. As a result, when electrons existing in the well layer recombine and disappear, electrons existing in this portion fall to the well layer and contribute to the next recombination. Therefore, if the density at the boundary between the cladding layer and the active layer of the quantum well structure increases, even if the injection current is not increased,
Since the light emission probability increases (the laser oscillation inversion layer is easily formed), the threshold current density decreases as a result.

【0018】なお、活性層の端にクラッド層よりもAl
組成の大きいAlGaNを薄く設けた構造で、ここで述
べた第2の理由と同じ理由で、しきい値が下がる効果が
得られる。しかし、1100℃以上の高温でないと良質
なAlGaN層が成長できない問題があり、一方でIn
GaN系活性層成長後の昇温過程において活性層を11
00℃以上の高温に晒すことにより、活性層の再蒸発や
品質の著しい低下が生じる。また、高Al組成のAlG
aN層を活性層に隣接して形成する場合、活性層に大き
な歪みを伴い、素子信頼性の低下につながるため望まし
くない。
It should be noted that the edge of the active layer is more Al than the clad layer.
This is a structure in which AlGaN having a large composition is provided thinly, and an effect of lowering the threshold value can be obtained for the same reason as the second reason described above. However, there is a problem that a high-quality AlGaN layer cannot be grown unless the temperature is higher than 1100 ° C.
In the heating process after growing the GaN-based active layer, the active layer
Exposure to a high temperature of 00 ° C. or more causes re-evaporation of the active layer and a significant decrease in quality. Also, AlG with high Al composition
If the aN layer is formed adjacent to the active layer, it is not desirable because the active layer is greatly strained and leads to a reduction in device reliability.

【0019】本発明によれば、上述のような問題が生じ
ず、よりも簡単な方法で効果が得られる。なお、第2の
理由の場合、特にクラッド層に近い側の井戸層での発光
確率を高める効果がある。
According to the present invention, the above-mentioned problem does not occur, and the effect can be obtained by a simpler method. In the case of the second reason, there is an effect of increasing the light emission probability particularly in the well layer near the clad layer.

【0020】また、高濃度ドーピングする井戸層の数を
増やすと、伝導帯端の空間的な変化が緩やかになるもの
の、前記1層のドーピングに準じた効果がある。また、
図2(a)に示すように、n型クラッド層に近い井戸層
にp型ドープする場合もホールに対して同様の効果があ
り、結果的にしきい値が下がる。さらに、図2(b)に
示すように、p型クラッド層に近い井戸層にn型ドープ
し、n型クラッド層に近い井戸層にp型ドープすること
により、しきい値の更なる低減をはかることも可能であ
る。
When the number of well layers to be heavily doped is increased, the spatial change at the conduction band edge is moderated, but there is an effect similar to the doping of the single layer. Also,
As shown in FIG. 2A, when a well layer close to the n-type cladding layer is doped with p-type, the same effect is obtained for holes, and as a result, the threshold value decreases. Further, as shown in FIG. 2B, the well layer near the p-type cladding layer is doped with n-type and the well layer near the n-type cladding layer is doped with p-type, so that the threshold value can be further reduced. It is also possible to measure.

【0021】また、以上述べたものとは別に本発明の構
造は、以下の効果も付加的にもたらす。図1に示した状
態とは異なるが、印加電圧が小さくn型クラッド層の伝
導帯電子エネルギーがp型クラッド層の伝導電子エネル
ギーよりも低い場合(他の材料系の半導体レーザでの通
常のバンド構造)、電圧を印加した際に生じる内部電界
が井戸層へのドーピングによって小さくなる方向に働く
ので、ホールと電子が違った井戸に局在する効果が少な
くなり、各井戸層でキャリアが均等に存在するようにな
る。この内部電界が小さくなる効果は、井戸層の外側の
層(ガイド層など)に高濃度ドーピングする方法で通常
得られているが、本発明のように井戸層にドーピングす
ることでもその効果を実現できる。
In addition to the above, the structure of the present invention additionally provides the following effects. Although different from the state shown in FIG. 1, when the applied voltage is small and the conduction electron energy of the n-type cladding layer is lower than the conduction electron energy of the p-type cladding layer (normal band in a semiconductor laser of another material type). Structure), since the internal electric field generated when a voltage is applied acts in the direction in which the doping of the well layer decreases, the effect of localizing holes and electrons in different wells is reduced, and carriers are evenly distributed in each well layer. Will be present. The effect of reducing the internal electric field is usually obtained by doping the layer outside the well layer (such as a guide layer) with a high concentration. However, the effect can be realized by doping the well layer as in the present invention. it can.

【0022】[0022]

【発明の実施の形態】以下、本発明の詳細を図示の実施
形態を参照して説明する。 (実施形態1)図3は、本発明の第1の実施形態に係わ
る窒化物系短波長半導体レーザを示す素子構造断面図で
ある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below with reference to the illustrated embodiments. (Embodiment 1) FIG. 3 is a sectional view of an element structure showing a nitride-based short wavelength semiconductor laser according to a first embodiment of the present invention.

【0023】本実施形態の半導体レーザは、SCH構造
を有している。半導体レーザ用の多層膜は、周知の有機
金属気相成長(MOCVD)法により作成した。有機金
属原料として、トリメチルガリウム(TMG),トリメ
チルアルミニウム(TMA),トリメチルインジウム
(TMI),ビスシクロペンタジエニルマグネシウム
(Cp2 Mg)を用いた。ガス原料として、アンモニア
(NH3 ),シラン(SiH4 )を用いた。また、キャ
リアガスとして、水素及び窒素を用いた。
The semiconductor laser of this embodiment has an SCH structure. The multilayer film for the semiconductor laser was formed by a well-known metal organic chemical vapor deposition (MOCVD) method. As an organic metal raw material, trimethylgallium (TMG), trimethylaluminum (TMA), trimethylindium (TMI), and biscyclopentadienyl magnesium (Cp 2 Mg) were used. Ammonia (NH 3 ) and silane (SiH 4 ) were used as gas raw materials. In addition, hydrogen and nitrogen were used as carrier gases.

【0024】本実施形態の半導体レーザは、次のように
して製造される。まず、サファイア基板101上に、バ
ッファ層(図示せず)を介して、アンドープGaN下地
層102,n型GaNコンタクト層103,厚さ0.2
5μmのn型Al0.18Ga0.82Nクラッド層104を順
次形成する。
The semiconductor laser of this embodiment is manufactured as follows. First, an undoped GaN underlayer 102, an n-type GaN contact layer 103, and a thickness of 0.2 are formed on a sapphire substrate 101 via a buffer layer (not shown).
An n-type Al 0.18 Ga 0.82 N cladding layer 104 of 5 μm is formed sequentially.

【0025】次いで、光閉じ込め層として厚さ4nmの
GaNガイド層105を形成し、厚さ2nmのIn0.15
Ga0.85N井戸層111と、厚さ4nmのIn0.05Ga
0.95N障壁層112がそれぞれ4層づつから成る多重量
子井戸構造(MQW)を有するInGaN系活性層11
0を形成する。このとき、一番上側のIn0.15Ga0.85
N井戸層111を成長する際に、シリコン高濃度ドーピ
ング(n型)を行う。その上部には、p側光閉じ込め層
としてGaN光ガイド層121,p型Al0.18Ga0.82
Nクラッド層122,p型GaNコンタクト層123を
この順で形成する。
Next, a 4 nm-thick GaN guide layer 105 is formed as a light confinement layer, and a 2 nm-thick In 0.15
Ga 0.85 N well layer 111 and 4 nm thick In 0.05 Ga
InGaN-based active layer 11 having a multiple quantum well structure (MQW) in which each of 0.95 N barrier layers 112 includes four layers
0 is formed. At this time, the uppermost In 0.15 Ga 0.85
When growing the N well layer 111, high concentration silicon doping (n-type) is performed. A GaN light guide layer 121 as a p-side light confinement layer and a p-type Al 0.18 Ga 0.82
An N cladding layer 122 and a p-type GaN contact layer 123 are formed in this order.

【0026】また、上記多層構造の一部をn型GaNコ
ンタクト層103までドライエッチング法により除去
し、露出したコンタクト層103の上部にTi/Alか
ら成るn側電極125を形成した。また、p型GaNコ
ンタクト層123上にはp側電極126を形成した。
A part of the multilayer structure was removed to the n-type GaN contact layer 103 by dry etching, and an n-side electrode 125 made of Ti / Al was formed on the exposed contact layer 103. Further, a p-side electrode 126 was formed on the p-type GaN contact layer 123.

【0027】次に、上述の電極を有する半導体多層膜を
形成したウェハを350μm×500μmの大きさに劈
開することにより共振器ミラーを形成し、半導体レーザ
を作成した。この素子に電圧を印加したときのバンド構
造について説明する。
Next, a semiconductor mirror was formed by cleaving the wafer on which the semiconductor multilayer film having the above-mentioned electrodes was formed into a size of 350 μm × 500 μm to form a resonator mirror. The band structure when a voltage is applied to this element will be described.

【0028】ドーピングした井戸層111の伝導帯端が
低くなり、実効的に井戸の深さが深くなり、電子の閉じ
込めが強まる。また同時に、クラッド層の端(活性層
側)に伝導帯端の窪みができるため、その近傍に存在す
る電子の平均的な密度が増える。さらに、動作電圧が低
い素子では、活性層内部の電界によるバンドの曲がりを
弱めることにより、電子と正孔の局在化を緩和できる。
このため、量子井戸構造での電子と正孔の再結合の確率
が増え、発振に必要な反転層が低い注入電流密度で得ら
れる。
The conduction band edge of the doped well layer 111 is lowered, the depth of the well is effectively increased, and the confinement of electrons is enhanced. At the same time, a dent at the conduction band end is formed at the end of the cladding layer (on the active layer side), so that the average density of electrons existing in the vicinity thereof increases. Furthermore, in an element having a low operating voltage, the localization of electrons and holes can be reduced by weakening the band bending due to the electric field inside the active layer.
Therefore, the probability of recombination of electrons and holes in the quantum well structure increases, and an inversion layer required for oscillation can be obtained at a low injection current density.

【0029】本実施形態の半導体レーザに電流注入した
ところ、波長417nmで室温連続発振した。しきい値
電流密度は、井戸層にドーピングしない構造のレーザの
約半分となった。
When a current was injected into the semiconductor laser of this embodiment, the semiconductor laser oscillated continuously at room temperature at a wavelength of 417 nm. The threshold current density was about half that of a laser having a structure in which the well layer was not doped.

【0030】このように本実施形態によれば、MQW活
性層110の井戸層111のうちp型クラッド層122
に最も近い層を高濃度n型層にすることにより、前記図
1(b)に示すように井戸の深さを実効的に深くして電
子の閉じ込めを効率良く行うことができると共に、クラ
ッド層側に伝導帯端の窪みができるため、その近傍に存
在する電子の平均的な密度を増やすことができる。さら
に、活性層内部の電界によるバンドの曲がりを弱めるこ
とにより、電子と正孔の局在化を緩和できる。従って、
SCH構造を採用した場合のキャリアのオーバーフロー
や再結合確率の低下を抑制することができ、しきい値電
流の低減に効果的である。これにより、半導体レーザの
省電力化,寿命の向上をはかることもできる。
As described above, according to this embodiment, the p-type cladding layer 122 of the well layer 111 of the MQW active layer 110 is formed.
1B is a high-concentration n-type layer, thereby effectively increasing the depth of the well and efficiently confining electrons as shown in FIG. Since a dent at the conduction band edge is formed on the side, the average density of electrons existing near the dent can be increased. Further, by weakening the bending of the band due to the electric field inside the active layer, the localization of electrons and holes can be reduced. Therefore,
When the SCH structure is adopted, it is possible to suppress the overflow of carriers and the reduction of the recombination probability, which is effective in reducing the threshold current. As a result, it is possible to save power and improve the life of the semiconductor laser.

【0031】(実施形態2)図4は、本発明の第2の実
施形態に係わる窒化物系短波長半導体レーザを示す素子
構造断面図である。
(Embodiment 2) FIG. 4 is a sectional view of a device structure showing a nitride-based short wavelength semiconductor laser according to a second embodiment of the present invention.

【0032】半導体レーザ用の多層膜は、第1の実施形
態と同様のMOCVD法により作成した。本実施形態の
半導体レーザを製造するには、サファイア基板201上
にバッファ層(図示せず)を介して、アンドープGaN
下地層202,n型GaNコンタクト層203,厚さ
0.25μmのn型Al0.18Ga0.82Nクラッド層20
4を順次形成する。
The multilayer film for the semiconductor laser was formed by the same MOCVD method as in the first embodiment. In order to manufacture the semiconductor laser of this embodiment, an undoped GaN is formed on a sapphire substrate 201 via a buffer layer (not shown).
Underlayer 202, n-type GaN contact layer 203, n-type Al 0.18 Ga 0.82 N clad layer 20 having a thickness of 0.25 μm
4 are sequentially formed.

【0033】次いで、光閉じ込め層として厚さ5nmの
GaNガイド層205を形成し、その上に厚さ2.5n
mのIn0.15Ga0.85N井戸層211と、厚さ3nmの
In0.05Ga0.95N障壁層212がそれそれ5層づつか
ら成る多重量子井戸構造(MQW)を有するInGaN
系活性層210を形成する。このとき、一番下側のIn
0.15Ga0.85N井戸層211を成長する際に、マグネシ
ウム高濃度ドーピング(p型)を行い、一番上側のIn
0.15Ga0.85N井戸層211を成長する際に、シリコン
高濃度ドーピング(n型)を行う。その上部には、p側
光ガイド層221,p型Al0.18Ga0.82Nクラッド層
222,p型GaNコンタクト層223をこの順で形成
する。
Next, a GaN guide layer 205 having a thickness of 5 nm is formed as a light confinement layer, and a 2.5 nm thick GaN guide layer is formed thereon.
InGaN having a multiple quantum well structure (MQW) composed of 5 m In 0.15 Ga 0.85 N well layers 211 and 5 5 nm thick In 0.05 Ga 0.95 N barrier layers 212.
A system active layer 210 is formed. At this time, the lowermost In
When growing the 0.15 Ga 0.85 N well layer 211, magnesium high concentration doping (p-type) is performed and the uppermost In
When growing the 0.15 Ga 0.85 N well layer 211, high concentration silicon doping (n-type) is performed. A p-side optical guide layer 221, a p-type Al 0.18 Ga 0.82 N cladding layer 222, and a p-type GaN contact layer 223 are formed in this order.

【0034】また、上記多層構造の一部をn型GaNコ
ンタクト層203までドライエッチング法により除去
し、露出したコンタクト層203の上部にTi/Alか
ら成るn側電極225を形成した。さらに、p型GaN
コンタクト層223上にはp側電極226を形成した。
Further, part of the multilayer structure was removed to the n-type GaN contact layer 203 by dry etching, and an n-side electrode 225 made of Ti / Al was formed on the exposed contact layer 203. Furthermore, p-type GaN
A p-side electrode 226 was formed on the contact layer 223.

【0035】次に、上述の電極を有する半導体多層膜を
形成したウェハを350μm×500μmの大きさに劈
開することにより共振器ミラーを形成し、半導体レーザ
を作成した。この素子に電圧を印加したときのバンド構
造について説明する。
Next, a semiconductor mirror was formed by cleaving the wafer on which the semiconductor multilayer film having the above-mentioned electrodes was formed to a size of 350 μm × 500 μm to form a resonator mirror. The band structure when a voltage is applied to this element will be described.

【0036】本実施形態では、p型クラッド層222に
近接しているn型ドーピングした井戸層211の伝導帯
端が低くなり、実効的に井戸の深さが深くなるため、電
子の閉じ込めが強まる。また、n型クラッド層204に
近接しているp型ドーピングした井戸層211の価電子
帯端が高くなるため、実効的に井戸の深さが深くなり正
孔の閉じ込めが強まる。
In the present embodiment, the conduction band edge of the n-type doped well layer 211 adjacent to the p-type cladding layer 222 is reduced, and the well is effectively deepened, so that electron confinement is enhanced. . Further, since the valence band edge of the p-type doped well layer 211 adjacent to the n-type cladding layer 204 is increased, the depth of the well is effectively increased and the confinement of holes is enhanced.

【0037】この場合、電子と正孔が高密度になる位置
が離れてしまうが、井戸層211へのドーピングにより
活性層内部の電界によるバンドの曲がりが弱められるの
で、その影響は小さい。また、p型クラッド層222の
端に伝導帯端の窪みが、n型クラッド層204の端に価
電子帯の窪みがそれぞれできるため、その近傍に存在す
る電子の平均的な密度が増えキャリアオーバーフローし
にくくなる。
In this case, the position where the density of electrons and holes is high is separated, but the influence of the electric field inside the active layer is weakened by the doping of the well layer 211, so that the influence is small. Further, since a dent at the conduction band end is formed at the end of the p-type cladding layer 222 and a valence band is formed at the end of the n-type cladding layer 204, the average density of electrons existing in the vicinity increases, and carrier overflow occurs. It becomes difficult to do.

【0038】本実施形態の半導体レーザに電流注入した
ところ、波長417nmで室温連続発振した。しきい値
電流密度は井戸層にドーピングしない構造のレーザの約
半分となった。
When current was injected into the semiconductor laser of this embodiment, continuous oscillation at room temperature with a wavelength of 417 nm was obtained. The threshold current density was about half that of the laser without the well layer.

【0039】(実施形態3)図5は、本発明の第3の実
施形態に係わる窒化物系短波長半導体レーザを示す素子
構造断面図である。
(Embodiment 3) FIG. 5 is a sectional view of a device structure showing a nitride-based short wavelength semiconductor laser according to a third embodiment of the present invention.

【0040】半導体レーザ用の多層膜の形成は、第1の
実施形態と同様に、サファイア基板301を用いてMO
CVD法で行った。まず、バッファ層302を成長し、
次に温度を1100℃まで昇温し、n型GaNコンタク
ト層303を約2μm成長した。これに、温度を110
0℃で保持したまま、n型AlGaNクラッド層304
を約500nmの厚さで形成した後、GaN光ガイド層
305を約200nmの厚さで形成した。
The multi-layer film for the semiconductor laser is formed using the sapphire substrate 301 as in the first embodiment.
This was performed by a CVD method. First, the buffer layer 302 is grown,
Next, the temperature was raised to 1100 ° C., and an n-type GaN contact layer 303 was grown to about 2 μm. In addition, the temperature is 110
The n-type AlGaN cladding layer 304 is kept at 0 ° C.
Was formed to a thickness of about 500 nm, and then a GaN light guide layer 305 was formed to a thickness of about 200 nm.

【0041】次いで、厚さ2nmのIn0.15Ga0.85
井戸層311と、厚さ4nmのIn0.05Ga0.95N障壁
層312がそれそれ10層づつから成る多重量子井戸構
造(MQW)を有するInGaN系活性層310を形成
する。このとき、上側から数えて4つのIn0.15Ga
0.85N井戸層311を成長する際に、1×1019cm-3
のシリコン高濃度ドーピング(n型)を行った。
Next, a 2 nm thick In 0.15 Ga 0.85 N
The well layer 311 and the In 0.05 Ga 0.95 N barrier layer 312 each having a thickness of 4 nm form an InGaN-based active layer 310 having a multiple quantum well structure (MQW) composed of ten layers. At this time, four In 0.15 Ga
When growing the 0.85 N well layer 311, 1 × 10 19 cm −3
High concentration silicon doping (n-type) was performed.

【0042】次いで、p側のGaN光ガイド層321を
約200nmの厚さで形成し、p型AlGaNクラッド
層322を約500nmの厚さで形成した。この状態で
室温まで降温し、MOCVD装置から取り出し、周知の
熱CVD装置内で表面に幅20μmのSiO2 膜(図示
せず)を形成した。
Next, the p-side GaN light guide layer 321 was formed with a thickness of about 200 nm, and the p-type AlGaN cladding layer 322 was formed with a thickness of about 500 nm. In this state, the temperature was lowered to room temperature, taken out of the MOCVD apparatus, and a 20 μm-wide SiO 2 film (not shown) was formed on the surface in a well-known thermal CVD apparatus.

【0043】次いで、ウェハをRIE装置内に置き、開
口部をBCl3 ガスによってメサ構造にエッチング除去
した。このようにして作成したウェハを再びMOCVD
装置内のサセプタ上に載置し、窒素中で1100℃まで
昇温した。
Next, the wafer was placed in an RIE apparatus, and the opening was removed by etching with a BCl 3 gas into a mesa structure. The wafer prepared in this manner is again subjected to MOCVD.
It was mounted on a susceptor in the apparatus and heated to 1100 ° C. in nitrogen.

【0044】次いで、温度1100℃で、水素,窒素,
TMG,アンモニア,DMZ(ジメチルジンク)を供給
して、i型GaN層331でn型AlGaN電流注入層
304からp型AlGaN電流注入層322までを埋め
込み構造とした。
Next, at a temperature of 1100 ° C., hydrogen, nitrogen,
TMG, ammonia, and DMZ (dimethyl zinc) were supplied to bury the structure from the n-type AlGaN current injection layer 304 to the p-type AlGaN current injection layer 322 with the i-type GaN layer 331.

【0045】このようなi型GaN層331の形成を、
本実施形態ではメサエッチング後の成長で形成したが、
エッチング除去せずに水素や酸素などをイオン注入する
ことによって作成することも可能である。例えば、水素
では200keV、1×1014cm-2の注入で実現する
ことができる。
The formation of the i-type GaN layer 331 is as follows.
In this embodiment, it is formed by growth after mesa etching.
It can also be formed by ion implantation of hydrogen, oxygen, or the like without etching away. For example, hydrogen can be realized by implantation of 200 keV and 1 × 10 14 cm −2 .

【0046】次いで、温度を1100℃で保持したま
ま、水素を流し、p型AlGaN電流注入層322上に
残っているSiO2 膜をエッチング除去した。次いで、
温度を1100℃で保持したまま、主キャリアガスを水
素から窒素へ切り替え、水素,窒素,アンモニアを供給
して、p型GaNコンタクト層323を約500nmの
厚さで形成した。
Next, while keeping the temperature at 1100 ° C., hydrogen was flowed, and the SiO 2 film remaining on the p-type AlGaN current injection layer 322 was removed by etching. Then
While maintaining the temperature at 1100 ° C., the main carrier gas was switched from hydrogen to nitrogen, and hydrogen, nitrogen, and ammonia were supplied to form the p-type GaN contact layer 323 to a thickness of about 500 nm.

【0047】このようにして作成したレーザ構造を、M
OCVD装置から取り出し、上記多層構造の一部をn型
GaN層コンタクト303までドライエッチング法によ
り除去し、露出したn型GaNコンタクト層303及び
p型GaNコンタクト層223上にそれぞれ電極32
5,326を形成した。即ち、周知の真空蒸着法やスパ
ッタ法などを用いて、n型GaNコンタクト層303に
対しては、Pt,Ni,Auをこの順で形成し、オーミ
ック電極325とした。一方、p型GaNコンタクト層
323上には、順にPd,Ti,Pt,Au(厚さ2μ
m)を形成し、窒素中熱処理を施すことによりオーミッ
ク電極326とした。
The laser structure thus produced is represented by M
After being removed from the OCVD apparatus, a part of the multilayer structure is removed by a dry etching method up to the n-type GaN layer contact 303, and the electrode 32
5,326 were formed. That is, Pt, Ni, and Au are formed in this order on the n-type GaN contact layer 303 by using a well-known vacuum deposition method, a sputtering method, or the like, and the ohmic electrode 325 is formed. On the other hand, on the p-type GaN contact layer 323, Pd, Ti, Pt, Au (thickness 2 μm)
m) was formed and heat treatment was performed in nitrogen to form an ohmic electrode 326.

【0048】次に、このレーザ構造を基板側からスクラ
イバなどを用いてへき開し、共振器ミラーを形成した。
このようにして作成した半導体レーザは波長420nm
で連続発振した。このときのしきい電流密度は、井戸層
にドーピングしない構造のレーザの約1/3となった。
また、井戸層のいくつかに高濃度ドーピングしてあるの
で、素子全体の抵抗を下げる付加的効果もある。
Next, the laser structure was cleaved from the substrate side using a scriber or the like to form a resonator mirror.
The semiconductor laser thus produced has a wavelength of 420 nm.
Oscillated continuously. At this time, the threshold current density was about 1/3 that of a laser having a structure in which the well layer was not doped.
In addition, since some of the well layers are heavily doped, there is an additional effect of reducing the resistance of the entire device.

【0049】また、この構造に加えてn型クラッド層側
の井戸層にp型ドーピングするとしきい値低減の効果は
更に大きくなる。また、この実施形態では、上側から数
えて4つの井戸層のn型ドーピング濃度を全て同じにし
てあるが、p型クラッド層322から離れるほど濃度を
徐々に低くしていく構造もしきい値低下に対し有効であ
る。
When the well layer on the n-type cladding layer side is doped with p-type in addition to this structure, the effect of reducing the threshold value is further increased. Further, in this embodiment, the n-type doping concentration of all the four well layers counted from the upper side is the same. However, a structure in which the concentration gradually decreases as the distance from the p-type cladding layer 322 decreases, also reduces the threshold value. It is effective for.

【0050】なお、本発明は上述した各実施形態に限定
されるものではない。n型クラッド層に近い側のp型ド
ーピングする井戸層の数、又はp型クラッド層に近い側
のn型ドーピングする井戸層の数は、実施形態で説明し
た数に何等限定されるものではなく、仕様に応じて適宜
変更可能である。また、n型クラッド層に近い側のp型
ドーピングしてある井戸層の数と、p型クラッド層に近
い側のドーピングしてある井戸層の数は違っても良い。
その場合に、第3の実施形態に記したようにドーピング
濃度を徐々に変えるようにしてもよい。
The present invention is not limited to the above embodiments. The number of well layers to be p-type doped near the n-type cladding layer, or the number of well layers to be n-type doped near the p-type cladding layer is not limited to the number described in the embodiment. , Can be appropriately changed according to the specifications. Further, the number of p-type doped well layers near the n-type cladding layer may be different from the number of doped well layers near the p-type cladding layer.
In that case, the doping concentration may be gradually changed as described in the third embodiment.

【0051】また、実施形態では半導体レーザについて
説明したが、多重量子井戸構造の活性層を一対の光閉じ
込め層で挟み、さらにp型及びn型の一対のクラッド層
で挟んだ分離閉じ込めヘテロ構造を有するものであれ
ば、発光ダイオードにも適用できる。
In the embodiment, the semiconductor laser has been described. However, a separated confinement heterostructure in which an active layer having a multiple quantum well structure is sandwiched between a pair of optical confinement layers and further a pair of p-type and n-type cladding layers is sandwiched. If it has, it can be applied to a light emitting diode.

【0052】また、基板はサファイアに限るものではな
く、SiC,Si,MgAl24,GaNなどを用い
ることもできる。さらに、活性層,光閉じ込め層,クラ
ッド層の材料は実施形態に何等限定されるものではな
く、仕様に応じて適宜変更可能である。その他、本発明
の要旨を逸脱しない範囲で、種々変形して実施すること
ができる。
The substrate is not limited to sapphire, but may be SiC, Si, MgAl 2 O 4 , GaN or the like. Further, the materials of the active layer, the light confinement layer, and the cladding layer are not limited to the embodiment at all, and can be appropriately changed according to the specifications. In addition, various modifications can be made without departing from the scope of the present invention.

【0053】[0053]

【発明の効果】以上説明したように本発明によれば、活
性層を構成する多重量子井戸構造の井戸層の一部を、p
型クラッド層に近い方から順にn型層に、又はn型クラ
ッド層に近い方から順にp型層にすることにより、SC
H構造を採用した窒化物系半導体発光素子におけるキャ
リアのオーバーフローや再結合確率の低下を抑制するこ
とができ、しきい値電流の低減をはかることができる。
As described above, according to the present invention, a part of the well layer of the multiple quantum well structure constituting the active layer is replaced with p-type well layer.
The n-type layer in order from the one closer to the n-type cladding layer or the p-type layer in order from the one near the n-type cladding layer,
In the nitride-based semiconductor light-emitting device employing the H structure, it is possible to suppress the overflow of carriers and the decrease in the probability of recombination, and to reduce the threshold current.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来構造と本発明構造による窒化物系化合物半
導体レーザのバンドダイアグラムの違いを示す図。
FIG. 1 is a diagram showing a difference between band diagrams of a nitride-based compound semiconductor laser according to a conventional structure and a structure according to the present invention.

【図2】本発明の構造におけるバンドダイアグラムの別
の例を示す図。
FIG. 2 is a diagram showing another example of a band diagram in the structure of the present invention.

【図3】第1の実施形態に係わるGaN系半導体レーザ
を示す素子構造断面図。
FIG. 3 is an element structure sectional view showing a GaN-based semiconductor laser according to the first embodiment.

【図4】第2の実施形態に係わるGaN系半導体レーザ
を示す素子構造断面図。
FIG. 4 is an element structure sectional view showing a GaN-based semiconductor laser according to a second embodiment.

【図5】第3の実施形態に係わるGaN系半導体レーザ
を示す素子構造断面図。
FIG. 5 is an element structure sectional view showing a GaN-based semiconductor laser according to a third embodiment.

【符号の説明】[Explanation of symbols]

101,201,301…サファイア基板 102,202,303…アンドープGaN下地層(バ
ッファ層) 103,203,303…n型GaNコンタクト層 104,204,304…n型Al0.18Ga0.82Nクラ
ッド層 105,205,305…n側GaNガイド層(光閉じ
込め層) 110,210,310…InGaN系MQW活性層 111,211,311…In0.15Ga0.85N井戸層 112,212,312…In0.05Ga0.95N障壁層 121,221,321…p側GaN光ガイド層(光閉
じ込め層) 122,222,322…p型Al0.18Ga0.82Nクラ
ッド層 123,223,323…p型GaNコンタクト層 125,225,325…n側電極 126,225,326…p側電極
101, 201, 301 ... sapphire substrate 102,202,303 ... GaN underlying layer (buffer layer) 103, 203, 303 ... n-type GaN contact layer 104, 204, 304 ... n-type Al 0.18 Ga 0.82 N cladding layer 105, 205, 305 ... n-side GaN guide layer (light confinement layer) 110, 210, 310 ... InGaN-based MQW active layer 111,211,311 ... In 0.15 Ga 0.85 n well layers 112,212,312 ... In 0.05 Ga 0.95 n barrier Layers 121, 221 and 321, p-side GaN optical guide layers (optical confinement layers) 122, 222, 322 ... p-type Al 0.18 Ga 0.82 N cladding layers 123, 223, 323 ... p-type GaN contact layers 125, 225, 325 ... n-side electrode 126,225,326 ... p-side electrode

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01S 5/00 - 5/50 H01L 33/00 JICSTファイル(JOIS)Continuation of the front page (58) Fields surveyed (Int. Cl. 7 , DB name) H01S 5/00-5/50 H01L 33/00 JICST file (JOIS)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基板上に、多重量子井戸構造の活性層をp
型及びn型の一対のクラッド層で挟んだ窒化物系半導体
発光素子において、 前記活性層を構成する多重量子井戸構造の井戸層の一部
を、p型クラッド層に近い方から1層又は複数層だけ
型不純物が添加された半導体層にしてなることを特徴と
する窒化物系半導体発光素子。
An active layer having a multiple quantum well structure is formed on a substrate by p
In the nitride-based semiconductor light-emitting device sandwiched between a pair of n-type and n-type cladding layers, a part or a plurality of well layers of the multiple quantum well structure constituting the active layer is arranged in the order from the p-type cladding layer. Layer only n
A nitride-based semiconductor light-emitting device comprising a semiconductor layer to which a type impurity is added.
【請求項2】基板上に、多重量子井戸構造の活性層をp
型及びn型の一対のクラッド層で挟んだ窒化物系半導体
発光素子において、 前記活性層を構成する多重量子井戸構造の井戸層の一部
を、n型クラッド層に近い方から1層又は複数層だけ
型不純物が添加された半導体層にしてなることを特徴と
する窒化物系半導体発光素子。
2. An active layer having a multiple quantum well structure is formed on a substrate by p
In the nitride-based semiconductor light emitting device sandwiched between a pair of n-type cladding layers, one or more of the well layers of the multiple quantum well structure constituting the active layer are arranged in order from one closer to the n-type cladding layer. Layer only p
A nitride-based semiconductor light-emitting device comprising a semiconductor layer to which a type impurity is added.
【請求項3】基板上に、多重量子井戸構造の活性層をp
型及びn型の一対のクラッド層で挟んだ窒化物系半導体
発光素子において、 前記活性層を構成する多重量子井戸構造の井戸層の一部
を、p型クラッド層に近い方から1層又は複数層だけ
型不純物が添加された半導体層にし、かつn型クラッド
層に近い方から1層又は複数層だけp型不純物が添加さ
れた半導体層にしてなることを特徴とする窒化物系半導
体発光素子。
3. An active layer having a multiple quantum well structure is formed on a substrate by p
In the nitride-based semiconductor light-emitting device sandwiched between a pair of n-type and n-type cladding layers, a part of the well layer of the multiple quantum well structure constituting the active layer is formed from the side closer to the p-type cladding layer. One or more layers n
A nitride-based semiconductor light-emitting device comprising: a semiconductor layer to which a p-type impurity is added; and a semiconductor layer to which only one or more p-type impurities are added from the side closer to the n-type cladding layer.
【請求項4】前記多重量子井戸構造の活性層は、一対の
光閉じ込め層で挟まれていることを特徴とする請求項1
〜3のいずれかに記載の窒化物系半導体発光素子。
4. The multi-quantum well structure active layer is sandwiched between a pair of optical confinement layers.
4. The nitride-based semiconductor light-emitting device according to any one of claims 1 to 3.
JP23488297A 1997-08-29 1997-08-29 Nitride based semiconductor light emitting device Expired - Fee Related JP3311275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23488297A JP3311275B2 (en) 1997-08-29 1997-08-29 Nitride based semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23488297A JP3311275B2 (en) 1997-08-29 1997-08-29 Nitride based semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH1174622A JPH1174622A (en) 1999-03-16
JP3311275B2 true JP3311275B2 (en) 2002-08-05

Family

ID=16977810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23488297A Expired - Fee Related JP3311275B2 (en) 1997-08-29 1997-08-29 Nitride based semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3311275B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100961108B1 (en) * 2007-11-27 2010-06-07 삼성엘이디 주식회사 Nitride semiconductor light emitting device with reduced polarization effect
KR100972984B1 (en) * 2008-03-10 2010-07-29 삼성엘이디 주식회사 Semiconductor light emitting device emitting a light having with wide spectrum wavelenth
KR101228983B1 (en) * 2008-11-17 2013-02-04 삼성전자주식회사 Nitride Semiconductor Light Emitting Device
CN107240627A (en) * 2017-05-16 2017-10-10 东南大学 A kind of UV LED with codope multi-quantum pit structure

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100425341B1 (en) * 2000-02-08 2004-03-31 삼성전기주식회사 Nitride semiconductor light emitting device
KR100550158B1 (en) 2000-09-21 2006-02-08 샤프 가부시키가이샤 Nitride Semiconductor Light Emitting Element and Optical Device Containing it
US6835957B2 (en) * 2002-07-30 2004-12-28 Lumileds Lighting U.S., Llc III-nitride light emitting device with p-type active layer
JP4571372B2 (en) * 2002-11-27 2010-10-27 ローム株式会社 Semiconductor light emitting device
GB2407702A (en) * 2003-10-28 2005-05-04 Sharp Kk A semiconductor light-emitting device
KR100482511B1 (en) * 2004-02-05 2005-04-14 에피밸리 주식회사 Ⅲ-Nitride compound semiconductor light emitting device
KR100456063B1 (en) 2004-02-13 2004-11-10 에피밸리 주식회사 Ⅲ-Nitride compound semiconductor light emitting device
KR100486177B1 (en) 2004-03-25 2005-05-06 에피밸리 주식회사 Ⅲ-Nitride Compound Semiconductor Light Emitting Device
KR101181182B1 (en) 2004-11-11 2012-09-18 엘지이노텍 주식회사 Light Emitting Device using nitrogen compound semiconductor and producing method thereof
JP2011023406A (en) * 2009-07-13 2011-02-03 Sharp Corp Nitride semiconductor laser element
CN102280547A (en) * 2011-08-31 2011-12-14 厦门大学 GaN semiconductor luminotron with P-type active region

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100961108B1 (en) * 2007-11-27 2010-06-07 삼성엘이디 주식회사 Nitride semiconductor light emitting device with reduced polarization effect
KR100972984B1 (en) * 2008-03-10 2010-07-29 삼성엘이디 주식회사 Semiconductor light emitting device emitting a light having with wide spectrum wavelenth
KR101228983B1 (en) * 2008-11-17 2013-02-04 삼성전자주식회사 Nitride Semiconductor Light Emitting Device
CN107240627A (en) * 2017-05-16 2017-10-10 东南大学 A kind of UV LED with codope multi-quantum pit structure

Also Published As

Publication number Publication date
JPH1174622A (en) 1999-03-16

Similar Documents

Publication Publication Date Title
JP3688843B2 (en) Nitride semiconductor device manufacturing method
JP4246242B2 (en) Semiconductor light emitting device
US6829273B2 (en) Nitride semiconductor layer structure and a nitride semiconductor laser incorporating a portion of same
US7083996B2 (en) Nitride semiconductor device and manufacturing method thereof
US20050127394A1 (en) Nitride semiconductor device
JP2006173621A (en) Semiconductor laser
JP2002374043A (en) Gallium nitride compound semiconductor device
JP3311275B2 (en) Nitride based semiconductor light emitting device
JP2002016000A (en) Nitride semiconductor element and nitride semiconductor substrate
JP3292083B2 (en) Method for manufacturing nitride semiconductor substrate and method for manufacturing nitride semiconductor element
JP5507792B2 (en) Group III nitride semiconductor optical device
JP5651077B2 (en) Gallium nitride semiconductor laser device and method of manufacturing gallium nitride semiconductor laser device
JPH11177175A (en) Nitride semiconductor device
JP3446660B2 (en) Nitride semiconductor light emitting device
JP3651260B2 (en) Nitride semiconductor device
JP2002314203A (en) Group iii nitride semiconductor laser and its manufacturing method
JP2004063537A (en) Semiconductor light emitting element, its manufacturing method, semiconductor device, and its manufacturing method
JP4877294B2 (en) Manufacturing method of semiconductor light emitting device
JP2003086903A (en) Semiconductor light emitting device and its manufacturing method
JP2004247563A (en) Semiconductor device
JP2004134772A (en) Nitride-based semiconductor light-emitting device
JP4628651B2 (en) Manufacturing method of nitride semiconductor light emitting device
JP2009038408A (en) Semiconductor light emitting element
JP4481385B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP2004179532A (en) Semiconductor light emitting element and semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110524

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110524

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120524

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120524

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130524

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130524

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140524

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees