JP3795624B2 - Nitrogen-3 group element compound semiconductor light emitting device - Google Patents

Nitrogen-3 group element compound semiconductor light emitting device Download PDF

Info

Publication number
JP3795624B2
JP3795624B2 JP9848797A JP9848797A JP3795624B2 JP 3795624 B2 JP3795624 B2 JP 3795624B2 JP 9848797 A JP9848797 A JP 9848797A JP 9848797 A JP9848797 A JP 9848797A JP 3795624 B2 JP3795624 B2 JP 3795624B2
Authority
JP
Japan
Prior art keywords
layer
carrier concentration
concentration
high carrier
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9848797A
Other languages
Japanese (ja)
Other versions
JPH1032347A (en
Inventor
勝英 真部
典克 小出
史郎 山崎
真人 田牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP9848797A priority Critical patent/JP3795624B2/en
Publication of JPH1032347A publication Critical patent/JPH1032347A/en
Application granted granted Critical
Publication of JP3795624B2 publication Critical patent/JP3795624B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は青色発光の窒素−3族元素化合物半導体発光素子に関する。
【0002】
【従来技術】
従来、青色の発光ダイオードとしてGaN 系の化合物半導体を用いたものが知られている。そのGaN 系の化合物半導体は直接遷移型であることから発光効率が高いこと、光の3原色の1つである青色を発光色とすること等から注目されている。
【0003】
最近、GaN においても、Mgをドープして電子線を照射することによりp型のGaN が得られることが明らかとなった。この結果、従来のn層と半絶縁層(i層)との接合に換えてpn接合を有するGaN 発光ダイオードが提案されている。
【0004】
【発明が解決しようとする課題】
しかし、上記のpn接合を有する発光ダイオードであっても、発光輝度は未だ十分ではなく、また、寿命に関しても十分なものが得られていない。
そこで、本発明の目的は、窒素−3族元素化合物半導体(AlxGaYIn1-X-YN;X=0,Y=0,X=Y=0 を含む) 発光ダイオードの発光輝度を向上させること及び素子寿命を長期化することである。
【0005】
【課題を解決するための手段】
本願の第1の発明は、窒素−3族元素化合物半導体から成る発光素子において、シリコン(Si)が添加されたn型の窒素−3族元素化合物半導体からなる高キャリア濃度n+層と、高キャリア濃度n+層よりもp型層側に形成された不純物無添加のn型の窒素−3族元素化合物半導体からなる電子濃度が1×1014 /cm 3 以上の低キャリア濃度n層と、マグネシウム(Mg)の添加されたp型の窒素−3族元素化合物半導体から成る高キャリア濃度p+層であって、ホール濃度が1×1016/cm3以上である第1高キャリア濃度p+層と、第1高キャリア濃度p+層よりもホール濃度の高い第2高キャリア濃度p+層とから成る高キャリア濃度p+層とを有し、低キャリア濃度n層と、第1高キャリア濃度p+層との間に、マグネシウム(Mg)の添加されたp型の窒素−3族元素化合物半導体から成り、第1高キャリア濃度p+層よりもホール濃度が低い、低キャリア濃度p層を有し、低キャリア濃度p層のホール濃度を1× 10 14 〜1× 10 16 /cm 3 としたことを特徴とする。
さらに他の特徴は、第2高キャリア濃度p+層にはニッケル(Ni)から成る電極が形成されていることを特徴とする。
【0006】
本願の第2の発明は、窒素−3族元素化合物半導体から成る発光素子において、n型の窒素−3族元素化合物半導体から成り、p型層から遠ざかる方向に電子濃度がステップ増加する複層で形成され、そのうち最も高キャリア濃度で形成したものを高キャリア濃度n+層とし、最も低キャリア濃度で形成したものを低キャリア濃度n層とし、マグネシウム(Mg)の添加されたp型の窒素−3族元素化合物半導体から成るホール濃度が1×1014/cm3以上である低キャリア濃度p層と、p層のn型層側と反対側に形成されたマグネシウム(Mg)の添加されたp型の窒素−3族元素化合物半導体から成るホール濃度が1×1016/cm3以上である高キャリア濃度p+層と、そのp+層に形成されたニッケル(Ni)から成る電極とを有し、低キャリア濃度p層のホール濃度を1× 10 14 〜1× 10 16 /cm 3 としたことを特徴とする。
さらに他の特徴は、高キャリア濃度p+層は、ホール濃度の低い第1高キャリア濃度p+層と、その第1高キャリア濃度p+層よりもホール濃度の高い第2高キャリア濃度p+層との2層で構成され、ニッケル(Ni)から成る電極は第2高キャリア濃度p+層に形成されていることを特徴とする。
【0007】
又、他の特徴は、高キャリア濃度p+層のホール濃度を1×1016〜2×1019/cm3としたことである。
【0008】
又、他の特徴は、高キャリア濃度n+ 層の電子濃度を1×1016〜1×1019/cm3とし、さらに他の特徴はキャリア濃度n層の電子濃度を1×1014〜1×1016/cm3としたことである。
【0009】
又、他の特徴はキャリア濃度p層の厚さを0.2 〜1μmとし、さらに他の特徴は高キャリア濃度p+ 層の厚さは0.1 〜0.5 μmとし、さらに他の特徴は高キャリア濃度n+ 層の厚さを2〜10μmとし、さらに他の特徴は低キャリア濃度n層の厚さを0.5 〜2μmとしたことである。
【0010】
又、他の特徴は高キャリア濃度n+ を窒化ガリウム(GaN) で構成したことを特徴とする。
【0011】
【発明の作用及び効果】
本発明は、シリコン(Si)が添加されたn型の窒素−3族元素化合物半導体からなる高キャリア濃度n+層と、高キャリア濃度n+層よりもp型層側に形成された不純物無添加のn型の窒素−3族元素化合物半導体からなる電子濃度が1×1014 /cm 3 以上の低キャリア濃度n層との構成、又は、n型の窒素−3族元素化合物半導体から成り、p型層から遠ざかる方向に電子濃度がステップ増加する複層で形成されるとの構成により、結晶性が向上し発光輝度が向上すると共により純粋な青色を得ることができた。さらに、電子の注入効率が向上し、駆動電圧が低下すると共に発光輝度が向上した。又、これらの構成により、発光輝度は10mcdであり、この発光輝度は従来のpn接合GaN発光ダイオードの発光輝度に比べて、2倍に向上した。又、発光寿命は104時間であり、従来のpn接合GaN発光ダイオードの発光寿命の1.5倍である。
【0012】
【実施例】
第1実施例
図1において、発光ダイオード10は、サファイア基板1を有しており、そのサファイア基板1に500 ÅのAlN のバッファ層2が形成されている。そのバッファ層2の上には、順に、膜厚約2.2 μm、電子濃度2 ×1018/cm3のシリコンドープGaN から成る高キャリア濃度n+ 層3、膜厚約 1.5μm、電子濃度1 ×1016/cm3のノンドープGaN から成る低キャリア濃度n層4が形成されている。更に、低キャリア濃度n層4の上には、順に、膜厚約0.5 μm、ホール濃度1 ×1016/cm3のMgドープGaN から成る低キャリア濃度p層51、膜厚約0.2 μm、ホール濃度 2×1017/cm3の高キャリア濃度p+ 層52が形成されている。そして、高キャリア濃度p+ 層52に接続するニッケルで形成された電極7と高キャリア濃度n+ 層3に接続するニッケルで形成された電極8とが形成されている。電極8と電極7とは、溝9により電気的に絶縁分離されている。
【0013】
次に、この構造の発光ダイオード10の製造方法について説明する。
上記発光ダイオード10は、有機金属化合物気相成長法( 以下「M0VPE 」と記す) による気相成長により製造された。
用いられたガスは、NH3 とキャリアガスH2とトリメチルガリウム(Ga(CH3)3)(以下「TMG 」と記す) とトリメチルアルミニウム(Al(CH3)3)(以下「TMA 」と記す) とシラン(SiH4)とビスシクロペンタジエニルマグネシウム(Mg(C5H5)2)(以下「CP2Mg 」と記す)である。
【0014】
まず、有機洗浄及び熱処理により洗浄したA面を主面とする単結晶のサファイア基板1をM0VPE 装置の反応室に載置されたサセプタに装着する。次に、常圧でH2を流速2 liter/分で反応室に流しながら温度1100℃でサファイア基板1を気相エッチングした。
【0015】
次に、温度を 400℃まで低下させて、H2を20 liter/分、NH3 を10 liter/分、TMA を 1.8×10-5モル/分で供給してAlN のバッファ層2が約 500Åの厚さに形成された。次に、サファイア基板1の温度を1150℃に保持し、H2を20 liter/分、NH3 を10 liter/分、TMG を 1.7×10-4モル/分、H2で0.86ppm まで希釈したシラン(SiH4)を 200 ml/分の割合で30分間供給し、膜厚約 2.2μm、電子濃度
2×1018/cm3のGaN から成る高キャリア濃度n+ 層3を形成した。
【0016】
続いて、サファイア基板1の温度を1150℃に保持し、H2を20 liter/分、NH3 を10 liter/分、TMG を1.7 ×10-4モル/分の割合で20分間供給し、膜厚約1.5 μm、電子濃度 1×1016/ cm3 のGaN から成る低キャリア濃度n層4を形成した。
【0017】
次に、サファイア基板1を1150℃にして、H2 を20 liter/分、NH3 を10 liter/分、TMG を 1.7×10-4モル/分、CP2Mg を 8×10-8モル/分の割合で 7分間供給して、膜厚0.5 μmのGaN から成る低キャリア濃度p層51を形成した。この状態では、低キャリア濃度p層51は、まだ、抵抗率108 Ωcm以上の絶縁体である。
【0018】
次に、サファイア基板1を1150℃にして、H2 を20 liter/分、NH3 を10 liter/分、TMG を 1.7×10-4モル/分、CP2Mg を 3×10-7モル/分の割合で 3分間供給して、膜厚0.2 μmのGaN から成る高キャリア濃度p+ 層52を形成した。この状態では、高キャリア濃度p+ 層52は、まだ、抵抗率108 Ωcm以上の絶縁体である。
【0019】
次に、反射電子線回析装置を用いて、上記の高キャリア濃度p+ 層52及び低キャリア濃度p層51に一様に電子線を照射した。電子線の照射条件は、加速電圧10KV、試料電流 1μA 、ビームの移動速度0.2mm/sec 、ビーム径60μmφ、真空度2.1 ×10-5Torrである。この電子線の照射により、低キャリア濃度p層51は、ホール濃度1 ×1016/cm3、抵抗率40Ωcmのp伝導型半導体となり、高キャリア濃度p+ 層52は、ホール濃度 2×1017/cm3、抵抗率 2Ωcmのp伝導型半導体となった。このようにして、図2に示すような多層構造のウエハが得られた。
【0020】
以下に述べられる図3から図7は、ウエハ上の1つの素子のみを示す断面図であり、実際は、この素子が連続的に繰り返されたウエハについて、処理が行われ、その後、各素子毎に切断される。
【0021】
図3に示すように、高キャリア濃度p+ 層52の上に、スパッタリングによりSiO2層11を2000Åの厚さに形成した。次に、そのSiO2層11上にフォトレジスト12を塗布した。そして、フォトリソグラフにより、高キャリア濃度p+ 層52上において、高キャリア濃度n+ 層3に至るように形成される孔15に対応する電極形成部位Aとその電極形成部を高キャリア濃度p+ 層52の電極と絶縁分離する溝9を形成する部位Bのフォトレジストを除去した。
【0022】
次に、図4に示すように、フォトレジスト12によって覆われていないSiO2層11をフッ化水素酸系エッチング液で除去した。次に、図5に示すように、フォトレジスト12及びSiO2層11によって覆われていない部位の高キャリア濃度p+ 層52とその下の低キャリア濃度p層51、低キャリア濃度n層4、高キャリア濃度n+ 層3の上面一部を、真空度0.04Torr、高周波電力0.44W/cm2 、BCl3ガスを10ml/分の割合で供給しドライエッチングした後、Arでドライエッチングした。この工程で、高キャリア濃度n+ 層3に対する電極取出しのための孔15と絶縁分離のための溝9が形成された。
【0023】
次に、図6に示すように、高キャリア濃度p+ 層52上に残っているSiO2層11をフッ化水素酸で除去した。次に、図7に示すように、試料の上全面に、Ni層13を蒸着により形成した。これにより、孔15には、高キャリア濃度n+ 層3に電気的に接続されたNi層13が形成される。そして、そのNi層13の上にフォトレジスト14を塗布して、フォトリソグラフにより、そのフォトレジスト14が高キャリア濃度n+ 層3及び高キャリア濃度p+ 層52に対する電極部が残るように、所定形状にパターン形成した。
【0024】
次に、図7に示すようにそのフォトレジスト14をマスクとして下層のNi層13の露出部を硝酸系エッチング液でエッチングした。この時、絶縁分離のための溝9に蒸着されたNi層13は、完全に除去される。次に、フォトレジスト14をアセトンで除去し、高キャリア濃度n+ 層3の電極8、高キャリア濃度p+ 層52の電極7が残された。その後、上記の如く処理されたウエハは、各素子毎に切断され、図1に示すpn構造の窒化ガリウム系発光素子を得た。
【0025】
このようにして製造された発光ダイオード10の発光強度を測定したところ10 mcdであり、この発光輝度は、従来のpn接合のGaN 発光ダイオードの発光輝度に比べて 2倍であった。又、発光寿命は、104 時間であり、従来のpn接合のGaN 発光ダイオードの発光寿命に比べて1.5 倍であった。
【0026】
尚、上記実施例で用いたマグネシウムMgのドーピングガスは、上述のガスの他、メチルビスシクロペンタジエニルマグネシウムMg(C6H7)2 を用いても良い。
【0027】
上記低キャリア濃度n層4の電子濃度は1 ×1014〜 1×1016/cm3 で膜厚は 0.5〜 2μmが望ましい。電子濃度が 1×1016/cm3 以上となると発光強度が低下するので望ましくなく、 1×1014/cm3 以下となると発光素子の直列抵抗が高くなりすぎ電流を流すと発熱するので望ましくない。又、膜厚が 2μm以上となると発光素子の直列抵抗が高くなりすぎ電流を流すと発熱するので望ましくなく、膜厚が 0.5μm以下となると発光強度が低下するので望ましくない。
【0028】
更に、高キャリア濃度n+ 層3の電子濃度は 1×1016〜 1×1019/cm3 で膜厚は 2〜10μmが望ましい。電子濃度が 1×1019/cm3 以上となると結晶性が悪化するので望ましくなく、 1×1016/cm3 以下となると発光素子の直列抵抗が高くなりすぎ電流を流すと発熱するので望ましくない。又、膜厚が10μm以上となると基板が湾曲するので望ましくなく、膜厚が 2μm以下となると発光素子の直列抵抗が高くなりすぎ電流を流すと発熱するので望ましくない。
【0029】
又、上記低キャリア濃度p層51のホール濃度は1 ×1014〜 1×1016/cm3 で膜厚は0.2 〜1 μmが望ましい。ホール濃度が 1×1016/cm3 以上となると、低キャリア濃度n層4とのマッチングが悪くなり発光効率が低下するので望ましくなく、 1×1014/cm3 以下となると、直列抵抗が高くなり過ぎるので望ましくない。又、膜厚が 1μm以上となると、直列抵抗が高くなるので望ましくなく、膜厚が0.2 μm以下となると、発光輝度が低下するので望ましくない。
【0030】
更に、高キャリア濃度p+ 層52のホール濃度は 1×1016〜 2×1019/cm3 で、膜厚は0.2 〜0.5 μmが望ましい。ホール濃度が 2×1019/cm3 以上のp+ 層はできない。1 ×1016/cm3 以下となると、直列抵抗が高くなるので望ましくない。又、膜厚が0.5 μm以上となると、直列抵抗が高くなるので望ましくなく、膜厚が0.1 μm以下となると、ホールの注入効率が減少するので望ましくない。
【0031】
第2実施例
図8において、発光ダイオード10は、サファイア基板1を有しており、そのサファイア基板1に500 ÅのAlN のバッファ層2が形成されている。そのバッファ層2の上には、順に、膜厚約2.2 μm、電子濃度2 ×1018/cm3のシリコンドープGaN から成る高キャリア濃度n+ 層3、膜厚約 1.5μm、電子濃度1 ×1015/cm3のノンドープGaN から成る低キャリア濃度n層4が形成されている。更に、低キャリア濃度n層4の上には、順に、膜厚約0.2 μm、ホール濃度1 ×1015/cm3のMgドープGaN から成る低キャリア濃度p層51、膜厚約0.5 μm、ホール濃度1 ×1016/cm3の第1高キャリア濃度p+ 層52、膜厚約0.2 μm、ホール濃度1 ×1017/cm3の第2高キャリア濃度p+ 層53が形成されている。そして、第2高キャリア濃度p+ 層53に接続するニッケルで形成された電極7と高キャリア濃度n+ 層3に接続するニッケルで形成された電極8とが形成されている。電極8と電極7とは、溝9により電気的に絶縁分離されている。このように、本実施例の発光ダイオード10は、p層をホール濃度が3段階にステップ変化する3層で形成したことを特徴としている。その製造方法は第1実施例と同様である。
【0032】
このように、n層をpn接合面から遠ざかる方向に電子濃度がステップ増加する複層で形成し、p層をpn接合面から遠ざかる方向にホール濃度がステップ増加する複層で形成したので、ホール濃度の最も高いp型の層と電子濃度の最も高いn型の層との間に電圧を印加することで、電子及びホールが各層で効率良く加速され、pn接合面を通って反対の伝導型の層に効率良く注入される。この結果、発光輝度が向上した。
【0033】
第3実施例
図9において、発光ダイオード10は、サファイア基板1を有しており、そのサファイア基板1に500 ÅのAlN のバッファ層2が形成されている。そのバッファ層2の上には、順に、膜厚約2.2 μm、電子濃度 2×1018/cm3のシリコンドープGaN から成る高キャリア濃度n+ 層3、膜厚約 1.5μm、電子濃度 1×1016/cm3のノンドープGaN から成る低キャリア濃度n層4が形成されている。更に、低キャリア濃度n層4の上には、順に、膜厚約0.5 μm、Mg濃度 5×1019/cm3のMgドープGaN から成る低不純物濃度i層61、膜厚約0.2 μm、Mg濃度 2×1020/cm3の高不純物濃度i+ 層62が形成されている。
【0034】
そして、その低不純物濃度i層61及び高不純物濃度i+ 層62の所定領域には、それぞれ、電子線照射によりp伝導型化したホール濃度1 ×1016/cm3の低キャリア濃度p層501、ホール濃度 2×1017/cm3の高キャリア濃度p+ 層502が形成されている。
【0035】
又、高不純物濃度i+ 層62の上面からは、高不純物濃度i+ 層62、低不純物濃度i層61、低キャリア濃度n層4を貫通して高キャリア濃度n+ 層3に至る孔15が形成されている。その孔15を通って高キャリア濃度n+ 層3に接合されたニッケルで形成された電極81が高不純物濃度i+ 層62上に形成されている。又、高キャリア濃度p+ 層502の上面には、高キャリア濃度p+ 層502に対するニッケルで形成された電極71が形成されている。高キャリア濃度n+ 層3に対する電極81は、高キャリア濃度p+ 層502及び低キャリア濃度p層501に対して高不純物濃度i+ 層62及び低不純物濃度i層61により絶縁分離されている。
【0036】
次に、この構造の発光ダイオード10の製造方法について説明する。
製造工程を示す図10から図16は、ウエハにおける1素子のみに関する断面図であり、実際には図に示す素子が繰り返し形成されたウエハに関して次の製造処理が行われる。そして、最後に、ウエハが切断されて各発光素子が形成される。
【0037】
第1実施例と同様にして、図10に示すウエハを製造する。次に、図11に示すように、高不純物濃度i+ 層62の上に、スパッタリングによりSiO2層11を2000Åの厚さに形成した。次に、そのSiO2層11上にフォトレジスト12を塗布した。そして、フォトリソグラフにより、高不純物濃度i+ 層62において高キャリア濃度n+ 層3に至るように形成される孔15に対応する電極形成部位Aのフォトレジストを除去した。
【0038】
次に、図12に示すように、フォトレジスト12によって覆われていないSiO2層11をフッ化水素酸系エッチング液で除去した。次に、図13に示すように、フォトレジスト12及びSiO2層11によって覆われていない部位の高不純物濃度i+ 層62とその下の低不純物濃度i層61と低キャリア濃度n層4と高キャリア濃度n+ 層3の上面一部を、真空度0.04Torr、高周波電力0.44W/cm2 、BCl3ガスを10 ml/分の割合で供給しドライエッチングした後、Arでドライエッチングした。この工程で、高キャリア濃度n+ 層3に対する電極取出しのための孔15が形成された。次に、図14に示すように、高不純物濃度i+ 層62上に残っているSiO2層11をフッ化水素酸で除去した。
【0039】
次に、図15に示すように、高不純物濃度i+ 層62及び低不純物濃度i層61の所定領域にのみ、反射電子線回析装置を用いて電子線を照射して、それぞれp伝導型を示すホール濃度 2×1017/cm3の高キャリア濃度p+ 層502、ホール濃度1 ×1016/cm3の低キャリア濃度p層501が形成された。
【0040】
電子線の照射条件は、加速電圧10KV、試料電流 1μA 、ビームの移動速度0.2mm/sec 、ビーム径60μmφ、真空度2.1 ×10-5Torrである。この時、高キャリア濃度p+ 層502及び低キャリア濃度p層501以外の部分、即ち、電子線の照射されなかった部分は、絶縁体の高不純物濃度i+ 層62及び低不純物濃度i層61のままである。従って、高キャリア濃度p+ 層502及び低キャリア濃度p層501は、縦方向に対しては、低キャリア濃度n層4に導通するが、横方向には、周囲に対して、高不純物濃度i+ 層62及び低不純物濃度i層61により電気的に絶縁分離されている。
【0041】
次に、図16に示すように、高キャリア濃度p+ 層502と、高不純物濃度i+ 層62と、高不純物濃度i+ 層62の上面と孔15を通って高キャリア濃度n+ 層3とに、Ni層20が蒸着により形成された。そして、そのNi層20の上にフォトレジスト21を塗布して、フォトリソグラフにより、そのフォトレジスト21が高キャリア濃度n+ 層3及び高キャリア濃度p+ 層502に対する電極部が残るように、所定形状にパターン形成した。次に、そのフォトレジスト21をマスクとして下層のNi層20の露出部を硝酸系エッチング液でエッチングし、フォトレジスト21をアセトンで除去した。このようにして、図9に示すように、高キャリア濃度n+ 層3の電極81、高キャリア濃度p+ 層502の電極71を形成した。その後、上述のように形成されたウエハが各素子毎に切断された。
【0042】
このようにして製造された発光ダイオード10の発光強度を測定したところ、第1実施例と同様に、10mcd であり、発光寿命は104 時間であった。
【0043】
第4実施例
図17に示すように発光ダイオード10を構成することもできる。即ち、バッファ層2の上に、順に、膜厚約0.2 μm、ホール濃度 2×1017/cm3の第2高キャリア濃度p+ 層53、膜厚約0.5 μm、ホール濃度1 ×1016/cm3の第1高キャリア濃度p+ 層52、膜厚約0.2 μm、ホール濃度1 ×1015/cm3のMgドープGaN から成る低キャリア濃度p層51が形成されている。そして、低キャリア濃度p層51上に、順に、膜厚約 1.5μm、電子濃度1 ×1015/cm3のノンドープGaN から成る低キャリア濃度n層4、膜厚約2.2 μm、電子濃度2 ×1018/cm3のシリコンドープGaN から成る高キャリア濃度n+ 層3が形成されている。
【0044】
そして、第2高キャリア濃度p+ 層53に接続するニッケルで形成された電極72と高キャリア濃度n+ 層3に接続するニッケルで形成された電極82とが形成されている。電極82と電極72とは、高キャリア濃度n+ 層3、低キャリア濃度n層4、低キャリア濃度p層51及び第1高キャリア濃度p+ 層52に形成された溝91により電気的に絶縁分離されている。
【0045】
このように、本実施例は、第2実施例と異なり、p層とn層との基板1に対する堆積順序を逆にしたものである。製造は第2実施例と同様に行うことができる。
【0046】
第5実施例
図1に示す構造の第1実施例の発光ダイオード10において、高キャリア濃度n+ 層3、低キャリア濃度n層4、低キャリア濃度p層51、高キャリア濃度p+ 層52を、それぞれ、Al0.2Ga0.5In0.3Nとした。高キャリア濃度n+ 層3は、シリコンを添加して電子濃度2 ×1018/cm3に形成し、低キャリア濃度n層4は不純物無添加で電子濃度1 ×1016/cm3に形成した。低キャリア濃度p層51はマグネシウム(Mg)を添加して電子線を照射して正孔濃度1 ×1016/cm3に形成し、高キャリア濃度p+ 層52は同じくマグネシウム(Mg)を添加して電子線を照射して正孔濃度 2×1017/cm3に形成した。そして、高キャリア濃度p+ 層52に接続するニッケルで形成された電極7と高キャリア濃度n+ 層3に接続するニッケルで形成された電極8とを形成した。
【0047】
次に、この構造の発光ダイオード10も第1実施例の発光ダイオードと同様に製造することができる。トリメチルインジウム(In(CH3)3)がTMG 、TMA 、シラン、CP2Mg ガスに加えて使用された。生成温度、ガス流量は第1実施例と同じである。トリメチルインジウムを 1.7×10-4モル/分で供給することを除いて他のガスの流量は第1実施例と同一である。
【0048】
次に、第1実施例と同様に、反射電子線回析装置を用いて、上記の高キャリア濃度p+ 層52及び低キャリア濃度p層51に一様に電子線を照射してp伝導型半導体を得ることができた。
【0049】
次に、第1実施例と同様に、高キャリア濃度n+ 層3及び高キャリア濃度p+ 層52に対するニッケルで形成された電極7、8を形成した。
【0050】
このようにして製造された発光ダイオード10の発光強度を測定したところ10 mcdであり、この発光輝度は、従来のpn接合のGaN 発光ダイオードの発光輝度に比べて 2倍であった。又、発光寿命は、104 時間であり、従来のpn接合のGaN 発光ダイオードの発光寿命に比べて1.5 倍であった。
【図面の簡単な説明】
【図1】本発明の具体的な第1実施例に係る発光ダイオードの構成を示した構成図。
【図2】同実施例の発光ダイオードの製造工程を示した断面図。
【図3】同実施例の発光ダイオードの製造工程を示した断面図。
【図4】同実施例の発光ダイオードの製造工程を示した断面図。
【図5】同実施例の発光ダイオードの製造工程を示した断面図。
【図6】同実施例の発光ダイオードの製造工程を示した断面図。
【図7】同実施例の発光ダイオードの製造工程を示した断面図。
【図8】本発明の具体的な第2実施例に係る発光ダイオードの構成を示した構成図。
【図9】本発明の具体的な第3実施例に係る発光ダイオードの構成を示した構成図。
【図10】同実施例の発光ダイオードの製造工程を示した断面図。
【図11】同実施例の発光ダイオードの製造工程を示した断面図。
【図12】同実施例の発光ダイオードの製造工程を示した断面図。
【図13】同実施例の発光ダイオードの製造工程を示した断面図。
【図14】同実施例の発光ダイオードの製造工程を示した断面図。
【図15】同実施例の発光ダイオードの製造工程を示した断面図。
【図16】同実施例の発光ダイオードの製造工程を示した断面図。
【図17】本発明の具体的な第4実施例に係る発光ダイオードの構成を示した構成図。
【符号の説明】
10…発光ダイオード
1…サファイア基板
2…バッファ層
3…高キャリア濃度n+
4…低キャリア濃度n層
51,501…低キャリア濃度p層
52…高キャリア濃度p+ 層(第1高キャリア濃度p+ 層)
502…高キャリア濃度p+
53…第2高キャリア濃度p+
61…低不純物濃度i層
62…高不純物濃度i+
7,8,71,72,81,82…電極
9,91…溝
[0001]
[Industrial application fields]
The present invention relates to a blue-emitting nitrogen-3 group element compound semiconductor light emitting device.
[0002]
[Prior art]
Conventionally, a blue light emitting diode using a GaN-based compound semiconductor is known. The GaN-based compound semiconductor is attracting attention because it is a direct transition type and has high emission efficiency, and blue light, which is one of the three primary colors of light, is used as the emission color.
[0003]
Recently, it has become clear that p-type GaN can also be obtained by doping Mg and irradiating it with an electron beam. As a result, a GaN light emitting diode having a pn junction has been proposed in place of the conventional junction between an n layer and a semi-insulating layer (i layer).
[0004]
[Problems to be solved by the invention]
However, even with the light emitting diode having the pn junction described above, the light emission luminance is not yet sufficient, and a sufficient lifetime is not obtained.
Accordingly, an object of the present invention is to improve the light emission luminance of a light emitting diode by using a nitrogen-3 group element compound semiconductor (including Al x Ga Y In 1-XY N; X = 0, Y = 0, X = Y = 0). And prolonging the device life.
[0005]
[Means for Solving the Problems]
First inventions of the present application, in the light-emitting element consisting of nitrogen -3-group element compound semiconductor, and a high carrier concentration n + layer made of silicon (Si) is added n-type nitrogen -3-group element compound semiconductor, A low carrier concentration n layer having an impurity concentration of 1 × 10 14 / cm 3 or more made of an n-type nitrogen-3 group element compound semiconductor without addition of impurities formed on the p-type layer side of the high carrier concentration n + layer; , A high carrier concentration p + layer made of a p-type nitrogen-3 group element compound semiconductor doped with magnesium (Mg), and having a hole concentration of 1 × 10 16 / cm 3 or more. + a layer, first possess a high carrier concentration p + layer made of a high hole concentration than the high carrier concentration p + layer second high carrier concentration p + layer, and the low carrier concentration n layer, the first high carrier concentration p + between the layers, the nitrogen of the added p-type magnesium (Mg) -3 It consists element compound semiconductor, a low hole concentration than the first high carrier concentration p + layer, have a low carrier concentration p layer, the hole concentration of the low carrier concentration p layer 1 × 10 14 ~1 × 10 16 / cm It is characterized by 3 .
Still another feature is that an electrode made of nickel (Ni) is formed in the second high carrier concentration p + layer.
[0006]
The second inventions of the present application, in the light-emitting element consisting of nitrogen -3-group element compound semiconductor, an n-type nitrogen -3-group element compound semiconductor, multilayer the electron concentration increases step away from the p-type layer P-type nitrogen to which magnesium (Mg) is added is formed with a high carrier concentration n + layer and a layer with the lowest carrier concentration is a low carrier concentration n layer. A low carrier concentration p layer composed of a group-3 element compound semiconductor having a hole concentration of 1 × 10 14 / cm 3 or more, and magnesium (Mg) formed on the side opposite to the n-type layer side of the p layer were added. A high carrier concentration p + layer having a hole concentration of 1 × 10 16 / cm 3 or more made of a p-type nitrogen-3 group element compound semiconductor, and an electrode made of nickel (Ni) formed in the p + layer. Yes, and dark hole of the low carrier concentration p-layer Characterized in that the the 1 × 10 14 ~1 × 10 16 / cm 3.
Still another feature is that the high carrier concentration p + layer includes a first high carrier concentration p + layer having a low hole concentration and a second high carrier concentration p + having a hole concentration higher than that of the first high carrier concentration p + layer. The electrode made of nickel (Ni) is formed in the second high carrier concentration p + layer.
[0007]
Another feature is that the hole concentration of the high carrier concentration p + layer is 1 × 10 16 to 2 × 10 19 / cm 3 .
[0008]
Another feature is that the electron concentration of the high carrier concentration n + layer is 1 × 10 16 to 1 × 10 19 / cm 3 , and another feature is that the electron concentration of the carrier concentration n layer is 1 × 10 14 to 1 × 10 16 / cm 3 .
[0009]
The other feature is that the thickness of the carrier concentration p layer is 0.2 to 1 μm, the other feature is that the thickness of the high carrier concentration p + layer is 0.1 to 0.5 μm, and the other feature is the high carrier concentration n +. The thickness of the layer is 2 to 10 μm, and another feature is that the thickness of the low carrier concentration n layer is 0.5 to 2 μm.
[0010]
Further, another feature is characterized and this constituted the high carrier concentration n + layer in a gallium nitride (GaN).
[0011]
[Action and effect of the invention]
The present invention relates to a high carrier concentration n + layer made of an n-type nitrogen-3 group element compound semiconductor to which silicon (Si) is added, and no impurity formed on the p-type layer side of the high carrier concentration n + layer. A structure with an n-layer having a low carrier concentration of an n-type nitrogen-3 group element compound semiconductor having an additive concentration of 1 × 10 14 / cm 3 or more, or an n-type nitrogen-3 group element compound semiconductor, With the structure in which the electron concentration is increased in steps away from the p-type layer, the crystallinity is improved, the emission luminance is improved, and a more pure blue color can be obtained. Furthermore, the electron injection efficiency was improved, the drive voltage was lowered, and the light emission luminance was improved. Also, with these configurations, the light emission luminance is 10 mcd, and this light emission luminance is improved twice as compared with the light emission luminance of the conventional pn junction GaN light emitting diode. The light emission lifetime is 10 4 hours, which is 1.5 times the light emission lifetime of the conventional pn junction GaN light emitting diode.
[0012]
【Example】
First embodiment In Fig. 1, a light emitting diode 10 has a sapphire substrate 1, on which a 500Å AlN buffer layer 2 is formed. Of On the buffer layer 2, in turn, a film thickness of about 2.2 [mu] m, the electron concentration of 2 × 10 18 / cm high carrier concentration comprising a silicon-doped GaN of 3 n + layer 3, a thickness of about 1.5 [mu] m, the electron concentration of 1 × A low carrier concentration n layer 4 made of non-doped GaN of 10 16 / cm 3 is formed. Further, on the low carrier concentration n-layer 4, a low carrier concentration p layer 51 made of Mg-doped GaN having a film thickness of about 0.5 μm and a hole concentration of 1 × 10 16 / cm 3 , a film thickness of about 0.2 μm, and a hole. A high carrier concentration p + layer 52 having a concentration of 2 × 10 17 / cm 3 is formed. An electrode 7 made of nickel connected to the high carrier concentration p + layer 52 and an electrode 8 made of nickel connected to the high carrier concentration n + layer 3 are formed. The electrode 8 and the electrode 7 are electrically insulated and separated by the groove 9.
[0013]
Next, a method for manufacturing the light emitting diode 10 having this structure will be described.
The light emitting diode 10 was manufactured by vapor phase growth using a metal organic compound vapor phase growth method (hereinafter referred to as “M0VPE”).
The gases used were NH 3 , carrier gas H 2 , trimethylgallium (Ga (CH 3 ) 3 ) (hereinafter referred to as “TMG”) and trimethylaluminum (Al (CH 3 ) 3 ) (hereinafter referred to as “TMA”). ), Silane (SiH 4 ), and biscyclopentadienyl magnesium (Mg (C 5 H 5 ) 2 ) (hereinafter referred to as “CP 2 Mg”).
[0014]
First, a single crystal sapphire substrate 1 having an A surface cleaned by organic cleaning and heat treatment as a main surface is mounted on a susceptor mounted in a reaction chamber of an M0VPE apparatus. Next, the sapphire substrate 1 was vapor-phase etched at a temperature of 1100 ° C. while flowing H 2 at normal pressure and a flow rate of 2 liter / min into the reaction chamber.
[0015]
Next, the temperature is lowered to 400 ° C., H 2 is supplied at 20 liter / min, NH 3 is supplied at 10 liter / min, and TMA is supplied at 1.8 × 10 −5 mol / min. The thickness was formed. Next, the temperature of the sapphire substrate 1 is maintained at 1150 ° C., and H 2 is diluted to 20 liter / min, NH 3 is 10 liter / min, TMG is 1.7 × 10 −4 mol / min, and H 2 is diluted to 0.86 ppm. Silane (SiH 4 ) is supplied at a rate of 200 ml / min for 30 minutes, the film thickness is about 2.2 μm, and the electron concentration
To form a 2 × 10 18 / cm high carrier concentration n + layer 3 made of GaN of 3.
[0016]
Subsequently, the temperature of the sapphire substrate 1 is maintained at 1150 ° C., H 2 is supplied at 20 liter / minute, NH 3 is supplied at 10 liter / minute, and TMG is supplied at a rate of 1.7 × 10 −4 mole / minute for 20 minutes. A low carrier concentration n-layer 4 made of GaN having a thickness of about 1.5 μm and an electron concentration of 1 × 10 16 / cm 3 was formed.
[0017]
Next, sapphire substrate 1 is set to 1150 ° C., H 2 is 20 liter / min, NH 3 is 10 liter / min, TMG is 1.7 × 10 −4 mol / min, and CP 2 Mg is 8 × 10 −8 mol / min. A low carrier concentration p-layer 51 made of GaN having a thickness of 0.5 μm was formed by supplying at a rate of 7 minutes. In this state, the low carrier concentration p layer 51 is still an insulator having a resistivity of 10 8 Ωcm or more.
[0018]
Next, sapphire substrate 1 is set to 1150 ° C., H 2 is 20 liter / min, NH 3 is 10 liter / min, TMG is 1.7 × 10 −4 mol / min, and CP 2 Mg is 3 × 10 −7 mol / min. The high carrier concentration p + layer 52 made of GaN having a film thickness of 0.2 μm was formed by supplying for 3 minutes. In this state, the high carrier concentration p + layer 52 is still an insulator having a resistivity of 10 8 Ωcm or more.
[0019]
Next, the high carrier concentration p + layer 52 and the low carrier concentration p layer 51 were uniformly irradiated with an electron beam using a reflection electron beam diffraction apparatus. The electron beam irradiation conditions are an acceleration voltage of 10 KV, a sample current of 1 μA, a beam moving speed of 0.2 mm / sec, a beam diameter of 60 μmφ, and a degree of vacuum of 2.1 × 10 −5 Torr. By this electron beam irradiation, the low carrier concentration p layer 51 becomes a p-conduction type semiconductor having a hole concentration of 1 × 10 16 / cm 3 and a resistivity of 40 Ωcm, and the high carrier concentration p + layer 52 has a hole concentration of 2 × 10 17. / cm 3, it was a p conductivity type semiconductor resistivity 2Omucm. In this way, a wafer having a multilayer structure as shown in FIG. 2 was obtained.
[0020]
3 to 7 described below are cross-sectional views showing only one element on the wafer. Actually, processing is performed on a wafer in which this element is continuously repeated, and thereafter, for each element. Disconnected.
[0021]
As shown in FIG. 3, the SiO 2 layer 11 was formed to a thickness of 2000 mm on the high carrier concentration p + layer 52 by sputtering. Next, a photoresist 12 was applied on the SiO 2 layer 11. Then, by photolithography, the electrode forming portion A corresponding to the hole 15 formed so as to reach the high carrier concentration n + layer 3 on the high carrier concentration p + layer 52 and the electrode forming portion thereof are divided into the high carrier concentration p +. The photoresist in the portion B where the groove 9 for insulating separation from the electrode of the layer 52 was formed was removed.
[0022]
Next, as shown in FIG. 4, the SiO 2 layer 11 not covered with the photoresist 12 was removed with a hydrofluoric acid etching solution. Next, as shown in FIG. 5, the high carrier concentration p + layer 52 and the lower carrier concentration p layer 51, the low carrier concentration n layer 4 below the portion not covered with the photoresist 12 and the SiO 2 layer 11, A part of the upper surface of the high carrier concentration n + layer 3 was dry-etched by supplying a vacuum degree of 0.04 Torr, high-frequency power of 0.44 W / cm 2 and BCl 3 gas at a rate of 10 ml / min, and then dry-etched with Ar. In this step, a hole 15 for extracting an electrode for the high carrier concentration n + layer 3 and a groove 9 for insulating separation were formed.
[0023]
Next, as shown in FIG. 6, the SiO 2 layer 11 remaining on the high carrier concentration p + layer 52 was removed with hydrofluoric acid. Next, as shown in FIG. 7, the Ni layer 13 was formed on the entire upper surface of the sample by vapor deposition. As a result, the Ni layer 13 electrically connected to the high carrier concentration n + layer 3 is formed in the hole 15. Then, a photoresist 14 is applied on the Ni layer 13, and a predetermined amount of the photoresist 14 is left by photolithography so that electrode portions for the high carrier concentration n + layer 3 and the high carrier concentration p + layer 52 remain. Patterned into shape.
[0024]
Next, as shown in FIG. 7, the exposed portion of the lower Ni layer 13 was etched with a nitric acid-based etchant using the photoresist 14 as a mask. At this time, the Ni layer 13 deposited in the groove 9 for insulation separation is completely removed. Next, the photoresist 14 was removed with acetone, leaving the electrode 8 of the high carrier concentration n + layer 3 and the electrode 7 of the high carrier concentration p + layer 52. Thereafter, the wafer processed as described above was cut for each element to obtain a gallium nitride light emitting element having a pn structure shown in FIG.
[0025]
The light emission intensity of the light-emitting diode 10 manufactured in this manner was measured and found to be 10 mcd, and this light emission luminance was twice that of the conventional pn junction GaN light-emitting diode. Further, the emission lifetime is 10 4 hours was 1.5 times that of the emission lifetime of the GaN light emitting diodes of a conventional pn junction.
[0026]
Incidentally, the magnesium Mg doping gas used in the above embodiment may be methylbiscyclopentadienylmagnesium Mg (C 6 H 7 ) 2 in addition to the gas described above.
[0027]
The low carrier concentration n layer 4 preferably has an electron concentration of 1 × 10 14 to 1 × 10 16 / cm 3 and a film thickness of 0.5 to 2 μm. When the electron concentration is 1 × 10 16 / cm 3 or more, the emission intensity is lowered, which is not desirable. When the electron concentration is 1 × 10 14 / cm 3 or less, the series resistance of the light emitting element becomes too high, and it is not desirable because current is generated to generate heat. . Further, if the film thickness is 2 μm or more, the series resistance of the light emitting element becomes too high, and it is not desirable because heat is generated when a current is passed. If the film thickness is 0.5 μm or less, the light emission intensity is decreased, which is not desirable.
[0028]
Further, the electron concentration of the high carrier concentration n + layer 3 is preferably 1 × 10 16 to 1 × 10 19 / cm 3 and the film thickness is preferably 2 to 10 μm. When the electron concentration is 1 × 10 19 / cm 3 or more, the crystallinity deteriorates, which is not desirable. When the electron concentration is 1 × 10 16 / cm 3 or less, the series resistance of the light-emitting element becomes too high, and it is not desirable because it generates heat when a current is applied. . Further, when the film thickness is 10 μm or more, the substrate is curved, which is not desirable, and when the film thickness is 2 μm or less, the series resistance of the light emitting element becomes too high, and heat is generated when a current is passed.
[0029]
The hole concentration of the low carrier concentration p layer 51 is preferably 1 × 10 14 to 1 × 10 16 / cm 3 and the film thickness is preferably 0.2 to 1 μm. When the hole concentration is 1 × 10 16 / cm 3 or more, the matching with the low carrier concentration n-layer 4 is deteriorated and the light emission efficiency is lowered, which is not desirable. When the hole concentration is 1 × 10 14 / cm 3 or less, the series resistance is high. It is not desirable because it becomes too much. Further, when the film thickness is 1 μm or more, it is not desirable because the series resistance is increased, and when the film thickness is 0.2 μm or less, the light emission luminance is decreased, which is not desirable.
[0030]
Further, the hole concentration of the high carrier concentration p + layer 52 is preferably 1 × 10 16 to 2 × 10 19 / cm 3 and the film thickness is preferably 0.2 to 0.5 μm. A p + layer with a hole concentration of 2 × 10 19 / cm 3 or more cannot be formed. If it is 1 × 10 16 / cm 3 or less, the series resistance is increased, which is not desirable. Further, when the film thickness is 0.5 μm or more, it is not desirable because the series resistance becomes high, and when the film thickness is 0.1 μm or less, it is not desirable because the hole injection efficiency decreases.
[0031]
Second embodiment In Fig. 8, a light emitting diode 10 has a sapphire substrate 1, on which a 500Å AlN buffer layer 2 is formed. Of On the buffer layer 2, in turn, a film thickness of about 2.2 [mu] m, the electron concentration of 2 × 10 18 / cm high carrier concentration comprising a silicon-doped GaN of 3 n + layer 3, a thickness of about 1.5 [mu] m, the electron concentration of 1 × A low carrier concentration n layer 4 made of non-doped GaN of 10 15 / cm 3 is formed. Further, on the low carrier concentration n-layer 4, a low carrier concentration p layer 51 made of Mg-doped GaN having a film thickness of about 0.2 μm and a hole concentration of 1 × 10 15 / cm 3 , a film thickness of about 0.5 μm, and a hole. first high carrier concentration p + layer 52 at a concentration 1 × 10 16 / cm 3, a thickness of about 0.2 [mu] m, the second high carrier concentration p + layer 53 of the hole concentration 1 × 10 17 / cm 3 is formed. An electrode 7 made of nickel connected to the second high carrier concentration p + layer 53 and an electrode 8 made of nickel connected to the high carrier concentration n + layer 3 are formed. The electrode 8 and the electrode 7 are electrically insulated and separated by the groove 9. As described above, the light-emitting diode 10 of this example is characterized in that the p-layer is formed of three layers in which the hole concentration changes in three steps. The manufacturing method is the same as in the first embodiment.
[0032]
As described above, the n layer is formed of a multi-layer in which the electron concentration increases stepwise in the direction away from the pn junction surface, and the p-layer is formed in a multi-layer in which the hole concentration increases in steps in the direction away from the pn junction surface. By applying a voltage between the p-type layer having the highest concentration and the n-type layer having the highest electron concentration, electrons and holes are efficiently accelerated in each layer, and the opposite conductivity type passes through the pn junction surface. Efficiently injected into the layer. As a result, the emission luminance was improved.
[0033]
Third embodiment In Fig. 9, a light emitting diode 10 has a sapphire substrate 1, and a 500Å AlN buffer layer 2 is formed on the sapphire substrate 1. Of On the buffer layer 2, in turn, a film thickness of about 2.2 [mu] m, the electron concentration of 2 × 10 18 / cm high carrier concentration comprising a silicon-doped GaN of 3 n + layer 3, a thickness of about 1.5 [mu] m, the electron concentration of 1 × A low carrier concentration n layer 4 made of non-doped GaN of 10 16 / cm 3 is formed. Furthermore, on the low carrier concentration n layer 4, a low impurity concentration i layer 61 made of Mg-doped GaN having a thickness of about 0.5 μm and an Mg concentration of 5 × 10 19 / cm 3 , a thickness of about 0.2 μm, and Mg A high impurity concentration i + layer 62 having a concentration of 2 × 10 20 / cm 3 is formed.
[0034]
In the predetermined regions of the low impurity concentration i layer 61 and the high impurity concentration i + layer 62, a low carrier concentration p layer 501 having a hole concentration of 1 × 10 16 / cm 3 , which has been converted to p conductivity type by electron beam irradiation, is obtained. A high carrier concentration p + layer 502 having a hole concentration of 2 × 10 17 / cm 3 is formed.
[0035]
Further, from the upper surface of the high impurity concentration i + layer 62, hole 15 reaching the high impurity concentration i + layer 62, low impurity concentration i layer 61, through the low carrier concentration n layer 4 high carrier concentration n + layer 3 Is formed. An electrode 81 made of nickel joined to the high carrier concentration n + layer 3 through the hole 15 is formed on the high impurity concentration i + layer 62. Further, on the upper surface of the high carrier concentration p + layer 502, the electrode 71 formed of nickel for high carrier concentration p + layer 502 is formed. The electrode 81 for the high carrier concentration n + layer 3 is insulated and separated from the high carrier concentration p + layer 502 and the low carrier concentration p layer 501 by the high impurity concentration i + layer 62 and the low impurity concentration i layer 61.
[0036]
Next, a method for manufacturing the light emitting diode 10 having this structure will be described.
FIGS. 10 to 16 showing the manufacturing process are cross-sectional views relating to only one element in the wafer. Actually, the following manufacturing process is performed on the wafer on which the elements shown in the figure are repeatedly formed. Finally, the wafer is cut to form each light emitting element.
[0037]
The wafer shown in FIG. 10 is manufactured in the same manner as in the first embodiment. Next, as shown in FIG. 11, the SiO 2 layer 11 was formed to a thickness of 2000 mm on the high impurity concentration i + layer 62 by sputtering. Next, a photoresist 12 was applied on the SiO 2 layer 11. Then, the photoresist at the electrode formation site A corresponding to the hole 15 formed so as to reach the high carrier concentration n + layer 3 in the high impurity concentration i + layer 62 was removed by photolithography.
[0038]
Next, as shown in FIG. 12, the SiO 2 layer 11 not covered with the photoresist 12 was removed with a hydrofluoric acid etching solution. Next, as shown in FIG. 13, the high impurity concentration i + layer 62, the low impurity concentration i layer 61 and the low carrier concentration n layer 4, which are not covered by the photoresist 12 and the SiO 2 layer 11, A part of the upper surface of the high carrier concentration n + layer 3 was dry-etched by supplying a vacuum degree of 0.04 Torr, high-frequency power of 0.44 W / cm 2 and BCl 3 gas at a rate of 10 ml / min, and then dry-etched with Ar. In this step, a hole 15 for extracting an electrode for the high carrier concentration n + layer 3 was formed. Next, as shown in FIG. 14, the SiO 2 layer 11 remaining on the high impurity concentration i + layer 62 was removed with hydrofluoric acid.
[0039]
Next, as shown in FIG. 15, only a predetermined region of the high impurity concentration i + layer 62 and the low impurity concentration i layer 61 is irradiated with an electron beam using a reflection electron beam diffraction apparatus, and each of the p conductivity type is irradiated. A high carrier concentration p + layer 502 having a hole concentration of 2 × 10 17 / cm 3 and a low carrier concentration p layer 501 having a hole concentration of 1 × 10 16 / cm 3 are formed.
[0040]
The electron beam irradiation conditions are an acceleration voltage of 10 KV, a sample current of 1 μA, a beam moving speed of 0.2 mm / sec, a beam diameter of 60 μmφ, and a degree of vacuum of 2.1 × 10 −5 Torr. At this time, the portions other than the high carrier concentration p + layer 502 and the low carrier concentration p layer 501, that is, the portions not irradiated with the electron beam are the high impurity concentration i + layer 62 and the low impurity concentration i layer 61 of the insulator. Remains. Therefore, the high carrier concentration p + layer 502 and the low carrier concentration p layer 501 are electrically connected to the low carrier concentration n layer 4 in the vertical direction, but in the horizontal direction, the high impurity concentration i is higher than the surroundings. The + layer 62 and the low impurity concentration i layer 61 are electrically insulated and separated.
[0041]
Next, as shown in FIG. 16, a high carrier concentration p + layer 502, a high impurity concentration i + layer 62, the high impurity concentration i + layer 62 of the upper surface and the hole 15 high carrier concentration n + layer 3 through the In addition, the Ni layer 20 was formed by vapor deposition. Then, a photoresist 21 is applied on the Ni layer 20, and a predetermined amount of the photoresist 21 is left by photolithography so that electrode portions for the high carrier concentration n + layer 3 and the high carrier concentration p + layer 502 remain. Patterned into shape. Next, using the photoresist 21 as a mask, the exposed portion of the lower Ni layer 20 was etched with a nitric acid-based etchant, and the photoresist 21 was removed with acetone. In this way, as shown in FIG. 9, the electrode 81 of the high carrier concentration n + layer 3 and the electrode 71 of the high carrier concentration p + layer 502 were formed. Thereafter, the wafer formed as described above was cut for each element.
[0042]
In this manner was measured emission intensity of the light emitting diode 10 to be manufactured, like the first embodiment, a 10Mcd, emission lifetime was 10 4 hours.
[0043]
Fourth embodiment The light-emitting diode 10 may be configured as shown in FIG. That is, on the buffer layer 2, a second high carrier concentration p + layer 53 having a film thickness of about 0.2 μm and a hole concentration of 2 × 10 17 / cm 3 , a film thickness of about 0.5 μm and a hole concentration of 1 × 10 16 / first high carrier concentration p + layer 52 cm 3, a thickness of about 0.2 [mu] m, the low carrier concentration p layer 51 made of Mg-doped GaN of hole concentration 1 × 10 15 / cm 3 is formed. Then, on the low carrier concentration p layer 51, in order, a low carrier concentration n layer 4 made of non-doped GaN having a film thickness of about 1.5 μm and an electron concentration of 1 × 10 15 / cm 3 , a film thickness of about 2.2 μm and an electron concentration of 2 × A high carrier concentration n + layer 3 made of silicon-doped GaN of 10 18 / cm 3 is formed.
[0044]
An electrode 72 made of nickel connected to the second high carrier concentration p + layer 53 and an electrode 82 made of nickel connected to the high carrier concentration n + layer 3 are formed. The electrode 82 and the electrode 72 are electrically insulated by a groove 91 formed in the high carrier concentration n + layer 3, the low carrier concentration n layer 4, the low carrier concentration p layer 51, and the first high carrier concentration p + layer 52. It is separated.
[0045]
As described above, unlike the second embodiment, this embodiment is obtained by reversing the deposition order of the p layer and the n layer on the substrate 1. Manufacture can be performed in the same manner as in the second embodiment.
[0046]
Fifth embodiment In the light emitting diode 10 of the first embodiment having the structure shown in FIG. 1, a high carrier concentration n + layer 3, a low carrier concentration n layer 4, a low carrier concentration p layer 51, and a high carrier concentration p. Each of the + layers 52 was Al 0.2 Ga 0.5 In 0.3 N. The high carrier concentration n + layer 3 was formed to have an electron concentration of 2 × 10 18 / cm 3 by adding silicon, and the low carrier concentration n layer 4 was formed to have an electron concentration of 1 × 10 16 / cm 3 without addition of impurities. . Low carrier concentration p layer 51 is doped with magnesium (Mg) and irradiated with an electron beam to form a hole concentration of 1 × 10 16 / cm 3. High carrier concentration p + layer 52 is also doped with magnesium (Mg). Then, an electron beam was irradiated to form a hole concentration of 2 × 10 17 / cm 3 . Then, an electrode 7 made of nickel connected to the high carrier concentration p + layer 52 and an electrode 8 made of nickel connected to the high carrier concentration n + layer 3 were formed.
[0047]
Next, the light emitting diode 10 having this structure can also be manufactured in the same manner as the light emitting diode of the first embodiment. Trimethylindium (In (CH 3 ) 3 ) was used in addition to TMG, TMA, silane, CP 2 Mg gas. The generation temperature and gas flow rate are the same as in the first embodiment. The flow rates of the other gases are the same as in the first embodiment except that trimethylindium is supplied at 1.7 × 10 −4 mol / min.
[0048]
Next, in the same manner as in the first embodiment, the high carrier concentration p + layer 52 and the low carrier concentration p layer 51 are uniformly irradiated with an electron beam using a reflection electron beam diffractometer to form a p-conduction type. A semiconductor could be obtained.
[0049]
Next, as in the first example, electrodes 7 and 8 made of nickel for the high carrier concentration n + layer 3 and the high carrier concentration p + layer 52 were formed.
[0050]
The light emission intensity of the light-emitting diode 10 manufactured in this manner was measured and found to be 10 mcd, and this light emission luminance was twice that of the conventional pn junction GaN light-emitting diode. Further, the emission lifetime is 10 4 hours was 1.5 times that of the emission lifetime of the GaN light emitting diodes of a conventional pn junction.
[Brief description of the drawings]
FIG. 1 is a configuration diagram illustrating a configuration of a light emitting diode according to a first specific example of the present invention.
FIG. 2 is a cross-sectional view showing a manufacturing process of the light-emitting diode of the same example.
FIG. 3 is a cross-sectional view showing a manufacturing process of the light-emitting diode of the example.
FIG. 4 is a cross-sectional view showing a manufacturing process of the light-emitting diode of the same example.
FIG. 5 is a cross-sectional view showing a manufacturing process of the light-emitting diode of the example.
6 is a cross-sectional view showing a manufacturing process of the light-emitting diode of the example. FIG.
7 is a cross-sectional view showing a manufacturing process of the light-emitting diode of the example. FIG.
FIG. 8 is a configuration diagram showing a configuration of a light emitting diode according to a second specific example of the present invention.
FIG. 9 is a configuration diagram showing a configuration of a light emitting diode according to a specific third embodiment of the present invention.
10 is a cross-sectional view showing a manufacturing step of the light-emitting diode of the same Example. FIG.
FIG. 11 is a cross-sectional view showing a manufacturing process of the light-emitting diode of the example.
FIG. 12 is a cross-sectional view showing a manufacturing process of the light-emitting diode of the example.
13 is a cross-sectional view showing a manufacturing process of the light-emitting diode of the example. FIG.
FIG. 14 is a cross-sectional view showing a manufacturing process of the light-emitting diode of the example.
15 is a cross-sectional view showing a manufacturing step of the light-emitting diode of the example. FIG.
16 is a cross-sectional view showing a manufacturing step of the light-emitting diode of the example. FIG.
FIG. 17 is a configuration diagram showing a configuration of a light emitting diode according to a specific fourth embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Light emitting diode 1 ... Sapphire substrate 2 ... Buffer layer 3 ... High carrier concentration n + layer 4 ... Low carrier concentration n layer 51,501 ... Low carrier concentration p layer 52 ... High carrier concentration p + layer (1st high carrier concentration) p + layer)
502 ... high carrier concentration p + layer 53 ... second high carrier concentration p + layer 61 ... low impurity concentration i layer 62 ... high impurity concentration i + layers 7, 8, 71, 72, 81, 82 ... electrodes 9, 91 ... groove

Claims (12)

窒素−3族元素化合物半導体から成る発光素子において、
シリコン(Si)が添加されたn型の窒素−3族元素化合物半導体からなる高キャリア濃度n+層と、
前記高キャリア濃度n+層よりもp型層側に形成された不純物無添加のn型の窒素−3族元素化合物半導体からなる電子濃度が1×1014 /cm 3 以上の低キャリア濃度n層と、
マグネシウム(Mg)の添加されたp型の窒素−3族元素化合物半導体から成る高キャリア濃度p+層であって、ホール濃度が1×1016/cm3以上である第1高キャリア濃度p+層と、第1高キャリア濃度p+層よりもホール濃度の高い第2高キャリア濃度p+層とから成る高キャリア濃度p+層とを有し、
前記低キャリア濃度n層と、前記第1高キャリア濃度p + 層との間に、マグネシウム (Mg) の添加されたp型の窒素−3族元素化合物半導体から成り、前記第1高キャリア濃度p + 層よりもホール濃度が低い、低キャリア濃度p層を有し、
前記低キャリア濃度p層のホール濃度は1× 10 14 〜1× 10 16 /cm 3 であることを特徴とする窒素−3族元素化合物半導体発光素子。
In a light-emitting element composed of a nitrogen-3 group element compound semiconductor,
A high carrier concentration n + layer made of an n-type nitrogen-3 group element compound semiconductor doped with silicon (Si);
Low-carrier-concentration n-layer having an impurity concentration of n-type nitrogen-3 group element compound semiconductor added with no impurities and formed on the p-type layer side of the high-carrier-concentration n + layer and having an electron concentration of 1 × 10 14 / cm 3 or more When,
A high carrier concentration p + layer made of the added p-type nitrogen -3-group element compound semiconductor of magnesium (Mg), the first high carrier concentration p hole concentration is 1 × 10 16 / cm 3 or more + possess a layer, and a first high carrier concentration p + layer made of a high hole concentration than the high carrier concentration p + layer second high carrier concentration p + layer,
A p-type nitrogen-3 group element compound semiconductor doped with magnesium (Mg) is interposed between the low carrier concentration n layer and the first high carrier concentration p + layer, and the first high carrier concentration p. A low carrier concentration p-layer having a lower hole concentration than the + layer,
3. A nitrogen-3 group compound semiconductor light emitting device, wherein the hole concentration of the low carrier concentration p layer is 1 × 10 14 to 1 × 10 16 / cm 3 .
前記第2高キャリア濃度p+層にはニッケル(Ni)から成る電極が形成されていることを特徴とする請求項1に記載の窒素−3族元素化合物半導体発光素子。The nitrogen-3 group element compound semiconductor light emitting device according to claim 1 , wherein an electrode made of nickel (Ni) is formed on the second high carrier concentration p + layer. 窒素−3族元素化合物半導体から成る発光素子において、
n型の窒素−3族元素化合物半導体から成り、p型層から遠ざかる方向に電子濃度がステップ増加する複層で形成され、そのうち最も高キャリア濃度で形成したものを高キャリア濃度n+層とし、最も低キャリア濃度で形成したものを低キャリア濃度n層とし、
マグネシウム(Mg)の添加されたp型の窒素−3族元素化合物半導体から成るホール濃度が1×1014/cm3以上である低キャリア濃度p層と、
前記p層のn型層側と反対側に形成されたマグネシウム(Mg)の添加されたp型の窒素−3族元素化合物半導体から成るホール濃度が1×1016/cm3以上である高キャリア濃度p+層と、そのp+層に形成されたニッケル(Ni)から成る電極とを有し、
前記低キャリア濃度p層のホール濃度は1× 10 14 〜1× 10 16 /cm 3 であることを特徴とする窒素−3族元素化合物半導体発光素子。
In a light-emitting element composed of a nitrogen-3 group element compound semiconductor,
An n-type nitrogen-3 group element compound semiconductor, which is formed of a multi-layer in which the electron concentration increases stepwise in the direction away from the p-type layer, of which the highest carrier concentration is formed as a high carrier concentration n + layer, The one formed with the lowest carrier concentration is the low carrier concentration n layer,
A low carrier concentration p-layer having a hole concentration of 1 × 10 14 / cm 3 or more, composed of a p-type nitrogen-3 group element compound semiconductor doped with magnesium (Mg);
A high carrier having a hole concentration of 1 × 10 16 / cm 3 or more made of a p-type nitrogen-3 group element compound semiconductor doped with magnesium (Mg) formed on the opposite side of the p-type layer to the n-type layer side and the density p + layer, and an electrode composed of the p + layer which is formed on nickel (Ni) possess,
3. A nitrogen-3 group compound semiconductor light emitting device, wherein the hole concentration of the low carrier concentration p layer is 1 × 10 14 to 1 × 10 16 / cm 3 .
前記高キャリア濃度p+層は、ホール濃度の低い第1高キャリア濃度p+層と、その第1高キャリア濃度p+層よりもホール濃度の高い第2高キャリア濃度p+層との2層で構成され、前記ニッケル(Ni)から成る電極は第2高キャリア濃度p+層に形成されていることを特徴とする請求項3に記載の窒素−3族元素化合物半導体発光素子。The high carrier concentration p + layer, two layers of the first and high carrier concentration p + layer of low hole concentration, and a high hole concentration than the first high carrier concentration p + layer second high carrier concentration p + layer The nitrogen-3 group element compound semiconductor light emitting device according to claim 3 , wherein the electrode made of nickel (Ni) is formed in a second high carrier concentration p + layer. 前記高キャリア濃度p+層のホール濃度は1×1016〜2×1019/cm3であることを特徴とする請求項1乃至請求項4のいずれか1項に記載の窒素−3族元素化合物半導体発光素子。5. The nitrogen-3 group element according to claim 1, wherein a hole concentration of the high carrier concentration p + layer is 1 × 10 16 to 2 × 10 19 / cm 3. Compound semiconductor light emitting device. 前記高キャリア濃度n+層の電子濃度は1×1016〜1×1019/cm3であることを特徴とする請求項1乃至請求項5のいずれか1項に記載の窒素−3族元素化合物半導体発光素子。6. The nitrogen-3 group element according to claim 1, wherein an electron concentration of the high carrier concentration n + layer is 1 × 10 16 to 1 × 10 19 / cm 3. Compound semiconductor light emitting device. 前記低キャリア濃度n層の電子濃度は1×1014〜1×1016/cm3であることを特徴とする請求項1乃至請求項6のいずれか1項に記載の窒素−3族元素化合物半導体発光素子。The nitrogen-3 group element compound according to any one of claims 1 to 6 , wherein an electron concentration of the low carrier concentration n layer is 1 x 10 14 to 1 x 10 16 / cm 3 . Semiconductor light emitting device. 前記低キャリア濃度p層の厚さは0.2〜1μmであることを特徴とする請求項1乃至請求項7のいずれか1項に記載の窒素−3族元素化合物半導体発光素子。The nitrogen-3 group element compound semiconductor light emitting device according to any one of claims 1 to 7 , wherein a thickness of the low carrier concentration p layer is 0.2 to 1 µm. 前記高キャリア濃度p+層の厚さは0.1〜0.5μmであることを特徴とする請求項1乃至請求項8のいずれか1項に記載の窒素−3族元素化合物半導体発光素子。The nitrogen-3 group element compound semiconductor light emitting device according to any one of claims 1 to 8 , wherein the high carrier concentration p + layer has a thickness of 0.1 to 0.5 µm. 前記高キャリア濃度n+層の厚さは2〜10μmであることを特徴とする請求項1乃至請求項9のいずれか1項に記載の窒素−3族元素化合物半導体発光素子。The nitrogen-3 group element compound semiconductor light emitting device according to any one of claims 1 to 9 , wherein the high carrier concentration n + layer has a thickness of 2 to 10 µm. 前記低キャリア濃度n層の厚さは0.5〜2μmであることを特徴とする請求項1乃至請求項10のいずれか1項に記載の窒素−3族元素化合物半導体発光素子。11. The nitrogen-3 group element compound semiconductor light emitting device according to claim 1, wherein a thickness of the low carrier concentration n layer is 0.5 to 2 μm. 前記高キャリア濃度n+層は窒化ガリウム(GaN)から成ることを特徴とする請求項1乃至請求項11のいずれか1項に記載の窒素−3族元素化合物半導体発光素子。The nitrogen-3 group element compound semiconductor light emitting device according to any one of claims 1 to 11 , wherein the high carrier concentration n + layer is made of gallium nitride (GaN).
JP9848797A 1997-03-31 1997-03-31 Nitrogen-3 group element compound semiconductor light emitting device Expired - Lifetime JP3795624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9848797A JP3795624B2 (en) 1997-03-31 1997-03-31 Nitrogen-3 group element compound semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9848797A JP3795624B2 (en) 1997-03-31 1997-03-31 Nitrogen-3 group element compound semiconductor light emitting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP31659992A Division JP2663814B2 (en) 1992-10-29 1992-10-29 Nitrogen-3 element compound semiconductor light emitting device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003164334A Division JP3700713B2 (en) 2003-06-09 2003-06-09 Nitrogen-3 group element compound semiconductor device

Publications (2)

Publication Number Publication Date
JPH1032347A JPH1032347A (en) 1998-02-03
JP3795624B2 true JP3795624B2 (en) 2006-07-12

Family

ID=14221020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9848797A Expired - Lifetime JP3795624B2 (en) 1997-03-31 1997-03-31 Nitrogen-3 group element compound semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3795624B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8395165B2 (en) 2011-07-08 2013-03-12 Bridelux, Inc. Laterally contacted blue LED with superlattice current spreading layer
US8525221B2 (en) 2009-11-25 2013-09-03 Toshiba Techno Center, Inc. LED with improved injection efficiency
US8536601B2 (en) 2009-06-10 2013-09-17 Toshiba Techno Center, Inc. Thin-film LED with P and N contacts electrically isolated from the substrate
US8564010B2 (en) 2011-08-04 2013-10-22 Toshiba Techno Center Inc. Distributed current blocking structures for light emitting diodes
US8581267B2 (en) 2011-11-09 2013-11-12 Toshiba Techno Center Inc. Series connected segmented LED
US8624482B2 (en) 2011-09-01 2014-01-07 Toshiba Techno Center Inc. Distributed bragg reflector for reflecting light of multiple wavelengths from an LED
US8664679B2 (en) 2011-09-29 2014-03-04 Toshiba Techno Center Inc. Light emitting devices having light coupling layers with recessed electrodes
US8686430B2 (en) 2011-09-07 2014-04-01 Toshiba Techno Center Inc. Buffer layer for GaN-on-Si LED
US8698163B2 (en) 2011-09-29 2014-04-15 Toshiba Techno Center Inc. P-type doping layers for use with light emitting devices
US8865565B2 (en) 2011-08-02 2014-10-21 Kabushiki Kaisha Toshiba LED having a low defect N-type layer that has grown on a silicon substrate
US8916906B2 (en) 2011-07-29 2014-12-23 Kabushiki Kaisha Toshiba Boron-containing buffer layer for growing gallium nitride on silicon
US8994064B2 (en) 2011-09-03 2015-03-31 Kabushiki Kaisha Toshiba Led that has bounding silicon-doped regions on either side of a strain release layer
US9012921B2 (en) 2011-09-29 2015-04-21 Kabushiki Kaisha Toshiba Light emitting devices having light coupling layers
US9012939B2 (en) 2011-08-02 2015-04-21 Kabushiki Kaisha Toshiba N-type gallium-nitride layer having multiple conductive intervening layers
US9018643B2 (en) 2011-09-06 2015-04-28 Kabushiki Kaisha Toshiba GaN LEDs with improved area and method for making the same
US9130068B2 (en) 2011-09-29 2015-09-08 Manutius Ip, Inc. Light emitting devices having dislocation density maintaining buffer layers
US9142743B2 (en) 2011-08-02 2015-09-22 Kabushiki Kaisha Toshiba High temperature gold-free wafer bonding for light emitting diodes
US9159869B2 (en) 2011-08-03 2015-10-13 Kabushiki Kaisha Toshiba LED on silicon substrate using zinc-sulfide as buffer layer
US9178114B2 (en) 2011-09-29 2015-11-03 Manutius Ip, Inc. P-type doping layers for use with light emitting devices
US9343641B2 (en) 2011-08-02 2016-05-17 Manutius Ip, Inc. Non-reactive barrier metal for eutectic bonding process
US10174439B2 (en) 2011-07-25 2019-01-08 Samsung Electronics Co., Ltd. Nucleation of aluminum nitride on a silicon substrate using an ammonia preflow

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6333522B1 (en) 1997-01-31 2001-12-25 Matsushita Electric Industrial Co., Ltd. Light-emitting element, semiconductor light-emitting device, and manufacturing methods therefor
US6445127B1 (en) 1998-02-17 2002-09-03 Matsushita Electric Industrial Co., Ltd. Light-emitting device comprising gallium-nitride-group compound-semiconductor and method of manufacturing the same

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8871539B2 (en) 2009-06-10 2014-10-28 Kabushiki Kaisha Toshiba Thin-film LED with P and N contacts electrically isolated from the substrate
US8536601B2 (en) 2009-06-10 2013-09-17 Toshiba Techno Center, Inc. Thin-film LED with P and N contacts electrically isolated from the substrate
US9142742B2 (en) 2009-06-10 2015-09-22 Kabushiki Kaisha Toshiba Thin-film LED with P and N contacts electrically isolated from the substrate
US8525221B2 (en) 2009-11-25 2013-09-03 Toshiba Techno Center, Inc. LED with improved injection efficiency
US9012953B2 (en) 2009-11-25 2015-04-21 Kabushiki Kaisha Toshiba LED with improved injection efficiency
US8684749B2 (en) 2009-11-25 2014-04-01 Toshiba Techno Center Inc. LED with improved injection efficiency
US8395165B2 (en) 2011-07-08 2013-03-12 Bridelux, Inc. Laterally contacted blue LED with superlattice current spreading layer
US10174439B2 (en) 2011-07-25 2019-01-08 Samsung Electronics Co., Ltd. Nucleation of aluminum nitride on a silicon substrate using an ammonia preflow
US8916906B2 (en) 2011-07-29 2014-12-23 Kabushiki Kaisha Toshiba Boron-containing buffer layer for growing gallium nitride on silicon
US8865565B2 (en) 2011-08-02 2014-10-21 Kabushiki Kaisha Toshiba LED having a low defect N-type layer that has grown on a silicon substrate
US9142743B2 (en) 2011-08-02 2015-09-22 Kabushiki Kaisha Toshiba High temperature gold-free wafer bonding for light emitting diodes
US9343641B2 (en) 2011-08-02 2016-05-17 Manutius Ip, Inc. Non-reactive barrier metal for eutectic bonding process
US9012939B2 (en) 2011-08-02 2015-04-21 Kabushiki Kaisha Toshiba N-type gallium-nitride layer having multiple conductive intervening layers
US9159869B2 (en) 2011-08-03 2015-10-13 Kabushiki Kaisha Toshiba LED on silicon substrate using zinc-sulfide as buffer layer
US8564010B2 (en) 2011-08-04 2013-10-22 Toshiba Techno Center Inc. Distributed current blocking structures for light emitting diodes
US9070833B2 (en) 2011-08-04 2015-06-30 Kabushiki Kaisha Toshiba Distributed current blocking structures for light emitting diodes
US8981410B1 (en) 2011-09-01 2015-03-17 Kabushiki Kaisha Toshiba Distributed bragg reflector for reflecting light of multiple wavelengths from an LED
US8624482B2 (en) 2011-09-01 2014-01-07 Toshiba Techno Center Inc. Distributed bragg reflector for reflecting light of multiple wavelengths from an LED
US8994064B2 (en) 2011-09-03 2015-03-31 Kabushiki Kaisha Toshiba Led that has bounding silicon-doped regions on either side of a strain release layer
US9018643B2 (en) 2011-09-06 2015-04-28 Kabushiki Kaisha Toshiba GaN LEDs with improved area and method for making the same
US8686430B2 (en) 2011-09-07 2014-04-01 Toshiba Techno Center Inc. Buffer layer for GaN-on-Si LED
US9130068B2 (en) 2011-09-29 2015-09-08 Manutius Ip, Inc. Light emitting devices having dislocation density maintaining buffer layers
US9012921B2 (en) 2011-09-29 2015-04-21 Kabushiki Kaisha Toshiba Light emitting devices having light coupling layers
US8698163B2 (en) 2011-09-29 2014-04-15 Toshiba Techno Center Inc. P-type doping layers for use with light emitting devices
US9178114B2 (en) 2011-09-29 2015-11-03 Manutius Ip, Inc. P-type doping layers for use with light emitting devices
US9299881B2 (en) 2011-09-29 2016-03-29 Kabishiki Kaisha Toshiba Light emitting devices having light coupling layers
US8664679B2 (en) 2011-09-29 2014-03-04 Toshiba Techno Center Inc. Light emitting devices having light coupling layers with recessed electrodes
US9490392B2 (en) 2011-09-29 2016-11-08 Toshiba Corporation P-type doping layers for use with light emitting devices
US9123853B2 (en) 2011-11-09 2015-09-01 Manutius Ip, Inc. Series connected segmented LED
US9391234B2 (en) 2011-11-09 2016-07-12 Toshiba Corporation Series connected segmented LED
US8581267B2 (en) 2011-11-09 2013-11-12 Toshiba Techno Center Inc. Series connected segmented LED

Also Published As

Publication number Publication date
JPH1032347A (en) 1998-02-03

Similar Documents

Publication Publication Date Title
JP3795624B2 (en) Nitrogen-3 group element compound semiconductor light emitting device
JP2681733B2 (en) Nitrogen-3 group element compound semiconductor light emitting device
JP3654738B2 (en) Group 3 nitride semiconductor light emitting device
JP2698796B2 (en) Group III nitride semiconductor light emitting device
JP2626431B2 (en) Nitrogen-3 group element compound semiconductor light emitting device
JP3506874B2 (en) Nitrogen-3 group element compound semiconductor light emitting device
JP2657743B2 (en) Nitrogen-3 group element compound semiconductor light emitting device
US5700713A (en) Light emitting semiconductor device using group III nitride compound and method of producing the same
JPH0897471A (en) Group-iii nitride semiconductor light emitting device
JP2658009B2 (en) Gallium nitride based compound semiconductor light emitting device
JP3198678B2 (en) Nitrogen-3 group element compound semiconductor light emitting device
JP3705637B2 (en) Group 3 nitride semiconductor light emitting device and method of manufacturing the same
JP2663814B2 (en) Nitrogen-3 element compound semiconductor light emitting device
JPH0992880A (en) Group iii nitride semiconductor light emitting device
JP2696095B2 (en) Method of manufacturing gallium nitride based compound semiconductor light emitting device
JP3016241B2 (en) Group III nitride semiconductor light emitting device
JP3026102B2 (en) Gallium nitride based compound semiconductor light emitting device
JP3700713B2 (en) Nitrogen-3 group element compound semiconductor device
JP3538628B2 (en) Method for manufacturing group III nitride semiconductor light emitting device
JPH08125222A (en) Method for manufacture of group iii nitride semiconductor
JP3307094B2 (en) Group III nitride semiconductor light emitting device
JP3727091B2 (en) Group 3 nitride semiconductor device
JPH07297447A (en) Group iii nitride semiconductor light emitting element
JP3564811B2 (en) Group III nitride semiconductor light emitting device
JPH06350137A (en) Nitrogen-iii-compound semiconductor luminous element

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060413

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120421

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120421

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130421

Year of fee payment: 7

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130421

Year of fee payment: 7