WO2005106979A1 - Nitride semiconductor light emitting element - Google Patents

Nitride semiconductor light emitting element Download PDF

Info

Publication number
WO2005106979A1
WO2005106979A1 PCT/JP2005/008389 JP2005008389W WO2005106979A1 WO 2005106979 A1 WO2005106979 A1 WO 2005106979A1 JP 2005008389 W JP2005008389 W JP 2005008389W WO 2005106979 A1 WO2005106979 A1 WO 2005106979A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
type
concentration
light emitting
thickness
Prior art date
Application number
PCT/JP2005/008389
Other languages
French (fr)
Japanese (ja)
Inventor
Hiromitsu Kudo
Tomoo Yamada
Kazuyuki Tadatomo
Yoichiro Ouchi
Hiroaki Okagawa
Original Assignee
Mitsubishi Cable Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries, Ltd. filed Critical Mitsubishi Cable Industries, Ltd.
Priority to JP2006512867A priority Critical patent/JP5082444B2/en
Publication of WO2005106979A1 publication Critical patent/WO2005106979A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer

Definitions

  • the present invention relates to a nitride semiconductor light emitting device such as a light emitting diode (LED) or a laser diode (LD), which is composed of a nitride semiconductor as a material of a light emitting layer, and more particularly to a p-type semiconductor in the light emitting device structure. It relates to the configuration of the part.
  • a nitride semiconductor light emitting device such as a light emitting diode (LED) or a laser diode (LD), which is composed of a nitride semiconductor as a material of a light emitting layer, and more particularly to a p-type semiconductor in the light emitting device structure. It relates to the configuration of the part.
  • LED light emitting diode
  • LD laser diode
  • the composition ratios of the group III elements constituting the nitride semiconductor, such as ⁇ , ⁇ , and ⁇ in the above formula are also referred to as A 1 ratio, I ⁇ ratio, and Ga ratio, respectively.
  • nitride semiconductor is also referred to as “GaN based light emitting device”.
  • nitride semiconductor light emitting device is also referred to as “GaN based light emitting device”. explain.
  • FIG. 3 is a diagram showing an example of a general element structure of a GaN-based LED, which is one of the GaN-based light-emitting elements, in which a G-N LED is formed on a crystal substrate 100 such as a sapphire substrate.
  • the laminated body S1 composed of the GaN-based crystal layer is formed via the aN-based low-temperature growth buffer layer 100b.
  • the laminate S1 has a pn junction structure including an n-type layer and a p-type layer, and a light emitting layer 120 is formed at the junction.
  • an n-type cladding layer 110 also serving as an n-type contact layer in this example
  • a light-emitting layer (a multilayer structure such as a multiple quantum well) are used.
  • a p-type cladding layer 130, and a p-type contact layer 140 are stacked by vapor phase growth.
  • P 10 and P 20 are an n-side electrode and a p-side electrode, respectively.
  • the light-emitting layer 120 has a II-type cladding layer 110 and a p-type cladding layer. It is made of a crystal having a smaller band gap than that of the layer 130.
  • a light emitting element having a double hetero structure has a light emission output that is at least 10 times higher than that of a light emitting element having a homojunction (for example, Reference 1: Japanese Patent Application Laid-Open No. H8-33069). .
  • the n-type cladding layer 110 is formed to have n-type conductivity by adding an n-type impurity.
  • the p-type cladding layer 130 and the p-type contact layer 140 are doped with a p-type impurity and, if necessary, subjected to a resistance reduction treatment such as a p-type annealing treatment. , Formed into p-type conductivity.
  • the light-emitting layer 120 can be formed to have either n-type conductivity or p-type conductivity, or a mode in which these conductive layers are mixed. In some cases, the layer is undoped without intentionally adding impurities (an undoped layer that does not contain any impurities usually shows weak n-type conductivity).
  • Mg is used as a preferred p-type impurity for making the GaN-based crystal layer p-type conductive.
  • the lower the operating voltage of the light emitting element the more practically desirable.
  • To lower the operating voltage it is better to lower the series resistance of the p-type layer.
  • the mobility deteriorates due to the deterioration of the hole mobility, and the resistance does not decrease sufficiently. Therefore, it is preferable that the amount of Mg added is such that the hole concentration is sufficiently high and the crystallinity is not significantly reduced.
  • the p-type cladding layer is made of AI GaN having an A 1 ratio of 8% or more, so that the above-mentioned band gap is enlarged, and the wavelength of the absorbed light is increased. Is reduced to less than 430 nm, and the thickness of the p-type cladding layer and p-type contact layer is reduced, thereby reducing the problem of light absorption as described above. In order to achieve this, it is known to reduce the thickness of the p-type layer (the entire p-type conductive layer formed above the light-emitting layer, including the p-type cladding layer and the p-type contact layer).
  • the present inventors consider that it is most important to reduce the thickness of the p-type contact layer, and formed a p-type contact layer doped with Mg at a high concentration to a thickness of 10 nm or less, and formed the p-type A GaN-based LED with a rapidly reduced Mg concentration in the layer was fabricated and its evaluation was attempted.
  • the operating voltage of such a GaN LED increases.
  • the reason is considered to be that the Mg concentration in the surface layer of the p-type contact layer decreases due to diffusion due to the concentration gradient, and the contact resistance with the p-side electrode increases.
  • the p-type contact layer in order to sufficiently increase the Mg concentration in the surface layer of the p-type contact layer and reduce the contact resistance with the p-side electrode, the p-type contact layer must be thickened to a certain degree or more. Inevitably, light absorption was involved.
  • An object of the present invention is to solve the above-mentioned problems of the p-type layer and reduce the total amount of Mg added to the p-type layer while maintaining a high Mg concentration in the surface layer of the p-type contact layer.
  • An object of the present invention is to provide a GaN-based light emitting device with a p-type layer structure that can reduce light absorption due to Mg while suppressing an increase in operating voltage.
  • the inventors of the present invention have proposed the unique change of the composition of the GaN-based material, the change of the Mg concentration in the stacking direction, and the thickness of each layer from the p-type contact layer to the layer closest to the light emitting layer in the p-type layer. It has been found that the above object can be achieved by adding a limitation, and the present invention has been completed.
  • the present invention has the following features.
  • (1) It has a stacked body composed of a nitride semiconductor crystal layer, and the stacked body includes an n-type layer, a light-emitting layer, and a p-type layer in order from the lower layer side, and the p-type layer contains Mg as a p-type impurity.
  • a doped nitride semiconductor light emitting device
  • a p-type cladding layer composed of A 1 X G a X N (0 ⁇ x ⁇ 1), and above the p-type cladding layer via one or more heterointerfaces.
  • a 1 y G a x _ y N consists (0 ⁇ y ⁇ l) M g high concentration layer is provided on the upper straight of the Mg-rich layer!
  • Type contact layer is provided,
  • the p-type contact layer has a thickness of 10 nm or less, a Mg concentration a of 5 ⁇ 10 19 cm ⁇ 3 ⁇ a,
  • Mg high concentration layer has a thickness of 5 nm ⁇ 20 nm, M g concentration b is 2 X 10 19 cm one 3 B
  • Mg concentration c is 1 X 10 1 9 cm- 3 ⁇ c ⁇ b
  • a nitride semiconductor light emitting device characterized in that the average value of the Mg concentration of the p-type layer excluding the p-type contact layer is less than 5 ⁇ 10 19 cm— 3 .
  • the Mg-rich layer includes a portion having a Mg concentration of 5 ⁇ 10 19 cm- 3 or more at least on a side in contact with the p-type contact layer.
  • a layer between the Mg-rich layer and the light-emitting layer in the p-type layer includes a portion having a Mg concentration of less than 2 ⁇ 10 19 cm ⁇ 3. element.
  • p-type contact layer has a thickness of 0. 5 ⁇ : 1 0 nm, Mg concentration a is 5 X 10 1 9 cm _3 ⁇ a ⁇ 1 X 10 21 cm - 3, and
  • Mg high concentration layer has a thickness is 5 to 20 nm, 1 ⁇ concentration 1> is 2 1 0 19 cm- 3 ⁇ ( 0. 5 X a) ⁇ b ⁇ 1 X 10 21 cm- 3,
  • nitride semiconductor light-emitting device wherein a layer between the high Mg concentration layer and the light emitting layer among the p-type layers has a Mg concentration c of (0.2 X b) ⁇ c ⁇ b.
  • FIG. 1 is a schematic view showing an element structure of a GaN-based light emitting element according to the present invention. C Touching is performed for the purpose of distinguishing the areas.
  • FIG. 2 is a graph showing the relationship between the thickness of the Mg high-concentration layer, V f, and emission output.
  • FIG. 3 is a schematic diagram showing the element structure of a conventional GaN-based light emitting element.
  • FIG. 1 Each symbol in FIG. 1 indicates the following, respectively. 1; undoped layer, 2; n-type layer, 3; light-emitting layer, 4; p-type layer, 41; p-type cladding layer, 42; low Mg concentration layer, 43; high Mg concentration layer, 44 ; P- type contact layer
  • GaN-based LED which is one of the GaN-based light-emitting elements, as an example.
  • the aspect of the semiconductor laser will be referred to as necessary.
  • the GaN-based LED device structure according to the present invention has a device structure in which a GaN-based crystal layer is sequentially grown on a crystal substrate B1 to form a laminate S, as shown in an example in FIG.
  • the laminate S includes an undoped layer 1, an n-type layer 2, a light-emitting layer 3, and a p-type layer 4 in this order from the lower layer side.
  • the p-type impurity doped into the p-type layer is Mg.
  • the n-type layer 2 includes an n-type contact layer and an n-type cladding layer independently, but in the example shown in the figure, only one layer is used for both layers.
  • the light-emitting layer 3 is a layer for generating light emission due to recombination of carriers, and may have not only a single-layer form but also a laminated structure as described later.
  • P-type layer 4 has at least the bottom; type cladding layer 4 1, M above it g high-concentration layer 43, and directly above the layer 43; a type contact layer 44 is included.
  • the characteristics of the P-type layer composed of the p-type cladding layer 41, the Mg-rich layer 43, and the p-type contact layer 44 are as described in (1) above.
  • the Mg low concentration layer exists between the p-type cladding layer 41 and the Mg high concentration layer 43, which will be described later.
  • the upper surface of the crystal substrate may be flat as in the example of FIG. 3, in the example of the element structure of FIG. 1, irregularities (described later) are formed on the upper surface of the crystal substrate B1, and G a N A buffer layer B2 made of a base material is formed, and an undoped GaN layer 1 and an n-type GaN cladding layer (also serving as an n-type contact layer) 2 are grown to cover the irregularities.
  • the laminate S is etched from the p-type layer side so that the n-type GaN cladding layer 2 is partially exposed, and the exposed portion is provided with an n-side electrode P1 made of A1 (aluminum).
  • a p-side electrode P2 formed by laminating Ni (nickel) and Au (gold) in this order from the side in contact with the upper surface is provided.
  • the p-type cladding layer, the (1> type) ⁇ 18 high-concentration layer, and the p-type contact layer are formed in order from the lower layer side as a stacked structure of the p-type layer ⁇ .
  • the structure is included.
  • Other layers may be present between the Mg-rich layer and the p-type cladding layer (described later).
  • the material composition, Mg addition concentration, layer thickness, etc. of these layers are defined as described in (1) above (preferable embodiments are defined as in (2) to (7) above). The above purpose is achieved by generating the following three effects.
  • the p-type cladding layer is a binary or ternary crystal of A 1 X G a, -X N (0 ⁇ x ⁇ 1), M g High-concentration layer is binary or ternary crystal A 1 y G ay N (0 ⁇ y ⁇ 1), p-type contact layer is ternary crystal A 1 Z G a i_ z N (y ⁇ z ⁇ 1) because it is easy to obtain high-quality crystals with low dislocation density.
  • the mobility of holes is improved by reducing the dislocation density, the resistance of the p-type layer is reduced, and the operating voltage of the light-emitting element can be reduced. In addition, the diffusion of Mg along the dislocation defect region is suppressed.
  • the A1 ratio of the Mg-rich layer is set higher than y because the p-type contact layer formed at the top of the p-type layer is formed by increasing the ratio of A1, which has a stronger binding force with nitrogen than Ga. This is because, during crystal growth, during cooling after crystal growth, during p-type annealing, during electrode annealing, and the like, nitrogen is prevented from being released when exposed to a high-temperature atmosphere.
  • the nitrogen release is suppressed, and the increase in the contact resistance with the electrode and the increase in the series resistance in the layer are suppressed.
  • the Mg concentration a of the layer is set to 5 ⁇ 10 19 cm— 3 ⁇ a, a preferable ohmic contact with the p-side electrode can be achieved within this concentration range, and the contact with the electrode can be achieved. This is because the resistance can be made sufficiently low.
  • Mg-added p-type layer is Mg This is because the higher the concentration, the longer the wavelength of Mg to form a deeper level, and the longer the absorption wavelength, the more easily the light generated in the light emitting layer is absorbed.
  • the amount of Mg contained in the p-type layer is reduced while preventing an increase in the contact resistance of the p-type contact layer by devising the configuration of the entire p-type layer.
  • at least two hetero interfaces which are bonding interfaces of crystals having different compositions, are provided between the p-type cladding layer and the p-type contact layer. That is, at least one provided are hetero interface between the p-type cladding layer and the Mg-enriched layer, and, A l y Ga! _ Y N and Mg high concentration layer made of (0 ⁇ y ⁇ 1), A l z G ai - is a hetero-interface is at least one formed between the z N (y ⁇ z ⁇ 1) made of p-type contact layer.
  • the Mg concentration b of the Mg-rich layer is set to 2 ⁇ 10 19 cm ⁇ 3 ⁇ b
  • the layer thickness is set to 5 nm to 20 nm
  • the p-type conduction layer (p-type
  • the Mg concentration c of the p-type conductive layer between the high Mg concentration layer and the light emitting layer is set to 1 ⁇ 10 19 cm ⁇ 3 ⁇ c ⁇ b.
  • This inequality c ⁇ b means that the Mg concentration b in the Mg-rich layer is higher than the Mg concentration in such a portion of the p-type conduction layer between the Mg-rich layer and the light emitting layer. I have.
  • the average value of the Mg concentration of the p-type layer excluding the p-type contact layer is 5 ⁇ 10 19 cm less than 3 cm.
  • the crystal substrate may be any as long as a GaN-based crystal can be grown.
  • Preferred crystal substrates include, for example, sapphire (C-plane, A-plane, R-plane), SiC (6H, 4H, 3C), GaN, A1N, Si, spinel, ZnO, GaAs, NGO, etc. No. Further, a substrate having these crystals as a surface layer may be used.
  • the plane orientation of the substrate is not particularly limited, and may be a just substrate or a substrate having an off angle.
  • Preferred buffer layers include GaN-based buffer layers.
  • the material, formation method, and formation conditions of the buffer layer may refer to a known technique.
  • Examples of GaN-based buffer layer materials include GaN, AlGaN, A1N, InN, and the like. It is sufficient that the temperature is lower than the growth temperature of the GaN-based crystal layer grown thereon, for example, 300 ° C. to 700 ° C.
  • the thickness of the buffer layer is preferably 10 nm to 50 nm, particularly preferably 20 nm to 40 nm. It is preferable to use GaN as the material of the buffer layer because the dislocation density of the crystal layer grown upward is lowest and the optimum thickness range of the buffer layer is wide.
  • the buffer layer is not essential.
  • the GaN-based crystal layer may be grown on a flat crystal substrate, but a structure for reducing the dislocation density in the crystal may be appropriately introduced on the crystal substrate surface. Along with this, a portion made of a different material such as SiO 2 may be included in the laminate composed of the GaN-based crystal layer.
  • a structure for reducing the dislocation density (i) a mask layer (for example, Sio 2 is used) is formed on a top surface of a crystal substrate by a stripe pattern so that a conventionally known selective growth method (ELO method) can be performed.
  • ELO method selective growth method
  • the structure in which the above-mentioned surface roughness is applied to the upper surface of the substrate does not use a mask layer, so the diffusion of the mask layer material contaminates the GaN crystal. This is preferred because it is prevented.
  • a GaN crystal is grown so as to bury the convexity
  • a crystal substrate made of a material different from the GaN material, such as a sapphire substrate is used, a crystal substrate having a different refractive index is used. a Since the interface with the N-based crystal becomes light-scattering, a favorable effect of improving the light extraction efficiency of the LED (an effect independent of dislocation density reduction) is produced.
  • the GaN-based crystal grown by embedding the irregularities is GaN, especially undoped GaN, it grows upward because it is easy to obtain high-quality crystals with good growth surface flatness and low dislocation density. ! ) It is preferable for improving the quality of the mold layer.
  • the method of processing the unevenness on the upper surface of the crystal substrate, the arrangement pattern of the unevenness, the cross-sectional shape of the unevenness, the growth process of the GaN-based crystal on the unevenness, etc. are described in JP-A-2000-331947, JP-A-2002-164296. References may be referred to.
  • the longitudinal direction of the grooves, the width of the grooves, the width of the convex ridges, the amplitude of the unevenness (the depth of the grooves), and the like are also described in these documents and publicly known. You may refer to the technology.
  • GaN-based crystal layer growth methods include HVPE, MOVPE, and MBE.
  • the MO VPE method is particularly preferable because a high-quality crystal thin film can be formed at a practical growth rate.
  • the light-emitting layer has a multilayer structure such as a single quantum well (SQW) structure or a multiple quantum well (MQW) structure consisting of multiple layers with different band gaps, even if it has a structure composed of a single composition crystal layer.
  • a quantum well structure light emission occurs
  • the entire stacked structure of the barrier layer and the well layer is referred to as a light emitting layer as one unit.
  • the composition of the GaN crystal used for the light emitting layer may be appropriately selected from compositions having a band gap according to the wavelength of the light to be generated, but the band gap is wider than that of the P-type cladding layer and the n-type cladding layer. It is particularly preferable to use a composition having a small value because a double hetero structure is obtained.
  • the band gap of the well layer may be smaller than the band gap of the p-type cladding layer and the n-type cladding layer.
  • the emission wavelength can be widened from about 360 nm (zero In-ratio) to the infrared wavelength range by adjusting the In ratio of the crystal. It can be controlled throughout.
  • the emission wavelength can also be controlled by adding an n-type impurity or a p-type impurity to the light-emitting layer.
  • the light-emitting layer is composed of InGaN, a region in which In is locally distributed at a high concentration is formed, and the region functions as a luminescence recombination center, so that the light-emitting layer has a relatively high dislocation density. , High luminous efficiency can be obtained.
  • the In ratio is reduced to reduce the emission wavelength to a range of less than 420 nm in the violet-ultraviolet region, such effects are unlikely to occur, and the dislocation density in the emission layer greatly affects luminous efficiency. I will do it. Therefore, when the emission wavelength is in such a short wavelength region, it is preferable to employ a structure effective for reducing the dislocation density described above in a structure below the light emitting layer.
  • Carriers can be effectively confined in the light emitting layer by using a material having a larger band gap than the material of the light emitting layer as the material of the n-type cladding layer.
  • a material having a larger band gap than the material of the light emitting layer as the material of the n-type cladding layer.
  • the current density during use is relatively small, it is not necessary to make the difference in the gap between the light emitting layer and the light emitting layer too large. It is also possible to use one with no gap difference (of the same composition) or one with a smaller band gap.
  • the reason is that the injection from the p-type cladding layer into the light-emitting layer
  • the diffusing holes recombine with the electrons with a high probability before reaching the n-type cladding layer, because the diffusing holes have a lower mobility than the electrons diffusing in the opposite direction.
  • the material of the n-type cladding layer includes a binary crystal G aN, a ternary crystal A 1 G a N It is preferable to use InG aN, and particularly preferable to use G aN.
  • the crystallinity tends to decrease when the A 1 ratio is increased. Therefore, the A 1 ratio is preferably set to 0.2 or less, more preferably 0.1 or less.
  • the p-type cladding layer is composed of binary crystal GaN or ternary crystal A 1 GaN. It is desirable to select the composition of the p-type cladding layer so that the band gap is larger than that of the light emitting layer. Specifically, in order to effectively confine electrons diffusing in the light emitting layer in the direction of the p-type cladding layer into the light emitting layer, a band gap with the light emitting layer (or a well layer when the light emitting layer has a quantum well structure) is used. The composition is preferably such that the difference is 0.3 eV or more.
  • the preferable band gap of the p-type cladding layer is 3.4 eV or more.
  • the A 1 ratio X of the mold clad is 0.06 or more.
  • a l holeG ai Since the crystallinity of XN tends to decrease, X is preferably 0.2 or less, more preferably 0.1 or less. As described above, when the crystallinity is lowered, Mg is easily diffused along dislocation defects.
  • the thickness of the p-type cladding layer is not particularly limited, and may be determined by appropriately referring to a known technique, but is preferably 10 nm to 100 nm, and more preferably 20 ⁇ ! ⁇ 70 nm.
  • the Mg-rich layer can be said to be the second contact layer located immediately below the thin p-type contact layer.
  • the present invention is characterized in that at least one hetero interface is provided between the p-type cladding layer and the Mg-rich layer.
  • the A1 ratio X of the p-type cladding layer should be different from the A1 ratio y of the Mg-rich layer. .
  • the difference between X and y is preferably 0.01 or more, more preferably 0.03 or more, More preferably, it is 0.05 or more.
  • the difference between X and y is preferably 0.2 or less, more preferably 0.15 or less. Preferably it is 0.1 or less.
  • y is preferably set to 0.2 or less. Further, the A 1 ratio y of the Mg-rich layer may be smaller than the A 1 ratio X of the p-type clad layer. As y becomes smaller, the band gap of the Mg-rich layer becomes smaller, so that it becomes easier to activate as a Mg-force Sp-type impurity, and a decrease in series resistance due to an increase in carrier concentration can be expected. Therefore, the more preferable range of y is 0 ⁇ y ⁇ 0.05, and it is more preferable to form the Mg-rich layer with G a N.
  • the material composition of the p-type contact layer A l z G ai - a z N (y ⁇ z ⁇ 1) , A 1 ratio z of that is larger than A 1 ratio y of Mg high concentration layer, the As described in Effect of the Invention, the effect of suppressing nitrogen release from the surface in a high-temperature atmosphere and the effect of suppressing Mg diffusion by the hetero interface are generated. From the viewpoint of suppressing nitrogen elimination in a high-temperature atmosphere, 0.01 ⁇ z is preferable, and particularly preferably 0.03 ⁇ z.
  • z is preferably 0.2 or less, and more preferably z. 0.1 or less, more preferably 0.05 or less.
  • the Mg concentration a of the p-type contact layer may be set to a concentration high enough to form a good ohmic contact with the electrode, and a known technique can be referred to. Specifically, if 5 x 10 19 cm- 3 ⁇ a, especially 1 x 10 2 ° cm- 3 ⁇ a, the distance between various electrodes known as p-type common electrodes As a result, a good ohmic contact is formed.
  • the Mg concentration a is preferably 5 ⁇ 10 19 cm— 3 to 1 ⁇ 10 21 cm— 3 , more preferably 5 ⁇ 10 21 cm— 3. 19 cm— 3 to 5 X 10 2 . cm- 3, and particularly preferably 5 X 1 0 19 cm one 3 to 1 X 10 20 cm one 3.
  • the thickness of the p-type contact layer is 0.5 nm or more, the operating voltage of the light-emitting device will be lower than in the case where the p-side electrode is formed directly on the Mg-rich layer, probably due to the reduction in contact resistance.
  • the p-type contact layer is added with a high concentration of Mg, light absorption due to Mg is suppressed as the layer thickness is reduced.
  • the layer thickness of the p-type contact layer is preferably from 0.5 nm to 10 nm, more preferably from 0.5 11111 to 5 11111.
  • the p-type layer is formed by the MOVP E method, if a large amount of hydrogen that inhibits activation of Mg as a p-type impurity enters the p-type layer during crystal growth, the series resistance of the p-type layer increases. And the operating voltage of the device is estimated to increase due to an increase in the contact resistance between the P- type contact layer and the p-side electrode. Alternatively, it is necessary to perform a process such as annealing for activating Mg under more severe conditions, and there is a possibility that the device may be deteriorated due to the process.
  • an inert gas such as nitrogen among the gases supplied into the reaction vessel during the growth of the p-type layer, except for the carrier gas used as the organometallic compound raw material.
  • the growth rate of the material is significantly reduced.
  • the thickness of the p-type layer is large, the time required for the growth is long, and as a result, the time required for the crystal layer to be exposed to high temperatures is prolonged. Degradation is promoted, and the device characteristics tend to deteriorate. Reducing the thickness of the Mg-rich layer or the ⁇ -type contact layer is also preferable in suppressing such a decrease in device characteristics.
  • the Mg concentration b of the Mg-rich layer should be 2 ⁇ 10 19 cm— 3 ⁇ b.
  • the Mg concentration at the part in contact with the p-type contact layer should be 5 ⁇ 10 19 cm— 3 or more. Is preferred.
  • the Mg concentration b of the Mg high concentration layer be lower than that of the p-type contact layer. Since the Mg-rich layer is formed of a GaN-based crystal with a smaller A1 ratio than the p-type contact layer, that is, a GaN-based crystal with a smaller bandgap, the Mg-rich layer and the p-type If the same layer is doped with the same concentration of Mg, the light absorption in the Mg-rich layer becomes larger than that in the p-type contact layer.
  • the layer thickness of the high Mg concentration layer is 5 nm to 20 nm. 5x10 Mg high concentration layer If a part containing Mg at a concentration of 19 cm- 3 or more is included, only the side of the Mg-rich layer that is in contact with the p-type contact layer has the Mg concentration, since light absorption by Mg is suppressed. it is preferable that the 5 X 1 0 19 cm one 3 or more. When this is done, the p-type layer of the lower than the p-type contact layer, the thickness of the portion is Mg concentration 5 X 1 0 19 cm one 3 or more, and 20 nm or less. A more preferred range for this thickness is 5 nrr! 1515 nm, more preferably 5 nrr! ⁇ 10 nm.
  • the Mg concentration and thickness in terms of providing the M g high concentration layer specified as described above, p-type conductive layer between the Mg-enriched layer and the light-emitting layer in the p-type layer (e.g., in Figure 1
  • the Mg concentration c of the p-type cladding layer 31 and the Mg low concentration layer 32) is set to 1 X 10 19 c'm 1-3 ⁇ c, so that the p-type The diffusion of Mg from the surface of the contact layer is suppressed, and the rise in operating voltage of the device is suppressed.
  • setting (0.2 Xb) ⁇ c is one of preferred embodiments for achieving the object of the present invention.
  • Mg concentration stepwise between the high Mg concentration layer and the p-type conductive layer immediately below it is preferable to change the Mg concentration stepwise between the high Mg concentration layer and the p-type conductive layer immediately below.
  • l X 10 19 cm one 3 or more further can be provided with 3 X 10 19 cm one 3 or more Mg concentration difference.
  • Contact name by the condition that c ⁇ b, formed in the step of such a Mg concentration is also essential for a not, for example, a p-type cladding layer toward M g high concentration layer, Mg concentration linearity to increase Is also acceptable.
  • the Mg concentration c it is preferably Ri yo an upper limit value of 5 X 10 19 cm one 3, because, in the p-type conductive layer doped with Mg, the Mg concentration 5 X 10 19 cm one If the concentration is higher than 3 (preferable Mg concentration for the p-type contact layer), light absorption caused by Mg becomes a particular problem.
  • the P-type layer between the Mg-rich layer and the light-emitting layer contains a portion where the Mg concentration is less than 2 ⁇ 10 19 cm- 3. preferably to so that Re, further more preferably an average value of the Mg concentration in the!) type layer is made to be less than 2 X 10 19 cm one 3.
  • the p-type contact layer, the Mg-rich layer, and the p-type cladding layer may be continuous three layers, but between the Mg-rich layer and the p-type cladding layer, another Mg-rich layer is provided.
  • a low Mg concentration layer having a lower Mg concentration may be further provided.
  • the Mg low concentration layer is preferably provided so that the entire p-type layer has a thickness of 100 nm or more, preferably 100 nm to 30 O nm, and more preferably 100 nm to 200 nm. It is preferable that the total thickness of the p-type layer is larger than 100 nm because the balance with the n-type layer is improved, during cooling after crystal growth, during p-type annealing, and during electrode formation. This is because deterioration of the light emitting layer at the time of annealing treatment or the like is suppressed.
  • the total thickness of the p-type layer is larger than 30 O nm, these effects are saturated, and if the layer thickness is further increased, the problem of light absorption by Mg increases, and the manufacturing time increases. Problems such as reduced efficiency and wasted material occur. Also, if the growth time of the p-type layer is too long, there is a problem that the device is deteriorated due to the high temperature during the growth.
  • the composition of the low Mg concentration layer may be determined so that the interface with the high Mg concentration layer and / or the p-type cladding layer is a hetero interface.
  • the A 1 ratio is preferably 0.2 or less, particularly preferably 0.1 or less.
  • M g low concentration layer directly above the M g high concentration layer material having the same crystal composition as A l y G ai _ y N a (0 ⁇ y ⁇ 1) may be used. If the low Mg concentration layer has the same crystal composition as the Mg high concentration layer directly above, or has a superlattice structure, the crystallinity of the Mg high concentration layer immediately above and, by extension, the P-type contact layer above it Can be expected to improve This is preferable from the viewpoint of lowering the resistance of the Mg-rich layer or the p-type contact layer and suppressing the diffusion of Mg that occurs along dislocation defects.
  • An additional layer may be inserted between the Mg-rich layer and the p-type cladding layer, if necessary, in view of the element structure.
  • a surface emitting laser a laser in which the emission direction ′ matches the emission direction and the stacking direction
  • a plug reflection layer as one reflection layer of the resonator
  • an edge emission laser an oscillation direction ⁇ A light confinement layer in the case of forming a laser whose emission direction is perpendicular to the lamination direction).
  • the Bragg reflection layer or the light confinement layer may be an independent layer, or may be a layer partially or entirely serving as a high Mg concentration layer or a low Mg concentration layer.
  • a binary crystal GaN or a ternary crystal A 1 GaN it is preferable to use a binary crystal GaN or a ternary crystal A 1 GaN, and to use A 1 GaN when using A 1 GaN.
  • the A 1 ratio of the GaN crystal is preferably 0.2 or less, particularly preferably 0.1 or less.
  • each of the layers such as the p-type contact layer, the Mg-rich layer, the Mg-poor layer, and the p-type clad layer is provided that the crystal composition and the Mg concentration fall within a predetermined range defined by the present invention.
  • a multilayer structure (including a superlattice structure) may be used.
  • the GaN-based LED as an actual example of the GaN-based light emitting device of the present invention, including an experiment for specifying the preferable thickness of the p-type contact layer and the Mg concentration of the Mg-rich layer, will be described. A specific configuration will be described.
  • the Mg concentration and film thickness of the Mg-doped layer shown in the following experiments are all design values, and the measured values of the actually obtained product may include manufacturing errors.
  • the growth of the Mg-doped layer having a specific Mg concentration (design value) in each experiment was performed by the following procedure.
  • Mg concentration of predetermined design value sought [Mg Roh group III ratio], while supplying the Mg raw material and group III material at its [M g / group III ratio], MOVPE A GaN-based crystal layer is grown by the method.
  • the film thickness of each layer was controlled by determining the growth time required to grow the film to a predetermined thickness from the growth rate when the film having the composition was grown alone, and growing the film for the growth time.
  • the thickness of the A 1 G aN layer and G a N layer fabricated in each experiment was measured to be approximately the designed values by measuring the distribution of G a and A 1 in the depth direction by using SIMS. confirmed. Especially when the film thickness was small, XPS (X-ray Photoelectron Spectroscopy), which is an analysis method with higher resolution in the thickness direction, was also confirmed.
  • XPS X-ray Photoelectron Spectroscopy
  • the thickness of the p-type contact layer or the high-concentration Mg layer When the thickness of the p-type contact layer or the high-concentration Mg layer is small, the influence of the diffusion and outflow of Mg into the adjacent layer or the inflow of Mg from the adjacent layer becomes large. Was sometimes inclined. In some cases, the thickness of the Mg-rich layer was smaller than the design value due to the outflow of Mg to the adjacent Mg-poor layer.
  • a GaN LED having the structure shown in Fig. 1 was fabricated.
  • the MOVP E method was used to grow the GaN-based crystal layer.
  • the thickness of the contact layer is assumed to be A, and the p-type GaN layer (Mg low concentration layer 42 and M
  • the light emission characteristics were evaluated by setting the layer thickness of the high-concentration layer 43 as one layer) as B, and changing the thicknesses A and B of both layers.
  • each layer of the GaN-based LED fabricated in this experiment is shown in order from the upper layer to the lower layer.
  • the p-type GaN layer should be divided into a high-concentration Mg layer and a low-concentration Mg layer.
  • the Mg concentration was set to 5 ⁇ 10 19 (cm ⁇ 3 ) over the entire layer.
  • the layer thickness is B (nm).
  • An MQW structure is used in which a GaN barrier layer and an In GaN well layer (emission wavelength: 405 nm) are stacked for six periods.
  • the top layer was a GaN barrier layer.
  • the layer thickness is 100 (nm). (N-type cladding layer)
  • GaN also used as n-type contact layer, layer thickness is 4 (m).
  • the layer thickness is 2 ⁇ m), which is the thickness of the part above the top surface of the projection of the substrate.
  • the surface of the C-plane sapphire substrate was subjected to a stripe-shaped pattern and processed to have a rectangular wave-shaped cross section.
  • a GaN buffer layer was grown on the top surface of the projection and the bottom surface of the depression in the irregularities.
  • the upper limit of the thickness of the p-type contact layer should be 10 nm.
  • the Vf forward voltage required to pass a forward current of 2 OmA when the thickness of the p-type contact layer was 10 nm was 3.5 V.
  • the thickness of the p-type contact layer was fixed at 1 O nm.
  • the layer thickness was 9 Onm, and the Mg concentration was 1 ⁇ 10 19 (cm " 3 ) to further suppress light absorption by Mg.
  • the cause is that Mg diffuses and flows out from the p-type contact layer to the p-type GaN layer immediately below, thereby lowering the Mg concentration in the surface layer of the p-type contact layer. This is presumed to be because the contact resistance with the p-side electrode increased. Since the p-type contact layer is as thin as 1 O nm, the total amount of Mg retained in this layer is small, and it is probable that the effect of the outflow of Mg appears remarkably.
  • the aspect of the Mg addition to the p-type GaN layer was changed. Specifically, the Mg concentration at the bottom of the p-type GaN layer (the region in contact with the p-type cladding layer) is 1 ⁇ 10 19 cm 3, and the Mg concentration at the top (the region in contact with the p-type contact layer) is 5 ⁇ 5.
  • Mg concentration at the bottom of the p-type GaN layer is 1 ⁇ 10 19 cm 3
  • the Mg concentration at the top is 5 ⁇ 5.
  • Mg concentration at the top is 5 ⁇ 5.
  • Mg concentration was varied so that to increase substantially continuously towards the layer from a lower portion to an upper portion layer (gradient doped).
  • Vf decreased to the same level as in Experiment 1, and it is considered that the suppression of the diffusion outflow of Mg from the p-type contact layer was achieved.
  • the light emission output dropped to the same level as in Experiment 1, suggesting that the Mg-gradient doping in Experiment 3 may not sufficiently suppress the light absorption caused by Mg.
  • the thickness of the high concentration layer is preferably 5 to 20 nm.
  • the design value of the Mg concentration of the p-type contact layer is set to a higher concentration, the problem of insufficient Mg concentration does not occur, so that similarly low V f can be obtained.
  • the design value is set to a lower concentration, the concentration difference between the p-type contact layer and the p-type high concentration layer becomes smaller, and the diffusion and outflow of Mg from the p-type contact layer are more effectively suppressed. Therefore, a similarly low V f is obtained.
  • the upper side is a Mg high concentration layer (layer thickness 5 nm, Mg concentration 5 ⁇ 10 19 cm- 3 ), and the remaining lower side is M g low concentration layer (thickness 85 nm, M g concentration 1 X 10 19 cm- 3) is fixed to, changes in the thickness of the p-type co Ntakuto layer T (nm) of the various thin range than 10 nm I let it.
  • the flow rate ratio of hydrogen gas to the hydrogen gas, ammonia, and nitrogen gas supplied to the reaction vessel was 30% or less.
  • the growth rate of the p-type contact layer was about one-fifth of that in Experiments 1 to 4 in which the flow rate of hydrogen gas was about 60%. Except for this change, a GaN LED was manufactured with the same specifications as in Experiment 4, and V f and emission output were measured.
  • the layer thickness X of the Mg-rich layer was fixed at 5 nm, and the layer thickness Y of the Mg-low layer was 8511 m.
  • ⁇ A ⁇ concentration 1 ⁇ high concentration layer with 5 X 10 19 cm- 3 was varied between 1 X 10 1 9 cm one 3.
  • a GaN-based LED was manufactured with the same specifications as in Experiment 4, and V f was measured.
  • V f was at the same level as in Experiment 2 when the Mg concentration in the Mg-rich layer was between 1 ⁇ 10 19 cm— 3 (corresponding to Experiment 2 above) and 2 ⁇ 10 19 cm— 3 .
  • Mg started to decrease with the concentration of more than 2 X 10 19 cm one 3, close to the 5 X 10 19 cm- is a value at 3 3. 5 V.
  • the thickness of the Mg-enriched layer is provided immediately below the p-type contact layer 5 nm or more, if the Mg concentration is 2 X 10 19 cm one 3 above, the thickness of the p-type contact layer It has been found that there is an effect of suppressing an increase in operating voltage at the time.
  • the light emitting element does not simply have to have a high output, but there is a demand for low power consumption from the device / apparatus side in which the element is incorporated. 9 Further, the operating voltage of a light emitting element is directly related to the amount of heat generated by the element, and thus greatly affects the life of the element. In addition, since there is a need for a mounting structure that gives priority to heat radiation as the heat generation increases, there is also a problem that various design restrictions are generated.
  • the problem of light absorption can be improved by effectively reducing the total amount of Mg in the p-type layer while suppressing an increase in the operating voltage of the GaN-based semiconductor light emitting device. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Semiconductor Lasers (AREA)

Abstract

In a GaN-based light emitting element using Mg as a p-type impurity of a p-type layer, a p-type clad layer (31) composed of AlxGa1-xN (0≤x≤1) is provided at the lowermost part of the p-type layer, an Mg high concentration layer (33) composed of AlyGa1-yN (0≤y≤1) is provided on an upper part of the clad layer through at least one hetero interface, and directly above the Mg high concentration layer, a p-type contact layer (34) composed of AlzGa1-zN (y<z≤1) is provided. The p-type contact layer has a layer thickness of 10nm or less and an Mg concentration (a) of 5×1019cm-3≤(a), the Mg high concentration layer has a film thickness of 5nm-20nm and an Mg concentration (b) of 2×1019cm-3<(b), and a layer between the Mg high concentration layer and a light emitting layer has an Mg concentration (c) of 1×1019cm-3≤(c)<(b). An Mg concentration average of the p-type layers excluding the p-type contact layer is less than 5×1019cm-3. Light absorption due to Mg can be reduced, while suppressing an increase of an operating voltage, by reducing the total quantity of Mg added to the p-type layer, while maintaining the high Mg concentration of a front layer of the p-type contact layer.

Description

明細書  Specification
窒化物半導体発光素子  Nitride semiconductor light emitting device
技術分野  Technical field
本発明は、 窒化物半導体を発光層の材料として構成される、 発光ダイオード ( LED) 、 レーザダイオード (LD) 等の、 窒化物半導体発光素子に関し、 とり わけ、 該発光素子構造中の p型半導体部分の構成に関するものである。  The present invention relates to a nitride semiconductor light emitting device such as a light emitting diode (LED) or a laser diode (LD), which is composed of a nitride semiconductor as a material of a light emitting layer, and more particularly to a p-type semiconductor in the light emitting device structure. It relates to the configuration of the part.
背景技術  Background art
窒化物半導体とは、 式 A 1 α I n^G a yN (0≤ a≤ l 0≤ β≤ 1, 0≤y ≤ 1, α + β + γ = 1) で決定される 3族窒化物からなる化合物半導体であって 、 例えば、 G a N、 I nG a N、 A l G a N、 A l I nG a N、 A l N、 I nN など、 任意の組成のものが例示される。 本発明では、 上式の α、 β、 γなど、 窒 化物半導体を構成する 3族元素の組成比を、 それぞれ、 A 1比率、 I η比率、 G a比率ともいう。 発光層に用いられる窒化物半導体の材料組成を選択することに よって、 青色〜紫外に至る短波長光を発生させることが可能となる。 A nitride semiconductor is a group III nitride determined by the formula A 1 α I n ^ G a y N (0 ≤ a ≤ l 0 ≤ β ≤ 1, 0 ≤ y ≤ 1, α + β + γ = 1) Compound semiconductors of any composition, for example, G a N, In G a N, A l G a N, A l In g G a N, A l N, In n, etc. . In the present invention, the composition ratios of the group III elements constituting the nitride semiconductor, such as α, β, and γ in the above formula, are also referred to as A 1 ratio, I η ratio, and Ga ratio, respectively. By selecting the material composition of the nitride semiconductor used for the light emitting layer, it is possible to generate short wavelength light ranging from blue to ultraviolet.
以下、 「窒化物半導体」 を 「G a N系」 とも呼ぴ、 例えば 「窒化物半導体発光 素子」 であれば 「G a N系発光素子」 などとも呼んで、 従来技術おょぴ本発明を 説明する。  Hereinafter, “nitride semiconductor” is also referred to as “GaN based light emitting device”. For example, “nitride semiconductor light emitting device” is also referred to as “GaN based light emitting device”. explain.
図 3は、 G a N系発光素子の 1つである G a N系 L E Dの一般的な素子構造の —例を示した図であって、 サファイア基板などの結晶基板 1 0 0上に、 G a N系 低温成長バッファ層 1 00 bを介して、 G a N系結晶層からなる積層体 S 1が形 成されている。 該積層体 S 1は、 n型層と p型層からなる p n接合構造を構成し ており、 接合部分に発光層 1 2 0が形成されている。 具体的には、 下側 (結晶基 板側) から順に、 n型クラッド層 1 1 0 (この例では n型コンタクト層を兼用し ている) 、 発光層 (多重量子井戸などの積層構造であってもよい) 1 20、 p型 クラッド層 1 30、 p型コンタクト層 1 40が気相成長によって積層されたもの である。 P 1 0、 P 2 0は、 それぞれ、 n側電極、 p側電極である。 ダブルへテ 口構造の発光素子では、 発光層 1 20が、 II型クラッド層 1 1 0、 p型クラッド 層 1 3 0よりもパンドギャップの小さい結晶からなる。 ダブルへテロ構造の発光 素子はホモ接合の発光素子に比較して 1 0倍以上発光出力が高いと言われている (例えば、 参照文献 1 :特開平 8— 3 3 0 6 2 9号公報) 。 FIG. 3 is a diagram showing an example of a general element structure of a GaN-based LED, which is one of the GaN-based light-emitting elements, in which a G-N LED is formed on a crystal substrate 100 such as a sapphire substrate. The laminated body S1 composed of the GaN-based crystal layer is formed via the aN-based low-temperature growth buffer layer 100b. The laminate S1 has a pn junction structure including an n-type layer and a p-type layer, and a light emitting layer 120 is formed at the junction. Specifically, in order from the lower side (from the crystal substrate side), an n-type cladding layer 110 (also serving as an n-type contact layer in this example) and a light-emitting layer (a multilayer structure such as a multiple quantum well) are used. 1 20, a p-type cladding layer 130, and a p-type contact layer 140 are stacked by vapor phase growth. P 10 and P 20 are an n-side electrode and a p-side electrode, respectively. In a light emitting device having a double-headed structure, the light-emitting layer 120 has a II-type cladding layer 110 and a p-type cladding layer. It is made of a crystal having a smaller band gap than that of the layer 130. It is said that a light emitting element having a double hetero structure has a light emission output that is at least 10 times higher than that of a light emitting element having a homojunction (for example, Reference 1: Japanese Patent Application Laid-Open No. H8-33069). .
n型クラッド層 1 1 0は n型不純物の添加により n型伝導性に形成される。 p 型クラッド層 1 3 0と p型コンタクト層 1 4 0は、 p型不純物が添加されるとと もに、 必要に応じて p型化ァニーリング処理等の低抵抗化処理が行われることに より、 p型伝導性に形成される。 発光層 1 2 0は n型導電性にも p型導電性にも 、 またこれらの導電性の層が混在した態様にも形成し得る。 また、 不純物を意図 的に添加しないアンドープの層とされる場合もある (不純物を何ら含まないアン ドープの層は通常、 弱い n型伝導性を示す) 。  The n-type cladding layer 110 is formed to have n-type conductivity by adding an n-type impurity. The p-type cladding layer 130 and the p-type contact layer 140 are doped with a p-type impurity and, if necessary, subjected to a resistance reduction treatment such as a p-type annealing treatment. , Formed into p-type conductivity. The light-emitting layer 120 can be formed to have either n-type conductivity or p-type conductivity, or a mode in which these conductive layers are mixed. In some cases, the layer is undoped without intentionally adding impurities (an undoped layer that does not contain any impurities usually shows weak n-type conductivity).
G a N系結晶層を p型伝導性とするために好ましい p型不純物としては、 M g が用いられる。  Mg is used as a preferred p-type impurity for making the GaN-based crystal layer p-type conductive.
発光素子の動作電圧は低ければ低い程、 実用上は望ましい。 動作電圧を低下さ せるには、 p型層の直列抵抗が低い方がよいので、 p型層の正孔濃度を高くする ことが好ましいが、 そのために M gの添加量を多くし過ぎると結晶性が悪化して 正孔の移動度が低下してしまい、 抵抗が十分に低下しない。 従って、 M gの添加 量は、 正孔濃度が十分に高くなり、 かつ結晶性が著しく低下しない濃度とするこ とが好ましい。  The lower the operating voltage of the light emitting element, the more practically desirable. To lower the operating voltage, it is better to lower the series resistance of the p-type layer.Therefore, it is preferable to increase the hole concentration of the p-type layer. The mobility deteriorates due to the deterioration of the hole mobility, and the resistance does not decrease sufficiently. Therefore, it is preferable that the amount of Mg added is such that the hole concentration is sufficiently high and the crystallinity is not significantly reduced.
発光素子の動作電圧を低くするには、 p型層と P側電極との間の接触抵抗を低 くすることも重要である。  To lower the operating voltage of the light emitting device, it is also important to reduce the contact resistance between the p-type layer and the P-side electrode.
この接触抵抗を低下させるために、 p側電極が形成される層である P型コンタ クト層の正孔濃度を高くするという考え方が公知である。 高キャリア濃度の G a Nを p型コンタクト層に用いると、 p側電極とのォ一ミック性が良くなり、 L E Dの順方向電圧 (所定の順方向電流を流すのに必要な印加電圧) が低下するとい われている (参照文献 2 ;特開平 7— 1 5 0 4 1号公報) 。  In order to reduce the contact resistance, it is known that the hole concentration of a P-type contact layer, which is a layer on which a p-side electrode is formed, is increased. When G n with a high carrier concentration is used for the p-type contact layer, the uniformity with the p-side electrode is improved, and the forward voltage of the LED (applied voltage required to flow a predetermined forward current) is reduced. It is said to decrease (Ref. 2; Japanese Patent Application Laid-Open No. 7-15041).
あるいは、 p型コンタクト層の M g濃度を高くすることは、 キャリア濃度の増 加を通してではなく、 そのこと自体が接触抵抗の低下に有効であるともいわれて おり、 p型コンタクト層の表層側の Mg濃度を高くすることで発光素子の動作電 圧や順方向電圧を低下させる方法が公知である (参照文献 1、 参照文献 3 ;特開 平 8— 97471号公報) 。 参照文献 3によれば、 Mg濃度を 5 X 1019/c m3程度よりも高くすると、 Mg濃度の増加に対するキヤリァ濃度の増加率が小 さくなり、 ついには Mg濃度とキャリア濃度が逆比例するようになるが、 p型コ ンタクト層の Mg濃度をこのような高濃度領域に設定すると、 p側電極とのォー ミック性が良好となり、 動作電圧が低下する。 Alternatively, it is said that increasing the Mg concentration in the p-type contact layer is not effective through increasing the carrier concentration, but is itself effective in reducing the contact resistance. Therefore, a method is known in which the operating voltage and the forward voltage of the light emitting element are reduced by increasing the Mg concentration on the surface layer side of the p-type contact layer (see References 1, 3; Japanese Patent Application Laid-Open No. 8-97471). No.). According to Reference 3, when the Mg concentration is higher than about 5 × 10 19 / cm 3 , the rate of increase of the carrier concentration with respect to the increase of the Mg concentration decreases, and finally, the Mg concentration and the carrier concentration are inversely proportional. However, when the Mg concentration of the p-type contact layer is set to such a high concentration region, the ohmic property with the p-side electrode is improved, and the operating voltage is reduced.
p型不純物として Mgを用いると、 該 Mgによる光吸収のために発光効率が低 下するという問題が提起されている (例えば、 参照文献 4 ;特開平 10— 125 956号公報) 。 Mgによる光吸収は、 Mgが G a N系結晶中において深い準位 のァクセプタレベルを形成し、 その深い準位と伝導帯とのパンドギヤップにより 430 nm以下の波長の光が吸収される現象であると説明されている。  It has been proposed that when Mg is used as a p-type impurity, the luminous efficiency is reduced due to light absorption by the Mg (for example, Reference 4; Japanese Patent Application Laid-Open No. H10-125956). Light absorption by Mg is a phenomenon in which Mg forms a deep level acceptor level in a GaN-based crystal, and light with a wavelength of 430 nm or less is absorbed by the band gap between the deep level and the conduction band. Has been described.
参照文献 4に記載された発明では、 この問題に対し、 p型クラッド層を A 1比 率が 8 %以上の A I GaNとすることによつて上記パンドギヤップを拡大し、 吸 収される光の波長を 430 nmよりも短くするとともに、 p型クラッド層や p型 コンタクト層の厚さを薄くすることによって、 前記光吸収の問題を軽減している 上記のように、 Mgによる光吸収の問題を軽減するために、 p型層 (p型クラ ッド層、 p型コンタクト層を含む、 発光層より上に形成される p型伝導層全体) を薄くするという手法が知られている。  In the invention described in Reference 4, in order to solve this problem, the p-type cladding layer is made of AI GaN having an A 1 ratio of 8% or more, so that the above-mentioned band gap is enlarged, and the wavelength of the absorbed light is increased. Is reduced to less than 430 nm, and the thickness of the p-type cladding layer and p-type contact layer is reduced, thereby reducing the problem of light absorption as described above. In order to achieve this, it is known to reduce the thickness of the p-type layer (the entire p-type conductive layer formed above the light-emitting layer, including the p-type cladding layer and the p-type contact layer).
そこで、 本発明者等は、 p型コンタクト層の厚さを薄くすることが最も重要と 考え、 Mgを高濃度にドープした p型コンタクト層を 10 nm以下に薄く形成し 、 その直下の p型層の Mg濃度を急激に低下させた G a N系 LEDを作製し、 そ の評価を試みた。  Therefore, the present inventors consider that it is most important to reduce the thickness of the p-type contact layer, and formed a p-type contact layer doped with Mg at a high concentration to a thickness of 10 nm or less, and formed the p-type A GaN-based LED with a rapidly reduced Mg concentration in the layer was fabricated and its evaluation was attempted.
しかしながら、 そのような G a N系 LEDでは、 動作電圧が上昇してしまうこ とがわかった。 その理由は、 濃度勾配による拡散によって p型コンタクト層の表 層の M g濃度が低下し、 p側電極との接触抵抗が増加するからであると考えられ る。 逆にいえば、 p型コンタクト層の表層の Mg濃度を十分に高くして p側電極 との接触抵抗を低くするには、 該 p型コンタクト層をある程度以上厚くしなけれ ばならず、 それによつて光吸収を伴なうことが必至となつていた。 However, it has been found that the operating voltage of such a GaN LED increases. The reason is considered to be that the Mg concentration in the surface layer of the p-type contact layer decreases due to diffusion due to the concentration gradient, and the contact resistance with the p-side electrode increases. The Conversely, in order to sufficiently increase the Mg concentration in the surface layer of the p-type contact layer and reduce the contact resistance with the p-side electrode, the p-type contact layer must be thickened to a certain degree or more. Inevitably, light absorption was involved.
即ち、 従来技術では、 Mg濃度の高い p型コンタクト層を設けて発光素子の動 作電圧を低下させることと、 p型層での光吸収を十分に抑制することとは、 両立 できてはいなかった。  In other words, in the prior art, it has not been possible to provide a p-type contact layer having a high Mg concentration to lower the operating voltage of the light emitting device and to sufficiently suppress light absorption in the p-type layer. Was.
発明の開示  Disclosure of the invention
本発明の目的は、 p型層の上記問題点を解消し、 p型コンタクト層の表層の M g濃度を高濃度に維持しつつ、 p型層に添加する Mgの総量を低減することで、 動作電圧の上昇を抑えながらも、 Mgに起因する光吸収をより少なくすることが 可能な p型層構造を G a N系発光素子に付与することである。  An object of the present invention is to solve the above-mentioned problems of the p-type layer and reduce the total amount of Mg added to the p-type layer while maintaining a high Mg concentration in the surface layer of the p-type contact layer. An object of the present invention is to provide a GaN-based light emitting device with a p-type layer structure that can reduce light absorption due to Mg while suppressing an increase in operating voltage.
本発明者等は、 p型層における p型コンタクト層から発光層に最も近い層まで の、 G a N系材料の組成の変化、 積層方向の Mg濃度の変化、 各層厚について、 本発明独自の限定を加えることによって、 上記目的を達成し得ることを見出し、 本発明を完成させた。  The inventors of the present invention have proposed the unique change of the composition of the GaN-based material, the change of the Mg concentration in the stacking direction, and the thickness of each layer from the p-type contact layer to the layer closest to the light emitting layer in the p-type layer. It has been found that the above object can be achieved by adding a limitation, and the present invention has been completed.
即ち、 本発明は、 次の特徴を有するものである。  That is, the present invention has the following features.
(1) 窒化物半導体結晶層からなる積層体を有し、 該積層体には下層側から順に n型層、 発光層、 p型層が含まれ、 p型層には p型不純物として Mgがドープさ れている窒化物半導体発光素子であって、  (1) It has a stacked body composed of a nitride semiconductor crystal layer, and the stacked body includes an n-type layer, a light-emitting layer, and a p-type layer in order from the lower layer side, and the p-type layer contains Mg as a p-type impurity. A doped nitride semiconductor light emitting device,
p型層の最下部には A 1 XG a XN (0≤x≤ 1) からなる p型クラッド層 が設けられ、 該 p型クラッド層の上方には 1以上のへテロ界面を介して A 1 yG a x_yN (0≤y≤ l) からなる M g高濃度層が設けられ、 該 Mg高濃度層の直 上には!)型層の最上部として A 1 ZG a (y < z≤ 1) からなる!)型コン タクト層が設けられ、 At the bottom of the p-type layer, there is provided a p-type cladding layer composed of A 1 X G a X N (0≤x≤1), and above the p-type cladding layer via one or more heterointerfaces. a 1 y G a x _ y N consists (0≤y≤ l) M g high concentration layer is provided on the upper straight of the Mg-rich layer! A) Z G a (y <z≤ 1) as the top of the) type layer! ) Type contact layer is provided,
p型コンタクト層は、 層厚が 10 nm以下、 M g濃度 aが 5 X 1019 c m一3 ≤ aであり、 The p-type contact layer has a thickness of 10 nm or less, a Mg concentration a of 5 × 10 19 cm− 3 ≤ a,
Mg高濃度層は、 層厚が 5 nm〜20 nm、 Mg濃度 bが 2 X 1019 cm一3 く bであり、 Mg high concentration layer has a thickness of 5 nm~20 nm, M g concentration b is 2 X 10 19 cm one 3 B
p型層のうち、 Mg高濃度層と発光層との間の層は、 Mg濃度 cが 1 X 101 9 cm— 3≤ c<bであり、 of the p-type layer, a layer between the Mg-enriched layer and the light emitting layer, Mg concentration c is 1 X 10 1 9 cm- 3 ≤ c <b,
p型コンタクト層を除く p型層の Mg濃度の平均値が 5 X 1019 cm— 3未満 であることを特徴とする、 窒化物半導体発光素子。 A nitride semiconductor light emitting device, characterized in that the average value of the Mg concentration of the p-type layer excluding the p-type contact layer is less than 5 × 10 19 cm— 3 .
(2) Mg高濃度層が、 少なくとも p型コンタクト層に接する側に、 Mg濃度が 5 X 1019 cm— 3以上の部分を含む、 上記 (1) 記載の窒化物半導体発光素子 (2) The nitride semiconductor light-emitting device according to (1), wherein the Mg-rich layer includes a portion having a Mg concentration of 5 × 10 19 cm- 3 or more at least on a side in contact with the p-type contact layer.
(3) Mg高濃度層が、 p型コンタクト層に接する側のみに、 Mg濃度が 5 X I 019 cm— 3以上の部分を含む、 上記 (2) 記載の窒化物半導体発光素子。 (3) The nitride semiconductor light-emitting device according to the above (2), wherein the high Mg concentration layer includes a portion having a Mg concentration of 5 XI 0 19 cm- 3 or more only on the side in contact with the p-type contact layer.
(4) Mg濃度 cが c < 5 X l 019 cm一3である、 上記 (1) 記載の窒化物半 導体発光素子。 (4) The nitride semiconductor light-emitting device according to (1), wherein the Mg concentration c is c <5 × 10 19 cm− 3 .
(5) b< aである、 上記 (1) 記載の窒化物半導体発光素子。  (5) The nitride semiconductor light-emitting device according to (1), wherein b <a.
(6) p型層のうち、 Mg高濃度層と発光層との間の層が、 Mg濃度が 2 X 1 0 19 cm— 3未満の部分を含む、 上記 (1) 記載の窒化物半導体発光素子。 (6) The nitride semiconductor light-emitting device according to (1), wherein a layer between the Mg-rich layer and the light-emitting layer in the p-type layer includes a portion having a Mg concentration of less than 2 × 10 19 cm− 3. element.
(7) 上記 Mg高濃度層と発光層との間の層における Mg濃度の平均値が 2 X 1 019 cm— 3未満である、 上記 (6) 記載の窒化物半導体発光素子。 (7) The nitride semiconductor light-emitting device according to (6), wherein an average value of Mg concentration in a layer between the Mg-rich layer and the light emitting layer is less than 2 × 10 19 cm− 3 .
(8) p型層の層厚が 100 nm〜300 nmである、 上記 ( 1 ) 記載の窒化物 半導体発光素子。  (8) The nitride semiconductor light emitting device according to (1), wherein the p-type layer has a thickness of 100 nm to 300 nm.
(9) p型コンタクト層は、 層厚が 0. 5〜: 1 0 nm、 Mg濃度 aが 5 X 101 9 c m_3≤ a≤ 1 X 1021 c m -3であり、 (9) p-type contact layer has a thickness of 0. 5~: 1 0 nm, Mg concentration a is 5 X 10 1 9 cm _3 ≤ a≤ 1 X 10 21 cm - 3, and
Mg高濃度層は、 層厚が 5〜20 nm、 1 §濃度1>が2 1 019 cm— 3< ( 0. 5 X a) ≤b≤ 1 X 1021 cm— 3であり、 Mg high concentration layer has a thickness is 5 to 20 nm, 1 § concentration 1> is 2 1 0 19 cm- 3 <( 0. 5 X a) ≤b≤ 1 X 10 21 cm- 3,
p型層のうち、 Mg高濃度層と発光層との間の層は、 Mg濃度 cが (0. 2 X b) ≤ c<bである、 上記 (1) 記載の窒化物半導体発光素子。  The nitride semiconductor light-emitting device according to the above (1), wherein a layer between the high Mg concentration layer and the light emitting layer among the p-type layers has a Mg concentration c of (0.2 X b) ≤ c <b.
図面の簡単な説明  Brief Description of Drawings
図 1は、 本発明による G a N系発光素子の素子構造を示した模式図である。 ハ ツチングは、 領域を区別する目的で施している。 FIG. 1 is a schematic view showing an element structure of a GaN-based light emitting element according to the present invention. C Touching is performed for the purpose of distinguishing the areas.
図 2は、 M g高濃度層の厚さと、 V f 、 発光出力との関係を示すグラフである 図 3は、 従来の G a N系発光素子の素子構造を示した模式図である。  FIG. 2 is a graph showing the relationship between the thickness of the Mg high-concentration layer, V f, and emission output. FIG. 3 is a schematic diagram showing the element structure of a conventional GaN-based light emitting element.
図 1における各符号は、 それぞれに、 次のものを示している。 1 ;アンドープ 層、 2 ; n型層、 3 ;発光層、 4 ; p型層、 4 1 ; p型クラッド層、 4 2 ; M g 低濃度層、 4 3 ; M g高濃度層、 4 4 ; P型コンタクト層 Each symbol in FIG. 1 indicates the following, respectively. 1; undoped layer, 2; n-type layer, 3; light-emitting layer, 4; p-type layer, 41; p-type cladding layer, 42; low Mg concentration layer, 43; high Mg concentration layer, 44 ; P- type contact layer
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
本明細書では、 当該発光素子の積層構造中の各層の位置を説明するために、 「 下層側」 、 「最下部」 、 「直上」 など、 上下関係を示す語句を用いている。 これ は、 積層構造の形成プロセスにおいて、 結晶基板を下側として、 その上に先に形 成された n型層の上に発光層、 p型層を形成していくといった積層順に基づいた 便宜上の表現であって、 素子の絶対的な上下方向や、 素子の実装方向 (実装時の 姿勢) を限定するものではない。 「直上」 とは直接隣接した上側、 「直下」 とは 直接隣接した下側である。  In this specification, in order to describe the position of each layer in the layered structure of the light-emitting element, terms indicating a vertical relationship such as “lower layer side”, “bottom”, and “directly above” are used. This is for convenience based on the stacking order, such as forming the light emitting layer and the p-type layer on the n-type layer formed first on the crystal substrate in the process of forming the stacked structure with the crystal substrate on the lower side. It is an expression, and does not limit the absolute vertical direction of the device or the mounting direction (posture at mounting) of the device. "Directly above" means directly above and directly below, and "directly below" means directly below and below.
以下、 G a N系発光素子の 1つである G a N系 L E Dを例として用い、 本発明 を説明する。 半導体レーザの態様については必要に応じて言及する。  Hereinafter, the present invention will be described using a GaN-based LED, which is one of the GaN-based light-emitting elements, as an example. The aspect of the semiconductor laser will be referred to as necessary.
本発明による G a N系 L E Dの素子構造は、 図 1に一例を示すように、 結晶基 板 B 1上に、 G a N系結晶層を順次成長させ積層体 Sとした素子構造を有する。 該積層体 Sには、 下層側から順にアンドープ層 1、 n型層 2、 発光層 3、 p型層 4が含まれている。 上記 (1 ) 記載のとおり、 本発明では、 p型層にドープされ る p型不純物は、 M gである。  The GaN-based LED device structure according to the present invention has a device structure in which a GaN-based crystal layer is sequentially grown on a crystal substrate B1 to form a laminate S, as shown in an example in FIG. The laminate S includes an undoped layer 1, an n-type layer 2, a light-emitting layer 3, and a p-type layer 4 in this order from the lower layer side. As described in the above (1), in the present invention, the p-type impurity doped into the p-type layer is Mg.
n型層 2には、 n型コンタクト層と、 n型クラッド層とが独立して含まれる場 合があるが、 同図の例では 1層だけで両層を兼用している。  In some cases, the n-type layer 2 includes an n-type contact layer and an n-type cladding layer independently, but in the example shown in the figure, only one layer is used for both layers.
発光層 3は、 キャリアの再結合による発光を生ぜしめるための層であって、 後 述のとおり単一層の態様だけではなく、 積層構造であってもよい。  The light-emitting layer 3 is a layer for generating light emission due to recombination of carriers, and may have not only a single-layer form but also a laminated structure as described later.
P型層 4には、 少なくとも最下部に; 型クラッド層 4 1、 それよりも上方に M g高濃度層 43、 さらに該層 43の直上に; 型コンタクト層 44が含まれている 。 これら p型クラッド層 41、 Mg高濃度層 43、 p型コンタクト層 44からな る P型層の特徴は、 上記 (1) に記載したとおりである。 P-type layer 4 has at least the bottom; type cladding layer 4 1, M above it g high-concentration layer 43, and directly above the layer 43; a type contact layer 44 is included. The characteristics of the P-type layer composed of the p-type cladding layer 41, the Mg-rich layer 43, and the p-type contact layer 44 are as described in (1) above.
図 1の例では、 p型クラッド層 41と Mg高濃度層 43との間に、 Mg低濃度 層 42が存在するが、 これについては後述する。  In the example of FIG. 1, the Mg low concentration layer exists between the p-type cladding layer 41 and the Mg high concentration layer 43, which will be described later.
結晶基板の上面は、 図 3の例のようにフラットであってもよいが、 図 1の素子 構造例では、 結晶基板 B 1上面に凹凸 (後述) が加工され、 該凹凸上に G a N系 材料からなるバッファ層 B 2が形成され、 凹凸を覆って、 アンドープ GaN層 1 、 n型 GaNクラッド層 (n型コンタクト層を兼ねている) 2が成長している。 積層体 Sは、 n型 GaNクラッド層 2が部分的に露出するよう p型層側からエツ チングされ、 該露出部分に A 1 (アルミユウム) からなる n側電極 P 1が設けら れている。 また、 p型コンタクト層 44上面には、 該上面と接する側から順に、 N i (ニッケル) と Au (金) とを積層してなる、 p側電極 P 2が設けられてい る。  Although the upper surface of the crystal substrate may be flat as in the example of FIG. 3, in the example of the element structure of FIG. 1, irregularities (described later) are formed on the upper surface of the crystal substrate B1, and G a N A buffer layer B2 made of a base material is formed, and an undoped GaN layer 1 and an n-type GaN cladding layer (also serving as an n-type contact layer) 2 are grown to cover the irregularities. The laminate S is etched from the p-type layer side so that the n-type GaN cladding layer 2 is partially exposed, and the exposed portion is provided with an n-side electrode P1 made of A1 (aluminum). Further, on the upper surface of the p-type contact layer 44, a p-side electrode P2 formed by laminating Ni (nickel) and Au (gold) in this order from the side in contact with the upper surface is provided.
発光層 3から発せられた光を上方から (p側電極側から) 取り出すか、 結晶基 板を通して下側 (基板裏面側) から取り出すかは任意であって、 それぞれに応じ て p側電極の態様や、 通常姿勢の実装ゃフリップチップ実装が可能な構造を採用 すればよい。  It is optional to extract the light emitted from the light emitting layer 3 from above (from the p-side electrode side) or from below (through the back side of the substrate) through the crystal substrate. Or, it is sufficient to adopt a structure that allows mounting in a normal posture and flip-chip mounting.
上記のように、 本発日力では、 p型層內の積層構造として、 先ず、 下層側から順 に、 p型クラッド層、 (1>型) ^18高濃度層、 p型コンタクト層を少なくとも含 む構造としている。 Mg高濃度層と p型クラッド層との間には、 他の層が存在し てもよい (後述) 。 次に、 これらの層の材料組成、 Mg添加濃度、 層厚等を、 上 記 (1) のとおりに規定し (好ましい態様としては、 上記 (2) 〜 (7) のとお りに規定し) 、 これによつて次の 3つの効果を発生させることにより、 上記目的 を達成している。  As described above, according to the present invention, at least the p-type cladding layer, the (1> type) ^ 18 high-concentration layer, and the p-type contact layer are formed in order from the lower layer side as a stacked structure of the p-type layer 內. The structure is included. Other layers may be present between the Mg-rich layer and the p-type cladding layer (described later). Next, the material composition, Mg addition concentration, layer thickness, etc. of these layers are defined as described in (1) above (preferable embodiments are defined as in (2) to (7) above). The above purpose is achieved by generating the following three effects.
(i) 結晶性の向上  (i) Improvement of crystallinity
p型クラッド層を 2元または 3元結晶の A 1 XG a,― XN (0≤x≤ 1) 、 M g高濃度層を 2元または 3元結晶の A 1 yG a卜 yN (0≤ y≤ 1 ) 、 p型コン タクト層を 3元結晶の A 1 ZG a i_zN (y < z≤ 1 ) とするのは、 転位密度の 低い、 高品質の結晶を得ることが容易であるためである。 The p-type cladding layer is a binary or ternary crystal of A 1 X G a, -X N (0≤x≤ 1), M g High-concentration layer is binary or ternary crystal A 1 y G ay N (0≤ y≤ 1), p-type contact layer is ternary crystal A 1 Z G a i_ z N (y <z ≤ 1) because it is easy to obtain high-quality crystals with low dislocation density.
転位密度を低減することで正孔の移動度が向上するため、 p型層の抵抗が低下 し、 発光素子の動作電圧を低下させることができる。 また、 転位欠陥領域に沿つ て生じる Mgの拡散が抑制される。  Since the mobility of holes is improved by reducing the dislocation density, the resistance of the p-type layer is reduced, and the operating voltage of the light-emitting element can be reduced. In addition, the diffusion of Mg along the dislocation defect region is suppressed.
(ii) 接触抵抗の低下  (ii) Reduction of contact resistance
p型コンタクト層を A 1 ZG a (y < z≤ 1) とし、 その A l比率 zをLet the p-type contact layer be A 1 Z G a (y <z ≤ 1) and let its Al ratio z be
Mg高濃度層の A 1比率 yより高くするのは、 G aよりも窒素との結合力の強い A 1の比率を増やすことによって、 p型層の最上部に形成される p型コンタクト 層が、 結晶成長時、 結晶成長後の冷却時、 p型化アニーリング処理時、 電極ァニ 一リング処理時等に、 高温雰囲気に曝されたときの窒素抜けを抑制するためであ る。 The A1 ratio of the Mg-rich layer is set higher than y because the p-type contact layer formed at the top of the p-type layer is formed by increasing the ratio of A1, which has a stronger binding force with nitrogen than Ga. This is because, during crystal growth, during cooling after crystal growth, during p-type annealing, during electrode annealing, and the like, nitrogen is prevented from being released when exposed to a high-temperature atmosphere.
G a N系結晶層に窒素抜けが生じた場合、 その後に残った窒素空孔は、 n型伝 導性を与えるため、 p型伝導性の発現を阻害し、 電極との接触抵抗や、 層内の直 列抵抗を上昇させる要因となる。  When nitrogen escape occurs in the GaN crystal layer, the remaining nitrogen vacancies give n-type conductivity, hindering the development of p-type conductivity, causing contact resistance with the electrode and This will increase the series resistance inside.
本願発明では、 p型コンタクト層の A 1比率を直下の層よりも高くすることで 窒素抜けの抑制を図り、 電極との接触抵抗や層内の直列抵抗の上昇を抑えている ρ型コンタク ト層の Mg濃度 aを、 5 X 1 01 9 c m— 3≤ aとするのは、 この 濃度の範囲であれば、 p側電極との好ましいォーミツタコンタクトが達成でき、 該電極との接触抵抗を十分に低くし得るからである。 In the present invention, by increasing the A 1 ratio of the p-type contact layer higher than that of the layer immediately below, the nitrogen release is suppressed, and the increase in the contact resistance with the electrode and the increase in the series resistance in the layer are suppressed. When the Mg concentration a of the layer is set to 5 × 10 19 cm— 3 ≤ a, a preferable ohmic contact with the p-side electrode can be achieved within this concentration range, and the contact with the electrode can be achieved. This is because the resistance can be made sufficiently low.
(iii) p型層の Mg量の低減と p型コンタクト層からの Mg拡散抑制  (iii) Reduction of Mg content in p-type layer and suppression of Mg diffusion from p-type contact layer
p型コンタクト層の層厚を 1 0 nm以下と極めて薄く限定するのは、 この層に は!)側電極とのォーミック性を得るために Mgが高濃度に添加されるので、 Mg に起因する光吸収を抑制するうえで、 この層の厚さを薄くすることが最も効果的 であるからである。 それは、 Mgを添加した p型層が吸収する光の波長は、 Mg 濃度が高くなる程、 Mgが深い準位を形成するために長波長化するからであり、 吸収波長が長波長化する程、 発光層で発生される光が吸収され易くなるからであ る。 What makes the p-type contact layer extremely thin, less than 10 nm, is this layer! Since Mg is added at a high concentration in order to obtain ohmicity with the side electrode, it is most effective to reduce the thickness of this layer in suppressing light absorption due to Mg. is there. The wavelength of light absorbed by Mg-added p-type layer is Mg This is because the higher the concentration, the longer the wavelength of Mg to form a deeper level, and the longer the absorption wavelength, the more easily the light generated in the light emitting layer is absorbed.
しかし、 単に Mgが高濃度に添加された p型コンタクト層を薄くすると、 接触 抵抗の上昇という問題が生じる。  However, simply reducing the thickness of the p-type contact layer containing a high concentration of Mg raises the problem of increasing the contact resistance.
これに対して、 本発明では p型層全体の構成に工夫を行うことで、 p型コンタ クト層の接触抵抗の上昇を防ぎつつ、 p型層に含まれる Mg量を低減している。 まず、 p型クラッド層と p型コンタクト層との間に、 組成の異なる結晶の接合 界面であるへテロ界面を、 少なくとも 2つ設ける。 即ち、 p型クラッド層と Mg 高濃度層との間に少なくともひとつ設けられるヘテロ界面、 および、 A l yGa !_yN (0≤y≤ 1) からなる Mg高濃度層と、 A l zGa i-zN (y < z≤ 1 ) からなる p型コンタクト層との間に少なくともひとつ形成されるへテロ界面で ある。 In contrast, in the present invention, the amount of Mg contained in the p-type layer is reduced while preventing an increase in the contact resistance of the p-type contact layer by devising the configuration of the entire p-type layer. First, at least two hetero interfaces, which are bonding interfaces of crystals having different compositions, are provided between the p-type cladding layer and the p-type contact layer. That is, at least one provided are hetero interface between the p-type cladding layer and the Mg-enriched layer, and, A l y Ga! _ Y N and Mg high concentration layer made of (0≤y≤ 1), A l z G ai - is a hetero-interface is at least one formed between the z N (y <z≤ 1) made of p-type contact layer.
ヘテロ界面には結晶の分極による電界が存在するため、 イオン化された不純物 が捕獲され易く、 Mgの拡散を抑制する効果がある。  Since an electric field due to the polarization of the crystal exists at the hetero interface, ionized impurities are easily captured, which has the effect of suppressing the diffusion of Mg.
次に、 Mg高濃度層の Mg濃度 bを、 2 X 1019 cm— 3<b、 層厚を 5 nm 〜20 nmとするとともに、 Mg高濃度層よりも下の p型伝導層 (p型クラッド 層を含む) 、 即ち、 Mg高濃度層と発光層との間の p型伝導層の Mg濃度 cを、 1 X 1019 c m-3≤ c < bとする。 この c <bという不等式は、 Mg高濃度層 の Mg濃度 bが、 Mg高濃度層と発光層との間の p型伝導層中の、 いかかる部分 の Mg濃度よりも高いことを意味している。 従って、 Mg高濃度層の層厚を 20 nm以下とし、 かつ c<bとするという限定は、 p型コンタクト層より下側では 、 p型コンタクト層の下面からの距離が 20 nm以内の領域で Mg濃度が最も高 くなるように、 p型層の Mg濃度を設定することを意味する。 Next, the Mg concentration b of the Mg-rich layer is set to 2 × 10 19 cm− 3 <b, the layer thickness is set to 5 nm to 20 nm, and the p-type conduction layer (p-type In other words, the Mg concentration c of the p-type conductive layer between the high Mg concentration layer and the light emitting layer is set to 1 × 10 19 cm −3 ≤ c <b. This inequality c <b means that the Mg concentration b in the Mg-rich layer is higher than the Mg concentration in such a portion of the p-type conduction layer between the Mg-rich layer and the light emitting layer. I have. Therefore, the limitation that the layer thickness of the Mg-rich layer is set to 20 nm or less and c <b is limited to the region below the p-type contact layer where the distance from the lower surface of the p-type contact layer is within 20 nm. This means setting the Mg concentration in the p-type layer so that the Mg concentration is the highest.
更に、 p型コンタクト層を除く p型層の Mg濃度の平均値、 即ち、 Mg高濃度 層から p型クラッド層までを合わせた p型伝導層における M g濃度の平均値が、 5 X 1019 cm一3未満となるようにする。 p型コンタクト層と発光層との間の P型伝導層の M g濃度をこのように設定す ることで、 p型コンタクト層の接触抵抗の上昇を防ぎつつ、 p型層に添加する M gの総量を低く抑えることが可能となる。 Furthermore, the average value of the Mg concentration of the p-type layer excluding the p-type contact layer, that is, the average value of the Mg concentration in the p-type conduction layer including the Mg-rich layer and the p-type cladding layer is 5 × 10 19 cm less than 3 cm. By setting the Mg concentration of the P- type conductive layer between the p-type contact layer and the light emitting layer in this way, it is possible to prevent the increase in the contact resistance of the p-type contact layer and to increase the Mg added to the p-type layer. Can be kept low.
結晶基板は、 G a N系結晶が成長可能なものであればよい。 好ましい結晶基板 としては、 例えば、 サファイア (C面、 A面、 R面) 、 S i C (6H、 4H、 3 C) 、 GaN、 A 1 N、 S i、 スピネル、 ZnO、 GaAs、 NGOなどが挙げ られる。 また、 これらの結晶を表層として有する基材であってもよい。 なお、 基 板の面方位は特に限定されなく、 更にジャスト基板でも良いしオフ角を付与した 基板であっても良い。  The crystal substrate may be any as long as a GaN-based crystal can be grown. Preferred crystal substrates include, for example, sapphire (C-plane, A-plane, R-plane), SiC (6H, 4H, 3C), GaN, A1N, Si, spinel, ZnO, GaAs, NGO, etc. No. Further, a substrate having these crystals as a surface layer may be used. The plane orientation of the substrate is not particularly limited, and may be a just substrate or a substrate having an off angle.
結晶基板と G a N系結晶層との間には、 バッファ層を介在させることが好まし い。 上方に形成する p型層の転位密度が低減され、 結晶性が向上するためである 。 p型層の転位密度が低減されると、 電気抵抗の低下や、 Mg拡散の抑制といつ た好ましい効果が生じることは、 前述の通りである。  It is preferable to interpose a buffer layer between the crystal substrate and the GaN-based crystal layer. This is because the dislocation density of the p-type layer formed above is reduced and the crystallinity is improved. As described above, when the dislocation density of the p-type layer is reduced, favorable effects such as reduction in electric resistance and suppression of Mg diffusion are generated.
好ましいバッファ層としては、 G a N系バッファ層が挙げられる。 バッファ層 の材料、 形成方法、 形成条件は、 公知技術を参照すればよいが、 GaN系パッフ ァ層材料としては、 GaN、 A l GaN、 A 1 N、 I nNなどが例示され、 成長 温度としては、 その上に成長する G a N系結晶層の成長温度よりも低温であれば よく、 300°C〜700°Cが挙げられる。  Preferred buffer layers include GaN-based buffer layers. The material, formation method, and formation conditions of the buffer layer may refer to a known technique.Examples of GaN-based buffer layer materials include GaN, AlGaN, A1N, InN, and the like. It is sufficient that the temperature is lower than the growth temperature of the GaN-based crystal layer grown thereon, for example, 300 ° C. to 700 ° C.
バッファ層の厚さは 10 nm〜50 nm、 特に 20 nm〜40 nmが好ましい 。 バッファ層の材料を GaNとすると、 上方に成長する結晶層の転位密度が最も 低くなり、 またパッファ層の最適厚さ範囲が広くなるので好ましい。  The thickness of the buffer layer is preferably 10 nm to 50 nm, particularly preferably 20 nm to 40 nm. It is preferable to use GaN as the material of the buffer layer because the dislocation density of the crystal layer grown upward is lowest and the optimum thickness range of the buffer layer is wide.
なお、 結晶基板として GaNや、 A 1 N結晶などからなる基板を用いる場合に は、 バッファ層は必須では無い。  When a substrate made of GaN, A 1 N crystal, or the like is used as the crystal substrate, the buffer layer is not essential.
GaN系結晶層は、 平坦な結晶基板上に成長させてもよいが、 結晶中の転位密 度を低減させるための構造を結晶基板面に適宜導入してよい。 これに伴い、 S i 02などの異種材料からなる部分が G a N系結晶層からなる積層体中に含まれる 場合もある。 転位密度低減のための構造としては、 (い) 従来公知の選択成長法 (ELO法 ) を実施し得るように、 結晶基板の上面にマスク層 (S i o2などが用いられる ) をストライプパターンなどとして形成した構造、 (ろ) G a N系結晶がラテラ ル成長やファセット成長をし得るように、 結晶基板の上面に、 ドット状、 ストラ イブ状等の凹凸加工を施した構造などが挙げられる。 The GaN-based crystal layer may be grown on a flat crystal substrate, but a structure for reducing the dislocation density in the crystal may be appropriately introduced on the crystal substrate surface. Along with this, a portion made of a different material such as SiO 2 may be included in the laminate composed of the GaN-based crystal layer. As a structure for reducing the dislocation density, (i) a mask layer (for example, Sio 2 is used) is formed on a top surface of a crystal substrate by a stripe pattern so that a conventionally known selective growth method (ELO method) can be performed. And (3) a structure in which the top surface of the crystal substrate is processed to have irregularities such as dots or stripes so that the GaN crystal can grow laterally or facetly. .
これらの構造とバッファ層とは、 適宜組合せてよい。  These structures and the buffer layer may be appropriately combined.
転位密度低減のための構造のなかでも、 上記 (ろ) の凹凸加工を基板の上面に 施した構造は、 マスク層を用いないために、 マスク層材料の拡散による G a N系 結晶の汚染等が防止されるので好ましい。 また、 囬凸を埋め込むように G a N系 結晶を成長すると、 サファイア基板等、 G a N系材料とは異なる材料からなる結 晶基板を用いた場合には、 屈折率の異なる結晶基板と G a N系結晶との界面が光 散乱性となるので、 LEDの光取出効率が向上するという好ましい効果 (転位密 度低減とは独立した効果である。 ) が生じる。  Among the structures for reducing the dislocation density, the structure in which the above-mentioned surface roughness is applied to the upper surface of the substrate does not use a mask layer, so the diffusion of the mask layer material contaminates the GaN crystal. This is preferred because it is prevented. In addition, when a GaN crystal is grown so as to bury the convexity, when a crystal substrate made of a material different from the GaN material, such as a sapphire substrate, is used, a crystal substrate having a different refractive index is used. a Since the interface with the N-based crystal becomes light-scattering, a favorable effect of improving the light extraction efficiency of the LED (an effect independent of dislocation density reduction) is produced.
凹凸を埋め込んで成長させる G a N系結晶を、 GaN、 特にアンドープ G a N とすると、 成長面の平坦性が良好で、 かつ転位密度の低い高品質な結晶が得やす いため、 上方に成長する!)型層の品質を向上させるうえで好ましい。  If the GaN-based crystal grown by embedding the irregularities is GaN, especially undoped GaN, it grows upward because it is easy to obtain high-quality crystals with good growth surface flatness and low dislocation density. ! ) It is preferable for improving the quality of the mold layer.
結晶基板上面への凹凸加工の方法、 凹凸の配置パターン、 凹凸の断面形状、 凹 凸上での G a N系結晶の成長プロセスなどは、 特開 2000— 331947号公 報、 特開 2002— 164296号公報などを参照すればよい。 また、 凹凸とし て、 凹溝をストライプ状に形成する場合の凹溝の長手方向、 凹溝の幅、 凸状稜の 幅、 凹凸の振幅 (凹溝の深さ) などもこれらの文献や公知技術を参照してよい。  The method of processing the unevenness on the upper surface of the crystal substrate, the arrangement pattern of the unevenness, the cross-sectional shape of the unevenness, the growth process of the GaN-based crystal on the unevenness, etc. are described in JP-A-2000-331947, JP-A-2002-164296. References may be referred to. In addition, in the case of forming the grooves as stripes in the form of stripes, the longitudinal direction of the grooves, the width of the grooves, the width of the convex ridges, the amplitude of the unevenness (the depth of the grooves), and the like are also described in these documents and publicly known. You may refer to the technology.
G a N系結晶層の成長方法としては、 HVPE法、 MOVPE法、 MBE法な どが挙げられる。 高品質の結晶薄膜を実用的な成長速度で形成できる点で、 MO VPE法が特に好ましい。  GaN-based crystal layer growth methods include HVPE, MOVPE, and MBE. The MO VPE method is particularly preferable because a high-quality crystal thin film can be formed at a practical growth rate.
発光層は、 単一組成の結晶層からなる構造であっても、 パンドギャップの異な る複数の層からなる単一量子井戸 (SQW) 構造、 多重量子井戸 (MQW) 構造 等の多層膜構造であってもよい。 量子井戸構造では、 厳密には、 発光現象が生じ る層は井戸層であるが、 本発明では、 障壁層 井戸層の積層構造全体を 1つのュ ニットとして、 発光層と呼ぶ。 The light-emitting layer has a multilayer structure such as a single quantum well (SQW) structure or a multiple quantum well (MQW) structure consisting of multiple layers with different band gaps, even if it has a structure composed of a single composition crystal layer. There may be. Strictly speaking, in a quantum well structure, light emission occurs In the present invention, the entire stacked structure of the barrier layer and the well layer is referred to as a light emitting layer as one unit.
発光層に用いる G a N系結晶の組成は、 発生させるべき光の波長に応じたパン ドギヤップを有する組成を適宜選択してよいが、 P型クラッド層および n型クラ ッド層よりもパンドギャップの小さい組成とすると、 ダブルへテロ構造となるの で特に好ましい。 発光層を量子井戸構造とする場合には、 井戸層のパンドギヤッ プが p型クラッド層および n型クラッド層のパンドギヤップより小さくなるよう にしてもよい。  The composition of the GaN crystal used for the light emitting layer may be appropriately selected from compositions having a band gap according to the wavelength of the light to be generated, but the band gap is wider than that of the P-type cladding layer and the n-type cladding layer. It is particularly preferable to use a composition having a small value because a double hetero structure is obtained. When the light emitting layer has a quantum well structure, the band gap of the well layer may be smaller than the band gap of the p-type cladding layer and the n-type cladding layer.
発光層を I n G a Nで構成する場合には、 結晶の I n比率を調整することによ つて発光波長を約 3 6 0 n m ( I n比率がゼロ) から赤外波長域まで広範囲にわ たって制御することができる。 発光波長は、 発光層に n型不純物おょぴ _ または p型不純物を添加することによつても制御することができる。  When the light-emitting layer is composed of InGaN, the emission wavelength can be widened from about 360 nm (zero In-ratio) to the infrared wavelength range by adjusting the In ratio of the crystal. It can be controlled throughout. The emission wavelength can also be controlled by adding an n-type impurity or a p-type impurity to the light-emitting layer.
発光層を I n G a Nで構成すると、 I nが局所的に高濃度に分布した領域が形 成され、 該領域が発光再結合中心として働くために、 発光層が比較的高い転位密 度を有する場合であっても、 高い発光効率が得られる。  When the light-emitting layer is composed of InGaN, a region in which In is locally distributed at a high concentration is formed, and the region functions as a luminescence recombination center, so that the light-emitting layer has a relatively high dislocation density. , High luminous efficiency can be obtained.
しかし、 発光波長を 4 2 0 n m未満の紫〜紫外領域とするために I n比率を小 さくすると、 このような効果が生じ難くなるために、 発光層中の転位密度が発光 効率に大きく影響するようになる。 従って、 発光波長をこのような短波長領域と する場合には、 前述の転位密度の低減に有効な構造を、 発光層の下方の構造に採 用することが好ましい。  However, if the In ratio is reduced to reduce the emission wavelength to a range of less than 420 nm in the violet-ultraviolet region, such effects are unlikely to occur, and the dislocation density in the emission layer greatly affects luminous efficiency. I will do it. Therefore, when the emission wavelength is in such a short wavelength region, it is preferable to employ a structure effective for reducing the dislocation density described above in a structure below the light emitting layer.
n型クラッド層の材料として、 発光層の材料に対してパンドギヤップが大きい ものを用いることで、 キャリアを発光層に効果的に閉じ込めることができる。 L E Dの場合には、 使用時の電流密度が比較的小さいために、 発光層とのパンドギ ャップ差をあまり大きくする必要はなく、 特に発光層が量子井戸構造の場合には 、 その障壁層に対してパンドギャップ差がないもの (同じ組成のもの) や、 パン ドギャップがより小さいものを用いてもよい。  Carriers can be effectively confined in the light emitting layer by using a material having a larger band gap than the material of the light emitting layer as the material of the n-type cladding layer. In the case of LEDs, since the current density during use is relatively small, it is not necessary to make the difference in the gap between the light emitting layer and the light emitting layer too large. It is also possible to use one with no gap difference (of the same composition) or one with a smaller band gap.
その理由は、 p型クラッド層から発光層に注入され n型クラッド層に向かって 拡散する正孔は、 反対方向に拡散する電子と比較して移動度が小さいために、 n 型クラッド層に到達する前に高レ、確率で電子と再結合するからである。 The reason is that the injection from the p-type cladding layer into the light-emitting layer The diffusing holes recombine with the electrons with a high probability before reaching the n-type cladding layer, because the diffusing holes have a lower mobility than the electrons diffusing in the opposite direction.
従って、 LEDの発光層に I nG a Nを用いる場合の n型クラッド層の材料に は、 転位密度の低い結晶が得やすい 2元結晶の G a Nや 3元結晶の A 1 G a N、 I nG a Nを用いることが好ましく、 特に G a Nを用いることが好ましい。 A 1 GaNの場合は、 A 1比率を大きくすると結晶性が低下する傾向があるため、 A 1比率を 0. 2以下とすることが好ましく、 0. 1以下とすることがより好まし い。  Therefore, when using InGaN for the light emitting layer of the LED, the material of the n-type cladding layer includes a binary crystal G aN, a ternary crystal A 1 G a N It is preferable to use InG aN, and particularly preferable to use G aN. In the case of A 1 GaN, the crystallinity tends to decrease when the A 1 ratio is increased. Therefore, the A 1 ratio is preferably set to 0.2 or less, more preferably 0.1 or less.
本発明では、 p型クラッド層の材料として A 1 XG a nN (0≤ x≤ 1) を 用いている。 即ち、 p型クラッド層は、 2元結晶の G a Nまたは 3元結晶の A 1 GaNで構成する。 p型クラッド層の組成は、 発光層よりもパンドギャップが大 きくなるように選択することが望ましい。 具体的には、 発光層中を p型クラッド 層の方向に拡散する電子を発光層に効果的に閉じ込めるために、 発光層 (発光層 が量子井戸構造の場合には井戸層) とのパンドギャップ差が 0. 3 eV以上とな る組成とすることが好ましい。 In the present invention, it is used A 1 X G a nN as the material of the p-type cladding layer (0≤ x≤ 1). That is, the p-type cladding layer is composed of binary crystal GaN or ternary crystal A 1 GaN. It is desirable to select the composition of the p-type cladding layer so that the band gap is larger than that of the light emitting layer. Specifically, in order to effectively confine electrons diffusing in the light emitting layer in the direction of the p-type cladding layer into the light emitting layer, a band gap with the light emitting layer (or a well layer when the light emitting layer has a quantum well structure) is used. The composition is preferably such that the difference is 0.3 eV or more.
発光波長 λ (nm) と発光層 (発光層が量子井戸構造の場合には井戸層) のパ ンドギャップ Eg (e V) との関係は次式で表される。 The relationship between the emission wavelength λ (nm) and the band gap Eg (eV) of the light emitting layer (well layer when the light emitting layer has a quantum well structure) is expressed by the following equation.
XE g = 1240 (式 1) 一方、 A l xGa iXN (0≤ x≤ 1) のパンドギャップ E g A1GaNは、 次式 で表される。 XE g = 1240 (Equation 1) On the other hand, the band gap E g A1GaN of A l x G aiX N (0≤ x≤ 1) is expressed by the following equation.
E gA1GaN=6. 16 x + 3. 4 (1一 X) - χ (1— χ) (式 2) 従って、 これらの関係式を用いて好ましい A 1 XG a i— の A 1比率の最小 値を求めることができる。 E g A1GaN = 6.16 x +3.4 (1 一 X) (1— χ) (Equation 2) Therefore, using these relational expressions, the minimum A 1 ratio of A 1 X G ai— The value can be determined.
例えば、 発光波長を 400 nmとする場合、 (式 1 ) より発光層のパンドギヤ ップは 3. 1 eVであるから、 好ましい p型クラッド層のパンドギャップは 3. 4 eV以上となり、 (式 2) を用いると、 このときの好ましい: 型クラッドの A 1比率 Xは 0. 06以上となる。 なお、 A 1比率 Xを大きくすると A l„Ga iXNの結晶性が低下する傾向があるため、 Xは 0. 2以下とすることが好ましく 、 0. 1以下とすることがより好ましい。 前記のように、 結晶性が低下すると、 転位欠陥に沿つて M gの拡散が生じ易くなる。 For example, when the emission wavelength is 400 nm, since the band gap of the light emitting layer is 3.1 eV according to (Equation 1), the preferable band gap of the p-type cladding layer is 3.4 eV or more. ) Is preferable in this case: The A 1 ratio X of the mold clad is 0.06 or more. When the ratio A 1 is increased, A l „G aiSince the crystallinity of XN tends to decrease, X is preferably 0.2 or less, more preferably 0.1 or less. As described above, when the crystallinity is lowered, Mg is easily diffused along dislocation defects.
p型クラッド層の層厚に特に限定はなく、 公知技術を適宜参照して決定してよ いが、 好ましくは 10 n m〜 100 n mであり、 より好ましくは 20 η π!〜 70 n mである。  The thickness of the p-type cladding layer is not particularly limited, and may be determined by appropriately referring to a known technique, but is preferably 10 nm to 100 nm, and more preferably 20 ηπ! ~ 70 nm.
Mg高濃度層は、 薄い p型コンタクト層の直下に位置する第 2コンタクト層で あると言うこともできる。  The Mg-rich layer can be said to be the second contact layer located immediately below the thin p-type contact layer.
Mg高濃度層の材料組成は、 A l yG a iyN (0≤y≤ l) であり、 y = 0 (即ち、 G a N) でもよい。 The material composition of the Mg-rich layer is A y G aiy N (0≤y≤l), and y = 0 (that is, G a N).
本発明は、 p型クラッド層と Mg高濃度層との間に少なくともひとつのヘテロ 界面を設けることを特徴とする。  The present invention is characterized in that at least one hetero interface is provided between the p-type cladding layer and the Mg-rich layer.
従って、 p型クラッド層の直上に Mg高濃度層を配置する場合には、 p型クラ ッド層の A 1比率 Xと Mg高濃度層の A 1比率 yとが異なる値となるようにする 。 その場合、 Xと yとの差が大きい程、 Mgの拡散抑制効果が大きくなると考え られるため、 Xと yの差は好ましくは 0. 01以上であり、 より好ましくは 0. 03以上であり、 更に好ましくは 0. 05以上である。  Therefore, when the Mg-rich layer is placed directly above the p-type cladding layer, the A1 ratio X of the p-type cladding layer should be different from the A1 ratio y of the Mg-rich layer. . In that case, it is considered that the larger the difference between X and y, the greater the effect of suppressing the diffusion of Mg.Therefore, the difference between X and y is preferably 0.01 or more, more preferably 0.03 or more, More preferably, it is 0.05 or more.
Xと yの差が大き過ぎると、 格子不整合により転位密度が増加する傾向がある ため、 Xと yの差は好ましくは 0. 2以下であり、 より好ましくは 0. 15以下 であり、 更に好ましくは 0. 1以下である。  If the difference between X and y is too large, the dislocation density tends to increase due to lattice mismatch. Therefore, the difference between X and y is preferably 0.2 or less, more preferably 0.15 or less. Preferably it is 0.1 or less.
Mg高濃度層の A 1比率 yが大きくなると結晶性が低下する傾向があるため、 yは 0. 2以下とすることが好ましい。 また、 Mg高濃度層の A 1比率 yを p型 クラッド層の A 1比率 Xより小さくしてもよい。 yが小さい程、 Mg高濃度層の パンドギヤップが小さくなるため、 M g力 S p型不純物として活性化し易くなり、 キャリア濃度の増加による直列抵抗の低下が期待できる。 従って、 より好ましい yの範囲は 0≤y≤0. 05であり、 M g高濃度層を G a Nで形成すると更に好 ましい。 p型コンタクト層の材料組成は、 A l zGa i-zN (y < z≤ 1) であり、 そ の A 1比率 zは、 Mg高濃度層の A 1比率 yよりも大きければ、 上記発明の効果 で述べたとおり、 高温雰囲気における表面の窒素抜けを抑制する効果と、 ヘテロ 界面による M gの拡散抑制効果が生じる。 高温雰囲気における窒素抜けを抑制す る点からは、 0. 01≤ zとすることが好ましく、 特に 0. 03≤ zとすると好 ましい。 Since the crystallinity tends to decrease as the A 1 ratio y of the Mg-rich layer increases, y is preferably set to 0.2 or less. Further, the A 1 ratio y of the Mg-rich layer may be smaller than the A 1 ratio X of the p-type clad layer. As y becomes smaller, the band gap of the Mg-rich layer becomes smaller, so that it becomes easier to activate as a Mg-force Sp-type impurity, and a decrease in series resistance due to an increase in carrier concentration can be expected. Therefore, the more preferable range of y is 0≤y≤0.05, and it is more preferable to form the Mg-rich layer with G a N. the material composition of the p-type contact layer, A l z G ai - a z N (y <z≤ 1) , A 1 ratio z of that is larger than A 1 ratio y of Mg high concentration layer, the As described in Effect of the Invention, the effect of suppressing nitrogen release from the surface in a high-temperature atmosphere and the effect of suppressing Mg diffusion by the hetero interface are generated. From the viewpoint of suppressing nitrogen elimination in a high-temperature atmosphere, 0.01 ≤ z is preferable, and particularly preferably 0.03 ≤ z.
一方、 zが大きいと結晶性が低下する傾向がある他、 Mgの p型不純物として の活性化が起こり難くなるため、 この観点からは、 zは好ましくは 0. 2以下で あり、 より好ましくは 0. 1以下、 更に好ましくは 0. 05以下である。  On the other hand, when z is large, crystallinity tends to decrease, and activation of Mg as a p-type impurity is unlikely to occur.From this viewpoint, z is preferably 0.2 or less, and more preferably z. 0.1 or less, more preferably 0.05 or less.
p型コンタクト層の Mg濃度 aは、 電極と良好なォーミック接触が形成される 程度に高い濃度とすればよく、 公知技術を参照することもできる。 具体的には、 5 X 1 019 c m一3≤ a、 特に 1 X 102° cm— 3≤ aとすれば、 p型のォ一ミッ ク電極として知られている種々の電極との間で、 良好なォーミック接触が形成さ れる。 The Mg concentration a of the p-type contact layer may be set to a concentration high enough to form a good ohmic contact with the electrode, and a known technique can be referred to. Specifically, if 5 x 10 19 cm- 3 ≤ a, especially 1 x 10 2 ° cm- 3 ≤ a, the distance between various electrodes known as p-type common electrodes As a result, a good ohmic contact is formed.
一方、 Mgに起因する光吸収の抑制効果をより高めるためには、 Mg濃度 aは 、 5 X 1019 cm— 3〜 1 X 1021 c m— 3が好ましい範囲であり、 より好ましく は 5 X 1019 cm— 3〜5 X 1 02。 cm— 3、 特に好ましくは 5 X 1 019 cm一3 〜1 X 1020 cm一3である。 On the other hand, in order to further enhance the effect of suppressing light absorption caused by Mg, the Mg concentration a is preferably 5 × 10 19 cm— 3 to 1 × 10 21 cm— 3 , more preferably 5 × 10 21 cm— 3. 19 cm— 3 to 5 X 10 2 . cm- 3, and particularly preferably 5 X 1 0 19 cm one 3 to 1 X 10 20 cm one 3.
p型コンタクト層の層厚は 0. 5 nm以上あれば、 恐らくは接触抵抗の低下に より、 Mg高濃度層に直接 p側電極を形成する場合よりも、 発光素子の動作電圧 が低下する。  If the thickness of the p-type contact layer is 0.5 nm or more, the operating voltage of the light-emitting device will be lower than in the case where the p-side electrode is formed directly on the Mg-rich layer, probably due to the reduction in contact resistance.
一方で、 p型コンタクト層は Mgが高い濃度で添カ卩されるので、 Mgに起因す る光吸収は層厚を薄くする程抑制される。  On the other hand, since the p-type contact layer is added with a high concentration of Mg, light absorption due to Mg is suppressed as the layer thickness is reduced.
従って、 p型コンタクト層の層厚は、 好ましくは 0. 5 nm〜10 nmであり 、 より好ましくは 0. 5 11111〜5 11111でぁる。  Therefore, the layer thickness of the p-type contact layer is preferably from 0.5 nm to 10 nm, more preferably from 0.5 11111 to 5 11111.
p型層を MO VP E法により形成する場合、 Mgの p型不純物としての活性化 を阻害する水素が結晶成長時に p型層中に多量に入ると、 p型層の直列抵抗の上 昇や、 P型コンタクト層と p側電極との接触抵抗の増加によると推定される素子 の動作電圧の上昇が生じる。 あるいは、 Mgを活性化させるためのアニーリング 等の処理を、 より厳しい条件で行うことが必要となり、 該処理に起因する素子の 劣化が生じる可能性がある。 When the p-type layer is formed by the MOVP E method, if a large amount of hydrogen that inhibits activation of Mg as a p-type impurity enters the p-type layer during crystal growth, the series resistance of the p-type layer increases. And the operating voltage of the device is estimated to increase due to an increase in the contact resistance between the P- type contact layer and the p-side electrode. Alternatively, it is necessary to perform a process such as annealing for activating Mg under more severe conditions, and there is a possibility that the device may be deteriorated due to the process.
そこで、 p型層の成長時に反応容器中に供給するガスのうち、 有機金属化合物 原料のキヤリァガス以外は窒素等の不活性ガスとすることが好ましいが、 このよ うな成長時ガス条件を用いると結晶の成長速度が著しく低下する。  Therefore, it is preferable to use an inert gas such as nitrogen among the gases supplied into the reaction vessel during the growth of the p-type layer, except for the carrier gas used as the organometallic compound raw material. The growth rate of the material is significantly reduced.
従って、 p型層の層厚が厚いと成長に要する時間が長くなり、 その結果、 結晶 層が高温に曝される時間が長くなるため、 添加した Mgの拡散や、 耐熱性の低い I nGaN層の劣化が促進され、 素子特性が低下する傾向が生じる。 Mg高濃度 層や ρ型コンタクト層の厚さを薄くすることは、 このような素子特性の低下を抑 制するうえでも好ましい。  Therefore, if the thickness of the p-type layer is large, the time required for the growth is long, and as a result, the time required for the crystal layer to be exposed to high temperatures is prolonged. Degradation is promoted, and the device characteristics tend to deteriorate. Reducing the thickness of the Mg-rich layer or the ρ-type contact layer is also preferable in suppressing such a decrease in device characteristics.
Mg高濃度層の Mg濃度 bは、 2 X 1019 c m— 3< bであればよく、 特に、 p型コンタクト層と接する部分は、 Mg濃度が 5 X 1019 cm— 3以上とするこ とが好ましい。 The Mg concentration b of the Mg-rich layer should be 2 × 10 19 cm— 3 <b. In particular, the Mg concentration at the part in contact with the p-type contact layer should be 5 × 10 19 cm— 3 or more. Is preferred.
p型コンタクト層の Mg濃度 aに対して、 (0. 5 X a) ≤b≤ 1 X 1021 cm一3とすることは、 本発明の目的を達成するための好ましい態様の 1つであ る。 against Mg concentration a of the p-type contact layer, (0. 5 X a) be ≤b≤ 1 X 10 21 cm one 3, one preferred embodiment for achieving the object of the present invention Tsudea You.
M gに起因する光吸収を抑制するという点からは、 M g高濃度層の M g濃度 b を、 p型コンタクト層よりも低濃度とすることが好ましい。 Mg高濃度層は、 p 型コンタクト層よりも A 1比率の小さな G a N系結晶、 すなわち、 パンドギヤッ プのより小さな G a N系結晶で形成されることから、 Mg高濃度層と p型コンタ タト層に同濃度の Mgをドープした場合、 Mg高濃度層における光吸収は、 p型 コンタクト層におけるそれよりも大きくなるからである。  From the viewpoint of suppressing light absorption due to Mg, it is preferable that the Mg concentration b of the Mg high concentration layer be lower than that of the p-type contact layer. Since the Mg-rich layer is formed of a GaN-based crystal with a smaller A1 ratio than the p-type contact layer, that is, a GaN-based crystal with a smaller bandgap, the Mg-rich layer and the p-type If the same layer is doped with the same concentration of Mg, the light absorption in the Mg-rich layer becomes larger than that in the p-type contact layer.
Mg濃度 bが 1 X 1021 cm一3より高くなると、 Mg高濃度層の結晶性が低 下する傾向がある。 When Mg concentration b is higher than 1 X 10 21 cm one 3, there is a tendency that the crystallinity of the Mg-rich layer is low down.
Mg高濃度層の層厚は、 5 nm~20 nmとする。 Mg高濃度層が、 5 X 10 19 c m— 3以上の濃度で M gを含有する部分を含む場合には、 M gによる光吸収 を抑制するという点から、 Mg高濃度層の、 p型コンタクト層と接する側のみを 、 Mg濃度 5 X 1 019 cm一3以上とすることが好ましい。 このようにしたとき 、 p型コンタクト層よりも下側の p型層において、 Mg濃度が 5 X 1 019 c m一 3以上である部分の厚さが、 20 nm以下となる。 この厚さのより好ましい範囲 は 5 nrr!〜 15 nmであり、 更に好ましい範囲は 5 nrr!〜 10 nmである。 The layer thickness of the high Mg concentration layer is 5 nm to 20 nm. 5x10 Mg high concentration layer If a part containing Mg at a concentration of 19 cm- 3 or more is included, only the side of the Mg-rich layer that is in contact with the p-type contact layer has the Mg concentration, since light absorption by Mg is suppressed. it is preferable that the 5 X 1 0 19 cm one 3 or more. When this is done, the p-type layer of the lower than the p-type contact layer, the thickness of the portion is Mg concentration 5 X 1 0 19 cm one 3 or more, and 20 nm or less. A more preferred range for this thickness is 5 nrr! 1515 nm, more preferably 5 nrr! ~ 10 nm.
Mg濃度および層厚を上記のように特定した Mg高濃度層を設けたうえで、 p 型層中において Mg高濃度層と発光層との間にある p型伝導層 (例えば、 図 1の 例では p型クラッド層 3 1、 Mg低濃度層 32など) の M g濃度 cを、 1 X 10 19 c'm一3≤ cとすることにより、 10 nm以下の厚さに形成した p型コンタク ト層の表層からの Mgの拡散が抑制され、 素子の動作電圧の上昇が抑制される。 また、 (0. 2 Xb) ≤ cとすることは、 本発明の目的を達成するための好ま しい態様の 1つである。 The Mg concentration and thickness in terms of providing the M g high concentration layer specified as described above, p-type conductive layer between the Mg-enriched layer and the light-emitting layer in the p-type layer (e.g., in Figure 1 In the example, the Mg concentration c of the p-type cladding layer 31 and the Mg low concentration layer 32) is set to 1 X 10 19 c'm 1-3 ≤ c, so that the p-type The diffusion of Mg from the surface of the contact layer is suppressed, and the rise in operating voltage of the device is suppressed. In addition, setting (0.2 Xb) ≤ c is one of preferred embodiments for achieving the object of the present invention.
また、 c <bとするとともに、 p型コンタクト層を除く p型層の Mg濃度の平 均値を 5 X 1019 cm一3未満に設定とすることで、 素子の動作電圧の上昇を抑 制しながら、 p型層全体としての、 Mgに起因する光吸収を抑制することができ る。 Furthermore, with the c <b, by a set of average values of the Mg concentration in the p-type layer except for the p-type contact layer to less than 5 X 10 19 cm one 3, suppression of increase in operating voltage of the device However, light absorption due to Mg in the entire p-type layer can be suppressed.
Mg高濃度層と、 その直下の p型伝導層との間では、 Mg濃度を段階的に変化 させることが好ましい。 その場合、 両層の境界部分を挟んで、 l X 1019 cm一 3以上、 更には、 3 X 1019 cm一3以上の Mg濃度差を設けることができる。 な お、 c <bという条件により、 このような Mg濃度の段差の形成が必須となるも のではなく、 例えば、 p型クラッド層から Mg高濃度層にかけて、 Mg濃度が直 線的に上昇する態様なども許容される。 It is preferable to change the Mg concentration stepwise between the high Mg concentration layer and the p-type conductive layer immediately below. In this case, across the boundary between both layers, l X 10 19 cm one 3 or more, further can be provided with 3 X 10 19 cm one 3 or more Mg concentration difference. Contact name by the condition that c <b, formed in the step of such a Mg concentration is also essential for a not, for example, a p-type cladding layer toward M g high concentration layer, Mg concentration linearity to increase Is also acceptable.
また、 Mg濃度 cには、 5 X 1019 cm一3という上限値を設けることが、 よ り好ましく、 その理由は、 Mgを添加した p型伝導層では、 Mg濃度を 5 X 10 19 cm一3より高濃度 (p型コンタクト層にとって好ましい Mg濃度である。 ) とすると、 Mgに起因する光吸収が特に問題となってくるからである。 また、 p型層に含まれる Mgの総量をより少なくするために、 Mg高濃度層と 発光層との間の P型層には、 Mg濃度が 2 X 1019 c m— 3未満の部分が含まれ るようにすることが好ましく、 更に、 当該!)型層における Mg濃度の平均値が 2 X 1019 cm一3未満となるようにすることがより好ましい。 Further, the Mg concentration c, it is preferably Ri yo an upper limit value of 5 X 10 19 cm one 3, because, in the p-type conductive layer doped with Mg, the Mg concentration 5 X 10 19 cm one If the concentration is higher than 3 (preferable Mg concentration for the p-type contact layer), light absorption caused by Mg becomes a particular problem. Also, in order to reduce the total amount of Mg contained in the p-type layer, the P-type layer between the Mg-rich layer and the light-emitting layer contains a portion where the Mg concentration is less than 2 × 10 19 cm- 3. preferably to so that Re, further more preferably an average value of the Mg concentration in the!) type layer is made to be less than 2 X 10 19 cm one 3.
p型コンタクト層、 Mg高濃度層、 p型クラッド層は、 連続した 3層であって もよいが、 Mg高濃度層と p型クラッド層との間に、 別の層として、 Mg高濃度 層よりも低い Mg濃度を有する Mg低濃度層をさらに設けてもよい。  The p-type contact layer, the Mg-rich layer, and the p-type cladding layer may be continuous three layers, but between the Mg-rich layer and the p-type cladding layer, another Mg-rich layer is provided. A low Mg concentration layer having a lower Mg concentration may be further provided.
Mg低濃度層は、 p型層全体の層厚が 100 nm以上、 好ましくは 100 nm 〜30 O nm、 より好ましくは 100 nm〜200 n mとなるように設けること が好ましい。 p型層全体の層厚を 100 nmよりも大きくすることが好ましいの は、 n型層とのパランスが良くなるためと、 結晶成長後の冷却時、 p型化ァ二一 リング処理時、 電極ァニーリング処理時等における発光層の劣化が抑制されるた めである。 p型層全体の層厚が 30 O nmより大きくなると、 これらの効果が飽 和し、 層厚をそれ以上大きくすると、 Mgによる光吸収の問題が大きくなる他、 成長時間が長くなることによる製造効率の低下や材料の浪費の問題が生じる。 ま た、 p型層の成長時間が余りに長くなると、 成長時の高温による素子の劣化の問 題も生じる。  The Mg low concentration layer is preferably provided so that the entire p-type layer has a thickness of 100 nm or more, preferably 100 nm to 30 O nm, and more preferably 100 nm to 200 nm. It is preferable that the total thickness of the p-type layer is larger than 100 nm because the balance with the n-type layer is improved, during cooling after crystal growth, during p-type annealing, and during electrode formation. This is because deterioration of the light emitting layer at the time of annealing treatment or the like is suppressed. If the total thickness of the p-type layer is larger than 30 O nm, these effects are saturated, and if the layer thickness is further increased, the problem of light absorption by Mg increases, and the manufacturing time increases. Problems such as reduced efficiency and wasted material occur. Also, if the growth time of the p-type layer is too long, there is a problem that the device is deteriorated due to the high temperature during the growth.
Mg低濃度層は、 Mg高濃度層および p型クラッド層の両方またはいずれかと の界面がヘテロ界面となるように、 その組成を決定すればよい。  The composition of the low Mg concentration layer may be determined so that the interface with the high Mg concentration layer and / or the p-type cladding layer is a hetero interface.
Mg低濃度層には、 結晶性の点からは、 2元結晶の GaN、 または 3元結晶の A 1 GaNを用いることが好ましい。 A 1 G a Nを用いる場合には、 A 1比率が 高いと結晶性が低下する傾向があることから、 A 1比率を 0. 2以下、 特に 0. 1以下とすることが好ましい。  From the viewpoint of crystallinity, it is preferable to use binary GaN or ternary A 1 GaN for the low Mg concentration layer. When A 1 G aN is used, since the crystallinity tends to decrease when the A 1 ratio is high, the A 1 ratio is preferably 0.2 or less, particularly preferably 0.1 or less.
M g低濃度層は、 直上の M g高濃度層と同じ結晶組成の材料 A l yGa i_yN (0≤y≤ 1) を用いてもよい。 Mg低濃度層を、 直上の Mg高濃度層と同じ結 晶組成としたり、 または、 超格子構造とすると、 直上の Mg高濃度層や、 ひいて はその更に上の P型コンタクト層の結晶性を向上させる効果が期待できるために 、 Mg高濃度層や p型コンタクト層の抵抗を低下させたり、 転位欠陥に沿って起 こる M gの拡散を抑制するうえで好ましい。 M g low concentration layer directly above the M g high concentration layer material having the same crystal composition as A l y G ai _ y N a (0≤y≤ 1) may be used. If the low Mg concentration layer has the same crystal composition as the Mg high concentration layer directly above, or has a superlattice structure, the crystallinity of the Mg high concentration layer immediately above and, by extension, the P-type contact layer above it Can be expected to improve This is preferable from the viewpoint of lowering the resistance of the Mg-rich layer or the p-type contact layer and suppressing the diffusion of Mg that occurs along dislocation defects.
Mg高濃度層と p型クラッド層との間には、 素子構造上、 必要に応じてさらな る層が挿入されてもよい。 例えば、 面発光レーザ (発振方向 '出射方向と積層方 向とがー致するレーザ) を構成する場合の、 共振器のうちの一方の反射層として のプラッグ反射層、 端面発光レーザ (発振方向 ·出射方向と積層方向とが直交す るレーザ) を構成する場合の光閉じ込め層などが挙げられる。  An additional layer may be inserted between the Mg-rich layer and the p-type cladding layer, if necessary, in view of the element structure. For example, in the case of forming a surface emitting laser (a laser in which the emission direction ′ matches the emission direction and the stacking direction), a plug reflection layer as one reflection layer of the resonator, and an edge emission laser (an oscillation direction · A light confinement layer in the case of forming a laser whose emission direction is perpendicular to the lamination direction).
上記ブラッグ反射層や光閉じ込め層は、 独立した層であってもよいが、 Mg高 濃度層や M g低濃度層などと一部または全部を兼用した層であってもよい。  The Bragg reflection layer or the light confinement layer may be an independent layer, or may be a layer partially or entirely serving as a high Mg concentration layer or a low Mg concentration layer.
これらの層の材料についても、 結晶性の点からは、 2元結晶の GaN、 あるい は 3元結晶の A 1 G a Nを用いることが好ましく、 A 1 G a Nを用いる場合の A 1 G a N結晶の A 1比率は 0. 2以下、 特に 0. 1以下とすることが好ましい。 また、 p型コンタクト層、 Mg高濃度層、 Mg低濃度層、 p型クラッド層など の層のそれぞれは、 結晶組成おょぴ Mg濃度が本発明の規定する所定範囲内に入 る限りで、 多層膜構造 (超格子構造を含む) としてもよい。  From the viewpoint of crystallinity, it is preferable to use a binary crystal GaN or a ternary crystal A 1 GaN, and to use A 1 GaN when using A 1 GaN. The A 1 ratio of the GaN crystal is preferably 0.2 or less, particularly preferably 0.1 or less. Further, each of the layers such as the p-type contact layer, the Mg-rich layer, the Mg-poor layer, and the p-type clad layer is provided that the crystal composition and the Mg concentration fall within a predetermined range defined by the present invention. A multilayer structure (including a superlattice structure) may be used.
実施例  Example
以下に、 p型コンタクト層の好ましい厚さ、 Mg高濃度層の Mg濃度を特定す るための実験を含めて、 本発明の G a N系発光素子の実例としての G a N系 LE Dの具体的な構成を示す。  Hereinafter, the GaN-based LED as an actual example of the GaN-based light emitting device of the present invention, including an experiment for specifying the preferable thickness of the p-type contact layer and the Mg concentration of the Mg-rich layer, will be described. A specific configuration will be described.
以下の各実験に示す Mgドープ層の Mg濃度や膜厚は、 いずれも設計値であつ て、 実際に得られた結果物の測定値には、 これに製造誤差などが加わる場合があ る。  The Mg concentration and film thickness of the Mg-doped layer shown in the following experiments are all design values, and the measured values of the actually obtained product may include manufacturing errors.
各実験における特定の Mg濃度 (設計値) を有する Mgドープ層の成長は、 次 の手順にて行った。  The growth of the Mg-doped layer having a specific Mg concentration (design value) in each experiment was performed by the following procedure.
(ィ) 成長しょうとする,袓成の GaN系結晶層を MOVPE法により成長する際 の、 Mg原料 (ビスシクロペンタジェニルマグネシウム) の供給量と 3族原料 ( トリメチルガリウム、 トリメチルアルミニウム) の供給量との比率 〔Mg,3族 比〕 と、 実際に得られる結晶中の Mg濃度との関係を、 予め調べておく。 そのた めに成長させる結晶層の膜厚は約 300 nmとし、 Mg濃度は S IMS (二次ィ オン質量分析: Secondary Ion Mass Spectroscopy) により測定する 0 (A) Supply of Mg raw material (biscyclopentagenenylmagnesium) and supply of Group 3 raw materials (trimethylgallium, trimethylaluminum) when growing GaN-based crystal layer to be grown by MOVPE method Ratio to quantity (Mg, 3 group The relationship between the ratio] and the Mg concentration in the crystal actually obtained is examined in advance. The film thickness of the crystal layer grown on the other Me was about 300 nm, Mg concentration S IMS (Secondary I on mass spectrometry: Secondary Ion Mass Spectroscopy) measured by 0
(口) 上記関係から、 Mg濃度が所定の設計値となる 〔Mgノ 3族比〕 を求め、 その 〔Mg/ 3族比〕 にて Mg原料と 3族原料とを供給しながら、 MOVPE法 により G a N系結晶層を成長する。 From (mouth) above relationship, Mg concentration of predetermined design value sought [Mg Roh group III ratio], while supplying the Mg raw material and group III material at its [M g / group III ratio], MOVPE A GaN-based crystal layer is grown by the method.
各層の膜厚は、 当該組成の膜を単独成長したときの成長速度から、 所定の厚み に成長するのに必要な成長時間を求め、 当該成長時間だけ成長することにより、 制御した。  The film thickness of each layer was controlled by determining the growth time required to grow the film to a predetermined thickness from the growth rate when the film having the composition was grown alone, and growing the film for the growth time.
各実験で作製した A 1 G a N層や G a N層の膜厚は、 S IMSにより G aや A 1の深さ方向分布を測定することにより、 概ね設計値通りとなっていることを確 認した。 特に、 膜厚が小さい場合には、 厚さ方向の分解能がより高い分析方法で ある、 XP S (光電子分光分析: X- ray Photoelectron Spectroscopy) も併用し て確認した。  The thickness of the A 1 G aN layer and G a N layer fabricated in each experiment was measured to be approximately the designed values by measuring the distribution of G a and A 1 in the depth direction by using SIMS. confirmed. Especially when the film thickness was small, XPS (X-ray Photoelectron Spectroscopy), which is an analysis method with higher resolution in the thickness direction, was also confirmed.
また、 各層の Mg濃度も、 概ね設計値通りとなっていることが、 S IMSによ り確認できた。 特に、 結晶層の表面付近の S I MS測定を行う際には、 エツチン グレートを低くすることにより、 深さ方向の分解能を高くした。  In addition, it was confirmed by SIMS that the Mg concentration in each layer was almost as designed. In particular, when performing SIMS measurement near the surface of the crystal layer, the resolution in the depth direction was increased by lowering the etching rate.
なお、 p型コンタクト層や Mg高濃度層の膜厚が小さいときには、 隣接する層 への Mgの拡散流出、 あるいは、 隣接する層からの Mgの拡散流入の影響が大き くなり、 例えば、 Mg濃度に傾斜が生じることがあった。 また、 Mg高濃度層の 膜厚が、 隣接する Mg低濃度層への Mgの流出により、 設計値よりも小さくなる 場合があった。  When the thickness of the p-type contact layer or the high-concentration Mg layer is small, the influence of the diffusion and outflow of Mg into the adjacent layer or the inflow of Mg from the adjacent layer becomes large. Was sometimes inclined. In some cases, the thickness of the Mg-rich layer was smaller than the design value due to the outflow of Mg to the adjacent Mg-poor layer.
実験 1 Experiment 1
本実験では、 図 1に示す構造の G a N系 LEDを製作した。 G a N系結晶層の 成長には MO VP E法を用いた。  In this experiment, a GaN LED having the structure shown in Fig. 1 was fabricated. The MOVP E method was used to grow the GaN-based crystal layer.
p型コンタクト層 (A l GaN) 44の好ましい厚さを特定するために、 該コ ンタクト層の層厚を Aとし、 その直下の p型 GaN層 (Mg低濃度層 42と、 M g高濃度層 43とを 1層としたもの) の層厚を Bとし、 両層厚 A、 Bを変化させ て、 発光特性を評価した。 In order to specify the preferred thickness of the p-type contact layer (AlGaN) 44, the thickness of the contact layer is assumed to be A, and the p-type GaN layer (Mg low concentration layer 42 and M The light emission characteristics were evaluated by setting the layer thickness of the high-concentration layer 43 as one layer) as B, and changing the thicknesses A and B of both layers.
本実験で製作した G a N系 L E Dの各層の構成を、 上層側から下層側へ順に示 す。  The configuration of each layer of the GaN-based LED fabricated in this experiment is shown in order from the upper layer to the lower layer.
〔p型コンタク ト層〕  (P-type contact layer)
材料; A 1。. 。3G a。. 97N、 Mg濃度; 1 X 102° (cm—3) 、 層厚; A (nm) 。 Materials; A1. . 3 G a. . 97 N, Mg concentration; 1 X 10 2 ° (cm- 3), the layer thickness; A (nm).
〔p型 G a N層〕  (P-type G a N layer)
p型 GaN層は、 Mg高濃度層、 Mg低濃度層とに分かれるべき層であるが、 ここでは、 実験のため、 Mg濃度を層全体にわたって 5 X 1019 (cm-3) と した。 層厚は B (nm) である。 The p-type GaN layer should be divided into a high-concentration Mg layer and a low-concentration Mg layer. Here, for the purpose of experiments, the Mg concentration was set to 5 × 10 19 (cm −3 ) over the entire layer. The layer thickness is B (nm).
〔P型クラッド層〕  (P-type cladding layer)
材料; A 1。. 。8G a。. 92N、 Mg濃度; 2 X 1019 (cm—3) 、 層厚; 5 0 (nm) 。 Materials; A1. . 8 G a. 92 N, Mg concentration; 2 × 10 19 (cm- 3 ), layer thickness: 50 (nm).
〔発光層〕  (Light-emitting layer)
G a N障壁層と I n G a N井戸層 (発光波長 405 n m) を 6周期積層した M QW構造とした。 最上層は GaN障壁層とした。 層厚は 100 (nm) である。 〔n型クラッド層〕  An MQW structure is used in which a GaN barrier layer and an In GaN well layer (emission wavelength: 405 nm) are stacked for six periods. The top layer was a GaN barrier layer. The layer thickness is 100 (nm). (N-type cladding layer)
材料; GaN、 n型コンタクト層と兼用、 層厚は 4 ( m) である。  Material: GaN, also used as n-type contact layer, layer thickness is 4 (m).
〔アンドープ GaN層〕  [Undoped GaN layer]
材料; GaN。 層厚は、 基板凹凸の凸部の上面より上の部分の厚さとして、 2 μ m) である。  Material; GaN. The layer thickness is 2 μm), which is the thickness of the part above the top surface of the projection of the substrate.
〔結晶基板、 バッファ層〕  [Crystal substrate, buffer layer]
C面サファイア基板の表面に、 ストライプ状パターンにあて、 断面矩形波状の 凹凸加工を施した。 該凹凸の、 凸部上面、 凹部底面に、 GaNバッファ層を成長 させた。  The surface of the C-plane sapphire substrate was subjected to a stripe-shaped pattern and processed to have a rectangular wave-shaped cross section. A GaN buffer layer was grown on the top surface of the projection and the bottom surface of the depression in the irregularities.
上記構成の G a N系 LEDに関して、 p型コンタクト層の層厚 Aと、 p型 Ga N層の層厚 Bとを、 常に A + B= 1 O Onmとなるように種々に変化させた素子 サンプルを製作し、 通電電流 20 (mA) にてそれぞれに発光出力を測定したと ころ、 p型コンタクト層の層厚 Aが 10 nmを越えると出力低下が顕著になるこ とがわかった。 これは、 Mgが高濃度 (p型クラッド層の 5倍、 ρ型 GaN層の 2倍) で添カ卩された p型コンタクト層による光吸収の影響が大きくなるためであ ると考えられた。 Regarding the GaN-based LED having the above configuration, the layer thickness A of the p-type contact layer and the p-type Ga Device samples were manufactured in which the layer thickness B of the N layer was changed variously so that A + B = 1 O Onm at all times, and the emission output was measured at a current of 20 (mA). It was found that when the layer thickness A of the p-type contact layer exceeded 10 nm, the output decreased significantly. This is thought to be because the effect of light absorption by the p-type contact layer added with a high concentration of Mg (5 times the p-type cladding layer and 2 times the ρ-type GaN layer) increases. .
このことから、 p型コンタクト層の層厚の上限は 10 nmとすべきであること がわかった。  From this, it was found that the upper limit of the thickness of the p-type contact layer should be 10 nm.
p型コンタクト層の層厚を 10 nmとしたときの V f (順方向電流 2 OmAを 流すのに必要な順方向電圧) は、 3. 5 Vであった。  The Vf (forward voltage required to pass a forward current of 2 OmA) when the thickness of the p-type contact layer was 10 nm was 3.5 V.
実験 2 Experiment 2
上記実験 1の結果から、 p型コンタクト層の厚さを 1 O nmに固定した。 直下の p型 G a N層については、 層厚を 9 Onmとし、 Mgによる光吸収を更 に抑えるために Mg濃度を 1 X 1019 (cm"3) とした。 From the results of Experiment 1, the thickness of the p-type contact layer was fixed at 1 O nm. For the p-type GaN layer immediately below, the layer thickness was 9 Onm, and the Mg concentration was 1 × 10 19 (cm " 3 ) to further suppress light absorption by Mg.
これらの変更以外は実験 1と同様の仕様にて、 G a N系 LEDを製作し、 発光 出力を測定したところ、 実験 1の結果と比べて、 発光出力は 40%程度向上した 1S £が約0. 3 V上昇した。  Except for these changes, a GaN LED was manufactured with the same specifications as in Experiment 1, and the luminescence output was measured.The luminescence output was improved by about 40% compared to the result of Experiment 1, and 1S £ was about 0.3 V rose.
本発明者等の検討によれば、 この原因は、 p型コンタクト層から直下の p型 G a N層へと Mgが拡散流出し、 これによつて p型コンタクト層の表層の Mg濃度 が低下したことで、 p側電極との接触抵抗が増加したからであると推定される。 p型コンタクト層は、 1 O nmと薄いために、 この層に保持される Mgの総量は 少なく、 Mgの流出の影響が顕著に現われたと考えられる。  According to the studies by the present inventors, the cause is that Mg diffuses and flows out from the p-type contact layer to the p-type GaN layer immediately below, thereby lowering the Mg concentration in the surface layer of the p-type contact layer. This is presumed to be because the contact resistance with the p-side electrode increased. Since the p-type contact layer is as thin as 1 O nm, the total amount of Mg retained in this layer is small, and it is probable that the effect of the outflow of Mg appears remarkably.
実験 3 Experiment 3
上記実験 2の結果を改善し、 発光出力を高く保ったまま、 V f を上昇させない ことを目的として、 p型 G a N層への Mgの添力卩の態様を変化させた。 具体的に は、 p型 GaN層の最下部 (p型クラッド層と接する領域) の Mg濃度を 1 X 1 019 cm 3とし、 最上部 (p型コンタクト層と接する領域) の Mg濃度を 5 X 1019 cm一3とし、 Mg濃度が層下部から層上部に向かって略連続的に上昇す るように変化させた (傾斜ドープ) 。 In order to improve the results of Experiment 2 above, and to keep V f from rising while keeping the light emission output high, the aspect of the Mg addition to the p-type GaN layer was changed. Specifically, the Mg concentration at the bottom of the p-type GaN layer (the region in contact with the p-type cladding layer) is 1 × 10 19 cm 3, and the Mg concentration at the top (the region in contact with the p-type contact layer) is 5 × 5. X And 10 19 cm one 3, Mg concentration was varied so that to increase substantially continuously towards the layer from a lower portion to an upper portion layer (gradient doped).
この変更以外は実験 1と同様の仕様にて、 G a N系 LEDを製作し、 発光出力 を測定した結果、 V f と発光出力は、 ともに実験 1と同レベルであった。  Except for this change, a GaN LED was manufactured with the same specifications as in Experiment 1, and the luminescence output was measured. As a result, both V f and luminescence output were at the same level as in Experiment 1.
本発明者等の検討によれば、 Vf が実験 1と同レベルに下がったことから、 p 型コンタクト層からの Mg拡散流出の抑制は達成されたと考えられる。 一方、 発 光出力が実験 1と同レベルに下がったことから、 本実験 3の Mg傾斜ドープでは 、 Mgに起因する光吸収の抑制が十分に起こらない可能性が示唆された。  According to the study by the present inventors, Vf decreased to the same level as in Experiment 1, and it is considered that the suppression of the diffusion outflow of Mg from the p-type contact layer was achieved. On the other hand, the light emission output dropped to the same level as in Experiment 1, suggesting that the Mg-gradient doping in Experiment 3 may not sufficiently suppress the light absorption caused by Mg.
実験 4 Experiment 4
上記実験 2の結果を改善し、 Vf を低く保ったまま、 発光出力を上昇させるこ とを目的として、 p型 GaN層 (層厚 90nm) のうち、 p型コンタクト層との 界面から厚さ X (nm) までの部分を Mg高濃度層.(Mg濃度 5 X 1019 cm一 3) とし、 残る厚さ Y (nm) (Y=9 Ο-Χ) の部分を Mg低濃度層 (Mg濃 度 1 X 1019 cm—3) として、 Xと Yを種々に変化させた。 In order to improve the results of Experiment 2 above and increase the light emission output while keeping Vf low, the thickness X of the p-type GaN layer (layer thickness 90 nm) from the interface with the p-type contact layer was increased. (nm) a portion up Mg high concentration layer. (Mg concentration 5 X 10 19 cm one 3), and the remaining thickness Y (nm) (Y = 9 Ο-Χ) Mg low concentration layer portion (Mg conc. X and Y were variously changed at a degree of 1 × 10 19 cm— 3 ).
この変更以外は実験 2と同様の仕様にて、 G a N系 LEDを製作し、 V f 、 発 光出力を測定した。  Except for this change, a GaN LED was manufactured with the same specifications as in Experiment 2, and V f and emission output were measured.
測定の結果を図 2のグラフに示す。 同図のグラフは、 横軸を Mg高濃度層の層 厚 Xとして、 X=0、 5、 10、 20、 90 (nm) のときの V f の値を黒丸で プロットし、 発光出力の値を白四角でプロットしたものである。  The results of the measurement are shown in the graph of FIG. In the graph in this figure, the horizontal axis is the layer thickness X of the Mg-rich layer, and the values of V f at X = 0, 5, 10, 20, 90 (nm) are plotted with black circles, and the emission output value Is plotted with a white square.
同図のグラフから明らかなとおり、 V f については、 5≤X≤90 (nm) の 範囲で、 上記実験 1と同様 3. 5Vであり、 好ましい値であった。 このことから 、 Mg高濃度層の層厚を 5 nm確保したとき、 V f の値を低く保ち得ることがわ かった。 なお、 本実験 4における X=0 (nm) の場合は、 上記実験 2に相当す る。  As is evident from the graph of the figure, Vf was 3.5 V in the range of 5≤X≤90 (nm), which was the same as Experiment 1 described above, and was a preferable value. This indicates that the value of V f can be kept low when the thickness of the Mg-rich layer is 5 nm. Note that the case of X = 0 (nm) in Experiment 4 corresponds to Experiment 2 above.
また、 発光出力については、 X≤ 20 nmとしたとき、 顕著な向上が観察され た。  In addition, a remarkable improvement in luminescence output was observed when X≤20 nm.
本実験 4から、 V f を低く保ち、 かつ、 発光出力を更に向上させる点から、 M g高濃度層の層厚として、 5〜20 nmが好ましいことがわかる。 From Experiment 4, from the viewpoint of keeping V f low and further improving the light emission output, M It is understood that the thickness of the high concentration layer is preferably 5 to 20 nm.
実験 4において、 Mg低濃度層の層厚 Yを 0 nm〜85 nmという広い範囲で 変化させても V f の変化が見られなかったことは、 〔p型コンタクト層の直下に 、 Mg濃度が 5 X 1019 cm 3である Mg高濃度層を設け、 その下方の p型層 は、 Mg濃度を少なくとも 1 X 1019 c m— 3とする〕 という構成によって、 p 型コンタクト層表面からの Mgの拡散流出を V f に影響しないレベルに抑え得る ことを示している。 In Experiment 4, there was no change in Vf even when the thickness Y of the Mg low concentration layer was varied over a wide range from 0 nm to 85 nm. A high-concentration Mg layer of 5 × 10 19 cm 3 is provided, and the p-type layer below it has a Mg concentration of at least 1 × 10 19 cm− 3 . This indicates that the diffusion runoff can be suppressed to a level that does not affect V f.
また、 p型コンタクト層の Mg濃度の設計値をより高濃度とした場合には、 M g濃度不足の問題は生じないので、 同様に低い V f が得られる。 また、 この設計 値をより低濃度とした場合には、 型コンタクト層と p型高濃度層との濃度差が 小さくなり、 p型コンタクト層からの Mgの拡散流出がより効果的に抑制される ために、 やはり同様に低い V f が得られる。  Further, when the design value of the Mg concentration of the p-type contact layer is set to a higher concentration, the problem of insufficient Mg concentration does not occur, so that similarly low V f can be obtained. In addition, when the design value is set to a lower concentration, the concentration difference between the p-type contact layer and the p-type high concentration layer becomes smaller, and the diffusion and outflow of Mg from the p-type contact layer are more effectively suppressed. Therefore, a similarly low V f is obtained.
実験 5 Experiment 5
上記実験 4の結果に加えて、 V f をさらに低下させることを目的として、 p型 コンタクト層の厚さをより薄くする実験を行った。  In addition to the results of Experiment 4, an experiment was conducted to further reduce the thickness of the p-type contact layer for the purpose of further reducing V f.
上記実験 4の結果に従って、 p型 GaN層 (層厚 90 nm) のうち、 上側を M g高濃度層 (層厚 5 nm、 Mg濃度 5 X 1019 cm— 3) とし、 下側の残部を M g低濃度層 (層厚 85 nm、 M g濃度 1 X 1019 cm— 3) に固定して、 p型コ ンタクト層の厚さ T (nm) を 10 nmよりも薄い範囲で種々に変化させた。 本実験 5では、 p型コンタクト層の形成にあたり、 有機金属化合物原料である トリメチ /レガリウム、 トリメチ /レアノレミニゥム、 ビスシクロペンタジェニノレマグ ネシゥムの反応容器への供給に用いるキヤリァガスに水素ガスと窒素ガスとの混 合ガスを用いる以外、 反応容器に供給するガスは 3族原料であるアンモニアと、 窒素ガスのみとした。 According to the results of Experiment 4 above, of the p-type GaN layer (layer thickness 90 nm), the upper side is a Mg high concentration layer (layer thickness 5 nm, Mg concentration 5 × 10 19 cm- 3 ), and the remaining lower side is M g low concentration layer (thickness 85 nm, M g concentration 1 X 10 19 cm- 3) is fixed to, changes in the thickness of the p-type co Ntakuto layer T (nm) of the various thin range than 10 nm I let it. In this experiment 5, in forming the p-type contact layer, hydrogen gas and nitrogen gas were used as carrier gas used to supply the organometallic compound raw materials trimethy / regarium, trimethy / rhenoleminium, and biscyclopentageninolemagnesium to the reaction vessel. Except for using a mixed gas of, the only gas supplied to the reaction vessel was ammonia, which is a Group 3 raw material, and nitrogen gas.
反応容器に供給する水素ガス、 アンモニア、 窒素ガスに占める水素ガスの流量 比率は 30%以下であった。 p型コンタクト層の成長速度は、 この水素ガスの流 量比率を約 60%とした実験 1〜4の場合と比較して、 約 5分の 1であった。 この変更以外は実験 4と同様の仕様にて、 G a N系 LEDを製作し、 V f 、 発 光出力を測定した。 The flow rate ratio of hydrogen gas to the hydrogen gas, ammonia, and nitrogen gas supplied to the reaction vessel was 30% or less. The growth rate of the p-type contact layer was about one-fifth of that in Experiments 1 to 4 in which the flow rate of hydrogen gas was about 60%. Except for this change, a GaN LED was manufactured with the same specifications as in Experiment 4, and V f and emission output were measured.
測定の結果、 丁= 10から 1までは、 出力は同レベルのまま、 V f が低下する 傾向が観察された。 T=0. 5では、 V f が若干上昇したが、 それでもなお、 T =0 (p型コンタクト層無し) と比較すると、 約 0. l eV低い値であった。 この結果から、 p型コンタクト層は下層よりも A 1比率を高くすることが好ま しく、 その層厚は、 0. 5〜10 nmが好ましい範囲であることがわかった。 丁= 1 0から 1まで、 V f が低下傾向を示した原因は、 p型コンタクト層の成 長時間が短くなり、 結晶が高温に曝される時間が短くなつたことで、 熱による劣 化の影響が小さくなつたためと推定される。  As a result of the measurement, from 10 to 1, the output remained at the same level, and a tendency for V f to decrease was observed. At T = 0.5, V f increased slightly, but still was about 0.1 leV lower than T = 0 (no p-type contact layer). From these results, it was found that it is preferable that the p-type contact layer has a higher A 1 ratio than the lower layer, and that the layer thickness is in a preferable range of 0.5 to 10 nm. The reason why V f showed a tendency to decrease from D = 10 to 1 was that the growth time of the p-type contact layer was shortened and the time during which the crystal was exposed to high temperatures was shortened, resulting in thermal degradation. It is presumed that the influence of was reduced.
実験 6 Experiment 6
上記実験 4の結果に加えて、 V f の上昇を抑えるのに必要な Mg高濃度層の M g濃度の下限を調べるための実験を行った。  In addition to the results of Experiment 4, an experiment was conducted to determine the lower limit of the Mg concentration in the Mg-rich layer necessary to suppress the increase in V f.
上記実験 4において、 Mg高濃度層の層厚 Xを 5 nm、 Mg低濃度層の層厚 Y を 8511 mに固定し、 !^1§高濃度層の^^濃度を 5 X 1019 cm— 3と 1 X 101 9 cm一3の間で変化させた。 この変更以外は実験 4と同様の仕様にて、 GaN系 LEDを製作し、 V f を測定した。 In Experiment 4 above, the layer thickness X of the Mg-rich layer was fixed at 5 nm, and the layer thickness Y of the Mg-low layer was 8511 m. ^ A ^^ concentration 1§ high concentration layer with 5 X 10 19 cm- 3 was varied between 1 X 10 1 9 cm one 3. Except for this change, a GaN-based LED was manufactured with the same specifications as in Experiment 4, and V f was measured.
その結果、 V f は、 Mg高濃度層の Mg濃度が 1 X 1019 cm— 3 (上記実験 2に相当) と 2 X 1019 c m— 3の間では実験 2と同レベルとなったが、 Mg濃 度が 2 X 1019 cm一3を超えると低下し始め、 5 X 1019 c m— 3のときの値で ある 3. 5 Vに近づいた。 As a result, V f was at the same level as in Experiment 2 when the Mg concentration in the Mg-rich layer was between 1 × 10 19 cm— 3 (corresponding to Experiment 2 above) and 2 × 10 19 cm— 3 . Mg started to decrease with the concentration of more than 2 X 10 19 cm one 3, close to the 5 X 10 19 cm- is a value at 3 3. 5 V.
本実験 6から、 p型コンタクト層の直下に設ける Mg高濃度層の厚さを 5 nm 以上、 Mg濃度を 2 X 1019 cm一3以上とすれば、 p型コンタクト層の厚さを 薄くしたときの動作電圧の上昇を抑える効果があることが分かった。 From this experiment 6, the thickness of the Mg-enriched layer is provided immediately below the p-type contact layer 5 nm or more, if the Mg concentration is 2 X 10 19 cm one 3 above, the thickness of the p-type contact layer It has been found that there is an effect of suppressing an increase in operating voltage at the time.
産業上の利用分野  Industrial applications
発光素子は、 実用上の点からは、 単に出力が高ければ良いというものではなく 、 素子が組み込まれる装置 ·機器の側からの低消費電力化に対する要求がある。 9 また、 発光素子の動作電圧は、 該素子の発熱量に直接関係するため、 素子の寿 命に大きく影響する。 また、 発熱が大きい程、 放熱を優先する実装構造が必要と なることから、 設計上の様々な制約が発生してくるという問題もある。 特に、 G a N系半導体発光素子では、 短波長光が発生するために、 原理的に動作電圧が高 くならざるを得ないことに加え、 結晶成長用基板として現在のところ最適とされ るサファイアの熱伝導性が極めて低いという問題もある。 From the practical point of view, the light emitting element does not simply have to have a high output, but there is a demand for low power consumption from the device / apparatus side in which the element is incorporated. 9 Further, the operating voltage of a light emitting element is directly related to the amount of heat generated by the element, and thus greatly affects the life of the element. In addition, since there is a need for a mounting structure that gives priority to heat radiation as the heat generation increases, there is also a problem that various design restrictions are generated. In particular, in GaN-based semiconductor light-emitting devices, short-wavelength light is generated, so that the operating voltage must be increased in principle, and sapphire, which is currently the most suitable substrate for crystal growth, There is also a problem that the thermal conductivity of the material is extremely low.
これらの事情から、 G a N系半導体発光素子の動作電圧、 例えば、 LEDにお ける順方向電圧 (V f ) や、 レーザダイオードにおける発振のしきい値電圧の低 減に関しては、 極めて強い要求があり、 たとえ 0. IVでも低減することが望ま しいとされている。  Under these circumstances, extremely strong demands are placed on the operating voltage of GaN-based semiconductor light-emitting devices, such as the forward voltage (V f) in LEDs and the reduction in oscillation threshold voltage in laser diodes. Yes, it is desirable to reduce even the IV.
本発明によって、 G a N系半導体発光素子の動作電圧の上昇を抑えながら、 p 型層の M gの総量を効果的に低減させて、 光吸収の問題を改善することができる ようになった。  According to the present invention, the problem of light absorption can be improved by effectively reducing the total amount of Mg in the p-type layer while suppressing an increase in the operating voltage of the GaN-based semiconductor light emitting device. .
本出願は、 日本で出願された特願 2004- 134704を基礎としておりそ れらの内容は本明細書に全て包含される。  This application is based on a patent application No. 2004-134704 filed in Japan, the contents of which are incorporated in full herein.

Claims

請求の範囲 The scope of the claims
1. 窒化物半導体結晶層からなる積層体を有し、 該積層体には下層側から順に n 型層、 発光層、 p型層が含まれ、 p型層には p型不純物として Mgがドープされ ている窒化物半導体発光素子であって、  1. It has a stacked body composed of a nitride semiconductor crystal layer. The stacked body includes an n-type layer, a light-emitting layer, and a p-type layer in order from the lower layer side, and the p-type layer is doped with Mg as a p-type impurity. A nitride semiconductor light emitting device,
p型層の最下部には A 1 XG a XN (0≤ x≤ 1) からなる!)型クラッド層 が設けられ、 該 P型クラッド層の上方には 1以上のへテロ界面を介して A 1 yG a x_yN (0≤y≤ 1) からなる M g高濃度層が設けられ、 該 Mg高濃度層の直 上には p型層の最上部として A 1 ZG a (y < z≤ 1) からなる p型コン タクト層が設けられ、 At the bottom of the p-type layer is A 1 X G a X N (0≤ x≤ 1)! ) Type cladding layer is provided, M g high concentration layer made of the above the P-type clad layer via one or more hetero interface A 1 y G a x _ y N (0≤y≤ 1) is provided p-type con tact layer made of the Mg height above linear density layer p-type layer a 1 Z G a as the top of the (y <z≤ 1) is provided,
p型コンタク ト層は、 層厚が 10 nm以下、 Mg濃度 aが 5 X 1019 cm-3 ≤ aであり、 The p-type contact layer has a layer thickness of 10 nm or less, an Mg concentration a of 5 × 10 19 cm -3 ≤ a,
Mg高濃度層は、 層厚が 5 nm~20 nm、 M g濃度 bが 2 X 1019 c m一3 <bであり、 Mg high concentration layer has a thickness of 5 nm ~ 20 nm, a M g concentration b is 2 X 10 19 cm one 3 <b,
p型層のうち、 Mg高濃度層と発光層との間の層は、 Mg濃度 cが 1 X 101 9 cm— 3 c<bであり、 of the p-type layer, a layer between the Mg-enriched layer and the light emitting layer, Mg concentration c is 1 X 10 1 9 cm- 3 c <b,
p型コンタクト層を除く p型層の Mg濃度の平均値が 5 X 1 019 cm_3未満 であることを特徴とする、 窒化物半導体発光素子。 wherein the average value of the Mg concentration in the p-type layer except for the p-type contact layer is less than 5 X 1 0 19 cm_ 3, the nitride semiconductor light emitting device.
2. Mg高濃度層は、 少なくとも!)型コンタクト層に接する側に、 Mg濃度が 5 X 1019 c m— 3以上の部分を含む、 請求の範囲 1記載の窒化物半導体発光素子 。 2. At least high Mg concentration layer! 2. The nitride semiconductor light-emitting device according to claim 1, further comprising a portion having a Mg concentration of 5 × 10 19 cm− 3 or more on a side in contact with the ()) type contact layer.
3. Mg高濃度層が、 p型コンタクト層に接する側のみに、 Mg濃度が 5 X 1 0 19 cm— 3以上の部分を含む、 請求の範囲 2記載の窒化物半導体発光素子。 3. The nitride semiconductor light emitting device according to claim 2, wherein the high Mg concentration layer includes a portion having a Mg concentration of 5 × 10 19 cm− 3 or more only on the side in contact with the p-type contact layer.
4. Mg濃度 cが c < 5 X 1 019 c m— 3である、 請求の範囲 1記載の窒化物半 導体癸光素子。 4. The nitride semiconductor phosphor device according to claim 1, wherein the Mg concentration c is c <5 × 10 19 cm— 3 .
5. b< aである、 請求の範囲 1記載の窒化物半導体発光素子。 5. The nitride semiconductor light emitting device according to claim 1, wherein b <a.
6. p型層のうち、 Mg高濃度層と発光層との間の層が、 Mg濃度が 2 X 101 9 c m— 3未満の部分を含む、 請求の範囲 1記載の窒化物半導体発光素子。 6. Of the p-type layer, a layer between the Mg-enriched layer and the light emitting layer, Mg concentration include portions of less than 2 X 10 1 9 cm- 3, the nitride semiconductor light emitting device according to claim 1, wherein .
7. 上記 Mg高濃度層と発光層との間の層における Mg濃度の平均値が 2 X 10 19 cm— 3未満である、 請求の範囲 6記載の窒化物半導体発光素子。 7. The nitride semiconductor light emitting device according to claim 6, wherein an average value of Mg concentration in a layer between the Mg high concentration layer and the light emitting layer is less than 2 × 10 19 cm −3 .
8. p型層の層厚が 100 nm〜300 nmである、 請求の範囲 1記載の窒化物 半導体発光素子。  8. The nitride semiconductor light emitting device according to claim 1, wherein the layer thickness of the p-type layer is 100 nm to 300 nm.
9. r>型コンタクト層は、 層厚が 0. 5〜: L 0 nm、 Mg濃度 aが 5 X 1019 c m_3≤ a≤ 1 X 1021 cm—3であり、 9. The r> -type contact layer has a layer thickness of 0.5 to: L 0 nm, Mg concentration a is 5 × 10 19 cm _3 ≤ a≤ 1 X 10 21 cm— 3 ,
Mg高濃度層は、 層厚が 5〜20 nm、 Mg濃度 bが 2 X 1019 cm— 3< ( 0. 5 X a) ≤b≤ 1 X 1021 cm— 3であり、 The Mg-rich layer has a layer thickness of 5 to 20 nm and a Mg concentration b of 2 × 10 19 cm — 3 <(0.5 X a) ≤ b ≤ 1 × 10 21 cm — 3 ,
p型層のうち、 Mg高濃度層と発光層との間の層は、 Mg濃度 cが (0. 2 X b) ≤ c <bである、 請求の範囲 1記載の窒化物半導体発光素子。  2. The nitride semiconductor light-emitting device according to claim 1, wherein a layer between the Mg-rich layer and the light-emitting layer in the p-type layer has a Mg concentration c of (0.2 Xb) ≤ c <b.
PCT/JP2005/008389 2004-04-28 2005-04-26 Nitride semiconductor light emitting element WO2005106979A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006512867A JP5082444B2 (en) 2004-04-28 2005-04-26 Nitride semiconductor light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004134704 2004-04-28
JP2004-134704 2004-04-28

Publications (1)

Publication Number Publication Date
WO2005106979A1 true WO2005106979A1 (en) 2005-11-10

Family

ID=35241951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/008389 WO2005106979A1 (en) 2004-04-28 2005-04-26 Nitride semiconductor light emitting element

Country Status (3)

Country Link
JP (1) JP5082444B2 (en)
TW (1) TWI295859B (en)
WO (1) WO2005106979A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009021424A (en) * 2007-07-12 2009-01-29 Opnext Japan Inc Nitride semiconductor light emitting element, and manufacturing method thereof
WO2015029578A1 (en) * 2013-08-27 2015-03-05 富士電機株式会社 Semiconductor device manufacturing method and semiconductor device
CN105304777A (en) * 2014-07-18 2016-02-03 丰田合成株式会社 Group III nitride semiconductor light-emitting device and production method therefor
JP2017050439A (en) * 2015-09-03 2017-03-09 豊田合成株式会社 Uv light-emitting device and method for manufacturing the same
WO2017134713A1 (en) * 2016-02-01 2017-08-10 パナソニック株式会社 Ultraviolet light-emitting element
CN114038958A (en) * 2021-08-05 2022-02-11 重庆康佳光电技术研究院有限公司 Light-emitting chip epitaxial wafer, manufacturing method thereof and light-emitting chip
US11302845B2 (en) 2017-07-27 2022-04-12 Nikkiso Co., Ltd. Semiconductor light-emitting element

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009272380A (en) * 2008-05-01 2009-11-19 Sumitomo Electric Ind Ltd Group-iii nitride crystal and its surface treatment method, group-iii nitride laminate and its manufacturing method, and group-iii nitride semiconductor device and its manufacturing method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0897471A (en) * 1994-09-20 1996-04-12 Toyoda Gosei Co Ltd Group-iii nitride semiconductor light emitting device
JPH08330629A (en) * 1995-03-29 1996-12-13 Nichia Chem Ind Ltd Light-emitting nitride semiconductor element
JPH1022525A (en) * 1996-06-28 1998-01-23 Toyoda Gosei Co Ltd Iii group nitride semiconductor light emitting element
JPH10335757A (en) * 1997-01-09 1998-12-18 Nichia Chem Ind Ltd Nitride semiconductor element
JPH1168155A (en) * 1997-06-09 1999-03-09 Nichia Chem Ind Ltd Nitride semiconductor element and growing method of nitride semiconductor
JP2000164922A (en) * 1998-11-27 2000-06-16 Sharp Corp Semiconductor device
JP2000286451A (en) * 1998-11-17 2000-10-13 Nichia Chem Ind Ltd Nitride semiconductor device
JP2001148507A (en) * 1999-03-29 2001-05-29 Nichia Chem Ind Ltd Nitride semiconductor device
JP2001203385A (en) * 2000-01-17 2001-07-27 Nichia Chem Ind Ltd Nitride semiconductor light emitting diode
WO2002103813A1 (en) * 2001-06-15 2002-12-27 Nichia Corporation Nitride semiconductor light emitting element and light emitting device using it
JP2004006970A (en) * 2003-07-31 2004-01-08 Toyoda Gosei Co Ltd Group iii nitride semiconductor light emitting element

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0897471A (en) * 1994-09-20 1996-04-12 Toyoda Gosei Co Ltd Group-iii nitride semiconductor light emitting device
JPH08330629A (en) * 1995-03-29 1996-12-13 Nichia Chem Ind Ltd Light-emitting nitride semiconductor element
JPH1022525A (en) * 1996-06-28 1998-01-23 Toyoda Gosei Co Ltd Iii group nitride semiconductor light emitting element
JPH10335757A (en) * 1997-01-09 1998-12-18 Nichia Chem Ind Ltd Nitride semiconductor element
JPH1168155A (en) * 1997-06-09 1999-03-09 Nichia Chem Ind Ltd Nitride semiconductor element and growing method of nitride semiconductor
JP2000286451A (en) * 1998-11-17 2000-10-13 Nichia Chem Ind Ltd Nitride semiconductor device
JP2000164922A (en) * 1998-11-27 2000-06-16 Sharp Corp Semiconductor device
JP2001148507A (en) * 1999-03-29 2001-05-29 Nichia Chem Ind Ltd Nitride semiconductor device
JP2001203385A (en) * 2000-01-17 2001-07-27 Nichia Chem Ind Ltd Nitride semiconductor light emitting diode
WO2002103813A1 (en) * 2001-06-15 2002-12-27 Nichia Corporation Nitride semiconductor light emitting element and light emitting device using it
JP2004006970A (en) * 2003-07-31 2004-01-08 Toyoda Gosei Co Ltd Group iii nitride semiconductor light emitting element

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009021424A (en) * 2007-07-12 2009-01-29 Opnext Japan Inc Nitride semiconductor light emitting element, and manufacturing method thereof
WO2015029578A1 (en) * 2013-08-27 2015-03-05 富士電機株式会社 Semiconductor device manufacturing method and semiconductor device
CN105304777A (en) * 2014-07-18 2016-02-03 丰田合成株式会社 Group III nitride semiconductor light-emitting device and production method therefor
JP2016025196A (en) * 2014-07-18 2016-02-08 豊田合成株式会社 Group iii nitride semiconductor light-emitting device and method for manufacturing the same
JP2017050439A (en) * 2015-09-03 2017-03-09 豊田合成株式会社 Uv light-emitting device and method for manufacturing the same
WO2017134713A1 (en) * 2016-02-01 2017-08-10 パナソニック株式会社 Ultraviolet light-emitting element
JP2017139447A (en) * 2016-02-01 2017-08-10 パナソニック株式会社 Ultraviolet light emitting element
US11302845B2 (en) 2017-07-27 2022-04-12 Nikkiso Co., Ltd. Semiconductor light-emitting element
CN114038958A (en) * 2021-08-05 2022-02-11 重庆康佳光电技术研究院有限公司 Light-emitting chip epitaxial wafer, manufacturing method thereof and light-emitting chip

Also Published As

Publication number Publication date
JP5082444B2 (en) 2012-11-28
TW200603442A (en) 2006-01-16
TWI295859B (en) 2008-04-11
JPWO2005106979A1 (en) 2008-03-21

Similar Documents

Publication Publication Date Title
TWI402998B (en) Nitride semiconductor device
JP3551101B2 (en) Nitride semiconductor device
KR100267839B1 (en) Nitride semiconductor device
US8592802B2 (en) (Al, In, Ga, B)N device structures on a patterned substrate
US6337493B1 (en) Nitride semiconductor device
JP4954536B2 (en) Nitride semiconductor light emitting device
US8039830B2 (en) Semiconductor light emitting device and wafer
US20100133506A1 (en) Nitride semiconductor light emitting element and method for manufacturing nitride semiconductor
EP2518783B1 (en) Nitride semiconductor light-emitting element and method for manufacturing same
KR100752007B1 (en) Group ? nitride compound semiconductor light-emitting diode and method for manufacturing thereof
WO1999005728A1 (en) Nitride semiconductor device
US8030680B2 (en) Nitride semiconductor light-emitting device and method for manufacturing the same
JP5082444B2 (en) Nitride semiconductor light emitting device
Mukai et al. Nitride light-emitting diodes
JP3620292B2 (en) Nitride semiconductor device
EP0973207A2 (en) Semiconductor light emitting device
JP2007227832A (en) Nitride semiconductor element
US20150115220A1 (en) (Al, In, Ga, B)N DEVICE STRUCTURES ON A PATTERNED SUBSTRATE
JP3651260B2 (en) Nitride semiconductor device
JP5446044B2 (en) Nitride semiconductor light emitting device and electronic device
US8633469B2 (en) Group III nitride semiconductor light-emitting device
JP2005191306A (en) Nitride semiconductor lamination substrate, nitride semiconductor device using it, and nitride semiconductor laser element
US11393948B2 (en) Group III nitride LED structures with improved electrical performance
JP2013055280A (en) Nitride semiconductor light-emitting element
WO2024085201A1 (en) Ultraviolet light-emitting semiconductor element

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006512867

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase