JP2681733B2 - Nitrogen-3 group element compound semiconductor light emitting device - Google Patents

Nitrogen-3 group element compound semiconductor light emitting device

Info

Publication number
JP2681733B2
JP2681733B2 JP31659792A JP31659792A JP2681733B2 JP 2681733 B2 JP2681733 B2 JP 2681733B2 JP 31659792 A JP31659792 A JP 31659792A JP 31659792 A JP31659792 A JP 31659792A JP 2681733 B2 JP2681733 B2 JP 2681733B2
Authority
JP
Japan
Prior art keywords
layer
carrier concentration
concentration
light emitting
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31659792A
Other languages
Japanese (ja)
Other versions
JPH06151968A (en
Inventor
勝英 真部
正宏 小滝
久喜 加藤
真人 田牧
勇 赤崎
浩 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18078856&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2681733(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP31659792A priority Critical patent/JP2681733B2/en
Publication of JPH06151968A publication Critical patent/JPH06151968A/en
Application granted granted Critical
Publication of JP2681733B2 publication Critical patent/JP2681733B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は青色発光の窒素−3族元
素化合物半導体発光素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a blue-emitting nitrogen-group III compound semiconductor light emitting device.

【0002】[0002]

【従来技術】従来、青色の発光ダイオードとしてGaN 系
の化合物半導体を用いたものが知られている。そのGaN
系の化合物半導体は直接遷移型であることから発光効率
が高いこと、光の3原色の1つである青色を発光色とす
ること等から注目されている。
2. Description of the Related Art Conventionally, a blue light emitting diode using a GaN-based compound semiconductor has been known. The GaN
Attention has been paid to the fact that system compound semiconductors are of direct transition type and thus have high luminous efficiency, and that blue, one of the three primary colors of light, is used as the luminescent color.

【0003】最近、GaN の発光ダイオードにおいても、
Mgを添加して電子線を照射することによりp型のGaN が
得られることが明らかとなった。この結果、従来のn層
と半絶縁層(i層)との接合に代えてpn接合を有する
GaN 発光ダイオードが提案されている。この発光ダイオ
ードの電極は、n層がアルミニウム(Al) 、p層が金(A
u)である。
Recently, GaN light emitting diodes have
It became clear that p-type GaN can be obtained by adding Mg and irradiating an electron beam. As a result, a pn junction is provided instead of the conventional junction between the n-layer and the semi-insulating layer (i-layer).
GaN light emitting diodes have been proposed. The electrode of this light emitting diode has an n-layer of aluminum (Al) and a p-layer of gold (A
u).

【0004】[0004]

【発明が解決しようとする課題】しかし、上記のpn接
合を有する発光ダイオードであっても、発光輝度は未だ
十分ではなく、また、駆動電圧も高い。そこで、本発明
の目的は、窒素−3族元素化合物半導体(AlxGaYIn1-X-Y
N;X=0,Y=0,X=Y=0 を含む) 発光ダイオードの発光輝度を
向上させること及び駆動電圧を低下させることである。
However, even with the above-mentioned light emitting diode having a pn junction, the light emission luminance is not yet sufficient, and the driving voltage is high. Accordingly, an object of the present invention is to provide a nitrogen-group III element compound semiconductor (Al x Ga Y In 1-XY
N; X = 0, Y = 0, and X = Y = 0) The purpose is to improve the light emission luminance of the light emitting diode and to lower the driving voltage.

【0005】[0005]

【課題を解決するための手段】本発明の第1の特徴は、
n型の窒素−3族元素化合物半導体(AlxGaYIn1-X-YN;X=
0,Y=0,X=Y=0 を含む) からなるn層と、p型の窒素−3
族元素化合物半導体(AlxGaYIn1-X-YN;X=0,Y=0,X=Y=0 を
含む) からなるp層とを有する窒素−3族元素化合物半
導体発光素子において、p層を、正孔濃度が1×10 16
/cm 3 以上の高キャリア濃度p + 層と、その高キャリア濃
度p + 層よりも正孔濃度が低い低キャリア濃度p層との
2重層で構成し、高キャリア濃度p + 層に接合する電極
をニッケル(Ni)とすることである。
A first feature of the present invention is as follows.
n-type nitrogen-group III element compound semiconductor (Al x Ga Y In 1-XY N; X =
0, Y = 0, X = Y = 0) and p-type nitrogen-3
Group element compound semiconductor; in nitrogen -3-group element compound semiconductor light-emitting device having a p layer formed of (Al x Ga Y In 1- XY N X = 0, Y = 0, X = Y = a containing 0), p The layer has a hole concentration of 1 × 10 16
/ cm 3 or higher high carrier concentration p + layer and its high carrier concentration
With a low carrier concentration p layer having a lower hole concentration than the p + layer
Electrode composed of double layers and joined to high carrier concentration p + layer
Is nickel (Ni) .

【0006】第2の特徴は、p層はマグネシウム(Mg)が
添加されていることである。 第3の特徴は、低キャリア濃度p層は、正孔濃度が1×
10 14 〜1×10 16 /cm 3 であることである。 第4の特徴は、高キャリア濃度p + は0.1〜0.5
μmの厚さを有することである。 第5の特徴は、低キャリア濃度p層は0.2〜1.0μ
mの厚さを有することである。 第6の特徴は、高キャリア濃度p + に接合する電極と
n層に接合する電極は同一面側に形成されることであ
る。 第7の特徴は、低キャリア濃度p層及び高キャリア濃度
+ 層は半絶縁性窒素−3族元素化合物半導体層の一部
をp型化して形成したことである。
The second characteristic is that the p layer is made of magnesium (Mg).
It has been added . The third feature is that the low carrier concentration p-layer has a hole concentration of 1 ×
10 14 is that it is ~1 × 10 16 / cm 3. The fourth characteristic is that the high carrier concentration p + layer is 0.1 to 0.5.
It has a thickness of μm. The fifth characteristic is that the low carrier concentration p-layer is 0.2 to 1.0 μm.
m. The sixth feature is that the electrode joined to the high carrier concentration p + layer and the electrode joined to the n layer are formed on the same surface side. The seventh characteristic is a low carrier concentration p layer and a high carrier concentration.
The p + layer is formed by making a part of the semi-insulating nitrogen-group 3 element compound semiconductor layer into p-type.

【0007】[0007]

【発明の作用及び効果】本発明は、p層及びn層を有す
る窒素−3族元素化合物半導体(AlxGaYIn1-X-YN;X=0,Y=
0,X=Y=0 を含む) 発光素子において、p層を、正孔濃度
が1×10 16 /cm 3 以上の高キャリア濃度p + 層と、その
高キャリア濃度p + 層よりも正孔濃度が低い低キャリア
濃度p層との2重層で構成し、高キャリア濃度p + 層に
接合する電極をニッケル(Ni)とすることにより、
好なオーミック性を得ると共に駆動電圧が低下した。
又、駆動電圧の低下により同一電圧では注入電流を大き
くとることができ、発光輝度が向上した。
INDUSTRIAL APPLICABILITY The present invention provides a nitrogen-group III element compound semiconductor (Al x Ga Y In 1-XY N; X = 0, Y = having a p-layer and an n-layer).
0, the X = including Y = 0) light-emitting device, the p-layer, the hole concentration
With a high carrier concentration p + layer of 1 × 10 16 / cm 3 or more, and
High carrier concentration Low carrier with lower hole concentration than p + layer
Consists of a double layer consisting of a high concentration p layer and a high carrier concentration p + layer
The bonding electrodes by a nickel (Ni), good
A favorable ohmic property was obtained and the driving voltage was lowered.
Moreover, the injection current can be increased at the same voltage due to the decrease in the driving voltage, and the emission brightness is improved.

【0008】又、低キャリア濃度p層の正孔濃度を1×
10 14 〜1×10 16 /cm 3 とすることで、発光効率を向上
させることができる。さらに、高キャリア濃度p + 層の
厚さを0.1〜0.5μmとすることで、直列抵抗を低
下させ、正孔の注入効率を向上させることができる。さ
らに、低キャリア濃度p層を厚さを0.2〜1.0μ
とすることで、直列抵抗を低下させ発光効率を向上させ
ることができる。
Further , the hole concentration of the low carrier concentration p layer is set to 1 ×.
The luminous efficiency is improved by setting 10 14 to 1 × 10 16 / cm 3.
Can be done. Furthermore, the high carrier concentration p + layer
By setting the thickness to 0.1 to 0.5 μm, the series resistance can be reduced.
The hole injection efficiency can be improved. Sa
Luo, 0.2~1.0μ m thickness low carrier concentration p layer
By lowering the series resistance and improving the luminous efficiency
Can be

【0009】[0009]

【実施例】第1実施例 図1において、発光ダイオード10は、サファイア基板
1を有しており、そのサファイア基板1に500 ÅのAlN
のバッファ層2が形成されている。そのバッファ層2の
上には、順に、膜厚約2.2 μm、電子濃度2 ×1018/cm3
のシリコン添加GaN から成る高キャリア濃度n+ 層3、
膜厚約 1.5μm、電子濃度1 ×1016/cm3の無添加GaN か
ら成る低キャリア濃度n層4が形成されている。更に、
低キャリア濃度n層4の上には、順に、膜厚約0.5 μ
m、正孔濃度1 ×1016/cm3のマグネシウム(Mg)添加GaN
から成る低キャリア濃度p層51、膜厚約0.2 μm、正
孔濃度 2×1017/cm3の高キャリア濃度p+ 層52が形成
されている。そして、高キャリア濃度p+ 層52に接続
するニッケルで形成された電極7と高キャリア濃度n+
層3に接続するニッケルで形成された電極8とが形成さ
れている。電極8と電極7とは、溝9により電気的に絶
縁分離されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First Embodiment In FIG. 1, a light emitting diode 10 has a sapphire substrate 1 on which 500 .ANG.
Buffer layer 2 is formed. On the buffer layer 2, a film thickness of about 2.2 μm and an electron concentration of 2 × 10 18 / cm 3
A high carrier concentration n + layer 3 composed of silicon-doped GaN,
A low carrier concentration n layer 4 of undoped GaN having a film thickness of about 1.5 μm and an electron concentration of 1 × 10 16 / cm 3 is formed. Furthermore,
On the low carrier concentration n-layer 4, the film thickness is about 0.5 μm in order.
m, hole concentration 1 × 10 16 / cm 3 magnesium (Mg) -doped GaN
And a high carrier concentration p + layer 52 having a hole concentration of 2 × 10 17 / cm 3 is formed. The electrode 7 made of nickel connected to the high carrier concentration p + layer 52 and the high carrier concentration n +
An electrode 8 made of nickel and connected to the layer 3 is formed. The electrode 8 and the electrode 7 are electrically insulated and separated by the groove 9.

【0010】次に、この構造の発光ダイオード10の製
造方法について説明する。上記発光ダイオード10は、
有機金属化合物気相成長法( 以下「M0VPE 」と記す) に
よる気相成長により製造された。用いられたガスは、NH
3 とキャリアガスH2とトリメチルガリウム(Ga(CH3)3)
(以下「TMG 」と記す) とトリメチルアルミニウム(Al
(CH3)3)(以下「TMA 」と記す) とシラン(SiH4)とビス
シクロペンタジエニルマグネシウム(Mg(C5H5)2)(以下
「CP2Mg 」と記す)である。
Next, a method of manufacturing the light emitting diode 10 having this structure will be described. The light emitting diode 10 includes:
It was manufactured by vapor phase growth by an organometallic compound vapor phase growth method (hereinafter referred to as “M0VPE”). The gas used was NH
3 and the carrier gas H 2 and trimethylgallium (Ga (CH 3) 3)
(Hereinafter referred to as "TMG") and trimethylaluminum (Al
(CH 3 ) 3 ) (hereinafter referred to as “TMA”), silane (SiH 4 ), and biscyclopentadienyl magnesium (Mg (C 5 H 5 ) 2 ) (hereinafter referred to as “CP 2 Mg”).

【0011】まず、有機洗浄及び熱処理により洗浄した
a面を主面とする単結晶のサファイア基板1をM0VPE 装
置の反応室に載置されたサセプタに装着する。次に、常
圧でH2を流速2 liter/分で反応室に流しながら温度1100
℃でサファイア基板1を気相エッチングした。
First, the single crystal sapphire substrate 1 having the a-plane as the main surface, which has been cleaned by organic cleaning and heat treatment, is mounted on a susceptor placed in the reaction chamber of the M0VPE apparatus. Next, while flowing H 2 at normal pressure into the reaction chamber at a flow rate of 2 liter / min, the temperature was 1100
The sapphire substrate 1 was subjected to gas-phase etching at a temperature of ℃.

【0012】次に、温度を 400℃まで低下させて、H2
20 liter/分、NH3 を10 liter/分、TMA を 1.8×10-5
モル/分で供給してAlN のバッファ層2が約 500Åの厚
さに形成された。次に、サファイア基板1の温度を1150
℃に保持し、H2を20 liter/分、NH3 を10 liter/分、
TMG を 1.7×10-4モル/分、H2で0.86ppm まで希釈した
シラン(SiH4)を 200 milliliter /分の割合で30分間供
給し、膜厚約 2.2μm、電子濃度2 ×1018/cm3のGaN か
ら成る高キャリア濃度n+ 層3を形成した。
Next, the temperature is lowered to 400 ° C. and H 2 is added.
20 liter / min, NH 3 10 liter / min, TMA 1.8 × 10 -5
Supplying at mol / min, an AlN buffer layer 2 was formed to a thickness of about 500 °. Next, the temperature of the sapphire substrate 1 was set to 1150
° C, H 2 at 20 liter / min, NH 3 at 10 liter / min,
TMG 1.7 × 10 -4 mol / min, supplying 30 minutes silane diluted with H 2 to 0.86ppm a (SiH 4) at a rate of 200 Milliliter / min, a film thickness of about 2.2 .mu.m, electron concentration 2 × 10 18 / A high carrier concentration n + layer 3 made of GaN of cm 3 was formed.

【0013】続いて、サファイア基板1の温度を1150℃
に保持し、H2を20 liter/分、NH3を10 liter/分、TMG
を1.7 ×10-4モル/分の割合で20分間供給し、膜厚約
1.5μm、電子濃度 1×1016/ cm3 のGaN から成る低キ
ャリア濃度n層4を形成した。
Then, the temperature of the sapphire substrate 1 is set to 1150 ° C.
, H 2 at 20 liter / min, NH 3 at 10 liter / min, TMG
At a rate of 1.7 × 10 -4 mol / min for 20 minutes,
A low carrier concentration n-layer 4 made of GaN having a thickness of 1.5 μm and an electron concentration of 1 × 10 16 / cm 3 was formed.

【0014】次に、サファイア基板1を1150℃に保持し
て、H2 を20 liter/分、NH3 を10liter/分、TMG を
1.7×10-4モル/分、CP2Mg を 2×10-7モル/分の割合
で 7分間供給して、膜厚0.5 μmのGaN から成る低キャ
リア濃度p層51を形成した。この状態では、低キャリ
ア濃度p層51は、まだ、抵抗率108 Ωcm以上の絶縁体
である。
Next, the sapphire substrate 1 is kept at 1150 ° C., H 2 is 20 liter / min, NH 3 is 10 liter / min, and TMG is
1.7 × 10 −4 mol / min and CP 2 Mg were supplied at a rate of 2 × 10 −7 mol / min for 7 minutes to form a 0.5 μm-thick low carrier concentration p-layer 51 made of GaN. In this state, the low carrier concentration p layer 51 is still an insulator having a resistivity of 10 8 Ωcm or more.

【0015】次に、サファイア基板1を1150℃に保持し
たまま、H2 を20 liter/分、NH3を10 liter/分、TMG
を 1.7×10-4モル/分、CP2Mg を 3×10-6モル/分の
割合で 3分間供給して、膜厚0.2 μmのGaN から成る高
キャリア濃度p+ 層52を形成した。この状態では、高
キャリア濃度p+ 層52は、まだ、抵抗率108 Ωcm以上
の絶縁体である。
Next, while keeping the sapphire substrate 1 at 1150 ° C., H 2 is 20 liter / min, NH 3 is 10 liter / min, and TMG is used.
Was supplied at a rate of 1.7 × 10 −4 mol / min and CP 2 Mg at a rate of 3 × 10 −6 mol / min for 3 minutes to form a 0.2 μm thick GaN high carrier concentration p + layer 52. In this state, the high carrier concentration p + layer 52 is still an insulator having a resistivity of 10 8 Ωcm or more.

【0016】次に、反射電子線回析装置を用いて、上記
の高キャリア濃度p+ 層52及び低キャリア濃度p層5
1に一様に電子線を照射した。電子線の照射条件は、加
速電圧10KV、試料電流 1μA 、ビームの移動速度0.2mm/
sec 、ビーム径60μmφ、真空度2.1 ×10-5Torrであ
る。この電子線の照射により、低キャリア濃度p層51
は、正孔濃度1 ×1016/cm3、抵抗率40Ωcmのp伝導型半
導体となり、高キャリア濃度p+ 層52は、正孔濃度 2
×1017/cm3、抵抗率 2Ωcmのp伝導型半導体となった。
このようにして、図2に示すような多層構造のウエハが
得られた。
Next, a high carrier concentration p + layer 52 and a low carrier concentration p layer 5 are used by using a backscattered electron diffraction apparatus.
1 was uniformly irradiated with an electron beam. The electron beam irradiation conditions were: acceleration voltage 10 KV, sample current 1 μA, beam moving speed 0.2 mm /
sec, the beam diameter is 60 μmφ, and the degree of vacuum is 2.1 × 10 −5 Torr. By the irradiation of the electron beam, the low carrier concentration p layer 51 is formed.
Is a p-conduction type semiconductor having a hole concentration of 1 × 10 16 / cm 3 and a resistivity of 40 Ωcm, and the high carrier concentration p + layer 52 has a hole concentration of 2
It became a p-type semiconductor having × 10 17 / cm 3 and resistivity of 2Ωcm.
Thus, a wafer having a multilayer structure as shown in FIG. 2 was obtained.

【0017】以下に述べられる図3から図7は、ウエハ
上の1つの素子のみを示す断面図であり、実際は、同一
構造の素子が連続的に形成されているウエハについて、
処理が行われ、その後、そのウエハは各素子毎に切断さ
れる。
FIGS. 3 to 7 described below are cross-sectional views showing only one element on the wafer. Actually, for a wafer in which elements having the same structure are continuously formed,
Processing is performed, and then the wafer is cut for each device.

【0018】図3に示すように、高キャリア濃度p+
52の上に、スパッタリングによりSiO2層11を2000Å
の厚さに形成した。次に、そのSiO2層11上にフォトレ
ジスト12を塗布した。そして、フォトリソグラフによ
り、高キャリア濃度p+ 層52上において、高キャリア
濃度n+ 層3に至るように形成される孔15に対応する
電極形成部位Aとその電極形成部を高キャリア濃度p+
層52の電極と絶縁分離する溝9を形成する部位Bのフ
ォトレジストを除去した。
As shown in FIG. 3, a SiO 2 layer 11 of 2000 Å is sputtered on the high carrier concentration p + layer 52.
It was formed in thickness. Next, a photoresist 12 was applied on the SiO 2 layer 11. Then, by photolithography, on the high carrier concentration p + layer 52, the electrode formation site A corresponding to the hole 15 formed so as to reach the high carrier concentration n + layer 3 and the electrode formation portion are formed with the high carrier concentration p +
The photoresist in the portion B where the groove 9 for insulating and separating from the electrode of the layer 52 was formed was removed.

【0019】次に、図4に示すように、フォトレジスト
12によって覆われていないSiO2層11をフッ化水素酸
系エッチング液で除去した。次に、図5に示すように、
フォトレジスト12及びSiO2層11によって覆われてい
ない部位の高キャリア濃度p+ 層52とその下の低キャ
リア濃度p層51、低キャリア濃度n層4、高キャリア
濃度n+ 層3の上面一部を、真空度0.04Torr、高周波電
力0.44W/cm2 、BCl3ガスを10 milliliter/分の割合で供
給しドライエッチングした後、Arでドライエッチングし
た。この工程で、高キャリア濃度n+ 層3に対する電極
取出しのための孔15と絶縁分離のための溝9が形成さ
れた。
Next, as shown in FIG. 4, the SiO 2 layer 11 not covered with the photoresist 12 was removed with a hydrofluoric acid-based etching solution. Next, as shown in FIG.
The upper surface of the high carrier concentration p + layer 52 at a portion not covered by the photoresist 12 and the SiO 2 layer 11 and the lower carrier concentration p layer 51, the low carrier concentration n layer 4, and the high carrier concentration n + layer 3 The part was dry-etched by supplying a degree of vacuum of 0.04 Torr, high-frequency power of 0.44 W / cm 2 , and BCl 3 gas at a rate of 10 milliliter / min, and then dry-etching with Ar. In this step, a hole 15 for extracting an electrode from the high carrier concentration n + layer 3 and a groove 9 for insulating and separating were formed.

【0020】次に、図6に示すように、高キャリア濃度
+ 層52上に残っているSiO2層11をフッ化水素酸で
除去した。次に、図7に示すように、試料の上全面に、
ニッケル層13を蒸着により形成した。これにより、孔
15には、高キャリア濃度n+ 層3に電気的に接続され
たニッケル層13が形成される。そして、そのニッケル
層13の上にフォトレジスト14を塗布して、フォトリ
ソグラフにより、そのフォトレジスト14が高キャリア
濃度n+ 層3及び高キャリア濃度p+ 層52に対する電
極部が残るように、所定形状にパターン形成した。
Next, as shown in FIG. 6, the SiO 2 layer 11 remaining on the high carrier concentration p + layer 52 was removed with hydrofluoric acid. Next, as shown in FIG.
The nickel layer 13 was formed by vapor deposition. As a result, the nickel layer 13 electrically connected to the high carrier concentration n + layer 3 is formed in the hole 15. Then, a photoresist 14 is applied on the nickel layer 13, and a predetermined photolithography is performed so that the photoresist 14 has an electrode portion for the high carrier concentration n + layer 3 and the high carrier concentration p + layer 52. A pattern was formed into a shape.

【0021】次に、図7に示すようにそのフォトレジス
ト14をマスクとして下層のニッケル層13の露出部を
硝酸系エッチング液でエッチングした。この時、絶縁分
離のための溝9に蒸着されたニッケル層13は、完全に
除去される。次に、フォトレジスト14をアセトンで除
去し、高キャリア濃度n+ 層3の電極8、高キャリア濃
度p+ 層52の電極7が残された。その後、上記の如く
処理されたウエハは、各素子毎に切断され、図1に示す
pn構造の窒化ガリウム系発光素子を得た。
Next, as shown in FIG. 7, the exposed portion of the lower nickel layer 13 was etched with a nitric acid-based etching solution using the photoresist 14 as a mask. At this time, the nickel layer 13 deposited on the trench 9 for insulation isolation is completely removed. Next, the photoresist 14 was removed with acetone, and the electrode 8 of the high carrier concentration n + layer 3 and the electrode 7 of the high carrier concentration p + layer 52 were left. Thereafter, the wafer processed as described above was cut into individual devices to obtain a gallium nitride-based light emitting device having a pn structure shown in FIG.

【0022】また、この発光ダイオード10に印加する
電圧Vと流れる電流Iとの関係を測定した。その結果を
図8に示す。又、比較のためにアルミニウムで電極を形
成した場合のV−I特性の測定結果を図9に示す。駆動
しきい値電圧は7Vから3Vに低下した。
The relationship between the voltage V applied to the light emitting diode 10 and the flowing current I was measured. FIG. 8 shows the result. For comparison, FIG. 9 shows the measurement results of the VI characteristics when the electrode was formed of aluminum. The driving threshold voltage dropped from 7V to 3V.

【0023】このようにして製造された発光ダイオード
10の駆動電流20mAにおける発光強度を測定したところ
10mcd であり、この発光輝度は、従来のpn接合のGaN
発光ダイオードの発光輝度に比べて 2倍であった。又、
素子寿命は、104 時間であり、従来のpn接合のGaN 発
光ダイオードの素子寿命に比べて1.5 倍であった。
The light emission intensity of the light emitting diode 10 manufactured as described above at a drive current of 20 mA was measured.
The emission luminance is 10 mcd, which is equivalent to that of the conventional pn junction GaN.
The luminance was twice as high as that of the light emitting diode. or,
Device lifetime was 10 4 hours, was 1.5 times that of the device life of the GaN light emitting diodes of a conventional pn junction.

【0024】尚、上記実施例で用いたマグネシウム(Mg)
のドーピングガスは、上述のガスの他、メチルシクロペ
ンタジエニルマグネシウムMg(C6H7)2 を用いても良い。
また、上記のp層を図10に示すように1層に形成して
も良い。その場合にはp層5の正孔濃度は 1×1016〜 1
×1019/cm3である。又、p層52に対する電極7のみニ
ッケルとし、高キャリア濃度n+ 層3に対する電極8は
アルミニウムとしても良い。
The magnesium (Mg) used in the above examples
As the doping gas, methyl cyclopentadienyl magnesium Mg (C 6 H 7 ) 2 may be used in addition to the above-mentioned gases.
Further, the above-mentioned p layer may be formed as a single layer as shown in FIG. In this case, the hole concentration of the p layer 5 is 1 × 10 16 to 1
× 10 19 / cm 3 . Alternatively, only the electrode 7 for the p layer 52 may be nickel, and the electrode 8 for the high carrier concentration n + layer 3 may be aluminum.

【0025】又、上記低キャリア濃度p層51の正孔濃
度は1 ×1014/cm3 〜1 ×1016/cm3 で膜厚は0.2 〜1
μmが望ましい。正孔濃度が1 ×1014/cm3 以下となる
と、直列抵抗が高くなり過ぎるので望ましくなく、正孔
濃度が1 ×1016/cm3 以上となると、低キャリア濃度n
層4とのマッチングが悪くなり発光効率が低下するので
望ましくない。又、膜厚が 1μm以上となると直列抵抗
が高くなるので望ましくなく、0.2 μm以下となると発
光輝度が低下するので望ましくない。
The low carrier concentration p-layer 51 has a hole concentration of 1 × 10 14 / cm 3 to 1 × 10 16 / cm 3 and a film thickness of 0.2 to 1
μm is desirable. When the hole concentration is 1 × 10 14 / cm 3 or less, the series resistance becomes too high, which is not desirable, and when the hole concentration is 1 × 10 16 / cm 3 or more, the low carrier concentration n
This is not desirable because the matching with the layer 4 is poor and the luminous efficiency is reduced. Further, if the film thickness is 1 μm or more, the series resistance becomes high, which is not desirable, and if it is 0.2 μm or less, the emission brightness is lowered, which is not desirable.

【0026】更に、高キャリア濃度p+ 層52の正孔濃
度は 1×1016/cm3 以上で膜厚は0.1 〜0.5 μmが望ま
しい。正孔濃度が 1×1016/cm3 より小さくなると、直
列抵抗が高くなるので望ましくない。又、膜厚が0.5 μ
m以上となると、直列抵抗が高くなるので望ましくな
く、膜厚が0.1 μm以下となると、正孔の注入効率が減
少するので望ましくない。
Further, it is desirable that the high carrier concentration p + layer 52 has a hole concentration of 1 × 10 16 / cm 3 or more and a film thickness of 0.1 to 0.5 μm. If the hole concentration is less than 1 × 10 16 / cm 3 , the series resistance increases, which is not desirable. The film thickness is 0.5 μ
When the thickness is more than m, the series resistance increases, which is not desirable. When the thickness is less than 0.1 μm, the hole injection efficiency decreases, which is not desirable.

【0027】第2実施例 図11において、発光ダイオード10は、サファイア基
板1を有しており、そのサファイア基板1に500 ÅのAl
N のバッファ層2が形成されている。そのバッファ層2
の上には、順に、膜厚約2.2 μm、電子濃度 2×1018/c
m3のシリコン添加GaN から成る高キャリア濃度n+
3、膜厚約 1.5μm、電子濃度1 ×1016/cm3の無添加Ga
N から成る低キャリア濃度n層4が形成されている。更
に、低キャリア濃度n層4の上には、順に、膜厚約0.2
μm、Mg濃度 1×1019/cm3のMg添加GaN から成る低不純
物濃度i層61、膜厚約0.5 μm、Mg濃度 2×1020/cm3
の高不純物濃度i+ 層62が形成されている。
Second Embodiment In FIG. 11, a light emitting diode 10 has a sapphire substrate 1, and the sapphire substrate 1 has 500 Å Al.
An N 2 buffer layer 2 is formed. The buffer layer 2
On the top, in order, the film thickness is about 2.2 μm, and the electron concentration is 2 × 10 18 / c
High carrier concentration n + layer 3 composed of m 3 silicon-doped GaN, film thickness of about 1.5 μm, electron concentration of 1 × 10 16 / cm 3 non-doped Ga
A low carrier concentration n layer 4 made of N 2 is formed. Further, on the low carrier concentration n-layer 4, a film thickness of about 0.2
μm, low impurity concentration i-layer 61 composed of Mg-doped GaN having a Mg concentration of 1 × 10 19 / cm 3 , a film thickness of about 0.5 μm, and a Mg concentration of 2 × 10 20 / cm 3
High impurity concentration i + layer 62 is formed.

【0028】そして、その低不純物濃度i層61及び高
不純物濃度i+ 層62の所定領域には、それぞれ、電子
線照射によりp伝導型化した正孔濃度1 ×1016/cm3の低
キャリア濃度p層501、正孔濃度4 ×1017/cm3の高キ
ャリア濃度p+ 層502が形成されている。
Then, in the predetermined regions of the low impurity concentration i layer 61 and the high impurity concentration i + layer 62, low carriers having a hole concentration of 1 × 10 16 / cm 3 which have been made p-conductive by electron beam irradiation are respectively provided. A high carrier concentration p + layer 502 having a concentration p layer 501 and a hole concentration 4 × 10 17 / cm 3 is formed.

【0029】又、高不純物濃度i+ 層62の上面から
は、高不純物濃度i+ 層62、低不純物濃度i層61、
低キャリア濃度n層4を貫通して高キャリア濃度n+
3に至る孔15が形成されている。その孔15を通って
高キャリア濃度n+ 層3に接合されたニッケルで形成さ
れた電極81が高不純物濃度i+ 層62上に形成されて
いる。又、高キャリア濃度p+ 層502の上面には、高
キャリア濃度p+ 層502に対するニッケルで形成され
た電極71が形成されている。高キャリア濃度n+ 層3
に対する電極81は、高キャリア濃度p+ 層502及び
低キャリア濃度p層501に対して高不純物濃度i+
62及び低不純物濃度i層61により絶縁分離されてい
る。
[0029] Further, from the upper surface of the high impurity concentration i + layer 62, the high impurity concentration i + layer 62, low impurity concentration i layer 61,
A hole 15 penetrating through the low carrier concentration n layer 4 and reaching the high carrier concentration n + layer 3 is formed. An electrode 81 made of nickel joined to the high carrier concentration n + layer 3 through the hole 15 is formed on the high impurity concentration i + layer 62. Further, on the upper surface of the high carrier concentration p + layer 502, the electrode 71 formed of nickel for high carrier concentration p + layer 502 is formed. High carrier concentration n + layer 3
Is separated from the high carrier concentration p + layer 502 and the low carrier concentration p layer 501 by the high impurity concentration i + layer 62 and the low impurity concentration i layer 61.

【0030】次に、この構造の発光ダイオード10の製
造方法について説明する。製造工程を示す図12から図
17は、ウエハにおける1素子のみに関する断面図であ
り、実際には図に示す素子が繰り返し形成されたウエハ
に関して次の製造処理が行われる。そして、最後に、ウ
エハが切断されて各発光素子が形成される。
Next, a method of manufacturing the light emitting diode 10 having this structure will be described. FIGS. 12 to 17 showing the manufacturing process are cross-sectional views of only one element on the wafer, and the following manufacturing process is actually performed on the wafer on which the elements shown in the drawing are repeatedly formed. Then, finally, the wafer is cut to form each light emitting element.

【0031】第1実施例と同様にして、図12に示すウ
エハを製造する。次に、図13に示すように、高不純物
濃度i+ 層62の上に、スパッタリングによりSiO2層1
1を2000Åの厚さに形成した。次に、そのSiO2層11上
にフォトレジスト12を塗布した。そして、フォトリソ
グラフにより、高不純物濃度i+ 層62において低キャ
リア濃度n層4に至るように形成される孔15に対応す
る電極形成部位Aのフォトレジストを除去した。
The wafer shown in FIG. 12 is manufactured in the same manner as in the first embodiment. Next, as shown in FIG. 13, the SiO 2 layer 1 is formed on the high impurity concentration i + layer 62 by sputtering.
1 was formed to a thickness of 2000 mm. Next, a photoresist 12 was applied on the SiO 2 layer 11. Then, the photoresist at the electrode formation site A corresponding to the hole 15 formed to reach the low carrier concentration n layer 4 in the high impurity concentration i + layer 62 was removed by photolithography.

【0032】次に、図14に示すように、フォトレジス
ト12によって覆われていないSiO2層11をフッ化水素
酸系エッチング液で除去した。次に、図15に示すよう
に、フォトレジスト12及びSiO2層11によって覆われ
ていない部位の高不純物濃度i+ 層62とその下の低不
純物濃度i層61と低キャリア濃度n層4と高キャリア
濃度n+ 層3の上面一部を、真空度0.04Torr、高周波電
力0.44W/cm2 、BCl3ガスを10 milliliter/分の割合で供
給しドライエッチングした後、Arでドライエッチングし
た。この工程で、高キャリア濃度n+ 層3に対する電極
取出しのための孔15が形成された。次に、図16に示
すように、高不純物濃度i+ 層62上に残っているSiO2
層11をフッ化水素酸で除去した。
Next, as shown in FIG. 14, the SiO 2 layer 11 not covered with the photoresist 12 was removed with a hydrofluoric acid-based etching solution. Next, as shown in FIG. 15, the photoresist 12 and the SiO 2 layer 11 a high impurity concentration of a portion not covered by the i + layer 62 and the low carrier concentration n layer 4 and the low impurity concentration i layer 61 thereunder A part of the upper surface of the high carrier concentration n + layer 3 was dry-etched by supplying a degree of vacuum of 0.04 Torr, high-frequency power of 0.44 W / cm 2 , and BCl 3 gas at a rate of 10 milliliter / minute, and then dry-etching with Ar. In this step, a hole 15 for extracting an electrode from the high carrier concentration n + layer 3 was formed. Next, as shown in FIG. 16, the SiO 2 remaining on the high impurity concentration i + layer 62
Layer 11 was removed with hydrofluoric acid.

【0033】次に、図17に示すように、高不純物濃度
+ 層62及び低不純物濃度i層61の所定領域にの
み、反射電子線回析装置を用いて電子線を照射して、そ
れぞれp伝導型を示す正孔濃度4 ×1017/cm3の高キャリ
ア濃度p+ 層502、正孔濃度1 ×1016/cm3の低キャリ
ア濃度p層501が形成された。
Next, as shown in FIG. 17, electron beams are irradiated to only predetermined regions of the high impurity concentration i + layer 62 and the low impurity concentration i layer 61 by using a reflection electron beam diffractometer, respectively. A high carrier concentration p + layer 502 having a hole concentration of 4 × 10 17 / cm 3 and a low carrier concentration p layer 501 having a hole concentration of 1 × 10 16 / cm 3 having a p-conduction type were formed.

【0034】電子線の照射条件は、加速電圧10KV、試料
電流 1μA 、ビームの移動速度0.2mm/sec 、ビーム径60
μmφ、真空度2.1 ×10-5Torrである。この時、高キャ
リア濃度p+ 層502及び低キャリア濃度p層501以
外の部分、即ち、電子線の照射されなかった部分は、絶
縁体の高不純物濃度i+ 層62及び低不純物濃度i層6
1のままである。従って、高キャリア濃度p+ 層502
及び低キャリア濃度p層501は、縦方向に対しては、
低キャリア濃度n層4に導通するが、横方向には、周囲
に対して、高不純物濃度i+ 層62及び低不純物濃度i
層61により電気的に絶縁分離されている。
The irradiation conditions of the electron beam were as follows: acceleration voltage 10 KV, sample current 1 μA, beam moving speed 0.2 mm / sec, beam diameter 60
μmφ, vacuum degree 2.1 × 10 −5 Torr. At this time, portions other than the high carrier concentration p + layer 502 and the low carrier concentration p layer 501, that is, the portions not irradiated with the electron beam, are the high impurity concentration i + layer 62 and the low impurity concentration i layer 6 of the insulator.
It remains at 1. Therefore, the high carrier concentration p + layer 502
And the low carrier concentration p-layer 501 is:
Conduction is made to the low carrier concentration n layer 4, but in the lateral direction, the high impurity concentration i + layer 62 and the low impurity concentration i
It is electrically insulated and separated by the layer 61.

【0035】次に、図18に示すように、高キャリア濃
度p+ 層502と、高不純物濃度i+ 層62と、高不純
物濃度i+ 層62の上面と孔15を通って高キャリア濃
度n+ 層3とに、ニッケル層20が蒸着により形成され
た。そして、そのニッケル層20の上にフォトレジスト
21を塗布して、フォトリソグラフにより、そのフォト
レジスト21が高キャリア濃度n+ 層3及び高キャリア
濃度p+ 層502に対する電極部が残るように、所定形
状にパターン形成した。次に、そのフォトレジスト21
をマスクとして下層のニッケル層20の露出部を硝酸系
エッチング液でエッチングし、フォトレジスト21をア
セトンで除去した。このようにして、図11に示すよう
に、高キャリア濃度n+ 層3の電極81、高キャリア濃
度p+ 層502の電極71を形成した。その後、上述の
ように形成されたウエハが各素子毎に切断された。
Next, as shown in FIG. 18, a high carrier concentration p + layer 502, a high impurity concentration i + layer 62, a high carrier concentration n + through the upper surface of the high impurity concentration i + layer 62 and the hole 15. A nickel layer 20 was formed on the + layer 3 by vapor deposition. Then, a photoresist 21 is applied on the nickel layer 20, and a predetermined photolithography is performed so that the photoresist 21 has an electrode portion for the high carrier concentration n + layer 3 and the high carrier concentration p + layer 502. A pattern was formed into a shape. Next, the photoresist 21
The exposed portion of the lower nickel layer 20 was etched with a nitric acid-based etchant using the mask as a mask, and the photoresist 21 was removed with acetone. Thus, as shown in FIG. 11, the electrode 81 of the high carrier concentration n + layer 3 and the electrode 71 of the high carrier concentration p + layer 502 were formed. Thereafter, the wafer formed as described above was cut for each element.

【0036】このようにして製造された発光ダイオード
10のV−I特性を測定したとろこ、図8と同様な特性
が得られた。駆動電圧は3Vであった。又、発光強度を
測定したところ、第1実施例と同様に、10mcd であり、
素子寿命は104 時間であった。
When the VI characteristics of the light emitting diode 10 manufactured in this way were measured, the characteristics similar to those of FIG. 8 were obtained. The driving voltage was 3V. When the luminescence intensity was measured, it was 10 mcd, as in the first embodiment.
Element lifetime was 10 4 hours.

【0037】第3実施例 図1に示す構造の第1実施例の発光ダイオードにおい
て、高キャリア濃度n+層3、低キャリア濃度n層4、
低キャリア濃度p層51、高キャリア濃度p+ 層52
を、それぞれ、Al0.2Ga0.5In0.3Nとした。高キャリア濃
度n+ 層3は、シリコンを添加して電子濃度2 ×1018/c
m3に形成し、低キャリア濃度n層4は不純物無添加で電
子濃度1 ×1016/cm3に形成した。低キャリア濃度p層5
1はマグネシウム(Mg)を添加して電子線を照射して正孔
濃度1 ×1016/cm3に形成し、高キャリア濃度p+ 層52
は同じくマグネシウム(Mg)を添加して電子線を照射して
正孔濃度 2×1017/cm3に形成した。そして、高キャリア
濃度p+ 層52に接続するニッケルで形成された電極7
と高キャリア濃度n+ 層3に接続するニッケルで形成さ
れた電極8とを形成した。
Third Embodiment In the light emitting diode of the first embodiment having the structure shown in FIG. 1, a high carrier concentration n + layer 3, a low carrier concentration n layer 4,
Low carrier concentration p layer 51, high carrier concentration p + layer 52
Was set to Al 0.2 Ga 0.5 In 0.3 N, respectively. The high carrier concentration n + layer 3 has an electron concentration of 2 × 10 18 / c
m 3 , and the low carrier concentration n-layer 4 was formed at an electron concentration of 1 × 10 16 / cm 3 without adding impurities. Low carrier concentration p layer 5
No. 1 is formed by adding magnesium (Mg) and irradiating an electron beam to form a hole concentration of 1 × 10 16 / cm 3 , and a high carrier concentration p + layer 52.
Was added to magnesium (Mg) and irradiated with an electron beam to form a hole concentration of 2 × 10 17 / cm 3 . The electrode 7 made of nickel connected to the high carrier concentration p + layer 52
And an electrode 8 made of nickel and connected to the high carrier concentration n + layer 3.

【0038】次に、この構造の発光ダイオード10も第
1実施例の発光ダイオードと同様に製造することができ
る。トリメチルインジウム(In(CH3)3)がTMG 、TMA 、シ
ラン、CP2Mg ガスに加えて使用された。生成温度、ガス
流量は第1実施例と同じである。トリメチルインジウム
を 1.7×10-4モル/分で供給することを除いて他のガス
の流量は第1実施例と同一である。
Next, the light emitting diode 10 having this structure can be manufactured similarly to the light emitting diode of the first embodiment. Trimethylindium (In (CH 3 ) 3 ) was used in addition to TMG, TMA, silane, and CP 2 Mg gas. The generation temperature and gas flow rate are the same as in the first embodiment. The flow rates of the other gases are the same as in the first embodiment, except that trimethylindium is supplied at 1.7 × 10 −4 mol / min.

【0039】次に、第1実施例と同様に、反射電子線回
析装置を用いて、上記の高キャリア濃度p+ 層52及び
低キャリア濃度p層51に一様に電子線を照射してp伝
導型半導体を得ることができた。
Then, as in the first embodiment, the high carrier concentration p + layer 52 and the low carrier concentration p layer 51 are uniformly irradiated with an electron beam by using a reflection electron beam diffraction apparatus. A p-conduction type semiconductor could be obtained.

【0040】次に、第1実施例と同様に、高キャリア濃
度n+ 層3及び高キャリア濃度p+層52に対するニッ
ケルで形成された電極7、8を形成した。
Next, similarly to the first embodiment, electrodes 7 and 8 made of nickel for the high carrier concentration n + layer 3 and the high carrier concentration p + layer 52 were formed.

【0041】また、この発光ダイオード10に印加する
電圧Vと流れる電流Iとの関係を測定した。アルミニウ
ムで電極を形成した場合に比べて、第1実施例と同様
に、駆動しきい値電圧は7Vから3Vに低下した。
The relationship between the voltage V applied to the light emitting diode 10 and the flowing current I was measured. As compared with the case where the electrodes were formed of aluminum, the drive threshold voltage was reduced from 7 V to 3 V, as in the first embodiment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の具体的な第1実施例に係る発光ダイオ
ードの構成を示した構成図。
FIG. 1 is a configuration diagram showing a configuration of a light emitting diode according to a first specific example of the present invention.

【図2】同実施例の発光ダイオードの製造工程を示した
断面図。
FIG. 2 is a sectional view showing a manufacturing process of the light-emitting diode of the embodiment.

【図3】同実施例の発光ダイオードの製造工程を示した
断面図。
FIG. 3 is a sectional view showing a manufacturing step of the light-emitting diode of the embodiment.

【図4】同実施例の発光ダイオードの製造工程を示した
断面図。
FIG. 4 is a sectional view showing a manufacturing step of the light-emitting diode of the same embodiment.

【図5】同実施例の発光ダイオードの製造工程を示した
断面図。
FIG. 5 is a sectional view showing the manufacturing process of the light emitting diode of the same embodiment.

【図6】同実施例の発光ダイオードの製造工程を示した
断面図。
FIG. 6 is a sectional view showing the manufacturing process of the light-emitting diode of the example.

【図7】同実施例の発光ダイオードの製造工程を示した
断面図。
FIG. 7 is a sectional view showing the manufacturing process of the light emitting diode of the same embodiment.

【図8】同実施例の発光ダイオードの電圧−電流特性の
測定図。
FIG. 8 is a measurement diagram of a voltage-current characteristic of the light emitting diode of the same example.

【図9】従来のアルミニウム電極を用いた発光ダイオー
ドの電圧−電流特性の測定図。
FIG. 9 is a measurement diagram of voltage-current characteristics of a light-emitting diode using a conventional aluminum electrode.

【図10】第1実施例の変形例にかかる発光ダイオード
の構成を示した構成図。
FIG. 10 is a configuration diagram showing a configuration of a light emitting diode according to a modification of the first embodiment.

【図11】本発明の具体的な第2実施例に係る発光ダイ
オードの構成を示した構成図。
FIG. 11 is a configuration diagram showing a configuration of a light emitting diode according to a second specific example of the present invention.

【図12】同実施例の発光ダイオードの製造工程を示し
た断面図。
FIG. 12 is a sectional view showing the manufacturing process of the light-emitting diode of the example.

【図13】同実施例の発光ダイオードの製造工程を示し
た断面図。
FIG. 13 is a sectional view showing the manufacturing process of the light-emitting diode of the example.

【図14】同実施例の発光ダイオードの製造工程を示し
た断面図。
FIG. 14 is a sectional view showing a manufacturing step of the light-emitting diode of the example.

【図15】同実施例の発光ダイオードの製造工程を示し
た断面図。
FIG. 15 is a sectional view showing the manufacturing process of the light-emitting diode of the example.

【図16】同実施例の発光ダイオードの製造工程を示し
た断面図。
FIG. 16 is a sectional view showing a manufacturing step of the light-emitting diode of the example.

【図17】同実施例の発光ダイオードの製造工程を示し
た断面図。
FIG. 17 is a cross-sectional view showing the manufacturing process of the light-emitting diode of the example.

【図18】同実施例の発光ダイオードの製造工程を示し
た断面図。
FIG. 18 is a cross-sectional view showing the manufacturing process of the light-emitting diode of the same example.

【符号の説明】[Explanation of symbols]

10…発光ダイオード 1…サファイア基板 2…バッファ層 3…高キャリア濃度n+ 層 4…低キャリア濃度n層 51,501…低キャリア濃度p層 52,502…高キャリア濃度p+ 層 61…低不純物濃度i層 62…高不純物濃度i+ 層 7,8,71,81…電極 9…溝DESCRIPTION OF SYMBOLS 10 ... Light-emitting diode 1 ... Sapphire substrate 2 ... Buffer layer 3 ... High carrier concentration n + layer 4 ... Low carrier concentration n layer 51,501 ... Low carrier concentration p layer 52,502 ... High carrier concentration p + layer 61 ... Low impurity Concentration i layer 62: High impurity concentration i + layer 7, 8, 71, 81 ... Electrode 9: Groove

───────────────────────────────────────────────────── フロントページの続き (72)発明者 真部 勝英 愛知県西春日井郡春日町大字落合字長畑 1番地 豊田合成株式会社内 (72)発明者 小滝 正宏 愛知県西春日井郡春日町大字落合字長畑 1番地 豊田合成株式会社内 (72)発明者 加藤 久喜 愛知県西春日井郡春日町大字落合字長畑 1番地 豊田合成株式会社内 (72)発明者 田牧 真人 愛知県西春日井郡春日町大字落合字長畑 1番地 豊田合成株式会社内 (72)発明者 赤崎 勇 愛知県名古屋市西区浄心1丁目1番38− 805 (72)発明者 天野 浩 愛知県名古屋市名東区神丘町二丁目21 虹ケ丘東団地19号棟103号室 (56)参考文献 特開 平3−252177(JP,A) 特開 平4−242985(JP,A) 特開 平4−68579(JP,A) 特開 平4−163972(JP,A) 特開 昭59−228776(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsuhide Masabe 1 Ochiai, Nagachi, Kasuga-cho, Nishikasugai-gun, Aichi Prefecture, Toyoda Gosei Co., Ltd. (72) Inventor Masahiro Kotaki Ochiai, Nagachi, Kasuga-cho, Aichi-ken 1 Address: Toyoda Gosei Co., Ltd. (72) Inventor, Kuki Kato, Nishiokasugai-gun, Aichi Prefecture Ochiai, Nagahata 1 No. 1 Toyoda Gosei Co., Ltd. Synthetic Co., Ltd. (72) Inventor Yu Akasaki 1-3-1, Joshi, Nishi-ku, Nagoya-shi Aichi Prefecture 38-805 (72) Inventor Hiroshi Amano 2-21, Kamioka-cho, Meito-ku, Nagoya-shi, Aichi Room 103, Bldg. 19, Nijigaoka Higashi housing complex ( 56) References JP-A-3-252177 (JP, A) JP-A-4-242985 (JP, A) JP-A-4-68579 (JP, A) ) Patent flat 4-163972 (JP, A) JP Akira 59-228776 (JP, A)

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 n型の窒素−3族元素化合物半導体(Alx
GaYIn1-X-YN;X=0,Y=0,X=Y=0 を含む) からなるn層と、
p型の窒素−3族元素化合物半導体(AlxGaYIn1-X-YN;X=
0,Y=0,X=Y=0 を含む) からなるp層とを有する窒素−3
族元素化合物半導体発光素子において、前記p層は、正孔濃度が1×10 16 /cm 3 以上の高キャリ
ア濃度p + 層と、その高キャリア濃度p + 層よりも正孔
濃度が低い低キャリア濃度p層との2重層で構成され、 前記高キャリア濃度p + 層に接合する電極をニッケル
(Ni)としたことを特徴とする窒素−3族元素化合物
半導体発光素子。
1. An n-type nitrogen-group III element compound semiconductor (Al x
Ga Y In 1-XY N; X = 0, Y = 0, and X = Y = 0).
p-type nitrogen-group III element compound semiconductor (Al x Ga Y In 1-XY N; X =
0, Y = 0, X = Y = 0).
In the group element compound semiconductor light emitting device, the p layer has a high carrier concentration of 1 × 10 16 / cm 3 or more.
(A) holes with higher concentration p + layer and higher carrier concentration p + layer
An electrode composed of a double layer of a low carrier concentration p layer having a low concentration, and an electrode bonded to the high carrier concentration p + layer is made of nickel.
(Ni) and nitrogen-group 3 element compound
Semiconductor light emitting device.
【請求項2】 前記p層はマグネシウム(Mg)が添加され
ていることを特徴とする請求項1に記載の窒素−3族元
素化合物半導体発光素子。
2. The magnesium (Mg) is added to the p-layer.
The nitrogen-3 group element according to claim 1, wherein
Element compound semiconductor light emitting device.
【請求項3】 前記低キャリア濃度p層は、正孔濃度が
1×10 14 〜1×10 16 /cm 3 であることを特徴とする請
求項1又は請求項2に記載の窒素−3族元素化合物半導
体発光素子。
3. The low carrier concentration p-layer has a hole concentration of
A contract characterized by being 1 × 10 14 to 1 × 10 16 / cm 3.
The nitrogen-3 group element compound semiconductor according to claim 1 or claim 2.
Body light emitting device.
【請求項4】 前記高キャリア濃度+ 層は0.1〜
0.5μmの厚さを有することを特徴とする請求項1及
至請求項3に記載の窒素−3族元素化合物半導体発光素
子。
4. The high carrier concentration p + layer is 0.1 to
Claim 1及, characterized in that it has a thickness of 0.5μm
The nitrogen-group 3 element compound semiconductor light emitting device according to claim 3 .
【請求項5】 前記低キャリア濃度p層は0.2〜1.
0μmの厚さを有することを特徴とする請求項1及至請
求項4に記載の窒素−3族元素化合物半導体発光素子。
5. The low carrier concentration p-layer is 0.2-1.
The thickness of 0 μm, the claim 1 and the contract.
Nitrogen -3 group element compound semiconductor light-emitting device according to Motomeko 4.
【請求項6】 前記高キャリア濃度p + に接合する前
記電極と前記n層に接合する電極は同一面側に形成され
ることを特徴とする請求項1及至請求項5に記載の窒素
−3族元素化合物半導体発光素子。
6. The nitrogen, according to claim 1 及至claim 5 electrode joined to the n layer and the electrode to be joined to the high carrier concentration p + layer, characterized in that formed on the same side
Group-3 element compound semiconductor light emitting device.
【請求項7】 前記低キャリア濃度p層及び前記高キャ
リア濃度p + 層は半絶縁性窒素−3族元素化合物半導体
層の一部をp型化して形成したことを特徴とする請求項
乃至請求項6に記載の窒素−3族元素化合物半導体
光素子。
7. The low carrier concentration p-layer and the high carrier concentration p-layer
Rear concentration p + layer is semi-insulating nitrogen -3-group element compound nitrogen -3 group of claim 1 to claim 6 a part of the semiconductor layer, characterized in that formed by p-type element compound semiconductor onset <br/> Optical device.
JP31659792A 1992-10-29 1992-10-29 Nitrogen-3 group element compound semiconductor light emitting device Expired - Fee Related JP2681733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31659792A JP2681733B2 (en) 1992-10-29 1992-10-29 Nitrogen-3 group element compound semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31659792A JP2681733B2 (en) 1992-10-29 1992-10-29 Nitrogen-3 group element compound semiconductor light emitting device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP09020997A Division JP3506874B2 (en) 1997-03-24 1997-03-24 Nitrogen-3 group element compound semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH06151968A JPH06151968A (en) 1994-05-31
JP2681733B2 true JP2681733B2 (en) 1997-11-26

Family

ID=18078856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31659792A Expired - Fee Related JP2681733B2 (en) 1992-10-29 1992-10-29 Nitrogen-3 group element compound semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP2681733B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8395165B2 (en) 2011-07-08 2013-03-12 Bridelux, Inc. Laterally contacted blue LED with superlattice current spreading layer
US8525221B2 (en) 2009-11-25 2013-09-03 Toshiba Techno Center, Inc. LED with improved injection efficiency
US8536601B2 (en) 2009-06-10 2013-09-17 Toshiba Techno Center, Inc. Thin-film LED with P and N contacts electrically isolated from the substrate
US8564010B2 (en) 2011-08-04 2013-10-22 Toshiba Techno Center Inc. Distributed current blocking structures for light emitting diodes
US8581267B2 (en) 2011-11-09 2013-11-12 Toshiba Techno Center Inc. Series connected segmented LED
US8624482B2 (en) 2011-09-01 2014-01-07 Toshiba Techno Center Inc. Distributed bragg reflector for reflecting light of multiple wavelengths from an LED
US8664679B2 (en) 2011-09-29 2014-03-04 Toshiba Techno Center Inc. Light emitting devices having light coupling layers with recessed electrodes
US8686430B2 (en) 2011-09-07 2014-04-01 Toshiba Techno Center Inc. Buffer layer for GaN-on-Si LED
US8698163B2 (en) 2011-09-29 2014-04-15 Toshiba Techno Center Inc. P-type doping layers for use with light emitting devices
US8865565B2 (en) 2011-08-02 2014-10-21 Kabushiki Kaisha Toshiba LED having a low defect N-type layer that has grown on a silicon substrate
US8916906B2 (en) 2011-07-29 2014-12-23 Kabushiki Kaisha Toshiba Boron-containing buffer layer for growing gallium nitride on silicon
US8994064B2 (en) 2011-09-03 2015-03-31 Kabushiki Kaisha Toshiba Led that has bounding silicon-doped regions on either side of a strain release layer
US9012921B2 (en) 2011-09-29 2015-04-21 Kabushiki Kaisha Toshiba Light emitting devices having light coupling layers
US9012939B2 (en) 2011-08-02 2015-04-21 Kabushiki Kaisha Toshiba N-type gallium-nitride layer having multiple conductive intervening layers
US9018643B2 (en) 2011-09-06 2015-04-28 Kabushiki Kaisha Toshiba GaN LEDs with improved area and method for making the same
US9130068B2 (en) 2011-09-29 2015-09-08 Manutius Ip, Inc. Light emitting devices having dislocation density maintaining buffer layers
US9142743B2 (en) 2011-08-02 2015-09-22 Kabushiki Kaisha Toshiba High temperature gold-free wafer bonding for light emitting diodes
US9159869B2 (en) 2011-08-03 2015-10-13 Kabushiki Kaisha Toshiba LED on silicon substrate using zinc-sulfide as buffer layer
US9178114B2 (en) 2011-09-29 2015-11-03 Manutius Ip, Inc. P-type doping layers for use with light emitting devices
US9343641B2 (en) 2011-08-02 2016-05-17 Manutius Ip, Inc. Non-reactive barrier metal for eutectic bonding process
US9617656B2 (en) 2011-07-25 2017-04-11 Toshiba Corporation Nucleation of aluminum nitride on a silicon substrate using an ammonia preflow

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2778405B2 (en) 1993-03-12 1998-07-23 日亜化学工業株式会社 Gallium nitride based compound semiconductor light emitting device
US6996150B1 (en) 1994-09-14 2006-02-07 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor
JP2666237B2 (en) * 1994-09-20 1997-10-22 豊田合成株式会社 Group III nitride semiconductor light emitting device
KR960025292A (en) * 1994-12-26 1996-07-20 윤종용 Gallium nitrogen light emitting device having a light emitting source of phosphor
JP3292044B2 (en) 1996-05-31 2002-06-17 豊田合成株式会社 P-conductivity group III nitride semiconductor electrode pad, device having the same, and device manufacturing method
JP3726252B2 (en) * 2000-02-23 2005-12-14 独立行政法人理化学研究所 Ultraviolet light emitting device and method for producing InAlGaN light emitting layer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59228776A (en) * 1983-06-10 1984-12-22 Nippon Telegr & Teleph Corp <Ntt> Semiconductor hetero-junction element
JP3193981B2 (en) * 1990-02-28 2001-07-30 豊田合成株式会社 Gallium nitride based compound semiconductor light emitting device
JP2564024B2 (en) * 1990-07-09 1996-12-18 シャープ株式会社 Compound semiconductor light emitting device
JPH04163972A (en) * 1990-10-27 1992-06-09 Toyoda Gosei Co Ltd Variable color light emitting diode
JP3160914B2 (en) * 1990-12-26 2001-04-25 豊田合成株式会社 Gallium nitride based compound semiconductor laser diode

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8536601B2 (en) 2009-06-10 2013-09-17 Toshiba Techno Center, Inc. Thin-film LED with P and N contacts electrically isolated from the substrate
US8871539B2 (en) 2009-06-10 2014-10-28 Kabushiki Kaisha Toshiba Thin-film LED with P and N contacts electrically isolated from the substrate
US9142742B2 (en) 2009-06-10 2015-09-22 Kabushiki Kaisha Toshiba Thin-film LED with P and N contacts electrically isolated from the substrate
US8684749B2 (en) 2009-11-25 2014-04-01 Toshiba Techno Center Inc. LED with improved injection efficiency
US8525221B2 (en) 2009-11-25 2013-09-03 Toshiba Techno Center, Inc. LED with improved injection efficiency
US9012953B2 (en) 2009-11-25 2015-04-21 Kabushiki Kaisha Toshiba LED with improved injection efficiency
US8395165B2 (en) 2011-07-08 2013-03-12 Bridelux, Inc. Laterally contacted blue LED with superlattice current spreading layer
US10174439B2 (en) 2011-07-25 2019-01-08 Samsung Electronics Co., Ltd. Nucleation of aluminum nitride on a silicon substrate using an ammonia preflow
US9617656B2 (en) 2011-07-25 2017-04-11 Toshiba Corporation Nucleation of aluminum nitride on a silicon substrate using an ammonia preflow
US8916906B2 (en) 2011-07-29 2014-12-23 Kabushiki Kaisha Toshiba Boron-containing buffer layer for growing gallium nitride on silicon
US9343641B2 (en) 2011-08-02 2016-05-17 Manutius Ip, Inc. Non-reactive barrier metal for eutectic bonding process
US9142743B2 (en) 2011-08-02 2015-09-22 Kabushiki Kaisha Toshiba High temperature gold-free wafer bonding for light emitting diodes
US8865565B2 (en) 2011-08-02 2014-10-21 Kabushiki Kaisha Toshiba LED having a low defect N-type layer that has grown on a silicon substrate
US9012939B2 (en) 2011-08-02 2015-04-21 Kabushiki Kaisha Toshiba N-type gallium-nitride layer having multiple conductive intervening layers
US9159869B2 (en) 2011-08-03 2015-10-13 Kabushiki Kaisha Toshiba LED on silicon substrate using zinc-sulfide as buffer layer
US9070833B2 (en) 2011-08-04 2015-06-30 Kabushiki Kaisha Toshiba Distributed current blocking structures for light emitting diodes
US8564010B2 (en) 2011-08-04 2013-10-22 Toshiba Techno Center Inc. Distributed current blocking structures for light emitting diodes
US8624482B2 (en) 2011-09-01 2014-01-07 Toshiba Techno Center Inc. Distributed bragg reflector for reflecting light of multiple wavelengths from an LED
US8981410B1 (en) 2011-09-01 2015-03-17 Kabushiki Kaisha Toshiba Distributed bragg reflector for reflecting light of multiple wavelengths from an LED
US8994064B2 (en) 2011-09-03 2015-03-31 Kabushiki Kaisha Toshiba Led that has bounding silicon-doped regions on either side of a strain release layer
US9018643B2 (en) 2011-09-06 2015-04-28 Kabushiki Kaisha Toshiba GaN LEDs with improved area and method for making the same
US8686430B2 (en) 2011-09-07 2014-04-01 Toshiba Techno Center Inc. Buffer layer for GaN-on-Si LED
US8664679B2 (en) 2011-09-29 2014-03-04 Toshiba Techno Center Inc. Light emitting devices having light coupling layers with recessed electrodes
US8698163B2 (en) 2011-09-29 2014-04-15 Toshiba Techno Center Inc. P-type doping layers for use with light emitting devices
US9130068B2 (en) 2011-09-29 2015-09-08 Manutius Ip, Inc. Light emitting devices having dislocation density maintaining buffer layers
US9178114B2 (en) 2011-09-29 2015-11-03 Manutius Ip, Inc. P-type doping layers for use with light emitting devices
US9299881B2 (en) 2011-09-29 2016-03-29 Kabishiki Kaisha Toshiba Light emitting devices having light coupling layers
US9012921B2 (en) 2011-09-29 2015-04-21 Kabushiki Kaisha Toshiba Light emitting devices having light coupling layers
US9490392B2 (en) 2011-09-29 2016-11-08 Toshiba Corporation P-type doping layers for use with light emitting devices
US9391234B2 (en) 2011-11-09 2016-07-12 Toshiba Corporation Series connected segmented LED
US8581267B2 (en) 2011-11-09 2013-11-12 Toshiba Techno Center Inc. Series connected segmented LED
US9123853B2 (en) 2011-11-09 2015-09-01 Manutius Ip, Inc. Series connected segmented LED

Also Published As

Publication number Publication date
JPH06151968A (en) 1994-05-31

Similar Documents

Publication Publication Date Title
JP2681733B2 (en) Nitrogen-3 group element compound semiconductor light emitting device
EP0703631B1 (en) Light-emitting semiconductor device using group III nitride compound
JP3795624B2 (en) Nitrogen-3 group element compound semiconductor light emitting device
JP3506874B2 (en) Nitrogen-3 group element compound semiconductor light emitting device
JP3654738B2 (en) Group 3 nitride semiconductor light emitting device
JP2698796B2 (en) Group III nitride semiconductor light emitting device
JP2626431B2 (en) Nitrogen-3 group element compound semiconductor light emitting device
JP2657743B2 (en) Nitrogen-3 group element compound semiconductor light emitting device
JPH07202265A (en) Manufacture of group iii nitride semiconductor
JPH0832112A (en) Group iii nitride semiconductor light emitting element
JPH07263748A (en) Iii group nitride semiconductor light emitting element and manufacture of it
JP2658009B2 (en) Gallium nitride based compound semiconductor light emitting device
JP3198678B2 (en) Nitrogen-3 group element compound semiconductor light emitting device
JPH07131068A (en) Nitrogen-group-iii element compound semiconductor light emitting element
JPH0992880A (en) Group iii nitride semiconductor light emitting device
JP2663814B2 (en) Nitrogen-3 element compound semiconductor light emitting device
JP3016241B2 (en) Group III nitride semiconductor light emitting device
JPH06151962A (en) Nitrogen-iii compound semiconductor luminous element and manufacture thereof
JP3538628B2 (en) Method for manufacturing group III nitride semiconductor light emitting device
JP3026102B2 (en) Gallium nitride based compound semiconductor light emitting device
JPH08125222A (en) Method for manufacture of group iii nitride semiconductor
JP3727091B2 (en) Group 3 nitride semiconductor device
JPH07297447A (en) Group iii nitride semiconductor light emitting element
JP3307094B2 (en) Group III nitride semiconductor light emitting device
JP3700713B2 (en) Nitrogen-3 group element compound semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100808

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees