JP3620877B2 - Group 3 nitride semiconductor planar light emitting device - Google Patents

Group 3 nitride semiconductor planar light emitting device Download PDF

Info

Publication number
JP3620877B2
JP3620877B2 JP24883994A JP24883994A JP3620877B2 JP 3620877 B2 JP3620877 B2 JP 3620877B2 JP 24883994 A JP24883994 A JP 24883994A JP 24883994 A JP24883994 A JP 24883994A JP 3620877 B2 JP3620877 B2 JP 3620877B2
Authority
JP
Japan
Prior art keywords
light emitting
layer
emitting unit
electrode
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24883994A
Other languages
Japanese (ja)
Other versions
JPH0888407A (en
Inventor
道成 佐々
典克 小出
正好 小池
勝英 真部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP24883994A priority Critical patent/JP3620877B2/en
Priority to US08/522,110 priority patent/US5650641A/en
Publication of JPH0888407A publication Critical patent/JPH0888407A/en
Application granted granted Critical
Publication of JP3620877B2 publication Critical patent/JP3620877B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars

Description

【0001】
【産業上の利用分野】
本発明は3族窒化物半導体を用いた発光素子に関する。
【0002】
従来、青色の発光ダイオードとしてAlGaInN 系の化合物半導体を用いたものが知られている。その化合物半導体は直接遷移型であることから発光効率が高いこと、光の3原色の1つである青色を発光色とすること等から注目されている。
【0003】
最近、AlGaInN 系半導体においても、Mgをドープして電子線を照射したり、熱処理によりp型化できることが明らかになった。この結果、従来のn層と半絶縁層(i層)とを接合させたMIS 型に換えて、AlGaN のp層と、ZnドープのInGaN の発光層と、AlGaN のn層とを用いたダブルヘテロpn接合を有する発光ダイオードが提案されている。
【0004】
【発明が解決しようとする課題】
上記のダブルヘテロpn接合型の発光ダイオードの発光層には発光中心としてZnだけがドープされているので、発光層は半絶縁性である。発光層にはn層から電子がp層から正孔が注入され、この注入された電子と正孔の再結合により発光する。
【0005】
本発明者は、いろいろと実験を重ねた結果、発光層に添加されるドナー不純物とアクセプタ不純物との添加量を変化させて、発光色を測定した。その結果、ドナー不純物濃度とアクセプタ不純物濃度により発光層の発光色が変化するのが観測された。
【0006】
本発明は上記の観測事実に基づいて成されたものであり、その目的は、GaN 系化合物半導体を用いて同一基板から光の3原色を発光させることである。
【0007】
【課題を解決するための手段】
請求項1の発明は、サファイア基板上に3族窒化物半導体(AlxGaYIn1-X-YN;X=0,Y=0,X=Y=0 を含む) を多層形成した平面発光素子において、
n伝導型を示すn層と、p伝導型を示すp層と、その間に介在する発光層が、狭いバンドギャップの半導体を広いバンドギャップの半導体で挟んだ構造のダブルヘテロ接合で形成された3層構造の、サファイア基板上に形成された第1発光部と、第1発光部上に形成され、第1発光部と同様な構成の第2発光部と、第2発光部上に形成され、第1発光部と同様な構成の第3発光部と、各発光部の表面層以外の内部に存在する各n層及び各p層に到る溝を形成してその溝を介して各n層、各p層に接合して電極、及び表面層に接合した電極と、各発光部間を絶縁分離する素子間分離溝と、各発光部のn層に対する電極とp層に対する電極とが発光層を介さずに短絡することを防止する電極間分離溝とを有し、各電極は、各n層、各p層から表面層まで前記溝に沿って形成され、表面層付近にて各々外部電極と接続可能となっており、素子間分離溝と電極間分離溝により3つの各発光部のn層に対する電極とp層に対する電極が全て個々に分離されており、各発光部の前記各発光層は、アクセプタ不純物又はドナー不純物の濃度を適正に設定することにより、サファイア基板上に形成された第1発光部から青色、第1発光部上に形成された第2発光部から緑色、第2発光部上に形成された第3発光部から赤色の3原色を発光させることを特徴とする。
【0008】
請求項2の発明は、請求項1の構造の平面発光素子において、各発光部の各発光層における結晶の組成比X,Yを適正に設定することにより、サファイア基板上に形成された第1発光部から青色、第1発光部上に形成された第2発光部から緑色、第2発光部上に形成された第3発光部から赤色の3原色を発光させることを特徴とする。
【0009】
請求項3の発明は、請求項1の構造の平面発光素子において、各発光部の各発光層におけるアクセプタ不純物又はドナー不純物の濃度を適正に設定し、且つ、各発光部の各発光層における結晶の組成比X,Yを適正に設定することにより、サファイア基板上に形成された第1発光部から青色、第1発光部上に形成された第2発光部から緑色、第2発光部上に形成された第3発光部から赤色の3原色を発光させることを特徴とする。
【0010】
請求項4の発明は、請求項1〜請求項3の発明において、第2発光部の発光層の下のp層又はn層を、第1発光部のp層又はn層と共通化し、第2発光部の発光層の上のn層又はp層を、第3発光部のn層又はp層と共通化したこを特徴とする。
【0011】
請求項5の発明は、請求項1〜請求項4の発明において、ドナー不純物をシリコン(Si)、アクセプタ不純物を亜鉛(Zn)としたことを特徴とする。
【0012】
請求項6の発明は、請求項1〜請求項5の発明において、発光層はp型化されていることを特徴とする。
【0013】
請求項7、8、9の発明は、各発光層は請求項1、2、3に対応し、構造は請求項1のように溝を形成してその溝に電極を形成するのではなく、各発光部のn層及びp層の一部が露出するように、各発光部を階段状に露出させ、n層及びp層の露出部に電極を形成したことを特徴とする。
【0014】
【0015】
【発明の作用及び効果】
上記のように、同一のサファイア基板上に各発光部を多層形成し、その各発光部の発光層において、ドナー不純物とアクセプタ不純物の濃度を適正に設定し、又は、結晶の組成比X,Yを適正に設定することで各発光部から、サファイア基板に近いほうから順に青、緑、赤の光の3原色を得ることができる。このようにして、同一基板を用いて光の3原色を発光できる平面発光装置を構成することができる
【0016】
【実施例】
第1実施例
図1において、平面発光素子100は、サファイア基板1を有しており、そのサファイア基板1上に500 ÅのAlN のバッファ層2が形成されている。そのバッファ層2の上には、順に、膜厚約2.0 μm、電子濃度 2×1018/cm3のシリコンドープのGaN から成るn層11、膜厚約0.5 μm、亜鉛(Zn)が濃度 1×1018/cm3で、シリコンが濃度 1×1018/cm3でドープされたIn0.08Ga0.92N から成る発光層12、膜厚約1.0 μm、ホール濃度2 ×1017/cm3のマグネシウムドープのGaN から成るp層13が形成されている。この3層11,12,13が第1発光部Aを形成している。
【0017】
次に、第1発光部Aの上に、順に、膜厚約2.0 μm、電子濃度 2×1018/cm3のシリコンドープのGaN から成るn層21、膜厚約0.5 μm、亜鉛(Zn)が濃度 5×1019/cm3で、シリコン(Si)が濃度 5×1019/cm3でドープされたIn0.08Ga0.92N から成る発光層22、膜厚約1.0 μm、ホール濃度2 ×1017/cm3のマグネシウムドープのGaN から成るp層23が形成されている。この3層21,22,23が第2発光部Bを形成している。
【0018】
次に、第2発光部Bの上に、順に、膜厚約2.0 μm、電子濃度 2×1018/cm3のシリコンドープのGaN から成るn層31、膜厚約0.5 μm、亜鉛(Zn)が濃度 5×1019/cm3でドープされたIn0.08Ga0.92N から成る発光層32、膜厚約1.0 μm、ホール濃度2 ×1017/cm3のマグネシウムドープのGaN から成るp層33が形成されている。この3層31,32,33が第3発光部Cを形成している。
【0019】
そして、第1発光部Aにおいて、n層11に接合するニッケルで形成された電極81、p層13に接合するニッケルで形成された電極71が形成されている。又、第2発光部Bにおいて、n層21に接合するニッケルで形成された電極82、p層23に接合するニッケルで形成された電極72が形成されている。又、第3発光部Cにおいて、n層31に接合するニッケルで形成された電極83、p層33に接合するニッケルで形成された電極73が形成されている。そして、各発光部間を分離する素子間分離溝61,62,63,64、各発光部における電極間を分離する電極間分離溝91,92,93が形成されている。
【0020】
次に、この構造の平面発光素子100の製造方法について説明する。
上記平面発光素子100は、有機金属化合物気相成長法( 以下「M0VPE 」と記す) による気相成長により製造された。
用いられたガスは、NH3 とキャリアガスH2又はN2とトリメチルガリウム(Ga(CH3)3)(以下「TMG 」と記す) とトリメチルアルミニウム(Al(CH3)3)(以下「TMA 」と記す) とトリメチルインジウム(In(CH3)3)(以下「TMI 」と記す) とシラン(SiH4)とジエチル亜鉛(以下「DEZ 」と記す) である。
【0021】
まず、有機洗浄及び熱処理により洗浄したa面を主面とする単結晶のサファイア基板1をM0VPE 装置の反応室に載置されたサセプタに装着する。次に、常圧でH2を流速2 liter/分で反応室に流しながら温度1100℃でサファイア基板1を気相エッチングした。
【0022】
次に、温度を 400℃まで低下させて、H2を20 liter/分、NH3 を10 liter/分、TMA を 1.8×10-5モル/分で供給してAlN のバッファ層2が約 500Åの厚さに形成された。次に、サファイア基板1の温度を1150℃に保持し、N2又はH2を10 liter/分、NH3 を 10liter/分、TMG を1.12×10-4モル/分、及び、シランを導入し、膜厚約 2.0μm、濃度 2×1018/cm3のシリコンドープのGaN から成るn層11を形成した。
【0023】
続いて、温度を850 ℃に保持し、N2又はH2を20 liter/分、NH3 を 10liter/分、TMG を1.53×10-4モル/分、TMI を0.02×10-4モル/分、及び、DEZ を2 ×10-7モル/分とシランを10×10-9モル/分導入し、膜厚約0.5 μmの亜鉛(Zn)ととシリコン(Si)ドープのIn0.08Ga0.92N から成る発光層12を形成した。この発光層12における亜鉛(Zn)の濃度は 1×1018/cm3、シリコン(Si)の濃度は 1×1018/cm3である。
【0024】
続いて、温度を 850℃に保持し、N2又はH2を20 liter/分、NH3 を 10liter/分、TMG を1.12×10-4モル/分、及び、CP2Mg を2 ×10-4モル/分導入し、膜厚約1.0 μmのマグネシウム(Mg)ドープのGaN から成るp層13を形成した。p層13のマグネシウムの濃度は1 ×1020/cm3である。この状態では、p層13は、まだ、抵抗率108 Ωcm以上の絶縁体である。
【0025】
次に、サファイア基板1の温度を850 ℃に保持し、N2又はH2を10 liter/分、NH3 を 10liter/分、TMG を1.12×10-4モル/分、及び、シランを導入し、膜厚約 2.0μm、濃度 2×1018/cm3のシリコンドープのGaN から成るn層21を形成した。
【0026】
続いて、温度を850 ℃に保持し、N2又はH2を20 liter/分、NH3 を 10liter/分、TMG を1.53×10-4モル/分、TMI を0.02×10-4モル/分、及び、DEZ を1 ×10-5モル/分とシランを 5×10-7モル/分導入し、膜厚約 0.5μmの亜鉛(Zn)ととシリコン(Si)ドープのIn0.08Ga0.92N から成る発光層22を形成した。この発光層22における亜鉛(Zn)の濃度は 5×1019/cm3、シリコン(Si)の濃度は 5×1019/cm3である。
【0027】
続いて、温度を 850℃に保持し、N2又はH2を20 liter/分、NH3 を 10liter/分、TMG を1.12×10-4モル/分、及び、CP2Mg を2 ×10-4モル/分導入し、膜厚約1.0 μmのマグネシウム(Mg)ドープのGaN から成るp層23を形成した。p層23のマグネシウムの濃度は1 ×1020/cm3である。この状態では、p層13は、まだ、抵抗率108 Ωcm以上の絶縁体である。
【0028】
次に、温度を850 ℃に保持し、N2又はH2を10 liter/分、NH3 を 10liter/分、TMG を1.12×10-4モル/分、及び、シランを導入し、膜厚約 2.0μm、濃度 2×1018/cm3のシリコンドープのGaN から成るn層31を形成した。
【0029】
続いて、温度を850 ℃に保持し、N2又はH2を20 liter/分、NH3 を 10liter/分、TMG を1.53×10-4モル/分、TMI を0.02×10-4モル/分、及び、DEZ を1 ×10-5モル/分導入し、膜厚約0.5 μmの亜鉛(Zn)ドープのIn0.08Ga0.92N から成る発光層32を形成した。この発光層32における亜鉛(Zn)の濃度は 5×1019/cm3である。
【0030】
続いて、温度を 850℃に保持し、N2又はH2を20 liter/分、NH3 を 10liter/分、TMG を1.12×10-4モル/分、及び、CP2Mg を2 ×10-4モル/分導入し、膜厚約1.0 μmのマグネシウム(Mg)ドープのGaN から成るp層33を形成した。p層33のマグネシウムの濃度は 1×1020/cm3である。この状態では、p層33は、まだ、抵抗率108 Ωcm以上の絶縁体である。
【0031】
次に、この多層膜構造の基板1を温度900 ℃で 5分間加熱処理して、p層13、23、33を、それぞれ、ホール濃度 2×1017/cm3、抵抗率 2Ωcmのp伝導型化した。
【0032】
次に、SiO2膜、フォトレジスト膜を用いて、フォトリソグラフにより、所定パターンのSiO2膜を形成して、その膜をマスクとして、溝61〜64、91〜93及び電極81〜83、電極71〜72の形成部位に各溝を形成した。この溝は深さの等しい溝毎に、フォトリソグラフにより、所定パターンのマスクを形成した後、エッチングにより形成された。そして、電極81〜83、電極71〜72を、ニッケルを一様に蒸着し、フォトリソグラフによりマスクを形成した後、エッチングすることで、図1に示すように形成した。
【0033】
このように形成された平面発光素子において、電極71,72,73を電極81,82,83に対して、正電位とすることで、発光部Aでは青色発光、発光部Bでは緑色発光、発光部Cでは赤色発光が得られた。尚、図1は平面発光素子100の1画素の構造を示したものであり、実際の構成は、この画素構造が格子状に繰り返されている。このようにして、フルカラーの平面発光素子が得られる。
【0034】
第2実施例
第2実施例の平面発光素子200は図2に示す構成である。n層11、発光層12、p層13とから成る第1発光部Aと、n層31、発光層32、p層33とから成る第3発光部Cは、第1実施例における平面発光素子100の第1発光部A、第3発光部Cと全く同一である。第2実施例の平面発光素子200の第2発光部Bは、第1発光部Aのp層13、発光層22と、第3発光部Cのn層31とで構成されている。即ち、第2発光部Bのp層、n層の発光層に対する配置が第1、第3発光部A,Cと逆になっており、第2発光部Bのp層は第1発光部Aのp層と共通、第2発光部Bのn層は第3発光部Cのn層と共通化されている。
【0035】
又、素子間分離溝61〜64は、各発光部A,B,Cが、それぞれ、分離される深さに形成されている。又、電極間分離溝91〜93は、各発光部の電極間が分離される深さに構成されている。
【0036】
上記の第1及び第2実施例において、発光層12、22、32はマグネシウムを添加したものであり、各層の形成後に熱処理することでp層13、23、33と同様にp型化したものでも良い。
【0037】
又、図3に示すように、n層11、p層13、n層21、p層23、n層31の表面が露出するように、階段状にエッチングして、各層の露出面に電極81、71、82、72、83を形成しても良い。但し、素子間分離溝91、92は必要である。溝の深さは、pn接合による分離ができない素子に対して分離ができる深さに形成される。
【0038】
又、図2のような構成において、各層を露出させた場合には、図4に示すように、露出した各層に電極81、71、72、73を形成することもできる。電極81、71は第1発光部Aに対する電極であり、電極72、73は第3発光部Cに対する電極である。又、第2発光部Bに対する電極は電極72、71である。即ち、図4の構成では、第2発光部Bの電極は、第1発光部Aの電極71と、第3発光部Cの電極72と共通化されている。
【0039】
上記実施例において青色発光の第1発光部Aの発光層12のシリコン濃度は 1×1019/cm3以下、亜鉛濃度は 1×1019/cm3以下が望ましい。緑色発光の第2発光部Bの発光層22のシリコン濃度は 1×1019〜 1×1021/cm3の範囲、亜鉛濃度は1 ×1019〜 1×1021/cm3の範囲が望ましい。又、赤色発光の第3発光部Cは亜鉛だけの添加であってその濃度は 1×1019〜 1×1021/cm3の範囲が望ましい。
【0040】
上記の実施例では、発光層におけるアクセプタ濃度、ドナー濃度を変化させることで、青、緑、赤の発光色を発生させているが、発光層InxGa1-XN における組成比Xを0.08, 0.15, 0.30のように変化させて、青、緑、赤の発光色を得るようにしても良い。
さらに、各層は、AlxGaYIn1-X-YN(X=0,Y=0,X=Y=0を含む) で構成し、発光層が両側の層よりもバンドギャップが小さくなるような結晶比で、且つ、青、緑、赤の3原色の発光を得るようにしても良い。
【図面の簡単な説明】
【図1】本発明の具体的な第1実施例に係る面発光素子の構造を示した断面図。
【図2】本発明の具体的な第2実施例に係る面発光素子の構造を示した断面図。
【図3】本発明の他の実施例にかかる面発光素子の構造を示した断面図。
【図4】本発明の他の実施例にかかる面発光素子の構造を示した断面図。
【符号の説明】
100,200…面発光素子
1…サファイア基板
2…バッファ層
11,21,31…n層
12,22,32…発光層
13,23,33…p層
61〜64…素子間分離溝
91〜93…電極間分離溝
[0001]
[Industrial application fields]
The present invention relates to a light emitting device using a group 3 nitride semiconductor.
[0002]
Conventionally, a blue light emitting diode using an AlGaInN compound semiconductor is known. Since the compound semiconductor is a direct transition type, it has been attracting attention because of its high luminous efficiency and the fact that one of the three primary colors of light is blue.
[0003]
Recently, it has become clear that AlGaInN semiconductors can also be made p-type by doping Mg and irradiating them with an electron beam, or by heat treatment. As a result, instead of the conventional n-layer and semi-insulating layer (i-layer) MIS type, a double layer using an AlGaN p-layer, a Zn-doped InGaN light-emitting layer, and an AlGaN n-layer is used. A light emitting diode having a hetero pn junction has been proposed.
[0004]
[Problems to be solved by the invention]
Since the light emitting layer of the double hetero pn junction type light emitting diode is doped only with Zn as the light emission center, the light emitting layer is semi-insulating. Electrons from the n layer and holes from the p layer are injected into the light emitting layer, and light is emitted by recombination of the injected electrons and holes.
[0005]
As a result of various experiments, the present inventor measured the emission color by changing the addition amount of the donor impurity and the acceptor impurity added to the light emitting layer. As a result, it was observed that the emission color of the light emitting layer changes depending on the donor impurity concentration and the acceptor impurity concentration.
[0006]
The present invention has been made on the basis of the above observation facts, and its object is to emit three primary colors of light from the same substrate using a GaN compound semiconductor.
[0007]
[Means for Solving the Problems]
The invention according to claim 1 is a planar light emitting device in which a group 3 nitride semiconductor (Al x Ga Y In 1-XY N; including X = 0, Y = 0, X = Y = 0) is formed on a sapphire substrate. In
An n layer exhibiting an n-conductivity type, a p layer exhibiting a p-conductivity type, and a light-emitting layer interposed therebetween are formed by a double heterojunction having a structure in which a narrow band gap semiconductor is sandwiched between wide band gap semiconductors. A first light-emitting part formed on the sapphire substrate, a second light-emitting part formed on the first light-emitting part and having the same configuration as the first light-emitting part, and a second light-emitting part; A third light-emitting portion having the same configuration as the first light-emitting portion, and each n layer existing inside the light emitting portion other than the surface layer and a groove reaching each p layer are formed, and each n layer is formed through the groove. An electrode bonded to each p layer, an electrode bonded to the surface layer, an element isolation groove for insulating and separating each light emitting portion, and an electrode for the n layer and an electrode for the p layer of each light emitting portion the and an inter-electrode separation grooves for preventing the short circuit without intervention, each electrode, each n layer, the surface of the p layer Until formed along the groove, has become connectable to each external electrode in the vicinity of the surface layer, the electrode to the electrode and the p layer to the n layer of the light-emitting portions of the three by the element isolation groove and the inter-electrode separation groove Are separated from each other, and each light emitting layer of each light emitting portion is blue, first colored from the first light emitting portion formed on the sapphire substrate by appropriately setting the acceptor impurity or donor impurity concentration. Three primary colors of green are emitted from the second light emitting unit formed on the light emitting unit, and red is emitted from the third light emitting unit formed on the second light emitting unit.
[0008]
According to a second aspect of the present invention, in the planar light emitting device having the structure of the first aspect, the first composition formed on the sapphire substrate by appropriately setting the composition ratios X and Y of the crystal in each light emitting layer of each light emitting portion. It is characterized in that the three primary colors of blue are emitted from the light emitting part, green from the second light emitting part formed on the first light emitting part, and red from the third light emitting part formed on the second light emitting part.
[0009]
According to a third aspect of the present invention, in the planar light emitting device having the structure of the first aspect, the concentration of the acceptor impurity or the donor impurity in each light emitting layer of each light emitting portion is set appropriately, and the crystal in each light emitting layer of each light emitting portion By appropriately setting the composition ratios X and Y, the first light emitting part formed on the sapphire substrate is blue, the second light emitting part formed on the first light emitting part is green, and the second light emitting part is on the second light emitting part. It is characterized in that the three primary colors of red light are emitted from the formed third light emitting part.
[0010]
According to a fourth aspect of the present invention, in the first to third aspects of the invention, the p layer or the n layer under the light emitting layer of the second light emitting unit is shared with the p layer or the n layer of the first light emitting unit, The n layer or the p layer on the light emitting layer of the two light emitting parts is made common with the n layer or the p layer of the third light emitting part.
[0011]
The invention of claim 5 is characterized in that, in the inventions of claims 1 to 4, the donor impurity is silicon (Si) and the acceptor impurity is zinc (Zn).
[0012]
The invention of claim 6 is characterized in that, in the inventions of claims 1 to 5, the light emitting layer is p-type.
[0013]
In the inventions of claims 7, 8, and 9, each light emitting layer corresponds to claims 1, 2, and 3, and the structure is not formed by forming a groove as in claim 1 and forming an electrode in the groove. Each light emitting portion is exposed stepwise so that a part of the n layer and p layer of each light emitting portion is exposed, and electrodes are formed on the exposed portions of the n layer and the p layer.
[0014]
[0015]
[Action and effect of the invention]
As described above, each light-emitting portion is formed in multiple layers on the same sapphire substrate, and in the light-emitting layer of each light-emitting portion, the concentration of donor impurity and acceptor impurity is set appropriately, or the crystal composition ratio X, Y By appropriately setting, the three primary colors of blue, green, and red light can be obtained in order from the side closer to the sapphire substrate from each light emitting portion. In this way, a planar light emitting device that can emit three primary colors of light using the same substrate can be configured.
【Example】
First embodiment In Fig. 1, a flat light emitting device 100 has a sapphire substrate 1, on which a 500500 AlN buffer layer 2 is formed. On the buffer layer 2, an n layer 11 made of silicon-doped GaN having a thickness of about 2.0 μm and an electron concentration of 2 × 10 18 / cm 3 , a thickness of about 0.5 μm, and zinc (Zn) concentration 1 in that order. in × 10 18 / cm 3, the light emitting layer 12 made of doped in 0.08 Ga 0.92 N silicon at a concentration of 1 × 10 18 / cm 3, a thickness of about 1.0 [mu] m, magnesium hole concentration 2 × 10 17 / cm 3 A p-layer 13 made of doped GaN is formed. The three layers 11, 12 and 13 form the first light emitting part A.
[0017]
Next, an n layer 21 made of silicon-doped GaN having a film thickness of about 2.0 μm and an electron concentration of 2 × 10 18 / cm 3 , a film thickness of about 0.5 μm, and zinc (Zn) are sequentially formed on the first light emitting portion A. in but a concentration 5 × 10 19 / cm 3, silicon (Si) concentration 5 × 10 19 / cm 3 consisting of doped in 0.08 Ga 0.92 N light-emitting layer 22, a thickness of about 1.0 [mu] m, a hole concentration 2 × 10 A p layer 23 made of 17 / cm 3 of magnesium-doped GaN is formed. The three layers 21, 22, and 23 form the second light emitting portion B.
[0018]
Next, an n layer 31 made of silicon-doped GaN having a film thickness of about 2.0 μm and an electron concentration of 2 × 10 18 / cm 3 , a film thickness of about 0.5 μm, and zinc (Zn) in order on the second light emitting portion B Is a light emitting layer 32 made of In 0.08 Ga 0.92 N doped with a concentration of 5 × 10 19 / cm 3 , a p layer 33 made of magnesium doped GaN with a film thickness of about 1.0 μm and a hole concentration of 2 × 10 17 / cm 3. Is formed. The three layers 31, 32, and 33 form the third light emitting portion C.
[0019]
In the first light emitting portion A, an electrode 81 formed of nickel bonded to the n layer 11 and an electrode 71 formed of nickel bonded to the p layer 13 are formed. In the second light emitting portion B, an electrode 82 formed of nickel bonded to the n layer 21 and an electrode 72 formed of nickel bonded to the p layer 23 are formed. Further, in the third light emitting portion C, an electrode 83 formed of nickel bonded to the n layer 31 and an electrode 73 formed of nickel bonded to the p layer 33 are formed. Inter-element separation grooves 61, 62, 63, 64 for separating the light emitting portions, and inter-electrode separation grooves 91, 92, 93 for separating the electrodes in the light emitting portions are formed.
[0020]
Next, a method for manufacturing the planar light emitting device 100 having this structure will be described.
The planar light emitting device 100 was manufactured by vapor phase growth using an organic metal compound vapor phase growth method (hereinafter referred to as “M0VPE”).
The gases used were NH 3 and carrier gas H 2 or N 2 , trimethylgallium (Ga (CH 3 ) 3 ) (hereinafter referred to as “TMG”) and trimethylaluminum (Al (CH 3 ) 3 ) (hereinafter referred to as “TMA”). And trimethylindium (In (CH 3 ) 3 ) (hereinafter referred to as “TMI”), silane (SiH 4 ), and diethylzinc (hereinafter referred to as “DEZ”).
[0021]
First, the single crystal sapphire substrate 1 having the a-plane as a main surface cleaned by organic cleaning and heat treatment is mounted on a susceptor mounted in the reaction chamber of the M0VPE apparatus. Next, the sapphire substrate 1 was vapor-phase etched at a temperature of 1100 ° C. while flowing H 2 at normal pressure and a flow rate of 2 liter / min into the reaction chamber.
[0022]
Next, the temperature is lowered to 400 ° C., H 2 is supplied at 20 liter / min, NH 3 is supplied at 10 liter / min, and TMA is supplied at 1.8 × 10 −5 mol / min. The thickness was formed. Next, the temperature of the sapphire substrate 1 is maintained at 1150 ° C., N 2 or H 2 is 10 liter / min, NH 3 is 10 liter / min, TMG is 1.12 × 10 −4 mol / min, and silane is introduced. An n layer 11 made of silicon-doped GaN having a thickness of about 2.0 μm and a concentration of 2 × 10 18 / cm 3 was formed.
[0023]
Subsequently, the temperature is maintained at 850 ° C., N 2 or H 2 is 20 liter / min, NH 3 is 10 liter / min, TMG is 1.53 × 10 −4 mol / min, and TMI is 0.02 × 10 −4 mol / min. DEZ was introduced at 2 × 10 −7 mol / min and silane at 10 × 10 −9 mol / min, and zinc (Zn) with a thickness of about 0.5 μm and silicon (Si) doped In 0.08 Ga 0.92 N A light emitting layer 12 made of was formed. The concentration of zinc (Zn) in the light emitting layer 12 is 1 × 10 18 / cm 3 , and the concentration of silicon (Si) is 1 × 10 18 / cm 3 .
[0024]
Subsequently, the temperature is maintained at 850 ° C., N 2 or H 2 is 20 liter / min, NH 3 is 10 liter / min, TMG is 1.12 × 10 −4 mol / min, and CP 2 Mg is 2 × 10 − A p layer 13 made of GaN doped with magnesium (Mg) and having a thickness of about 1.0 μm was formed by introducing 4 mol / min. The concentration of magnesium in the p layer 13 is 1 × 10 20 / cm 3 . In this state, the p layer 13 is still an insulator having a resistivity of 10 8 Ωcm or more.
[0025]
Next, the temperature of the sapphire substrate 1 is maintained at 850 ° C., N 2 or H 2 is 10 liter / min, NH 3 is 10 liter / min, TMG is 1.12 × 10 −4 mol / min, and silane is introduced. An n layer 21 made of silicon-doped GaN having a thickness of about 2.0 μm and a concentration of 2 × 10 18 / cm 3 was formed.
[0026]
Subsequently, the temperature is maintained at 850 ° C., N 2 or H 2 is 20 liter / min, NH 3 is 10 liter / min, TMG is 1.53 × 10 −4 mol / min, and TMI is 0.02 × 10 −4 mol / min. DEZ is introduced at 1 × 10 −5 mol / min and silane is introduced at 5 × 10 −7 mol / min, and zinc (Zn) having a film thickness of about 0.5 μm and silicon (Si) doped In 0.08 Ga 0.92 N A light emitting layer 22 made of was formed. The concentration of zinc (Zn) in the light emitting layer 22 is 5 × 10 19 / cm 3 and the concentration of silicon (Si) is 5 × 10 19 / cm 3 .
[0027]
Subsequently, the temperature is maintained at 850 ° C., N 2 or H 2 is 20 liter / min, NH 3 is 10 liter / min, TMG is 1.12 × 10 −4 mol / min, and CP 2 Mg is 2 × 10 − A p layer 23 made of GaN doped with magnesium (Mg) and having a thickness of about 1.0 μm was formed by introducing 4 mol / min. The concentration of magnesium in the p layer 23 is 1 × 10 20 / cm 3 . In this state, the p layer 13 is still an insulator having a resistivity of 10 8 Ωcm or more.
[0028]
Next, the temperature is maintained at 850 ° C., N 2 or H 2 is introduced at 10 liter / minute, NH 3 is introduced at 10 liter / minute, TMG is introduced at 1.12 × 10 −4 mol / minute, and silane is introduced to obtain a film thickness of about An n layer 31 made of silicon-doped GaN having a thickness of 2.0 μm and a concentration of 2 × 10 18 / cm 3 was formed.
[0029]
Subsequently, the temperature is maintained at 850 ° C., N 2 or H 2 is 20 liter / min, NH 3 is 10 liter / min, TMG is 1.53 × 10 −4 mol / min, and TMI is 0.02 × 10 −4 mol / min. DEZ was introduced at 1 × 10 −5 mol / min to form a light emitting layer 32 made of zinc (Zn) -doped In 0.08 Ga 0.92 N having a thickness of about 0.5 μm. The concentration of zinc (Zn) in the light emitting layer 32 is 5 × 10 19 / cm 3 .
[0030]
Subsequently, the temperature is maintained at 850 ° C., N 2 or H 2 is 20 liter / min, NH 3 is 10 liter / min, TMG is 1.12 × 10 −4 mol / min, and CP 2 Mg is 2 × 10 − A p layer 33 made of GaN doped with magnesium (Mg) having a thickness of about 1.0 μm was formed by introducing 4 mol / min. The concentration of magnesium in the p layer 33 is 1 × 10 20 / cm 3 . In this state, the p layer 33 is still an insulator having a resistivity of 10 8 Ωcm or more.
[0031]
Next, the substrate 1 having this multilayer structure is heat-treated at a temperature of 900 ° C. for 5 minutes, so that the p layers 13, 23, and 33 are p-conductivity type having a hole concentration of 2 × 10 17 / cm 3 and a resistivity of 2 Ωcm, respectively. Turned into.
[0032]
Next, SiO 2 film, using a photoresist film by photolithography, to form a SiO 2 film having a predetermined pattern, the film as a mask, grooves 61~64,91~93 and electrodes 81 to 83, the electrode Each groove | channel was formed in the formation site of 71-72. This groove was formed by etching after a mask having a predetermined pattern was formed by photolithography for each groove having the same depth. Then, the electrodes 81 to 83 and the electrodes 71 to 72 were formed as shown in FIG. 1 by etching after uniformly depositing nickel and forming a mask by photolithography.
[0033]
In the planar light emitting device thus formed, the electrodes 71, 72, 73 are set to a positive potential with respect to the electrodes 81, 82, 83, so that the light emitting part A emits blue light, the light emitting part B emits green light, and emits light. In part C, red light emission was obtained. FIG. 1 shows the structure of one pixel of the planar light emitting device 100. In the actual configuration, this pixel structure is repeated in a grid pattern. In this way, a full color planar light emitting device is obtained.
[0034]
Second embodiment A flat light emitting device 200 according to the second embodiment has the configuration shown in FIG. The first light emitting portion A composed of the n layer 11, the light emitting layer 12, and the p layer 13, and the third light emitting portion C composed of the n layer 31, the light emitting layer 32, and the p layer 33 are the planar light emitting device in the first embodiment. 100 same as the first light emitting part A and the third light emitting part C. The second light emitting part B of the flat light emitting device 200 of the second embodiment is composed of the p layer 13 and the light emitting layer 22 of the first light emitting part A, and the n layer 31 of the third light emitting part C. That is, the arrangement of the second light emitting unit B with respect to the p layer and the n light emitting layer is opposite to that of the first and third light emitting units A and C, and the p layer of the second light emitting unit B is the first light emitting unit A. The n layer of the second light emitting part B is shared with the n layer of the third light emitting part C.
[0035]
Further, the element isolation grooves 61 to 64 are formed at a depth at which the light emitting portions A, B, and C are separated from each other. Further, the interelectrode separation grooves 91 to 93 are configured to have a depth at which the electrodes of each light emitting unit are separated.
[0036]
In the first and second embodiments described above, the light emitting layers 12, 22, and 32 are made by adding magnesium, and are made p-type in the same manner as the p layers 13, 23, and 33 by heat treatment after forming each layer. But it ’s okay.
[0037]
Further, as shown in FIG. 3, etching is performed stepwise so that the surfaces of the n layer 11, the p layer 13, the n layer 21, the p layer 23, and the n layer 31 are exposed, and an electrode 81 is formed on the exposed surface of each layer. , 71, 82, 72, 83 may be formed. However, the element isolation grooves 91 and 92 are necessary. The depth of the trench is formed to a depth that allows isolation for an element that cannot be isolated by a pn junction.
[0038]
In the configuration as shown in FIG. 2, when each layer is exposed, electrodes 81, 71, 72, and 73 can be formed on each exposed layer as shown in FIG. The electrodes 81 and 71 are electrodes for the first light emitting part A, and the electrodes 72 and 73 are electrodes for the third light emitting part C. Electrodes for the second light emitting part B are electrodes 72 and 71. That is, in the configuration of FIG. 4, the electrode of the second light emitting unit B is shared with the electrode 71 of the first light emitting unit A and the electrode 72 of the third light emitting unit C.
[0039]
In the above embodiment, the silicon concentration of the light emitting layer 12 of the first light emitting portion A that emits blue light is desirably 1 × 10 19 / cm 3 or less, and the zinc concentration is desirably 1 × 10 19 / cm 3 or less. The silicon concentration of the light emitting layer 22 of the second light emitting portion B that emits green light is preferably in the range of 1 × 10 19 to 1 × 10 21 / cm 3 , and the zinc concentration is preferably in the range of 1 × 10 19 to 1 × 10 21 / cm 3. . The third light-emitting portion C emitting red light is preferably only zinc and its concentration is preferably in the range of 1 × 10 19 to 1 × 10 21 / cm 3 .
[0040]
In the above embodiment, the emission colors of blue, green, and red are generated by changing the acceptor concentration and the donor concentration in the light emitting layer, but the composition ratio X in the light emitting layer In x Ga 1-X N is set to 0.08. , 0.15, 0.30 to obtain blue, green, and red emission colors.
Furthermore, each layer is composed of Al x Ga Y In 1-XY N (including X = 0, Y = 0, X = Y = 0) so that the light emitting layer has a smaller band gap than the layers on both sides. You may make it obtain light emission of three primary colors of blue, green, and red with a crystal ratio.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a structure of a surface light emitting device according to a first specific example of the present invention.
FIG. 2 is a cross-sectional view showing the structure of a surface light emitting device according to a second specific example of the present invention.
FIG. 3 is a sectional view showing the structure of a surface light emitting device according to another embodiment of the present invention.
FIG. 4 is a cross-sectional view showing the structure of a surface light emitting device according to another embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 100,200 ... Surface light emitting element 1 ... Sapphire substrate 2 ... Buffer layer 11, 21, 31 ... n layer 12, 22, 32 ... Light emitting layer 13, 23, 33 ... p layer 61-64 ... Inter-element isolation grooves 91-93 ... Interelectrode separation groove

Claims (9)

サファイア基板上に3族窒化物半導体(AlxGaYIn1-X-YN;X=0,Y=0,X=Y=0 を含む) を多層形成した平面発光素子において、
n伝導型を示すn層と、p伝導型を示すp層と、その間に介在する発光層が、狭いバンドギャップの半導体を広いバンドギャップの半導体で挟んだ構造のダブルヘテロ接合で形成された3層構造の、前記サファイア基板上に形成された第1発光部と、
前記第1発光部上に形成され、前記第1発光部と同様な構成の第2発光部と、
前記第2発光部上に形成され、前記第1発光部と同様な構成の第3発光部と、
前記各発光部の表面層以外の内部に存在する各n層及び各p層に到る溝を形成してその溝を介して前記各n層、前記各p層に接合し電極、及び表面層に接合した電極と、
前記各発光部間を絶縁分離する素子間分離溝と、
前記各発光部の前記n層に対する電極と前記p層に対する電極とが前記発光層を介さずに短絡することを防止する電極間分離溝と
を有し、
前記各電極は、前記各n層、前記各p層から前記表面層まで前記溝に沿って形成され、前記表面層付近にて各々外部電極と接続可能となっており、
前記素子間分離溝と前記電極間分離溝により前記3つの各発光部の前記n層に対する電極と前記p層に対する電極が全て個々に分離されており、
前記各発光部の前記各発光層は、アクセプタ不純物又はドナー不純物の濃度を適正に設定することにより、前記サファイア基板上に形成された前記第1発光部から青色、前記第1発光部上に形成された前記第2発光部から緑色、前記第2発光部上に形成された前記第3発光部から赤色の3原色を発光させることを特徴とする平面発光素子。
In a planar light emitting device in which a group 3 nitride semiconductor (Al x Ga Y In 1-XY N; including X = 0, Y = 0, X = Y = 0) is formed on a sapphire substrate,
An n layer exhibiting an n-conductivity type, a p layer exhibiting a p-conductivity type, and a light emitting layer interposed therebetween are formed by a double heterojunction having a structure in which a narrow band gap semiconductor is sandwiched between wide band gap semiconductors. A first light-emitting portion having a layer structure formed on the sapphire substrate;
A second light emitting unit formed on the first light emitting unit and having the same configuration as the first light emitting unit;
A third light emitting unit formed on the second light emitting unit and having the same configuration as the first light emitting unit;
Each n-layer and the respective n-layer through the groove to form a groove leading to the p-layer, the electrode joined to each p layer present inside other than the surface layer of the light-emitting portions, and the surface An electrode joined to the layer;
An element isolation groove for insulating and separating the light emitting parts;
An electrode separation groove for preventing the electrode for the n layer and the electrode for the p layer of each light emitting portion from short-circuiting without passing through the light emitting layer;
Each electrode is formed along the groove from each n layer, each p layer to the surface layer, and can be connected to an external electrode in the vicinity of the surface layer,
The electrode for the n layer and the electrode for the p layer of each of the three light emitting units are all individually separated by the inter-element separation groove and the inter-electrode separation groove,
Each light emitting layer of each light emitting unit is formed on the first light emitting unit in blue from the first light emitting unit formed on the sapphire substrate by appropriately setting the acceptor impurity or donor impurity concentration. A planar light emitting device that emits three primary colors of green light from the second light emitting portion and red light from the third light emitting portion formed on the second light emitting portion.
サファイア基板上に3族窒化物半導体(AlxGaYIn1-X-YN;X=0,Y=0,X=Y=0 を含む) を多層形成した平面発光素子において、
n伝導型を示すn層と、p伝導型を示すp層と、その間に介在する発光層が、狭いバンドギャップの半導体を広いバンドギャップの半導体で挟んだ構造のダブルヘテロ接合で形成された3層構造の、前記サファイア基板上に形成された第1発光部と、
前記第1発光部上に形成され、前記第1発光部と同様な構成の第2発光部と、
前記第2発光部上に形成され、前記第1発光部と同様な構成の第3発光部と、
前記各発光部の表面層以外の内部に存在する各n層及び各p層に到る溝を形成してその溝を介して前記各n層、前記各p層に接合し電極、及び表面層に接合した電極と、
前記各発光部間を絶縁分離する素子間分離溝と、
前記各発光部の前記n層に対する電極と前記p層に対する電極とが前記発光層を介さずに短絡することを防止する電極間分離溝と
を有し、
前記各電極は、前記各n層、前記各p層から前記表面層まで前記溝に沿って形成され、前記表面層付近にて各々外部電極と接続可能となっており、
前記素子間分離溝と前記電極間分離溝により前記3つの各発光部の前記n層に対する電極と前記p層に対する電極が全て個々に分離されており、
前記各発光部の前記各発光層における結晶の組成比X,Yを適正に設定することにより、前記サファイア基板上に形成された前記第1発光部から青色、前記第1発光部上に形成された前記第2発光部から緑色、前記第2発光部上に形成された前記第3発光部から赤色の3原色を発光させることを特徴とする発光素子。
In a planar light emitting device in which a group 3 nitride semiconductor (Al x Ga Y In 1-XY N; including X = 0, Y = 0, X = Y = 0) is formed on a sapphire substrate,
An n layer exhibiting an n-conductivity type, a p layer exhibiting a p-conductivity type, and a light emitting layer interposed therebetween are formed by a double heterojunction having a structure in which a narrow band gap semiconductor is sandwiched between wide band gap semiconductors. A first light-emitting portion having a layer structure formed on the sapphire substrate;
A second light emitting unit formed on the first light emitting unit and having the same configuration as the first light emitting unit;
A third light emitting unit formed on the second light emitting unit and having the same configuration as the first light emitting unit;
Each n-layer and the respective n-layer through the groove to form a groove leading to the p-layer, the electrode joined to each p layer present inside other than the surface layer of the light-emitting portions, and the surface An electrode joined to the layer;
An element isolation groove for insulating and separating the light emitting parts;
An electrode separation groove for preventing the electrode for the n layer and the electrode for the p layer of each light emitting portion from short-circuiting without passing through the light emitting layer;
Each electrode is formed along the groove from each n layer, each p layer to the surface layer, and can be connected to an external electrode in the vicinity of the surface layer,
The electrode for the n layer and the electrode for the p layer of each of the three light emitting units are all individually separated by the inter-element separation groove and the inter-electrode separation groove,
By appropriately setting the crystal composition ratios X and Y in each light emitting layer of each light emitting part, the first light emitting part formed on the sapphire substrate is formed in blue and on the first light emitting part. A light emitting element that emits three primary colors of green from the second light emitting unit and red from the third light emitting unit formed on the second light emitting unit.
サファイア基板上に3族窒化物半導体(AlxGaYIn1-X-YN;X=0,Y=0,X=Y=0 を含む) を多層形成した平面発光素子において、
n伝導型を示すn層と、p伝導型を示すp層と、その間に介在する発光層が、狭いバンドギャップの半導体を広いバンドギャップの半導体で挟んだ構造のダブルヘテロ接合で形成された3層構造、前記サファイアの基板上に形成された第1発光部と、
前記第1発光部上に形成され、前記第1発光部と同様な構成の第2発光部と、
前記第2発光部上に形成され、前記第1発光部と同様な構成の第3発光部と、
前記各発光部の表面層以外の内部に存在する各n層及びp層に到る溝を形成してその溝を介して前記各n層、前記各p層に接合し電極、及び表面層に接合した電極と、
前記各発光部間を絶縁分離する素子間分離溝と、
前記各発光部の前記n層に対する電極と前記p層に対する電極とが前記発光層を介さずに短絡することを防止する電極間分離溝と
を有し、
前記各電極は、前記各n層、前記各p層から前記表面層まで前記溝に沿って形成され、前記表面層付近にて各々外部電極と接続可能となっており、
前記素子間分離溝と前記電極間分離溝により前記3つの各発光部の前記n層に対する電極と前記p層に対する電極が全て個々に分離されており、
前記各発光部の前記各発光層におけるアクセプタ不純物又はドナー不純物の濃度を適正に設定し、且つ、前記各発光部の前記各発光層における結晶の組成比X,Yを適正に設定することにより、前記サファイア基板上に形成された前記第1発光部から青色、前記第1発光部上に形成された前記第2発光部から緑色、前記第2発光部上に形成された前記第3発光部から赤色の3原色を発光させることを特徴とする平面発光素子。
In a planar light emitting device in which a group 3 nitride semiconductor (Al x Ga Y In 1-XY N; including X = 0, Y = 0, X = Y = 0) is formed on a sapphire substrate,
An n layer exhibiting an n-conductivity type, a p layer exhibiting a p-conductivity type, and a light emitting layer interposed therebetween are formed by a double heterojunction having a structure in which a narrow band gap semiconductor is sandwiched between wide band gap semiconductors. A first light emitting part formed on the sapphire substrate in a layered structure;
A second light emitting unit formed on the first light emitting unit and having the same configuration as the first light emitting unit;
A third light emitting unit formed on the second light emitting unit and having the same configuration as the first light emitting unit;
A groove reaching each n layer and p layer existing inside the light emitting portion other than the surface layer, and an electrode joined to each n layer and each p layer through the groove, and a surface layer An electrode joined to
An element isolation groove for insulating and separating the light emitting parts;
An electrode separation groove for preventing the electrode for the n layer and the electrode for the p layer of each light emitting portion from short-circuiting without passing through the light emitting layer;
Each electrode is formed along the groove from each n layer, each p layer to the surface layer, and can be connected to an external electrode in the vicinity of the surface layer,
The electrode for the n layer and the electrode for the p layer of each of the three light emitting units are all individually separated by the inter-element separation groove and the inter-electrode separation groove,
By appropriately setting the concentration of acceptor impurities or donor impurities in each light emitting layer of each light emitting portion, and appropriately setting the crystal composition ratios X and Y in each light emitting layer of each light emitting portion, Blue from the first light emitting part formed on the sapphire substrate, green from the second light emitting part formed on the first light emitting part, from the third light emitting part formed on the second light emitting part A flat light-emitting element that emits light of three primary colors of red.
前記第2発光部の前記発光層の下のp層又はn層は、前記第1発光部のp層又はn層と共通化され、前記第2発光部の前記発光層の上のn層又はp層は、前記第3発光部のn層又はp層と共通化されていることを特徴とする請求項1乃至請求項3のいずれか1項に記載の平面発光素子。The p layer or the n layer under the light emitting layer of the second light emitting unit is shared with the p layer or the n layer of the first light emitting unit, and the n layer or the n layer on the light emitting layer of the second light emitting unit or 4. The planar light emitting device according to claim 1, wherein the p layer is shared with the n layer or the p layer of the third light emitting unit. 5. 前記ドナー不純物はシリコン(Si)で前記アクセプタ不純物は亜鉛(Zn)であることを特徴とする請求項1、請求項3又は請求項4に記載の平面発光素子。5. The planar light emitting device according to claim 1, wherein the donor impurity is silicon (Si) and the acceptor impurity is zinc (Zn). 6. 前記発光層はp型化されていることを特徴とする請求項1乃至請求項5のいずれか1項に記載の平面発光素子。The planar light emitting device according to claim 1, wherein the light emitting layer is p-type. サファイア基板上に3族窒化物半導体(AlxGaYIn1-X-YN;X=0,Y=0,X=Y=0 を含む) を多層形成した平面発光素子において、
n伝導型を示すn層と、p伝導型を示すp層と、その間に介在する発光層が、狭いバンドギャップの半導体を広いバンドギャップの半導体で挟んだ構造のダブルヘテロ接合で形成された3層構造の、前記サファイア基板上に形成された第1発光部と、
前記第1発光部上に形成され、前記第1発光部と同様な構成の第2発光部と、
前記第2発光部上に形成され、前記第1発光部と同様な構成の第3発光部と、
前記各発光部を分離する素子間分離溝とを有し、
前記各発光部の前記n層及び前記p層の一部が露出するように、前記各発光部を階段状に露出させ、
前記n層及び前記p層の露出部に電極を形成し、
前記素子間分離溝により前記3つの各発光部間で電極が分離されており、
前記各発光部の前記各発光層は、アクセプタ不純物又はドナー不純物の濃度を適正に設定することにより、前記サファイア基板上に形成された前記第1発光部から青色、前記第1発光部上に形成された前記第2発光部から緑色、前記第2発光部上に形成された前記第3発光部から赤色の3原色を発光させることを特徴とする平面発光素子。
In a planar light emitting device in which a group 3 nitride semiconductor (Al x Ga Y In 1-XY N; including X = 0, Y = 0, X = Y = 0) is formed on a sapphire substrate,
An n layer exhibiting an n-conductivity type, a p layer exhibiting a p-conductivity type, and a light emitting layer interposed therebetween are formed by a double heterojunction having a structure in which a narrow band gap semiconductor is sandwiched between wide band gap semiconductors. A first light-emitting portion having a layer structure formed on the sapphire substrate;
A second light emitting unit formed on the first light emitting unit and having the same configuration as the first light emitting unit;
A third light emitting unit formed on the second light emitting unit and having the same configuration as the first light emitting unit;
An inter-element separation groove that separates the light-emitting portions,
Exposing each of the light emitting portions stepwise so that a portion of the n layer and p layer of each of the light emitting portions is exposed;
Forming electrodes on the exposed portions of the n layer and the p layer;
The electrodes are separated between the three light emitting portions by the inter-element separation groove,
Each light emitting layer of each light emitting unit is formed on the first light emitting unit in blue from the first light emitting unit formed on the sapphire substrate by appropriately setting the acceptor impurity or donor impurity concentration. A planar light emitting device that emits three primary colors of green light from the second light emitting portion and red light from the third light emitting portion formed on the second light emitting portion.
サファイア基板上に3族窒化物半導体(AlxGaYIn1-X-YN;X=0,Y=0,X=Y=0 を含む) を多層形成した平面発光素子において、
n伝導型を示すn層と、p伝導型を示すp層と、その間に介在する発光層が、狭いバンドギャップの半導体を広いバンドギャップの半導体で挟んだ構造のダブルヘテロ接合で形成された3層構造の、前記サファイア基板上に形成された第1発光部と、
前記第1発光部上に形成され、前記第1発光部と同様な構成の第2発光部と、
前記第2発光部上に形成され、前記第1発光部と同様な構成の第3発光部と、
前記各発光部を分離する素子間分離溝とを有し、
前記各発光部の前記n層及び前記p層の一部が露出するように、前記各発光部を階段状に露出させ、
前記n層及び前記p層の露出部に電極を形成し、
前記素子間分離溝により前記3つの各発光部間で電極が分離されており、
前記各発光部の前記各発光層における結晶の組成比X,Yを適正に設定することにより、前記サファイア基板上に形成された前記第1発光部から青色、前記第1発光部上に形成された前記第2発光部から緑色、前記第2発光部上に形成された前記第3発光部から赤色の3原色を発光させることを特徴とする平面発光素子。
In a planar light emitting device in which a group 3 nitride semiconductor (Al x Ga Y In 1-XY N; including X = 0, Y = 0, X = Y = 0) is formed on a sapphire substrate,
An n layer exhibiting an n-conductivity type, a p layer exhibiting a p-conductivity type, and a light emitting layer interposed therebetween are formed by a double heterojunction having a structure in which a narrow band gap semiconductor is sandwiched between wide band gap semiconductors. A first light-emitting portion having a layer structure formed on the sapphire substrate;
A second light emitting unit formed on the first light emitting unit and having the same configuration as the first light emitting unit;
A third light emitting unit formed on the second light emitting unit and having the same configuration as the first light emitting unit;
An inter-element separation groove that separates the light-emitting portions,
Exposing each of the light emitting portions stepwise so that a portion of the n layer and p layer of each of the light emitting portions is exposed;
Forming electrodes on the exposed portions of the n layer and the p layer;
The electrodes are separated between the three light emitting portions by the inter-element separation groove,
By appropriately setting the crystal composition ratios X and Y in each light emitting layer of each light emitting part, the first light emitting part formed on the sapphire substrate is formed in blue and on the first light emitting part. A planar light emitting device that emits three primary colors of green from the second light emitting unit and red from the third light emitting unit formed on the second light emitting unit.
サファイア基板上に3族窒化物半導体(AlxGaYIn1-X-YN;X=0,Y=0,X=Y=0 を含む) を多層形成した平面発光素子において、
n伝導型を示すn層と、p伝導型を示すp層と、その間に介在する発光層が、狭いバンドギャップの半導体を広いバンドギャップの半導体で挟んだ構造のダブルヘテロ接合で形成された3層構造の、前記サファイア基板上に形成された第1発光部と、
前記第1発光部上に形成され、前記第1発光部と同様な構成の第2発光部と、
前記第2発光部上に形成され、前記第1発光部と同様な構成の第3発光部と、
前記各発光部を分離する素子間分離溝とを有し、
前記各発光部の前記n層及び前記p層の一部が露出するように、前記各発光部を階段状に露出させ、
前記n層及び前記p層の露出部に電極を形成し、
前記素子間分離溝により前記3つの各発光部間で電極が分離されており、
前記各発光部の前記各発光層におけるアクセプタ不純物又はドナー不純物の濃度を適正に設定し、且つ、前記各発光部の前記各発光層における結晶の組成比X,Yを適正に設定することにより、前記サファイア基板上に形成された前記第1発光部から青色、前記第1発光部上に形成された前記第2発光部から緑色、前記第2発光部上に形成された前記第3発光部から赤色の3原色を発光させることを特徴とする平面発光素子。
In a planar light emitting device in which a group 3 nitride semiconductor (Al x Ga Y In 1-XY N; including X = 0, Y = 0, X = Y = 0) is formed on a sapphire substrate,
An n layer exhibiting an n-conductivity type, a p layer exhibiting a p-conductivity type, and a light emitting layer interposed therebetween are formed by a double heterojunction having a structure in which a narrow band gap semiconductor is sandwiched between wide band gap semiconductors. A first light-emitting portion having a layer structure formed on the sapphire substrate;
A second light emitting unit formed on the first light emitting unit and having the same configuration as the first light emitting unit;
A third light emitting unit formed on the second light emitting unit and having the same configuration as the first light emitting unit;
An inter-element separation groove that separates the light-emitting portions,
Exposing each of the light emitting portions stepwise so that a portion of the n layer and p layer of each of the light emitting portions is exposed;
Forming electrodes on the exposed portions of the n layer and the p layer;
The electrodes are separated between the three light emitting portions by the inter-element separation groove,
By appropriately setting the concentration of acceptor impurities or donor impurities in each light emitting layer of each light emitting portion, and appropriately setting the crystal composition ratios X and Y in each light emitting layer of each light emitting portion, Blue from the first light emitting part formed on the sapphire substrate, green from the second light emitting part formed on the first light emitting part, from the third light emitting part formed on the second light emitting part A flat light-emitting element that emits light of three primary colors of red.
JP24883994A 1994-09-01 1994-09-16 Group 3 nitride semiconductor planar light emitting device Expired - Fee Related JP3620877B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP24883994A JP3620877B2 (en) 1994-09-16 1994-09-16 Group 3 nitride semiconductor planar light emitting device
US08/522,110 US5650641A (en) 1994-09-01 1995-08-31 Semiconductor device having group III nitride compound and enabling control of emission color, and flat display comprising such device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24883994A JP3620877B2 (en) 1994-09-16 1994-09-16 Group 3 nitride semiconductor planar light emitting device

Publications (2)

Publication Number Publication Date
JPH0888407A JPH0888407A (en) 1996-04-02
JP3620877B2 true JP3620877B2 (en) 2005-02-16

Family

ID=17184190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24883994A Expired - Fee Related JP3620877B2 (en) 1994-09-01 1994-09-16 Group 3 nitride semiconductor planar light emitting device

Country Status (1)

Country Link
JP (1) JP3620877B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003243700A (en) 2002-02-12 2003-08-29 Toyoda Gosei Co Ltd Iii nitride based compound semiconductor light emitting element
JP4307113B2 (en) 2002-03-19 2009-08-05 宣彦 澤木 Semiconductor light emitting device and manufacturing method thereof
US7576365B2 (en) 2004-03-12 2009-08-18 Showa Denko K.K. Group III nitride semiconductor light-emitting device, forming method thereof, lamp and light source using same
FR3019380B1 (en) * 2014-04-01 2017-09-01 Centre Nat Rech Scient PIXEL SEMICONDUCTOR, MATRIX OF SUCH PIXELS, SEMICONDUCTOR STRUCTURE FOR CARRYING OUT SUCH PIXELS AND METHODS OF MAKING SAME
WO2017192667A1 (en) * 2016-05-04 2017-11-09 Schneider Jr Richard P Monolithic multicolor direct view display containing different color leds and method of making thereof
US11527519B2 (en) 2017-11-27 2022-12-13 Seoul Viosys Co., Ltd. LED unit for display and display apparatus having the same
US10892297B2 (en) 2017-11-27 2021-01-12 Seoul Viosys Co., Ltd. Light emitting diode (LED) stack for a display
US10892296B2 (en) 2017-11-27 2021-01-12 Seoul Viosys Co., Ltd. Light emitting device having commonly connected LED sub-units
US10748881B2 (en) 2017-12-05 2020-08-18 Seoul Viosys Co., Ltd. Light emitting device with LED stack for display and display apparatus having the same
US10886327B2 (en) 2017-12-14 2021-01-05 Seoul Viosys Co., Ltd. Light emitting stacked structure and display device having the same
US11552057B2 (en) 2017-12-20 2023-01-10 Seoul Viosys Co., Ltd. LED unit for display and display apparatus having the same
US11522006B2 (en) 2017-12-21 2022-12-06 Seoul Viosys Co., Ltd. Light emitting stacked structure and display device having the same
US20190198709A1 (en) * 2017-12-22 2019-06-27 Lumileds Llc Iii-nitride multi-color on wafer micro-led enabled by tunnel junctions
US11552061B2 (en) 2017-12-22 2023-01-10 Seoul Viosys Co., Ltd. Light emitting device with LED stack for display and display apparatus having the same
US11114499B2 (en) 2018-01-02 2021-09-07 Seoul Viosys Co., Ltd. Display device having light emitting stacked structure
US10784240B2 (en) 2018-01-03 2020-09-22 Seoul Viosys Co., Ltd. Light emitting device with LED stack for display and display apparatus having the same
GB2586580B (en) * 2019-08-06 2022-01-12 Plessey Semiconductors Ltd LED array and method of forming a LED array

Also Published As

Publication number Publication date
JPH0888407A (en) 1996-04-02

Similar Documents

Publication Publication Date Title
JP3543498B2 (en) Group III nitride semiconductor light emitting device
JP3620877B2 (en) Group 3 nitride semiconductor planar light emitting device
US5650641A (en) Semiconductor device having group III nitride compound and enabling control of emission color, and flat display comprising such device
JP3341492B2 (en) Group III nitride semiconductor light emitting device
JP3654738B2 (en) Group 3 nitride semiconductor light emitting device
JP3795624B2 (en) Nitrogen-3 group element compound semiconductor light emitting device
JPH07263748A (en) Iii group nitride semiconductor light emitting element and manufacture of it
JPH06151968A (en) Nitrogen-iii group semiconductor luminous element and manufacture thereof
JPH1027924A (en) Nitride-group-iii element compound light emitting element
JPH06151965A (en) Nitrogen-iii compound semiconductor luminous element and manufacture thereof
JPH07131068A (en) Nitrogen-group-iii element compound semiconductor light emitting element
TWI829038B (en) Voltage-controllable monolithic native rgb arrays
JPH06151966A (en) Nitrogen-iii compound semiconductor luminous element and manufacture thereof
JPH0992880A (en) Group iii nitride semiconductor light emitting device
JPH08125222A (en) Method for manufacture of group iii nitride semiconductor
JP3341510B2 (en) Group III nitride semiconductor planar light emitting device
JP2663814B2 (en) Nitrogen-3 element compound semiconductor light emitting device
JP3538628B2 (en) Method for manufacturing group III nitride semiconductor light emitting device
JP3026102B2 (en) Gallium nitride based compound semiconductor light emitting device
JPH07297447A (en) Group iii nitride semiconductor light emitting element
JPH07312445A (en) Iii group nitride semiconductor light emitting element
JP3307094B2 (en) Group III nitride semiconductor light emitting device
JP3978581B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP3341484B2 (en) Group III nitride semiconductor light emitting device
JP2004158893A (en) 3 group nitride semiconductor light emitting device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041116

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071126

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees