JPH1022525A - Iii group nitride semiconductor light emitting element - Google Patents

Iii group nitride semiconductor light emitting element

Info

Publication number
JPH1022525A
JPH1022525A JP18837196A JP18837196A JPH1022525A JP H1022525 A JPH1022525 A JP H1022525A JP 18837196 A JP18837196 A JP 18837196A JP 18837196 A JP18837196 A JP 18837196A JP H1022525 A JPH1022525 A JP H1022525A
Authority
JP
Japan
Prior art keywords
light
light emitting
layer
well
nitride semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18837196A
Other languages
Japanese (ja)
Other versions
JP3543498B2 (en
Inventor
Masayoshi Koike
正好 小池
Junichi Umezaki
潤一 梅崎
Shinya Asami
慎也 浅見
Norikatsu Koide
典克 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP18837196A priority Critical patent/JP3543498B2/en
Publication of JPH1022525A publication Critical patent/JPH1022525A/en
Application granted granted Critical
Publication of JP3543498B2 publication Critical patent/JP3543498B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a light with an arbitrary chromaticity, especially, a nearly equivalent white-light emission to an equi-energy white light, in a single pixel, by varying the mixed crystal ratios of a plurality of light emitting well layers to equalize the wavelength-intensity characteristic of a light synthesized out of the emission lights from the respective well layers to a desired characteristic. SOLUTION: In a light emitting diode, an yellow green light is emitted from a first multiple quantum well 51, and a blue light is emitted from a second multiple quantum well 52. Their luminous intensities determining their lightnesses may be varied by changing the thicknesses of the respective well layers 512, 522. In the case of a quantum well structure, the smaller the thickness of a well layer is, the higher its luminous efficiency is to make its luminous intensity incresable. In this way, varying the mixed crystal ratio of the first multiple quantum well 51, the chromaticity coordinates of a V-point can be varied, and varying the mixed crystal ratio of the second multiple quantum well 52, the chromaticity coordinates of a U-point can be varied. Therefore, controlling the mixed crystal ratios and the thicknesses of the first and second multiple quantum wells 51, 52, a pure white-light emission can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、白色発光が可能な
3族窒化物半導体発光素子に関する。
The present invention relates to a group III nitride semiconductor light emitting device capable of emitting white light.

【0002】[0002]

【従来技術】従来、サファイア基板上に3族窒化物半導
体を形成した発光素子が知られている。その発光素子は
光の3原色の1つである青色を発光することから、フル
カラーディスプレイ等への応用が期待されている。
2. Description of the Related Art Conventionally, a light emitting device in which a group III nitride semiconductor is formed on a sapphire substrate has been known. Since the light-emitting element emits blue light, which is one of the three primary colors of light, application to a full-color display or the like is expected.

【0003】一方、白色は人間の色感覚上、好感を持て
る色であり、白色発光の発光ダイオード(LED)の開
発が期待されている。
[0003] On the other hand, white is a color that has a favorable impression in terms of human color sensation, and development of a light emitting diode (LED) that emits white light is expected.

【0004】[0004]

【発明が解決しようとする課題】ところが、従来の発光
ダイオードにおいて、白色の発光を得るには、青色LE
D、赤色LED、緑色LEDの3つのチップを同一ステ
ム上に配置して、各チップから発光する光の混合により
白色発光を得ていた。このため、白色を得るためのチッ
プ数が多くなり、製造が複雑になり、製造に時間がかか
ると共にコストが高くなるという問題が存在した。又、
一般に、任意の混色発光のLEDにおいても、3原色の
各色を発光するLEDを同一面に配列しなければなら
ず、同様な問題がある。
However, in order to obtain white light emission in a conventional light emitting diode, a blue LE is required.
D, a red LED, and a green LED are arranged on the same stem, and white light is obtained by mixing light emitted from each chip. For this reason, there are problems that the number of chips for obtaining white color increases, the manufacturing becomes complicated, the manufacturing takes time, and the cost increases. or,
In general, even in an LED that emits light of any color mixture, LEDs that emit light of each of the three primary colors must be arranged on the same surface, and there is a similar problem.

【0005】従って、本発明は、上記の課題を解決する
ために成されたものであり、単一画素で任意の色度(彩
度、色相)の光を発光するようにすることである。特
に、等エネルギー白色と、略、等価な白色発光が得られ
るようにすることである。
Accordingly, the present invention has been made to solve the above-mentioned problem, and an object of the present invention is to make a single pixel emit light of an arbitrary chromaticity (saturation, hue). In particular, it is to obtain white light emission substantially equivalent to equal energy white light.

【0006】[0006]

【課題を解決するための手段】多重量子井戸構造の各井
戸層の混晶比を変化させることで禁制帯幅を変化させる
ことができるので、発光のピーク波長を混晶比により変
化させることができる。請求項1の発明では、3族窒化
物半導体を用いた多重量子井戸構造の発光素子におい
て、発光する複数の井戸層の混晶比を変化させることに
より、各井戸層からの発光の合成光の波長強度特性を所
望の特性としたので、単一画素から任意の色度を有する
光を発光させることができる。よって、従来のように、
複数チップ、又は、複数画素からの光の混合により任意
の色度を得るものではないので、製造が簡単となり、製
造コストを削減することができる。
The band gap can be changed by changing the mixed crystal ratio of each well layer of the multiple quantum well structure. Therefore, the peak wavelength of light emission can be changed by the mixed crystal ratio. it can. According to the first aspect of the present invention, in a light emitting device having a multiple quantum well structure using a group III nitride semiconductor, by changing a mixed crystal ratio of a plurality of light emitting well layers, a combined light of light emitted from each well layer is changed. Since the wavelength intensity characteristic is a desired characteristic, light having an arbitrary chromaticity can be emitted from a single pixel. Therefore, as before,
Since an arbitrary chromaticity is not obtained by mixing light from a plurality of chips or a plurality of pixels, manufacturing is simplified and manufacturing cost can be reduced.

【0007】井戸層の混晶比を変化させることで、発光
のピーク波長を変化させることができるので、混晶比に
より発光のxy色度図上における座標点を変化させるこ
とができる。よって、請求項2のように、発光する各井
戸層のそれぞれの混晶比を、xy色度図上において、各
井戸層の発光の各色度座標の平均値が、所望の座標とな
るような比とすることで、各井戸層からの光の合成光の
色度を所望の値とすることができる。
Since the peak wavelength of light emission can be changed by changing the mixed crystal ratio of the well layer, the coordinate point on the xy chromaticity diagram of the emitted light can be changed by the mixed crystal ratio. Therefore, as in claim 2, the mixed crystal ratio of each well layer that emits light is determined such that the average value of the chromaticity coordinates of light emission of each well layer becomes a desired coordinate on the xy chromaticity diagram. By setting the ratio, the chromaticity of the combined light of the light from each well layer can be set to a desired value.

【0008】又、請求項3のように、各井戸層からの発
光の色度座標を、その各光の明度により加重した平均値
が、所望の色度となるように、各井戸層の混晶比を選択
することで、所望の色度の合成光を得ることができる。
Further, the chromaticity coordinates of the light emitted from each well layer are weighted by the brightness of each light so that the average value of the chromaticity coordinates of each well layer becomes a desired chromaticity. By selecting the crystal ratio, synthetic light having a desired chromaticity can be obtained.

【0009】又、請求項4のように、所望の色度座標
を、略、等エネルギー白色光の座標(1/3,1/3)とするこ
とで、1画素で白色光を得ることができる。
Further, by setting the desired chromaticity coordinates to substantially the coordinates (1/3, 1/3) of the equal energy white light, it is possible to obtain white light with one pixel. it can.

【0010】又、請求項5のように、少なくとも2つの
発光する井戸層のそれぞれの混晶比を、各井戸層の発光
の色度座標が、xy色度図上補色関係にある2点となる
ような比とすることで、1画素で白色光を得ることがで
きる。
Further, the mixed crystal ratio of each of the at least two light emitting well layers is determined by comparing the chromaticity coordinates of the light emission of each well layer with two points having complementary colors on the xy chromaticity diagram. With such a ratio, white light can be obtained with one pixel.

【0011】又、人の感じる発光色の明度は、発光強度
に依存するが、その発光強度は井戸層の厚さにより制御
することができる。よって、請求項6のように構成する
ことで、合成光の波長強度特性を変化させることができ
る。即ち、1画素で色度を変化させることができる。
[0011] The brightness of the luminescent color perceived by a person depends on the luminous intensity, and the luminous intensity can be controlled by the thickness of the well layer. Therefore, with the configuration according to the sixth aspect, the wavelength intensity characteristics of the combined light can be changed. That is, the chromaticity can be changed by one pixel.

【0012】又、請求項7のように、各井戸層から放射
された光の波長強度特性の総和が白色光の波長強度特性
となるように、各井戸層のそれぞれの混晶比を設定する
ことで、1画素により白色光を得ることができる。
Further, the mixed crystal ratio of each well layer is set such that the sum of the wavelength intensity characteristics of light emitted from each well layer becomes the wavelength intensity characteristic of white light. Thus, white light can be obtained from one pixel.

【0013】又、請求項8のように、複数の井戸層は、
光取出面に近い側から禁制帯幅が広くなるように混晶比
を設定することで、各井戸層からの発光を前方に存在す
る井戸層での光吸収を防止することができ、光の取出効
率が高くなるともに、色度の制御性が向上する。
[0013] Further, the plurality of well layers may include:
By setting the mixed crystal ratio so that the forbidden band becomes wider from the side closer to the light extraction surface, light emission from each well layer can be prevented from being absorbed by the well layer existing in front, and light The takeout efficiency is increased, and the controllability of chromaticity is improved.

【0014】さらに、請求項9のように、3族窒化物半
導体として、(AlxGa1-X)yIn1-yN(0≦x ≦1;0 ≦y ≦1)
を用い、各井戸層の混晶比x,yを変化させることで、
各井戸層の禁制帯幅を変化させ、発光のピーク波長を変
化させることができる。Alの混晶比が高くなるほど禁制
帯幅は広くなり、Inの混晶比が高くなるほど禁制帯幅は
狭くなる。
Further, as a ninth aspect, the group III nitride semiconductor is (Al x Ga 1 -X ) y In 1 -y N (0 ≦ x ≦ 1; 0 ≦ y ≦ 1).
And by changing the mixed crystal ratio x, y of each well layer,
By changing the forbidden band width of each well layer, the peak wavelength of light emission can be changed. The bandgap becomes wider as the mixed crystal ratio of Al increases, and the bandgap becomes narrower as the mixed crystal ratio of In increases.

【0015】さらに、請求項10に示すように、各井戸
層の混晶比の変化に加えて、各井戸層又は/及びバリア
層に、アクセプタ不純物又は/及びドナー不純物を、そ
の種類又は/及び濃度を変化させて添加することで、各
井戸層からの発光の色度を変化させることができ、混晶
比と不純物とにより、発光の色度をより精密に制御する
ことができる。
Further, in addition to the change in the mixed crystal ratio of each well layer, an acceptor impurity or / and / or a donor impurity is added to each well layer or / and barrier layer. The chromaticity of light emission from each well layer can be changed by changing the concentration, and the chromaticity of light emission can be more precisely controlled by the mixed crystal ratio and the impurities.

【0016】[0016]

【発明の実施の形態】以下、本発明を具体的な実施例に
基づいて説明する。なお本発明は下記実施例に限定され
るものではない。図1は本願実施例の発光素子100 全体
図を示す。発光素子100 は、サファイア基板1を有して
おり、そのサファイア基板1上に0.05μmのAlN バッフ
ァ層2が形成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described based on specific embodiments. The present invention is not limited to the following examples. FIG. 1 shows an overall view of the light emitting device 100 according to the embodiment of the present invention. The light emitting device 100 has a sapphire substrate 1, and a 0.05 μm AlN buffer layer 2 is formed on the sapphire substrate 1.

【0017】そのバッファ層2の上には、順に、膜厚約
4.0 μm、電子濃度2 ×1018/cm3のシリコン(Si)ドープ
GaN から成る高キャリア濃度n+ 層3、膜厚約0.5 μm
の電子濃度5 ×1017/cm3のシリコン(Si)ドープのGaN か
ら成るn層4、全膜厚約65nmのInGaN の多重量子井戸か
ら成る発光層5、膜厚約10nm,ホール濃度 2×1017/c
m3, マグネシウム(Mg) 濃度 5×1019/cm3ドープのAl
0.08Ga0.92N から成るp伝導型のクラッド層71、膜厚
約35nm,ホール濃度 3×1017/cm3のマグネシウム(M
g) 濃度 5×1019/cm3ドープのGaN から成る第1コンタ
クト層72、膜厚約5 nm,ホール濃度 6×1017/cm3
マグネシウム(Mg) 濃度 1×1020/cm3ドープのGaN から
成るp+ の第2コンタクト層73が形成されている。そ
して、第2コンタクト層73の上面全体にNi/Au の2重
層からなる透明電極9が形成されその透明電極9の隅の
部分にNi/Au の2重層からなるボンディングのためのパ
ッド10が形成されている。又、n+ 層3上にはAlから
成る電極8が形成されている。
On the buffer layer 2, a film thickness of about
4.0 μm, silicon (Si) doped with 2 × 10 18 / cm 3 electron concentration
High carrier concentration n + layer 3 made of GaN, thickness about 0.5 μm
N layer 4 composed of GaN doped with silicon (Si) having an electron concentration of 5 × 10 17 / cm 3 , light emitting layer 5 composed of multiple quantum wells of InGaN having a total film thickness of about 65 nm, film thickness of about 10 nm, and hole concentration of 2 × 10 17 / c
m 3 , magnesium (Mg) concentration 5 × 10 19 / cm 3 doped Al
A p-type cladding layer 71 made of 0.08 Ga 0.92 N, having a thickness of about 35 nm and a hole concentration of 3 × 10 17 / cm 3 of magnesium (M
g) A first contact layer 72 made of GaN doped with 5 × 10 19 / cm 3 , having a thickness of about 5 nm and a magnesium (Mg) concentration of 1 × 10 20 / cm 3 with a hole concentration of 6 × 10 17 / cm 3. A second contact layer 73 of p + made of GaN is formed. A transparent electrode 9 composed of a double layer of Ni / Au is formed on the entire upper surface of the second contact layer 73, and a pad 10 for bonding composed of a double layer of Ni / Au is formed at a corner of the transparent electrode 9. Have been. Further, an electrode 8 made of Al is formed on the n + layer 3.

【0018】発光層5は、図2に示すように、In0.1Ga
0.9N から成るバリア層511とIn0.68Ga0.32N から成
る井戸層512で構成された厚さ35nmの第1多重量子井
戸51と、In0.3Ga0.7N から成る井戸層522とIn0.05
Ga0.95N から成るバリア層521で構成された厚さ30nm
の第2多重量子井戸52とで構成されている。
As shown in FIG. 2, the light emitting layer 5 is made of In 0.1 Ga.
A 35 nm-thick first multiple quantum well 51 composed of a barrier layer 511 composed of 0.9 N and a well layer 512 composed of In 0.68 Ga 0.32 N, a well layer 522 composed of In 0.3 Ga 0.7 N and In 0.05
30 nm thick composed of barrier layer 521 made of Ga 0.95 N
And the second multiple quantum well 52.

【0019】次に、この構造の半導体素子の製造方法に
ついて説明する。上記発光素子100 は、有機金属気相成
長法(以下MOVPE)による気相成長により製造され
た。用いられたガスは、アンモニア(NH3) 、キャリアガ
ス(H2)、トリメチルガリウム(Ga(CH3)3)(以下「TMG
」と記す) 、トリメチルアルミニウム(Al(CH3)3)(以
下「TMA 」と記す) 、トリメチルインジウム(In(CH3)3)
(以下「TMI 」と記す) 、シラン(SiH4)、ジエチル亜鉛
(Zn(C2H5)2) (以下、「DEZ 」と記す)とシクロペンタ
ジエニルマグネシウム(Mg(C5H5)2)(以下「CP2Mg 」と記
す)である。
Next, a method of manufacturing a semiconductor device having this structure will be described. The light emitting device 100 was manufactured by vapor phase growth using metal organic chemical vapor deposition (hereinafter, MOVPE). The gases used were ammonia (NH 3 ), carrier gas (H 2 ), and trimethylgallium (Ga (CH 3 ) 3 ) (hereinafter “TMG
), Trimethyl aluminum (Al (CH 3 ) 3 ) (hereinafter referred to as “TMA”), trimethyl indium (In (CH 3 ) 3 )
(Hereinafter referred to as “TMI”), silane (SiH 4 ), diethylzinc
(Zn (C 2 H 5 ) 2 ) (hereinafter referred to as “DEZ”) and cyclopentadienyl magnesium (Mg (C 5 H 5 ) 2 ) (hereinafter referred to as “CP 2 Mg”).

【0020】まず、有機洗浄及び熱処理により洗浄した
a面を主面とし、単結晶のサファイア基板1をM0VPE 装
置の反応室に載置されたサセプタに装着する。次に、常
圧でH2を流速2 liter/分で約30分間反応室に流しながら
温度1100℃でサファイア基板1をベーキングした。
First, a single-crystal sapphire substrate 1 is mounted on a susceptor placed in a reaction chamber of an MOVPE apparatus, with the a-plane cleaned by organic cleaning and heat treatment as a main surface. Next, the sapphire substrate 1 was baked at a temperature of 1100 ° C. while flowing H 2 into the reaction chamber at a flow rate of 2 liter / min at normal pressure for about 30 minutes.

【0021】次に、温度を 400℃まで低下させて、H2
20 liter/分、NH3 を10 liter/分、TMA を 1.8×10-5
モル/分で約90秒間供給してAlN のバッファ層2を約0.
05μmの厚さに形成した。次に、サファイア基板1の温
度を1150℃に保持し、H2を20liter/分、NH3 を10 lite
r/分、TMG を 1.7×10-4モル/分、H2ガスにより0.86p
pm に希釈されたシランを20×10-8モル/分で40分導入
し、膜厚約4.0 μm、電子濃度 1×1018/cm3、シリコン
濃度 4×1018/cm3のシリコン(Si)ドープGaN から成る高
キャリア濃度n+ 層3を形成した。
Next, by lowering the temperature to 400 ° C., and H 2
20 liter / min, NH 3 10 liter / min, TMA 1.8 × 10 -5
The AlN buffer layer 2 was supplied at about 0.1 mol / min for about 90 seconds.
It was formed to a thickness of 05 μm. Next, the temperature of the sapphire substrate 1 was maintained at 1150 ° C., H 2 was 20 liter / min, and NH 3 was 10 lite.
r / min, TMG 1.7 × 10 -4 mol / min, 0.86p by H 2 gas
Silane diluted at 20 × 10 −8 mol / min was introduced for 40 minutes at a film thickness of about 4.0 μm, an electron concentration of 1 × 10 18 / cm 3 , and a silicon concentration of 4 × 10 18 / cm 3 (Si). 3.) A high carrier concentration n + layer 3 made of doped GaN was formed.

【0022】上記の高キャリア濃度n+ 層3を形成した
後、続いて温度を1100°C に保持し、H2を20 liter/
分、NH3 を10 liter/分、TMG を 1.12 ×10-4モル/
分、H2ガスにより0.86ppm に希釈されたシランを10×10
-9モル/分で30分導入し、膜厚約0.5 μm、電子濃度 5
×1017/cm3、シリコン濃度 1×1018/cm3のシリコン(Si)
ドープGaN から成るn層4を形成した。
After forming the high carrier concentration n + layer 3, the temperature is maintained at 1100 ° C. and H 2 is reduced to 20 liter / H 2.
Min, NH 3 at 10 liter / min, TMG at 1.12 × 10 -4 mol / min
Min, silane to 10 × 10 diluted to 0.86ppm with H 2 gas
Introduced at -9 mol / min for 30 minutes, film thickness approx.
× 10 17 / cm 3 , silicon (Si) with a silicon concentration of 1 × 10 18 / cm 3
An n layer 4 made of doped GaN was formed.

【0023】その後、サファイア基板1の温度を660 ℃
に保持し、N2又はH2を20 liter/分、NH3 を10 liter/
分、TMG を2.0 ×10-4モル/分、TMI を0.03×10-4モル
/分で1.5 分間導入して、成長速度0.1 μm/h で、膜厚
約 5nmのIn0.1Ga0.9N から成るバリア層511を形成し
た。次に、サファイア基板1の温度を同一に保持して、
N2又はH2、NH3 の供給量を一定として、TMG を7.2 ×10
-5モル/分、TMI を0.19×10-4モル/分で1.5 分間導入
して、成長速度0.1 μm/h で、膜厚約 5nmのIn0.68Ga
0.32N から成る井戸層512を形成した。このような手
順の繰り返しにより、図2に示すように、バリア層51
1と井戸層512とを交互に、4層と3層だけ積層した
厚さ70nmの第1量子井戸51を形成した。
Thereafter, the temperature of the sapphire substrate 1 is raised to 660 ° C.
And N 2 or H 2 at 20 liter / min, NH 3 at 10 liter / min.
Min, TMG at 2.0 × 10 -4 mol / min and TMI at 0.03 × 10 -4 mol / min for 1.5 minutes, consisting of In 0.1 Ga 0.9 N with a growth rate of 0.1 μm / h and a film thickness of about 5 nm. A barrier layer 511 was formed. Next, while keeping the temperature of the sapphire substrate 1 the same,
TMG is 7.2 × 10 with the supply amount of N 2 or H 2 , NH 3 constant.
-5 mol / min, TMI was introduced at 0.19 × 10 -4 mol / min for 1.5 minutes, and the growth rate was 0.1 μm / h and the thickness of In 0.68 Ga
A well layer 512 of 0.32 N was formed. By repeating such a procedure, as shown in FIG.
The first quantum well 51 having a thickness of 70 nm was formed by laminating four and three layers alternately with 1 and the well layer 512.

【0024】次に、同様に、サファイア基板1の温度を
660 ℃に保持し、N2又はH2の供給量は変化させることな
く、TMG を1.6 ×10-4モル/分、TMI を0.08×10-4モル
/分で1.5 分間導入して、成長速度0.1 μm/h で、膜厚
約 5nmのIn0.3Ga0.7N から成る井戸層522を形成し
た。次に、サファイア基板1の温度を同一に保持して、
N2又はH2の供給量を変化させることなく、TMG を2.1 ×
10-4モル/分、TMI を0.01×10-4モル/分で1.5 分間導
入し、成長速度0.1 μm/h で、膜厚約 5nmのIn0.05Ga
0.95N から成るバリア層521を形成した。このような
手順の繰り返しにより、図2に示すように、井戸層52
2とバリア層521とを交互に、それぞれ、3層だけ積
層し厚さ60nmの第2量子井戸52を形成した。
Next, similarly, the temperature of the sapphire substrate 1 is changed.
Held in 660 ° C., the supply amount of N 2 or H 2 without changing, 1.6 × 10 -4 mol / min TMG, by introducing 1.5 minutes TMI at 0.08 × 10 -4 mol / min, growth rate At 0.1 μm / h, a well layer 522 made of In 0.3 Ga 0.7 N and having a thickness of about 5 nm was formed. Next, while keeping the temperature of the sapphire substrate 1 the same,
Without changing the supply amount of N 2 or H 2 , TMG is 2.1 ×
10 -4 mol / min, TMI was introduced at 0.01 × 10 -4 mol / min for 1.5 minutes, and at a growth rate of 0.1 μm / h, In 0.05 Ga with a film thickness of about 5 nm was used.
A barrier layer 521 made of 0.95 N was formed. By repeating such a procedure, as shown in FIG.
The second quantum well 52 having a thickness of 60 nm was formed by alternately laminating three layers of the second and the barrier layers 521, respectively.

【0025】続いて、温度を1100℃に保持し、N2又はH2
を20 liter/分、NH3 を10 liter/分、TMG を0.5 ×10
-4モル/分、TMA を0.47×10-5モル/分、及び、CP2Mg
を2×10-7モル/分で2分間導入し、膜厚約10nmのマ
グネシウム(Mg)ドープのAl0.08Ga0.92N から成るクラッ
ド層71を形成した。クラッド層71のマグネシウム濃
度は 5×1019/cm3である。この状態では、クラッド層7
1は、まだ、抵抗率108 Ωcm以上の絶縁体である。
Subsequently, the temperature was maintained at 1100 ° C. and N 2 or H 2
20 liter / min, NH 3 10 liter / min, TMG 0.5 × 10
-4 mol / min, TMA 0.47 × 10 -5 mol / min, and CP 2 Mg
Was introduced at 2 × 10 −7 mol / min for 2 minutes to form a cladding layer 71 made of magnesium (Mg) -doped Al 0.08 Ga 0.92 N and having a thickness of about 10 nm. The magnesium concentration of the cladding layer 71 is 5 × 10 19 / cm 3 . In this state, the cladding layer 7
1 is an insulator having a resistivity of 10 8 Ωcm or more.

【0026】次に、温度を1100℃に保持し、N2又はH2
20 liter/分、NH3 を10 liter/分、TMG を0.5 ×10-4
モル/分、及び、CP2Mg を 2×10-8モル/分で4分間導
入し、膜厚約35nmのマグネシウム(Mg)ドープのGaN か
ら成る第1コンタクト層72を形成した。第1コンタク
ト層72のマグネシウム濃度は 5×1019/cm3である。こ
の状態では、第1コンタクト層72は、まだ、抵抗率10
8 Ωcm以上の絶縁体である。
Next, the temperature is maintained at 1100 ° C. and N 2 or H 2 is added.
20 liter / min, NH 3 10 liter / min, TMG 0.5 × 10 -4
Mole / min and CP 2 Mg were introduced at 2 × 10 −8 mol / min for 4 minutes to form a first contact layer 72 made of magnesium (Mg) -doped GaN having a thickness of about 35 nm. The magnesium concentration of the first contact layer 72 is 5 × 10 19 / cm 3 . In this state, the first contact layer 72 still has a resistivity of 10
It is an insulator of 8 Ωcm or more.

【0027】次に、温度を1100℃に保持し、N2又はH2
20 liter/分、NH3 を10 liter/分、TMG を0.5 ×10-4
モル/分、及び、CP2Mg を 4×10-8モル/分で1分間導
入し、膜厚約5 nmのマグネシウム(Mg)ドープのGaN か
ら成るp+ の第2コンタクト層73を形成した。第2コ
ンタクト層73のマグネシウム濃度は 1×1020/cm3であ
る。この状態では、第2コンタクト層73は、まだ、抵
抗率108 Ωcm以上の絶縁体である。
Next, the temperature was maintained at 1100 ° C. and N 2 or H 2 was added.
20 liter / min, NH 3 10 liter / min, TMG 0.5 × 10 -4
Mol / min and CP 2 Mg were introduced at 4 × 10 -8 mol / min for 1 minute to form a p + second contact layer 73 of magnesium (Mg) doped GaN having a thickness of about 5 nm. . The magnesium concentration of the second contact layer 73 is 1 × 10 20 / cm 3 . In this state, the second contact layer 73 is still an insulator having a resistivity of 10 8 Ωcm or more.

【0028】次に、電子線照射装置を用いて、第2コン
タクト層73,第1コンタクト層72及びクラッド層7
1に一様に電子線を照射した。電子線の照射条件は、加
速電圧約10KV、資料電流1μA、ビームの移動速度0.2m
m/sec 、ビーム径60μmφ、真空度5.0 ×10-5Torrであ
る。この電子線の照射により、第2コンタクト層73,
第1コンタクト層72及びクラッド層71は、それぞ
れ、ホール濃度 6×1017/cm3,3×1017/cm3,2×1017/c
m3、抵抗率 2Ωcm, 1 Ωcm,0.7Ωcmのp伝導型半導体と
なった。このようにして多層構造のウエハが得られた。
Next, the second contact layer 73, the first contact layer 72, and the cladding layer 7 are formed using an electron beam irradiation apparatus.
1 was uniformly irradiated with an electron beam. Electron beam irradiation conditions are: acceleration voltage about 10KV, data current 1μA, beam moving speed 0.2m
m / sec, beam diameter 60 μmφ, vacuum degree 5.0 × 10 −5 Torr. By the irradiation of the electron beam, the second contact layer 73,
The first contact layer 72 and the cladding layer 71 have a hole concentration of 6 × 10 17 / cm 3 , 3 × 10 17 / cm 3 , 2 × 10 17 / c, respectively.
It became a p-conduction type semiconductor having m 3 and resistivity of 2Ωcm, 1Ωcm, 0.7Ωcm. Thus, a wafer having a multilayer structure was obtained.

【0029】次に、図2に示すように、第2コンタクト
層73の上に、Tiを2000Åの厚さに形成し、そのTi層の
上にNiを9000Åの厚さに形成してTi/Ni の金属マスク層
11を形成した。そして、その金属マスク層11の上
に、フォトレジスト12を塗布した。そして、フォトリ
ソグラフにより、図2に示すように、第2コンタクト層
73上において、高キャリア濃度n+ 層3に対する電極
形成部位A' のフォトレジスト12を除去した。次に、
図3に示すように、フォトレジスト12によって覆われ
ていない金属マスク層11を酸性エッチング液で除去し
た。
Next, as shown in FIG. 2, on the second contact layer 73, Ti is formed to a thickness of 2000.degree., And on the Ti layer, Ni is formed to a thickness of 9000.degree. A metal mask layer 11 of Ni was formed. Then, a photoresist 12 was applied on the metal mask layer 11. Then, by photolithography, as shown in FIG. 2, on the second contact layer 73, the photoresist 12 at the electrode formation site A for the high carrier concentration n + layer 3 was removed. next,
As shown in FIG. 3, the metal mask layer 11 not covered with the photoresist 12 was removed with an acidic etching solution.

【0030】次に、金属マスク層11によって覆われて
いない部位の第2コンタクト層73、第1コンタクト層
72、クラッド層71、発光層5、n層4を、真空度0.
04Torr、高周波電力0.44W/cm2 、BCl3ガスを10 ml/分の
割合で供給しドライエッチングした後、Arでドライエッ
チングした。この工程で、図4に示すように、高キャリ
ア濃度n+ 層3に対する電極取出しのための孔Aが形成
された。その後、金属マスク層11を除去した。
Next, the second contact layer 73, the first contact layer 72, the cladding layer 71, the light emitting layer 5, and the n-layer 4 at portions not covered by the metal mask layer 11 are vacuumed to a degree of 0.
After dry-etching by supplying 04 Torr, high-frequency power of 0.44 W / cm 2 and BCl 3 gas at a rate of 10 ml / min, dry etching was performed with Ar. In this step, as shown in FIG. 4, a hole A for extracting an electrode from the high carrier concentration n + layer 3 was formed. After that, the metal mask layer 11 was removed.

【0031】次に、一様にNi/Au の2層を蒸着し、フォ
トレジストの塗布、フォトリソグラフィー工程、エッチ
ング工程を経て、第2コンタクト層73の上に透明電極
9を形成した。そして、その透明電極9の一部にNi/Au
の2層を蒸着してパッド10を形成した。一方、n+
3に対しては、アルミニウムを蒸着して電極8を形成し
た。その後、上記のごとく処理されたウエハは、各素子
毎に切断され、図1に示す構造の発光ダイオードを得
た。
Next, two layers of Ni / Au were uniformly deposited, and a transparent electrode 9 was formed on the second contact layer 73 through the application of a photoresist, a photolithography step, and an etching step. Then, Ni / Au is applied to a part of the transparent electrode 9.
Were deposited to form the pad 10. On the other hand, the electrode 8 was formed on the n + layer 3 by evaporating aluminum. Thereafter, the wafer processed as described above was cut into individual devices to obtain light emitting diodes having the structure shown in FIG.

【0032】この構造の発光ダイオード100 は、第1多
重量子井戸51からは、ピーク波長570nm の黄緑色を発
光し、第2多重量子井戸52からは、ピーク波長450nm
の青色を発光した。この発光は、図4に示す色度図にお
いて、V点とU点とで表され、V点とU点とを結ぶ直線
は、座標(1/3,1/3)の等エネルギー白色点を通る。即
ち、V点の色度とU点の色度とは補色関係にある。よっ
て、この2つの発光の混合により、白色発光を得ること
ができる。
The light emitting diode 100 having this structure emits yellow-green light having a peak wavelength of 570 nm from the first multiple quantum well 51, and emits light having a peak wavelength of 450 nm from the second multiple quantum well 52.
Emitted blue light. This light emission is represented by a point V and a point U in the chromaticity diagram shown in FIG. 4, and a straight line connecting the point V and the point U represents an equi-energy white point at coordinates (1/3, 1/3). Pass. That is, the chromaticity at point V and the chromaticity at point U are in a complementary color relationship. Therefore, white light emission can be obtained by mixing these two light emissions.

【0033】尚、より精密な白色発光を得るためには、
V点発光の明度とU点発光の明度とで重み付けして、V
点の色度座標とU点の色度座標とを平均した値が座標
(1/3,1/3)になるように、設計すれば良い。
In order to obtain more precise white light emission,
By weighting the brightness of the V point emission and the brightness of the U point emission, V
What is necessary is just to design so that the average value of the chromaticity coordinates of the point and the chromaticity coordinates of the point U becomes the coordinates (1/3, 1/3).

【0034】即ち、That is,

【数1】{( xV,V ) ・MV +( xU,U ) ・MU
/( MV +MU )=(1/3,1/3) 但し、( xV,V ) はV点の色度座標、( xU,U ) は
U点の色度座標、MV, MU は、それぞれ、V点, U点
の発光の明度である。
[Number 1] {(x V, y V) · M V + (x U, y U) · M U}
/ (M V + M U) = (1 / 3,1 / 3) where, (x V, y V) chromaticity coordinates of point V, (x U, y U) chromaticity coordinates of the point U, M V and MU are the lightness of light emission at point V and point U , respectively.

【0035】明度を決める発光強度は、各井戸層51
2、各井戸層522の厚さを変化させれば良い。量子井
戸構造の場合には、井戸層の厚さをより薄くすることで
発光効率が向上し、発光強度を増加させることができ
る。このように、第1多重量子井戸51の混晶比を変化
させることで、V点の色度座標を変化させることがで
き、第2多重量子井戸52の混晶比を変化させること
で、U点の色度座標を変化させることができる。よっ
て、第1多重量子井戸51の発光の色度座標及び明度
と、第2多重量子井戸52の発光の色度座標及び明度と
が、上記の数1式を満たすように、それらの混晶比及び
厚さを制御することで、純粋な白色発光を得ることがで
きる。
The light emission intensity for determining the lightness depends on each well layer 51.
2. The thickness of each well layer 522 may be changed. In the case of a quantum well structure, the luminous efficiency is improved and the luminous intensity can be increased by making the thickness of the well layer thinner. As described above, by changing the mixed crystal ratio of the first multiple quantum well 51, the chromaticity coordinates of the point V can be changed, and by changing the mixed crystal ratio of the second multiple quantum well 52, U The chromaticity coordinates of a point can be changed. Therefore, the mixed crystal ratios of the chromaticity coordinates and brightness of the light emission of the first multiple quantum well 51 and the chromaticity coordinates and brightness of the light emission of the second multiple quantum well 52 satisfy the above equation (1). By controlling the thickness and the thickness, pure white light emission can be obtained.

【0036】又、上記の実施例では、発光波長の短い、
即ち、禁制帯幅の広い第2多重量子井戸52が、発光波
長の長い、即ち、禁制帯幅の狭い第1多重量子井戸51
よりも光の取出面(透明電極9)側に存在する。このた
め、波長の長い570nm の発光は、第2多重量子井戸で吸
収されることなく、外部に放出されるので、光の取出効
率を高くすることができる。
In the above embodiment, the light emission wavelength is short.
That is, the second multiple quantum well 52 having a wide bandgap has a long emission wavelength, that is, the first multiple quantum well 51 having a narrow bandgap.
Than on the light extraction surface (transparent electrode 9) side. Therefore, light having a long wavelength of 570 nm is emitted outside without being absorbed by the second multiple quantum well, so that the light extraction efficiency can be increased.

【0037】上記の実施例では、発光波長を450nm と57
0nm に設定したが、上記の数1式の関係が満たされるな
らば、他の波長との組み合わせでも、純粋な白色光を得
ることができる。さらに、数1式の左辺が得たい光の色
度座標と等しくなるように、第1多重量子井戸51と第
2多重量子井戸52の混晶比と厚さを決定することで、
所望の色度の光を得ることができる。
In the above embodiment, the emission wavelength is 450 nm
Although it is set to 0 nm, pure white light can be obtained even in combination with other wavelengths if the relationship of the above equation 1 is satisfied. Further, by determining the mixed crystal ratio and the thickness of the first multiple quantum well 51 and the second multiple quantum well 52 such that the left side of the equation 1 becomes equal to the chromaticity coordinates of the light to be obtained,
Light of a desired chromaticity can be obtained.

【0038】さらに、上記の多重量子井戸を3つ以上設
けても良い。例えば、図5に示すように、色度T,色度
R,色度Sの光を放射する第1多重量子井戸、第2多重
量子井戸、第3多重量子井戸を、基板1に近い側から設
けることで、三角形TRSの内部に存在する任意の色度
の光を得ることができる。この場合には、得たい光の色
度座標を( xO,O ) 、色度T,色度R,色度Sの座標
と明度を、それぞれ、( xT,T ) 、( xR,R ) 、(
S,S ) 、MT,R,S とすれば、次式を満たすよう
に、各発光点の色度、明度を設定すれば良い。
Furthermore, three or more multiple quantum wells may be provided. For example, as shown in FIG. 5, a first multiple quantum well, a second multiple quantum well, and a third multiple quantum well that emit light of chromaticity T, chromaticity R, and chromaticity S are formed from the side close to the substrate 1 By providing the light, light of an arbitrary chromaticity existing inside the triangle TRS can be obtained. In this case, the chromaticity coordinates of the light desired to obtain (x O, y O), chromaticity T, chromaticity R, the coordinates and brightness of chromaticity S, respectively, (x T, y T) , (x R, y R ), (
x S, y S), M T, M R, if M S, so as to satisfy the following equation, the chromaticity of the light emitting points may be set brightness.

【0039】[0039]

【数2】( xO,O ) ={( xT,T ) ・MT +( xR,
R ) ・MR+( xS,S ) ・MS }/( MT +MR
S )
[Number 2] (x O, y O) = {(x T, y T) · M T + (x R,
y R ) M R + (x S, y S ) M S } / (M T + M R +
M S )

【0040】尚、各点での発光の輝度をIT,R,S
する時、MT =IT /yT ,MR =IR /yR ,S
S /yS でもある。この光の合成について、さらに、
説明する。図6において、発光層5が、井戸層がIn0.5G
a0.5N の第1多重量子井戸51、井戸層がIn0.46Ga0.54
N の第2多重量子井戸52、井戸層がIn0.43Ga0.57Nの
第3多重量子井戸53とで構成されているとする。この
時、第1多重量子井戸51はピーク波長510nm 、第2多
重量子井戸52はピーク波長500nm 、第3多重量子井戸
53はピーク波長490nm の光を発光し、その波長強度特
性は、図6に示すようになる。これらの光を合成するこ
とで、図7に示すように、スペクトルに広がりを持った
光を得ることができる。即ち、純粋な白色に近い光を得
ることができる。
[0040] Incidentally, luminance I T of the emissions at each point, I R, when the I S, M T = I T / y T, M R = I R / y R, M S =
It is also I S / y S. About the synthesis of this light,
explain. In FIG. 6, the light emitting layer 5 has a well layer of In 0.5 G
a 0.5 N first multiple quantum well 51 with well layer of In 0.46 Ga 0.54
It is assumed that the second multiple quantum well 52 of N 2 and the third multiple quantum well 53 of In 0.43 Ga 0.57 N are formed in the well layer. At this time, the first multiple quantum well 51 emits light having a peak wavelength of 510 nm, the second multiple quantum well 52 emits light having a peak wavelength of 500 nm, and the third multiple quantum well 53 emits light having a peak wavelength of 490 nm. As shown. By combining these lights, light having a broad spectrum can be obtained as shown in FIG. That is, light close to pure white can be obtained.

【0041】さらに、各井戸層の混晶比を変化させると
共に、井戸層の厚さを変化させることで、図8に示すよ
うな、波長強度特性を持つ光を各井戸層から発光させる
ことができる。この合成光は、図8に示す波長強度特性
を示し、より、等エネルギー白色を得ることができる。
Further, by changing the mixed crystal ratio of each well layer and changing the thickness of the well layer, light having a wavelength intensity characteristic as shown in FIG. 8 can be emitted from each well layer. it can. This combined light exhibits the wavelength intensity characteristics shown in FIG. 8, and can provide a more equal-energy white color.

【0042】尚、上記実施例では、各色度座標の発光を
得るのに、多重量子井戸を用いているが、単一量子井戸
で構成しても良い。即ち、1井戸層毎に混晶比を変化さ
せた量子井戸構造で発光層5を構成しても良い。又、上
記実施例では、InGaN 半導体で井戸層とバリア層とを形
成したが、一般式(AlxGa1-X)yIn1-yN(0 ≦x1;0≦y ≦1)
を満たす半導体により井戸層とバアリ層とを形成しても
良い。
In the above embodiment, multiple quantum wells are used to obtain light emission of each chromaticity coordinate. However, a single quantum well may be used. That is, the light emitting layer 5 may be configured with a quantum well structure in which the mixed crystal ratio is changed for each well layer. In the above embodiment, the well layer and the barrier layer are formed of an InGaN semiconductor, but the general formula (Al x Ga 1-X ) y In 1-y N (0 ≦ x1; 0 ≦ y ≦ 1)
The well layer and the barrier layer may be formed of a semiconductor satisfying the above conditions.

【0043】さらに、上記実施例では、井戸層を不純物
無添加としたが、シリコン等のドナー不純物や、亜鉛等
のアクセプタ不純物、その他、2族、4族、6族元素を
不純物として添加しても良い。又、井戸層にドナー不純
物とアクセプタ不純物とを共に添加しても良い。例え
ば、図9に示すように、発光層5を(AlxGa1-X)yIn1-yN
で井戸層552とバリア層551とで構成し、井戸層5
52にシリコンと亜鉛とを、それぞれ、1 ×1017〜1 ×
1020/cm3範囲に添加しても良い。
Further, in the above embodiment, the well layer is doped with no impurities. However, a donor impurity such as silicon, an acceptor impurity such as zinc, and other elements of the second, fourth and sixth groups are added as impurities. Is also good. Further, both a donor impurity and an acceptor impurity may be added to the well layer. For example, as shown in FIG. 9, the light emitting layer 5 is made of (Al x Ga 1 -X ) y In 1 -y N
And the well layer 552 and the barrier layer 551, and the well layer 5
52, silicon and zinc, 1 × 10 17 to 1 ×, respectively
It may be added in the range of 10 20 / cm 3 .

【0044】又、図10に示すように、バリア層561
は無添加で、井戸層562について、ドナー不純物(例
えば、シリコン)とアクセプタ不純物(例えば、亜鉛)
を交互に添加しても良い。さらに、図11に示すよう
に、井戸層572にドナー不純物(例えば、シリコン)
を添加し、バリア層571にアクセプタ不純物(例え
ば、亜鉛)を添加しても良いし、逆に、井戸層572に
アクセプタ不純物を添加し、バリア層571にドナー不
純物を添加しても良い。これらの不純物分布に関する特
徴は、井戸層及びバリア層の混晶比と共に発光波長を変
化させることができる。尚、井戸層、バリア層は、n型
でもp型でも半絶縁性でも良い。
As shown in FIG. 10, a barrier layer 561 is formed.
Is not added, and the well layer 562 contains a donor impurity (eg, silicon) and an acceptor impurity (eg, zinc).
May be added alternately. Further, as shown in FIG. 11, a donor impurity (for example, silicon) is added to the well layer 572.
, An acceptor impurity (for example, zinc) may be added to the barrier layer 571, or conversely, an acceptor impurity may be added to the well layer 572 and a donor impurity may be added to the barrier layer 571. These characteristics relating to the impurity distribution can change the emission wavelength together with the mixed crystal ratio of the well layer and the barrier layer. The well layer and the barrier layer may be n-type, p-type, or semi-insulating.

【0045】上記実施例では、サファイア基板を用いた
がSiC 、MgAl2O4 等を用いることができる。又、バッフ
ァ層にはAlN を用いたがAlGaN 、GaN 、InAlGaN 等を用
いることができる。さらに、n層4には、GaN を用いて
いるが、InxGayAl1-x-yN等の3族窒化物半導体を用いる
ことができる。同様に、クラッド層71、第1コンタク
ト層72、第2コンタクト層73も、任意組成比のInxG
ayAl1-x-yN等の3族窒化物半導体を用いることができ
る。
In the above embodiment, a sapphire substrate is used, but SiC, MgAl 2 O 4 or the like can be used. Although AlN is used for the buffer layer, AlGaN, GaN, InAlGaN, or the like can be used. Further, the n layer 4, but with GaN, it is possible to use a group III nitride semiconductor such as In x Ga y Al 1-xy N. Similarly, the cladding layer 71, the first contact layer 72, and the second contact layer 73 also have an arbitrary composition ratio of In x G
A group 3 nitride semiconductor such as a y Al 1-xy N can be used.

【0046】コンタクト層は2層構造としたが1層構造
でも良い。又、クラッド層71の厚さは2nm〜70nm、第
1コンタクト層72の厚さは2nm〜100nm 、第2コンタ
クト層73の厚さは2nm〜50nmが望ましい。クラッド層
71の厚さが2nmよりも薄いと、キャリアの閉じ込め効
果が低下するため発光効率が低下するので望ましくな
い。第1コンタクト層72の厚さが2nmよりも薄いと、
注入されるホール数が減少するので発光効率が低下する
ので望ましくない。第2コンタクト層73が2nmよりも
薄いと、オーミック性が悪くなり接触抵抗が増大するの
で望ましくない。又、各層が上記の上限厚さを越える
と、発光層がその成長温度以上に曝される時間が長くな
り発光層の結晶性の改善効果が低下するので望ましくな
い。
Although the contact layer has a two-layer structure, it may have a one-layer structure. The thickness of the cladding layer 71 is preferably 2 nm to 70 nm, the thickness of the first contact layer 72 is preferably 2 nm to 100 nm, and the thickness of the second contact layer 73 is preferably 2 nm to 50 nm. If the thickness of the cladding layer 71 is smaller than 2 nm, the effect of confining carriers is reduced and the luminous efficiency is reduced, which is not desirable. When the thickness of the first contact layer 72 is smaller than 2 nm,
Since the number of holes to be injected is reduced, the luminous efficiency is reduced, which is not desirable. If the second contact layer 73 is thinner than 2 nm, the ohmic property becomes poor and the contact resistance increases, which is not desirable. On the other hand, when the thickness of each layer exceeds the above upper limit thickness, the time during which the light emitting layer is exposed to a temperature higher than its growth temperature becomes longer, and the effect of improving the crystallinity of the light emitting layer is not desirable.

【0047】又、クラッド層71のホール濃度は1 ×10
17〜 1×1018/cm3 が望ましい。ホール濃度が 1×1018
/cm3 以上となると、不純物濃度が高くなり結晶性が低
下し発光効率が低下するので望ましくなく、 1×1017
cm3 以下となると、直列抵抗が高くなり過ぎるので望ま
しくない。
The hole concentration of the cladding layer 71 is 1 × 10
17 to 1 × 10 18 / cm 3 is desirable. Hall concentration 1 × 10 18
/ Cm 3 or more and becomes undesirable since crystallinity becomes higher impurity concentration is lowered luminous efficiency decreases, 1 × 10 17 /
If it is less than cm 3 , the series resistance becomes too high, which is not desirable.

【0048】第1コンタクト層72は、マグネシウム(M
g)が1×1019〜5×1020/cm3の範囲で第2コンタ
クト層73のマグネシウム(Mg)濃度より低濃度に添加さ
れp伝導型を示す層とすることで、その層のホール濃度
を3×1017〜8×1017/cm3と最大値を含む領域とする
ことができる。これにより、発光効率を低下させること
がない。
The first contact layer 72 is made of magnesium (M
g) is added at a concentration lower than the magnesium (Mg) concentration of the second contact layer 73 in the range of 1 × 10 19 to 5 × 10 20 / cm 3 to form a layer exhibiting the p-conduction type, so that the hole of the layer is formed. The concentration can be an area including the maximum value of 3 × 10 17 to 8 × 10 17 / cm 3 . Thus, the luminous efficiency does not decrease.

【0049】第2コンタクト層73は、マグネシウム(M
g)濃度を1×1020〜1×1021/cm3 とする場合が望
ましい。マグネシウム(Mg)が1×1020〜1×1021
cm3に添加されたp伝導型を示す層は、金属電極に対し
てオーミック性を向上させることができるが、ホール濃
度が1×1017〜8×1017/cm3 とやや低下する。(駆動
電圧5V以下にできる範囲を含む、オーミック性の改善
からMg濃度が上記の範囲が良い。)
The second contact layer 73 is made of magnesium (M
g) It is desirable that the concentration be 1 × 10 20 to 1 × 10 21 / cm 3 . Magnesium (Mg) is 1 × 10 20 -1 × 10 21 /
The p-type layer added to the cm 3 layer can improve the ohmic property of the metal electrode, but the hole concentration is slightly reduced to 1 × 10 17 to 8 × 10 17 / cm 3 . (The Mg concentration is preferably in the above range from the viewpoint of improving ohmic properties, including the range in which the driving voltage can be reduced to 5 V or less.)

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の具体的な実施例に係る発光ダイオード
の構成を示した構成図。
FIG. 1 is a configuration diagram showing a configuration of a light emitting diode according to a specific embodiment of the present invention.

【図2】同実施例の発光ダイオードの製造工程を示した
断面図。
FIG. 2 is a sectional view showing a manufacturing process of the light-emitting diode of the embodiment.

【図3】同実施例の発光ダイオードの製造工程を示した
断面図。
FIG. 3 is a sectional view showing a manufacturing step of the light-emitting diode of the embodiment.

【図4】同実施例の発光ダイオードの色度の合成を示し
た説明図。
FIG. 4 is an explanatory diagram showing the synthesis of chromaticity of the light emitting diode of the embodiment.

【図5】他の実施例の発光ダイオードの色度の合成を示
した説明図。
FIG. 5 is an explanatory diagram showing the synthesis of chromaticity of a light emitting diode according to another embodiment.

【図6】他の実施例の発光ダイオードの量子井戸構造と
各井戸層からの発光の波長強度特性の合成を示した説明
図。
FIG. 6 is an explanatory view showing a quantum well structure of a light emitting diode according to another embodiment and a synthesis of wavelength intensity characteristics of light emitted from each well layer.

【図7】他の実施例の発光ダイオードの各井戸層からの
発光の波長強度特性における光の合成を示した説明図。
FIG. 7 is an explanatory diagram showing light synthesis in wavelength intensity characteristics of light emitted from each well layer of a light emitting diode according to another embodiment.

【図8】他の実施例の発光ダイオードの各井戸層からの
波長強度特性における光の合成を示した説明図。
FIG. 8 is an explanatory diagram showing light synthesis in wavelength intensity characteristics from each well layer of a light emitting diode according to another embodiment.

【図9】他の実施例の発光ダイオードの発光層の構成を
示した断面図。
FIG. 9 is a cross-sectional view illustrating a configuration of a light emitting layer of a light emitting diode according to another embodiment.

【図10】他の実施例の発光ダイオードの発光層の構成
を示した断面図。
FIG. 10 is a cross-sectional view illustrating a configuration of a light emitting layer of a light emitting diode according to another embodiment.

【図11】他の実施例の発光ダイオードの発光層の構成
を示した断面図。
FIG. 11 is a cross-sectional view illustrating a configuration of a light emitting layer of a light emitting diode according to another embodiment.

【符号の説明】[Explanation of symbols]

100…発光ダイオード 1…サファイア基板 2…バッファ層 3…高キャリア濃度n+ 層 4…n層 5…発光層 51…第1多重量子井戸 52…第2多重量子井戸 53…第3多重量子井戸 512,522,552,562,572…井戸層 511,521,551,561,571……バリア層 71…クラッド層 72…第1コンタクト層 72…第2コンタクト層 9…透明電極REFERENCE SIGNS LIST 100 light emitting diode 1 sapphire substrate 2 buffer layer 3 high carrier concentration n + layer 4 n layer 5 light emitting layer 51 first multiple quantum well 52 second multiple quantum well 53 third third quantum well 512 , 522, 552, 562, 572 well layer 511, 521, 551, 561, 571 barrier layer 71 cladding layer 72 first contact layer 72 second contact layer 9 transparent electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 浅見 慎也 愛知県西春日井郡春日町大字落合字長畑1 番地 豊田合成株式会社内 (72)発明者 小出 典克 愛知県西春日井郡春日町大字落合字長畑1 番地 豊田合成株式会社内 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Shinya Asami 1 Ochiai Nagahata, Kasuga-cho, Nishi-Kasugai-gun, Aichi Prefecture Inside Toyoda Gosei Co., Ltd. No. 1 Toyoda Gosei Co., Ltd.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】3族窒化物半導体を用いた多重量子井戸構
造の発光素子において、発光する複数の井戸層の混晶比
を変化させることにより、各井戸層からの発光の合成光
の波長強度特性を所望の特性としたことを特徴とする3
族窒化物半導体発光素子。
In a light emitting device having a multiple quantum well structure using a group III nitride semiconductor, a wavelength intensity of a combined light of light emitted from each well layer is changed by changing a mixed crystal ratio of a plurality of light emitting well layers. 3. The characteristic is a desired characteristic.
Group nitride semiconductor light emitting device.
【請求項2】前記各井戸層からの発光の強度は井戸層の
厚さにより制御されることを特徴とする請求項1に記載
の3族窒化物半導体発光素子。
2. The group III nitride semiconductor light emitting device according to claim 1, wherein the intensity of light emitted from each of the well layers is controlled by the thickness of the well layer.
【請求項3】発光する各井戸層のそれぞれの混晶比を、
xy色度図上において、各井戸層の発光の各色度座標の
平均値が、所望の座標となるような比としたことを特徴
とする請求項1又は請求項2に記載の3族窒化物半導体
発光素子。
3. The composition ratio of each well layer that emits light,
3. The group III nitride according to claim 1, wherein on the xy chromaticity diagram, the average value of the chromaticity coordinates of the light emission of each well layer is set to a ratio so as to be a desired coordinate. 4. Semiconductor light emitting device.
【請求項4】前記平均値は、前記各井戸層からの発光の
明度により加重された平均値であることを特徴とする請
求項3に記載の3族窒化物半導体発光素子。
4. The group III nitride semiconductor light emitting device according to claim 3, wherein said average value is an average value weighted by lightness of light emission from each of said well layers.
【請求項5】前記所望の座標は、略、等エネルギー白色
光の座標(1/3,1/3)としたことを特徴とする請求項3又
は請求項4に記載の3族窒化物半導体発光素子。
5. The group III nitride semiconductor according to claim 3, wherein the desired coordinates are approximately the coordinates (1/3, 1/3) of equi-energy white light. Light emitting element.
【請求項6】少なくとも2つの発光する井戸層のそれぞ
れの混晶比を、各井戸層の発光の色度座標が、xy色度
図上補色関係にある2点となるような比としたことを特
徴とする請求項1に記載の3族窒化物半導体発光素子。
6. The mixed crystal ratio of at least two light emitting well layers is such that the chromaticity coordinates of light emission of each well layer are two points that have complementary colors on the xy chromaticity diagram. The group III nitride semiconductor light emitting device according to claim 1, wherein:
【請求項7】前記複数の井戸層は、各井戸層から放射さ
れた光の波長強度特性の総和が白色光の波長強度特性と
なるように、各井戸層のそれぞれの混晶比が設定されて
いることを特徴とする請求項1又は2に記載の3族窒化
物半導体発光素子。
7. The mixed crystal ratio of each of the plurality of well layers is set such that the sum of the wavelength intensity characteristics of light emitted from each of the well layers becomes the wavelength intensity characteristic of white light. The group III nitride semiconductor light emitting device according to claim 1 or 2, wherein:
【請求項8】前記複数の井戸層は、光取出面に近い側か
ら禁制帯幅が広くなるように混晶比が設定されているこ
とを特徴とする請求項1乃至請求項7のいずれかに記載
の3族窒化物半導体発光素子。
8. A method according to claim 1, wherein the plurality of well layers have a mixed crystal ratio such that a forbidden band width is widened from a side near a light extraction surface. 3. A group III nitride semiconductor light-emitting device according to item 1.
【請求項9】前記3族窒化物半導体は(AlxGa1-X)yIn1-y
N(0 ≦x ≦1;0 ≦y ≦1)であることを特徴とする請求項
1乃至請求項8のいずれかに記載の3族窒化物半導体発
光素子。
9. The group III nitride semiconductor is (Al x Ga 1-X ) y In 1-y
9. The group III nitride semiconductor light emitting device according to claim 1, wherein N (0.ltoreq.x.ltoreq.1; 0.ltoreq.y.ltoreq.1).
【請求項10】前記各井戸層の混晶比の変化に加えて、
前記各井戸層又は/及びバリア層に、アクセプタ不純物
又は/及びドナー不純物を、その種類又は/及び濃度を
変化させて添加することで、各井戸層からの発光の色度
を変化させることを特徴とする請求項1に記載の3族窒
化物半導体発光素子。
10. In addition to the change in the mixed crystal ratio of each well layer,
The chromaticity of light emitted from each well layer is changed by adding an acceptor impurity or / and / or a donor impurity to each of the well layers or / and the barrier layers while changing its type and / or concentration. The group III nitride semiconductor light emitting device according to claim 1, wherein
JP18837196A 1996-06-28 1996-06-28 Group III nitride semiconductor light emitting device Expired - Fee Related JP3543498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18837196A JP3543498B2 (en) 1996-06-28 1996-06-28 Group III nitride semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18837196A JP3543498B2 (en) 1996-06-28 1996-06-28 Group III nitride semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH1022525A true JPH1022525A (en) 1998-01-23
JP3543498B2 JP3543498B2 (en) 2004-07-14

Family

ID=16222453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18837196A Expired - Fee Related JP3543498B2 (en) 1996-06-28 1996-06-28 Group III nitride semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3543498B2 (en)

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135838A (en) * 1997-10-20 1999-05-21 Ind Technol Res Inst White-color light-emitting diode and manufacture thereof
JPH11289108A (en) * 1998-04-03 1999-10-19 Matsushita Electric Ind Co Ltd Gallium nitride compound semiconductor light-emitting element
GB2352329A (en) * 1999-06-15 2001-01-24 Arima Optoelectronics Corp Unipolar light emitting devices based on III-nitride semiconductor superlattices
JP2001028458A (en) * 1998-09-21 2001-01-30 Nichia Chem Ind Ltd Light emitting device
WO2001033640A1 (en) * 1999-11-03 2001-05-10 Osram Opto Semiconductors Gmbh & Co. Ohg Led white light source with broad band stimulation
JP2001168384A (en) * 1999-12-08 2001-06-22 Nichia Chem Ind Ltd Nitride semiconductor light emitting element
WO2001078157A1 (en) * 2000-04-12 2001-10-18 Centre National De La Recherche Scientifique Thin semiconductor gainn layer, method for preparing same, light-emitting diode comprising said layer and illumination device
WO2002049121A1 (en) * 2000-12-11 2002-06-20 Mitsubishi Cable Industries, Ltd. Multi-wavelength luminous element
US6608330B1 (en) 1998-09-21 2003-08-19 Nichia Corporation Light emitting device
US6620643B1 (en) 1999-08-05 2003-09-16 Toyoda Gosei Co., Ltd. Light-emitting device using group III nitride compound semiconductor
US6649943B2 (en) 2001-06-07 2003-11-18 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor light-emitting element
JP2004022969A (en) * 2002-06-19 2004-01-22 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light emitting device
US6774402B2 (en) 2002-03-12 2004-08-10 Showa Denko Kabushiki Kaisha Pn-juction type compound semiconductor light-emitting device, production method thereof and white light-emitting diode
KR100450514B1 (en) * 2002-02-06 2004-09-30 주식회사 엘지이아이 White light emitting diode
JP2005260246A (en) * 2004-03-11 2005-09-22 Samsung Electro Mech Co Ltd Monolithic white light emitting device
WO2005106979A1 (en) * 2004-04-28 2005-11-10 Mitsubishi Cable Industries, Ltd. Nitride semiconductor light emitting element
US6965126B2 (en) 2001-06-13 2005-11-15 Toyoda Gosei Co., Ltd. Light-emitting element
JP2006080525A (en) * 2004-09-09 2006-03-23 Blue Photonics Inc Monolithic multicolored multiple quantum well semiconductor light emitting diode
US7042153B2 (en) 2002-02-12 2006-05-09 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor light emitting element
EP1162670A3 (en) * 2000-06-09 2006-06-07 Lg Electronics Inc. White light emitting diode and method for fabricating the same
JP2006210962A (en) * 2006-05-11 2006-08-10 Matsushita Electric Ind Co Ltd Gallium-nitride-based compound semiconductor light-emitting device
KR100674858B1 (en) 2005-07-07 2007-01-29 삼성전기주식회사 White light emitting device
US7247884B2 (en) 2001-06-08 2007-07-24 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor light-emitting element
JP2007227678A (en) * 2006-02-23 2007-09-06 Matsushita Electric Works Ltd White lighting system using light-emitting diode
KR100764433B1 (en) 2006-04-06 2007-10-05 삼성전기주식회사 Nitride semiconductor device
CN100349306C (en) * 2004-08-27 2007-11-14 中国科学院半导体研究所 Blue light and yellow light quantum sink heap structure white light emitting diode and producing method
DE102006025964A1 (en) * 2006-06-02 2007-12-06 Osram Opto Semiconductors Gmbh Multiple quantum well structure, radiation-emitting semiconductor body and radiation-emitting component
JP2007335799A (en) * 2006-06-19 2007-12-27 Toyoda Gosei Co Ltd Light-emitting apparatus
JP2008159629A (en) * 2006-12-20 2008-07-10 Rohm Co Ltd Semiconductor element for optical communication
WO2009041237A1 (en) * 2007-09-27 2009-04-02 Showa Denko K.K. Iii nitride semiconductor light emitting element
JP2009088562A (en) * 2008-12-26 2009-04-23 Showa Denko Kk Group-iii nitride semiconductor light emitting element
JP2009088553A (en) * 2008-12-03 2009-04-23 Showa Denko Kk Group-iii nitride semiconductor layer, light emitting layer, and iii-group nitride semiconductor light emitting element
JP2010503228A (en) * 2006-09-08 2010-01-28 エージェンシー フォー サイエンス,テクノロジー アンド リサーチ Tunable light emitting diode
JP2010504627A (en) * 2006-09-22 2010-02-12 エージェンシー フォー サイエンス,テクノロジー アンド リサーチ Group III nitride white light emitting diode
DE102009049612A1 (en) 2008-10-17 2010-04-22 Nichia Corp., Anan Light-emitting nitride semiconductor element
JP2010539686A (en) * 2007-09-10 2010-12-16 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Luminescent structure
US7884351B2 (en) 2005-10-18 2011-02-08 Sumitomo Electric Industries, Ltd. Nitride semiconductor light-emitting device
JP2011211228A (en) * 2011-06-21 2011-10-20 Panasonic Electric Works Co Ltd Semiconductor light-emitting element
US8076684B2 (en) 2006-04-07 2011-12-13 Toyoda Gosei Co., Ltd. Group III intride semiconductor light emitting element
WO2012029197A1 (en) * 2010-09-03 2012-03-08 Nkワークス株式会社 Uv semiconductor light-emitting element
WO2012157683A1 (en) * 2011-05-19 2012-11-22 昭和電工株式会社 Group iii nitride semiconductor light-emitting element and method for producing same
US9076913B2 (en) 2011-06-21 2015-07-07 Toyoda Gosei Co., Ltd. Group iii nitride semiconductor light-emitting element
JP2016157977A (en) * 2009-03-30 2016-09-01 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Optoelectronics semiconductor chip
JP2016225568A (en) * 2015-06-03 2016-12-28 シャープ株式会社 Nitride semiconductor light-emitting element
JPWO2016129495A1 (en) * 2015-02-13 2017-10-26 シャープ株式会社 Light source device and light emitting device

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135838A (en) * 1997-10-20 1999-05-21 Ind Technol Res Inst White-color light-emitting diode and manufacture thereof
JPH11289108A (en) * 1998-04-03 1999-10-19 Matsushita Electric Ind Co Ltd Gallium nitride compound semiconductor light-emitting element
JP2001028458A (en) * 1998-09-21 2001-01-30 Nichia Chem Ind Ltd Light emitting device
US7279717B2 (en) 1998-09-21 2007-10-09 Nichia Corporation Light emitting device
US6608330B1 (en) 1998-09-21 2003-08-19 Nichia Corporation Light emitting device
US7042017B2 (en) 1998-09-21 2006-05-09 Nichia Corporation Light emitting device
GB2352329B (en) * 1999-06-15 2001-07-04 Arima Optoelectronics Corp Unipolar light emitting devices based on III- Nitride semiconductor superlattices
GB2352329A (en) * 1999-06-15 2001-01-24 Arima Optoelectronics Corp Unipolar light emitting devices based on III-nitride semiconductor superlattices
US6455870B1 (en) 1999-06-15 2002-09-24 Arima Optoelectronics Corporation Unipolar light emitting devices based on III-nitride semiconductor superlattices
US6620643B1 (en) 1999-08-05 2003-09-16 Toyoda Gosei Co., Ltd. Light-emitting device using group III nitride compound semiconductor
US6734467B2 (en) * 1999-11-03 2004-05-11 Osram Opto Semiconductors Gmbh & Co. Ohg LED white light source with broadband excitation
WO2001033640A1 (en) * 1999-11-03 2001-05-10 Osram Opto Semiconductors Gmbh & Co. Ohg Led white light source with broad band stimulation
JP2001168384A (en) * 1999-12-08 2001-06-22 Nichia Chem Ind Ltd Nitride semiconductor light emitting element
JP4501194B2 (en) * 1999-12-08 2010-07-14 日亜化学工業株式会社 Nitride semiconductor light emitting device
FR2807909A1 (en) * 2000-04-12 2001-10-19 Centre Nat Rech Scient GaInN SEMICONDUCTOR THIN LAYER, PROCESS FOR PREPARING SAME; LED COMPRISING THIS LAYER AND LIGHTING DEVICE COMPRISING SAID LED
WO2001078157A1 (en) * 2000-04-12 2001-10-18 Centre National De La Recherche Scientifique Thin semiconductor gainn layer, method for preparing same, light-emitting diode comprising said layer and illumination device
US6730943B2 (en) 2000-04-12 2004-05-04 Centre National De La Recherche Scientifique Thin semiconductor GaInN layer, method for preparing same, light-emitting diode comprising said layer and illumination device
KR100900933B1 (en) 2000-04-12 2009-06-08 상뜨르 나쇼날 드 라 러쉐르쉬 샹띠피끄 (쎄엔알에스) Thin semiconductor GaInN layer, method for preparing same, light-emitting diode comprising said layer and illumination device
EP1162670A3 (en) * 2000-06-09 2006-06-07 Lg Electronics Inc. White light emitting diode and method for fabricating the same
WO2002049121A1 (en) * 2000-12-11 2002-06-20 Mitsubishi Cable Industries, Ltd. Multi-wavelength luminous element
US6649943B2 (en) 2001-06-07 2003-11-18 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor light-emitting element
US7247884B2 (en) 2001-06-08 2007-07-24 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor light-emitting element
US6965126B2 (en) 2001-06-13 2005-11-15 Toyoda Gosei Co., Ltd. Light-emitting element
KR100450514B1 (en) * 2002-02-06 2004-09-30 주식회사 엘지이아이 White light emitting diode
US7042153B2 (en) 2002-02-12 2006-05-09 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor light emitting element
US6774402B2 (en) 2002-03-12 2004-08-10 Showa Denko Kabushiki Kaisha Pn-juction type compound semiconductor light-emitting device, production method thereof and white light-emitting diode
JP2004022969A (en) * 2002-06-19 2004-01-22 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light emitting device
JP2005260246A (en) * 2004-03-11 2005-09-22 Samsung Electro Mech Co Ltd Monolithic white light emitting device
WO2005106979A1 (en) * 2004-04-28 2005-11-10 Mitsubishi Cable Industries, Ltd. Nitride semiconductor light emitting element
JPWO2005106979A1 (en) * 2004-04-28 2008-03-21 三菱電線工業株式会社 Nitride semiconductor light emitting device
JP5082444B2 (en) * 2004-04-28 2012-11-28 三菱化学株式会社 Nitride semiconductor light emitting device
CN100349306C (en) * 2004-08-27 2007-11-14 中国科学院半导体研究所 Blue light and yellow light quantum sink heap structure white light emitting diode and producing method
JP2006080525A (en) * 2004-09-09 2006-03-23 Blue Photonics Inc Monolithic multicolored multiple quantum well semiconductor light emitting diode
KR100674858B1 (en) 2005-07-07 2007-01-29 삼성전기주식회사 White light emitting device
US7884351B2 (en) 2005-10-18 2011-02-08 Sumitomo Electric Industries, Ltd. Nitride semiconductor light-emitting device
JP2007227678A (en) * 2006-02-23 2007-09-06 Matsushita Electric Works Ltd White lighting system using light-emitting diode
KR100764433B1 (en) 2006-04-06 2007-10-05 삼성전기주식회사 Nitride semiconductor device
US8076684B2 (en) 2006-04-07 2011-12-13 Toyoda Gosei Co., Ltd. Group III intride semiconductor light emitting element
JP2006210962A (en) * 2006-05-11 2006-08-10 Matsushita Electric Ind Co Ltd Gallium-nitride-based compound semiconductor light-emitting device
DE102006025964A1 (en) * 2006-06-02 2007-12-06 Osram Opto Semiconductors Gmbh Multiple quantum well structure, radiation-emitting semiconductor body and radiation-emitting component
JP2007335799A (en) * 2006-06-19 2007-12-27 Toyoda Gosei Co Ltd Light-emitting apparatus
JP2010503228A (en) * 2006-09-08 2010-01-28 エージェンシー フォー サイエンス,テクノロジー アンド リサーチ Tunable light emitting diode
JP2010504627A (en) * 2006-09-22 2010-02-12 エージェンシー フォー サイエンス,テクノロジー アンド リサーチ Group III nitride white light emitting diode
US8120012B2 (en) 2006-09-22 2012-02-21 Agency For Science, Technology And Research Group III nitride white light emitting diode
JP2008159629A (en) * 2006-12-20 2008-07-10 Rohm Co Ltd Semiconductor element for optical communication
JP2010539686A (en) * 2007-09-10 2010-12-16 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Luminescent structure
JP2009081379A (en) * 2007-09-27 2009-04-16 Showa Denko Kk Group iii nitride semiconductor light-emitting device
US8389975B2 (en) 2007-09-27 2013-03-05 Showa Denko K.K. Group III nitride semiconductor light-emitting device
WO2009041237A1 (en) * 2007-09-27 2009-04-02 Showa Denko K.K. Iii nitride semiconductor light emitting element
DE102009049612A1 (en) 2008-10-17 2010-04-22 Nichia Corp., Anan Light-emitting nitride semiconductor element
JP2009088553A (en) * 2008-12-03 2009-04-23 Showa Denko Kk Group-iii nitride semiconductor layer, light emitting layer, and iii-group nitride semiconductor light emitting element
JP2009088562A (en) * 2008-12-26 2009-04-23 Showa Denko Kk Group-iii nitride semiconductor light emitting element
JP2016157977A (en) * 2009-03-30 2016-09-01 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Optoelectronics semiconductor chip
WO2012029197A1 (en) * 2010-09-03 2012-03-08 Nkワークス株式会社 Uv semiconductor light-emitting element
JP2012243934A (en) * 2011-05-19 2012-12-10 Showa Denko Kk Group iii nitride semiconductor light-emitting element and manufacturing method therefor
WO2012157683A1 (en) * 2011-05-19 2012-11-22 昭和電工株式会社 Group iii nitride semiconductor light-emitting element and method for producing same
US9324912B2 (en) 2011-05-19 2016-04-26 Toyoda Gosei Co., Ltd. Group III nitride semiconductor light-emitting element and method for producing same
US9076913B2 (en) 2011-06-21 2015-07-07 Toyoda Gosei Co., Ltd. Group iii nitride semiconductor light-emitting element
JP2011211228A (en) * 2011-06-21 2011-10-20 Panasonic Electric Works Co Ltd Semiconductor light-emitting element
JPWO2016129495A1 (en) * 2015-02-13 2017-10-26 シャープ株式会社 Light source device and light emitting device
US10332866B2 (en) 2015-02-13 2019-06-25 Sharp Kabushiki Kaisha Light source device and light emitting apparatus
JP2016225568A (en) * 2015-06-03 2016-12-28 シャープ株式会社 Nitride semiconductor light-emitting element

Also Published As

Publication number Publication date
JP3543498B2 (en) 2004-07-14

Similar Documents

Publication Publication Date Title
JP3543498B2 (en) Group III nitride semiconductor light emitting device
KR100532650B1 (en) Semiconductor luminous element of iii nitride group
US8389975B2 (en) Group III nitride semiconductor light-emitting device
TWI381554B (en) Light emitting diode structure, multiple quantum well structure thereof, and method for fabricating the multiple quantum well structure
JP4116260B2 (en) Semiconductor light emitting device
US20090206320A1 (en) Group iii nitride white light emitting diode
US7884351B2 (en) Nitride semiconductor light-emitting device
JP2001053336A (en) Iii nitride compound semiconductor light emitting element
JPH09153644A (en) Group-iii nitride semiconductor display device
JP2003158296A (en) Nitride semiconductor light emitting device chip and its manufacturing method
JP3341492B2 (en) Group III nitride semiconductor light emitting device
JP3675044B2 (en) Group 3 nitride semiconductor light emitting device
JP3620877B2 (en) Group 3 nitride semiconductor planar light emitting device
JP2000150956A (en) Nitride semiconductor light emitting element
JP3978858B2 (en) Gallium nitride compound semiconductor light emitting device
KR20080026882A (en) Nitride semiconductor light emitting device and manufacturing method thereof
JP2000286506A (en) Gallium nitride light-emitting device
JP2003332619A (en) Semiconductor light emitting element
JP2002305327A (en) Nitride-based semiconductor light emitting device
JPH10144961A (en) Semiconductor light-emitting element
US7875478B2 (en) Method for controlling color contrast of a multi-wavelength light-emitting diode
TWI785693B (en) Full-color light emitting device
KR100312019B1 (en) Fabrication Method for White Light Emitting Diode Using InGaN Phase Separation
JP3341510B2 (en) Group III nitride semiconductor planar light emitting device
WO2022109797A1 (en) Multi-wavelength led structure and manufacturing method therefor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031224

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040329

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees