JPH04163972A - Variable color light emitting diode - Google Patents

Variable color light emitting diode

Info

Publication number
JPH04163972A
JPH04163972A JP2290054A JP29005490A JPH04163972A JP H04163972 A JPH04163972 A JP H04163972A JP 2290054 A JP2290054 A JP 2290054A JP 29005490 A JP29005490 A JP 29005490A JP H04163972 A JPH04163972 A JP H04163972A
Authority
JP
Japan
Prior art keywords
light emitting
emitting diode
layer
diode chip
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2290054A
Other languages
Japanese (ja)
Inventor
Katsuhide Manabe
勝英 真部
Masahiro Kotaki
正宏 小滝
Masaki Mori
正樹 森
Masato Tamaki
田牧 真人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Toyoda Gosei Co Ltd
Original Assignee
Research Development Corp of Japan
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan, Toyoda Gosei Co Ltd filed Critical Research Development Corp of Japan
Priority to JP2290054A priority Critical patent/JPH04163972A/en
Publication of JPH04163972A publication Critical patent/JPH04163972A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Abstract

PURPOSE:To realize variable color including blue in primary colors in a wide range by integrating two light emitting diode chips having different light emitting colors, and regulating a voltage to be applied between electrodes. CONSTITUTION:A first light emitting diode chip 10 is formed of a junction of a p-type layer and an n-type layer made of gallium nitride compound semiconductor, and a second light emitting diode chip 36 emits a light of color except blue. A lead frame 20 is composed of a pair of positive and negative first, second lead members 41, 31, a third lead member 35, and the members 41, 31 are formed at ends with first, second lands 43, 33. The chip 10 is bridged between the lands 43 and 33, and the electrodes 7, 8 of the chip 10 are bump- connected to flat parts 43, 33. The chip 36 is placed on the flat part 33 of a certain electrode 363 of one side face to be connected. An electrode 364 of the other side is wire bonded to the end face 351 of the member 35 via a gold wire 37. With this configuration, voltages to be applied to the three lead members are regulated to emit light of variable colors.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、発光色を可変できる発光ダイオードに関する
The present invention relates to a light emitting diode that can change the color of its emitted light.

【従来技術】[Prior art]

従来、発光ダイオード(以下rLEDJという)は一対
のリードフレームの一方に発光ダイオードチップをボン
ディングし、上部電極ともう一方のリードフレームとを
Auなどのワイヤで接続後、樹脂成形したものが知られ
ている。
Conventionally, light-emitting diodes (hereinafter referred to as rLEDJs) have been known to be made by bonding a light-emitting diode chip to one of a pair of lead frames, connecting the upper electrode to the other lead frame with a wire such as Au, and then molding the chip with resin. There is.

【発明が解決しようとする課題】[Problem to be solved by the invention]

しかし、従来は、高輝度の青色の発光ダイオードが得ら
れないことから、青色を1つの原色として変化させる可
変色発光ダイオードは知られていない。 本発明は、青色を原色に含む可変色発光ダイオードを提
供することを目的とする。 本発明は、本発明者らにより、初めて、窒化ガリウム系
化合物半導体から成るp層とn層の接合型の発光ダイオ
ードチップが製造できた(従来は、i層半絶縁層とn層
との接合であり、窒化ガリウム系化合物半導体では、p
層の形成はできなかった。)ので、動作電圧を下げるこ
とができ、また、青色の発光高度を著しく向上させるこ
とができた。 この高輝度化により、その青色を1つの原色として他の
発光と混合させて、高範囲の可変色制御が可能となった
However, since a high-intensity blue light-emitting diode cannot be obtained conventionally, a variable color light-emitting diode that changes blue as one primary color is not known. An object of the present invention is to provide a variable color light emitting diode that includes blue as a primary color. According to the present invention, the present inventors were able to manufacture, for the first time, a p-layer and n-layer junction type light emitting diode chip made of a gallium nitride-based compound semiconductor (conventionally, a junction type light emitting diode chip between an i-layer semi-insulating layer and an n-layer was manufactured). In the gallium nitride compound semiconductor, p
No layer could be formed. ), the operating voltage could be lowered, and the blue light emission height could be significantly improved. This increase in brightness has made it possible to control colors over a wide range by mixing the blue color with other emitted light as a primary color.

【課題を解決するための手段】[Means to solve the problem]

上記maを解決するための発明の構成は、p型を示す窒
化ガリウム系化合物半導体(AlyGal−X14;x
=0を含む)からなるp層と、p層に接合するn型窒化
ガリウム系化合物半導体(A1xGtl+−xN:X=
0を含む)から成るn層とを有し、p層及びn層の電極
が同一平面上に形成された第1の発光ダイオードチップ
と、第1の発光ダイオードチップと異なる発光色を有す
る第2の発光ダイオードチップと、第1の発光ダイオー
ドチップの両電極が接合される離間して形成された第1
及び第2のランドを有し、その一方のランドは第2の発
光ダイオードチップの1つの電極が接合されており、そ
のランドと離間して形成され、第2の発光ダイオードチ
ップの他の電極がリード接続される第3のランドを有す
るリードフレームとを設けたことである。 尚、p層のドーピング元素は、例えば、マグネシウム(
Mg)である、、H8を単にドーピングした場合には、
i型(絶縁)とな・る。このi型の層に電子線を照射す
ることで、p導電型に変化させることができる。電子線
の照射条件としては、−例であるが、加速電圧IKV〜
50KV、試料電流0.1μA〜1’m Aである。
The configuration of the invention for solving the above ma is a p-type gallium nitride compound semiconductor (AlyGal-X14; x
=0), and an n-type gallium nitride compound semiconductor (A1xGtl+-xN:X=
a first light-emitting diode chip having an n-layer consisting of n-layers (including 0), in which the p-layer and n-layer electrodes are formed on the same plane; a first light emitting diode chip and a first light emitting diode chip formed apart from each other to which both electrodes of the first light emitting diode chip are joined.
and a second land, one of the lands is connected to one electrode of the second light emitting diode chip, is formed apart from the land, and the other electrode of the second light emitting diode chip is connected to the land. A lead frame having a third land to which the lead is connected is provided. Note that the doping element for the p layer is, for example, magnesium (
When simply doping H8, which is Mg),
I type (insulated). By irradiating this i-type layer with an electron beam, it can be changed to p-type conductivity. As an example, the electron beam irradiation conditions include an acceleration voltage of IKV~
50 KV, sample current 0.1 μA to 1′ mA.

【作用及び発明の効果】[Action and effect of the invention]

第1の発光ダイオードチップは、従来のi層とn層との
接合に代えて、p層とn層との接合で構成されている。 この結果、動作電圧が低下し注入キャリアの量が増加し
、発光効率及び発光輝度を向上させることができた。 又、第2の発光ダイオードチップは、青色以外の色を発
光する。又、リードフレームは3つのランドを有しおり
、第1及び第2のランドに対して9J1の発光ダイオー
ドチップの電極が接合される。 又、WJl又は第2のランドに第2の発光ダイオードチ
ップの第1の電極が接合されており、gJ2の発光ダイ
オードチップの第2の電極は第3のランドとリード接続
されている。このような構成により、発光色の異なる2
つの発光ダイオードチップを集積することができ、両発
光ダイオードチップの電極間の印加電圧を調整すること
で、発光色を可変することができる。特に、第1の発光
ダイオードチップにおいて、pn接合が可能となり青色
の発光輝度を向上させることが出来たので、可変色の範
囲を拡大することができた。
The first light emitting diode chip is composed of a junction between a p layer and an n layer instead of a conventional junction between an i layer and an n layer. As a result, the operating voltage was reduced and the amount of injected carriers increased, making it possible to improve luminous efficiency and luminance. Further, the second light emitting diode chip emits a color other than blue. Further, the lead frame has three lands, and the electrodes of the light emitting diode chip 9J1 are bonded to the first and second lands. Further, the first electrode of the second light emitting diode chip is connected to WJl or the second land, and the second electrode of the light emitting diode chip of gJ2 is lead-connected to the third land. With this configuration, two luminescent colors with different colors can be produced.
Two light emitting diode chips can be integrated, and the color of the emitted light can be varied by adjusting the voltage applied between the electrodes of both light emitting diode chips. In particular, in the first light emitting diode chip, a pn junction became possible and blue light emission brightness could be improved, so the range of variable colors could be expanded.

【実施例】【Example】

以下、本発明を具体的な実施例に基づいて説明する。 まず、第1の発光ダイオードチップ10の構成について
説明する。 第1図において、発光ダイオードチップ10は、サファ
イア基板1を有しており、そのサファイア基板1に50
0人のAIMのバッファ層2が形成されている。そのバ
ッファ層2の上には、順に、膜厚的2.2μmのGaN
から成る高キヤリア濃度n十暦3と膜厚的1.5μmの
GaNから成る低キヤリア濃度n層4が形成されており
、更に、低キヤリア濃度n層4の上に膜厚的0.2μm
のGaNから成る9層5が形成されている。そして、9
層5に接続するアルミニウムで形成さ1れた電極7と高
キャリア濃・度n+層3に達するアルミニウムで形成さ
れた電極8とが形成されている。 次に、この構造の第1の発光ダイオード10の製造方法
について説明する。 上記発光ダイオード10は、有機金属化合物気相成長法
(以下rMOVPtl Jと記す)による気相成長によ
り製造された。 用いられたガスは、NHaとキャリアガスH2とトリメ
チルガリウム(Ga (CL) −) (以下rTMG
 J ト記す)とトリメチルアルミニウム(AI(Cl
(、)、) (以下rTMAJと記す)とシラン(Si
H,)とシクロペンタジェニルマグネシウムMg (C
5H8) 2 (以下rcP2MgJと記す)である。 まず、洗浄したa面を主面とする単結晶のサファイア基
板1をMOVPE装置の反応室に載置されたサセプタに
装着する。 次に、常圧でH2を流速21 /分で反応室に流しなが
ら温度1100℃でサファイア基板1を気相エツチング
した。 次に、温度を400℃まで低下させて、H3を201/
分、NH3を101/分、TMAをH3でバブリングし
て1.8 Xl0−’モル/分で供給してAINのバッ
ファ層2が約500人の厚さに形成された。 次に、サファイア基板1の温度を1150℃に保持し、
■2を201/分、NH,を101/分、TMGをH2
をバブリングして1.7 Xl0−’モル/分、H3で
0.86ppmまで希釈したシラン(SiH4)を20
0nj!/分の割合で30分間供給し、膜厚約2.2μ
m1キヤリア濃度1゜5×101s/CIIIのGaN
から成る高キヤリア濃度n4層3を形成した。 続いて、サファイア基板1の温度を1150℃に保持し
、H2を2017分、NHsを101/分、TMGを1
.7X 10−’モル/分の割合で20分間供給し、膜
厚約1゜5μm1キヤリア濃度lx 10”/ cat
のGaNから成る低キヤリア濃度n層4を形成した。 次に、サファイア基板1を900℃にして、H2を20
17分、NHllを101/分、TMGをH3でバブリ
ングして1.7 xio−’モル/分、ChMgをH2
でバブリングして3X 10−’モル/分の割合で3分
間供給して、膜厚0.2μmのGaNから成る1層5を
形成した。この状態では、1層5は絶縁体である。 次に、反射電子線回折装置・を用いて、この1層5に一
様に電子線を照射した。電子線の照射条件は、加速電圧
10KV、試料電流1μA1ビームの移動速度0.2m
m/sec 、ビーム径60μmφ、真空度2゜I X
 10−’Torrである。この電子線の照射により、
1層5は抵抗率は10@Ω叩以上の絶縁体から抵抗率3
5Ω印のp導電型半導体となった。このようにして、p
導電型を示す9層5が得られる。 このようにして、第2図に示すような多層構造のウェハ
が得られた。 以下に述べられる第3図から第7図は、ウェハ上の1つ
の素子のみを示す断面図であり、実際は、この素子が連
続的に繰り返されたウェハについて、処理が行われ、そ
の後、各素子毎に切断される。 第3図に示すように、9層5の上に、スパッタリングに
よりSin、層11を200OAの厚さに形成した。次
に、そのS+02層11上にフォトレジスト12を塗布
して、フォトリソグラフにより、そのフォトレジスト1
2を高キヤリア濃度n1層3に対する電極形成部位Aと
、その電極形成部位Aを9層5に対する電極と絶縁分離
するための溝を形成する部位Bを除去したパターンに形
成した。 次に、第4図に示すように、フォトレジスト12によっ
て覆われていない5ins層11をフッ化水素酸系エツ
チング液で除去した。 次に、第5図に示すように、フォトレジスト12及びS
iO*層11層上1て覆われていない部位の9層5とそ
の下の低キヤリア濃度n層4と高キヤリア濃度n1層3
の上面一部を、真空度0.04Torr、高周波電力0
.4411/CIII、 CCj?、F、ガスを10d
/分の割合で供給しドライエツチングした後、引き続い
てArでドライエツチングした。 次に、第6図に示すように、9層5上に残っているS+
02層11をフッ化水素酸で除去した。 次に、第7図に示すように、試料の上全面に、A1層1
3を蒸着により形成した。そして、そのAI層13の上
にフォトレジスト14を塗布して、フォトリソグラフに
より、そのフォトレジスト14が高キヤリア濃度n+層
3及び9層5に対する電極部が残るように、所定形状に
パターン形成した。 次に、第7図に示すようにそのフォトレジスト14をマ
スクとして下層のA1層13の露出部を硝酸系エツチン
グ液でエツチングし、フォトレジスト14をアセトンで
除去し、第1図に示すように高キャリア濃度n“層3の
電極8.9層5の電極7を形成した。 その後、上記の如く処理されたウェハは、各素子毎に切
断され、第1図に示すpn構造の窒化ガリウム系発光素
子を得た。 このようにして製造された発光ダイオード10の発光強
度を測定したところlomcdであった。これは、単純
にi層とキャリア濃度5x 10′?/ ad。 厚さ4μmのn層とを接続した従来の発光ダイオードに
比べて、発光強度が10倍に向上した。 又、発光面を観察した所、発光点の数が増加しているこ
とも観察された。 尚、比較のために、低キヤリア濃度n層4のキャリア濃
度を各種変化させた上記試料を製造して、発光強度及び
発光スペクトラムを測定した。その結果を、第8図に示
す。 キャリア濃度が増加するに連れて、発光強度が減少し、
且つ、発光波長が赤色側に変位することが分かる。この
ことは、ドーピング元素のシリコンが9層5に不純物元
素として拡散または混入するためであると思われる。 尚、上記低キヤリア濃度n層4のキャリア濃度はI X
 10”〜lx 10”/ cxlで膜厚は0.5〜2
/jmが望ましい。キャリア濃度が1xlO”/c!1
以上となると発光強度が低下するので望ましくなく、I
XIQ”/co!以下となると発光素子の直列抵抗が高
くなりすぎ電流を流すと発熱するので望ましくない。又
、膜厚が2μm以上となると発光素子の直列抵抗が高く
なりすぎ電流を流すと発熱するので望ましくなく、膜厚
が0.5μm以下となると発光強度が低下するので望ま
しくない。 更に、高キヤリア濃度n4層3のキャリア濃度はlx 
IQI7〜lx 10”/ co!で膜厚は2〜10μ
mが望ましい。キャリア濃度がlX10”/a+!以上
となると結晶性が悪化するので望ましくなく、lX10
”/cut以下となると発光素子の直列抵抗が高くなり
すぎ電流を流すき発熱するので望ましくない。 又、膜厚が10μm以上となると基板が湾曲するので望
ましくなく、膜厚が2μmJ2J下きなると発光素子の
直列抵抗が高くなりすぎ電流を流すと発熱するので望ま
しくない。 次に、可変色発光ダイオード30について説明する。 第10図、第11図において、リードフレーム20は間
隔を隔てて並列に配設された正負一対の第1及び第2の
リード部材41.31、第3のリード部材35により構
成されている。 第1及び第2のリード部材41.31にはそれらの先端
部42.32に第1及び第2のランドを構成する平坦部
43.33が形成されており、その平坦部43.33に
続いて外側に傾斜した反射部44.34が一体的に形成
されている。又、第3のリード部材35の端面351は
第3のランドを構成している。 このようなリード部材41.31の平坦部(第1及び第
2のランド)43.33に、前述した第1の発光ダイオ
ードチップ10が架橋され、そのチップ10の電極7,
8が、それぞれ、平坦部43.33に対して導電性ペー
ストでバンブ接合されている。 又、第2の発光ダイオードチップ36は、第12図に示
すように、p−Aj’GaAs層361とn−AlGa
As層362とを有し、p−AA’GaAsAlGaA
s層362GaAs層362の上面に、それぞれ、金糸
の電極363,384が形成されている。 第2の発光ダイオードチップ36は、一方の面側にある
電極363は第2のリード部材31の平坦部(第2のラ
ンド)33に載置され、導電性ペーストによって接合さ
れている。又、他方の面倒にある電極364は第3のリ
ード部材35の端面(第3のランド)351と金線37
によりワイヤボンディングされている。 次に、第1の発光ダイオードチップ1oと第2の発光ダ
イオードチップ36とが接合されたリードフレーム20
には、第・9図に示すように、エポキシ樹脂等の透明樹
脂がポツティングされる。このボッティングによりレン
ズ部材39が成形される。 このような配設状態において、第1のリード部材41、
第2のリード部材31、第3のリード部材35の順に、
低くなる正電位を印加することで、第1の発光ダイオー
ドチップ1oと第2の発光ダイオードチップ36は共に
順方向のバイアスが印加され、共に発光する。このとき
可変色発光ダイオード30は、全体として、赤紫色で発
光する。 又、第1のリード部材41と第2のリード部材310間
にのみ、正電圧を印加すると、第1の発光ダイオードチ
ップ1oのみが発光し、この可変色発光ダイオード30
は青色で発光する。又、第2のリード部材31と第3の
リード部材35間にのみ、正電圧を印加すると、第2の
発光ダイオードチップ36のみが発光し、この可変色発
光ダイオード30は赤色で発光する。 又、各リード部材に印加する電圧の大きさを変化させる
ことで青、赤の間の混合色の発光が可能となる。 以上述べたように、第1の発光ダイオードチップ10を
p層とn層とのpn接合で構成すると共にn層を低キヤ
リア濃度n層と高キヤリア濃度n1層との二重構造とし
たので、青色LEDの動作電圧を低くすることができ、
青色発光の輝度を向上させることができた。この結果、
初めて、赤色との混合が可能となり、高範囲の発光色の
制御が可能となった。 以上の実施例では、第1の発光ダイオードチップのn層
は低キヤリア濃度n層と高キヤリア濃度n+層との二重
構造としているが、単層構造であっても良い。n層が単
層構造であっても、pn接合による発光ダイオードは、
従来のi層とn層との接合による発光ダイオードよりは
、発光効率及び発光効率が向上するので、上記実施例と
同様に他の色の発光ダイオードと組み合わせることが可
能である。 又、マグネシウムMgのドーピングガスは、上述のガス
の他、メチルシクロペンタジェニルマグネシウムMg(
C5H5)C18を用いても良い。 又、第2の発光ダイオードチップの発光色は赤色とした
が、GaP等の緑色発光の発光ダイオードチップを用い
ても良い。 又、リードフレーム20を上記の構造とすることで、2
つの発光ダイオードチップ10.36の表面から出た光
に加えて、それら2つのチップの端面から出た光も第1
のリード部材41.i2のリード部材31に設けられた
反射部44.34により前方に反射されるので、発光効
率を向上させることができる。 他の実施例 pn接合を有する第1の発光ダイオード10は、次のよ
うにして製造することもできる。 上述したのと同様な方法で、第2図に示すように各層を
積層させる。ただし、9層5に代えて1層50 (第1
3図)が積層されている。即ち、1層50には電子線が
照射されていない。従って、この積層状態では、1層5
0は半絶縁体(i型)である。 次に、この積層されたウェハにおいて、第13図に示す
ように、1層3に対する電極形成部位Aだけに、エツチ
ングにより溝が形成された。 次に、第14図に示すように、1層50の一部にのみ、
電子線を照射して、p導電型半導体のp型部5が形成さ
れた。この時、p型部5以外の部分、即ち、電子線の照
射されなかった部分は、半絶縁体の1層50のままであ
る。従って、p型部5は、縦方向に対しては、1層3と
pn接合を形成するが、横方向には、9層5は、周囲に
対して、1層50により電気的に絶縁分離される。 次に、第15図に示すように、p型部5と1層50と1
層3に対する電極形成部位Aの上全面に、A1層60が
蒸着により形成さ れた。そして、そのAf層60の上にフォトレジスト6
1を塗布して、フォトリソグラフにより、そのフォトレ
ジスト61が1層3及び9層5に対する電極部が残るよ
うに、所定形状にパターン形成した。 次に、そのフォトレジスト61をマスクとして下層のへ
1層60の露出部を硝酸系エツチング液でエツチングし
、フォトレジスト61をアセトンで除去し、第16図に
示すように、1層3の電極52、p型部5の電極51を
形成した。 その後、上述のように形成されたウェハが各素子毎に切
断され、pn接合を有する第1の発光ダイオードチップ
が得られた。
The present invention will be described below based on specific examples. First, the configuration of the first light emitting diode chip 10 will be explained. In FIG. 1, a light emitting diode chip 10 has a sapphire substrate 1, and a sapphire substrate 1 has a
A buffer layer 2 of 0 AIMs is formed. On the buffer layer 2, GaN with a film thickness of 2.2 μm is sequentially formed.
A high carrier concentration n layer 4 made of GaN with a film thickness of 1.5 μm is formed on the low carrier concentration n layer 4 with a film thickness of 0.2 μm.
Nine layers 5 made of GaN are formed. And 9
An electrode 7 made of aluminum that connects to the layer 5 and an electrode 8 made of aluminum that reaches the high carrier concentration n+ layer 3 are formed. Next, a method for manufacturing the first light emitting diode 10 having this structure will be described. The light emitting diode 10 was manufactured by vapor phase growth using an organometallic compound vapor phase growth method (hereinafter referred to as rMOVPtl J). The gases used were NHa, carrier gas H2, and trimethyl gallium (Ga (CL) -) (hereinafter rTMG).
J ) and trimethylaluminum (AI (Cl
(,),) (hereinafter referred to as rTMAJ) and silane (Si
H,) and cyclopentadienylmagnesium Mg (C
5H8) 2 (hereinafter referred to as rcP2MgJ). First, a cleaned single-crystal sapphire substrate 1 having the a-plane as its main surface is mounted on a susceptor placed in a reaction chamber of a MOVPE apparatus. Next, the sapphire substrate 1 was subjected to vapor phase etching at a temperature of 1100° C. while flowing H2 into the reaction chamber at a flow rate of 21/min at normal pressure. Next, reduce the temperature to 400°C and reduce H3 to 201/
The buffer layer 2 of AIN was formed to a thickness of about 500 nm by bubbling NH3 with H3 and supplying 1.8 Xl0-' mol/min. Next, the temperature of the sapphire substrate 1 is maintained at 1150°C,
■201/min, NH, 101/min, TMG H2
Silane (SiH4) diluted to 0.86 ppm with H3 at 1.7
0nj! /min for 30 minutes, film thickness approximately 2.2μ
m1 carrier concentration 1°5×101s/CIII GaN
A high carrier concentration n4 layer 3 was formed. Subsequently, the temperature of the sapphire substrate 1 was maintained at 1150°C, and H2 was heated for 2017 minutes, NHs was heated at 101/min, and TMG was heated at 1/min.
.. Supplied for 20 minutes at a rate of 7X 10-' mol/min, film thickness approximately 1°5 μm, 1 carrier concentration lx 10"/cat
A low carrier concentration n-layer 4 made of GaN was formed. Next, the sapphire substrate 1 is heated to 900°C and H2 is heated to 20°C.
17 min, NHll at 101/min, TMG by bubbling with H3 to 1.7 xio-' mol/min, ChMg into H2
One layer 5 of GaN having a thickness of 0.2 μm was formed by bubbling with the gas and supplying the material at a rate of 3×10 −′ mol/min for 3 minutes. In this state, the first layer 5 is an insulator. Next, this single layer 5 was uniformly irradiated with an electron beam using a reflection electron beam diffraction apparatus. The electron beam irradiation conditions were an acceleration voltage of 10 KV, a sample current of 1 μA, and a beam movement speed of 0.2 m.
m/sec, beam diameter 60μmφ, degree of vacuum 2゜I
10-'Torr. By irradiating this electron beam,
1 layer 5 has a resistivity of 3 from an insulator with a resistivity of 10@Ω or more.
It became a p-conductivity type semiconductor with a 5Ω mark. In this way, p
Nine layers 5 are obtained, each exhibiting a conductivity type. In this way, a wafer with a multilayer structure as shown in FIG. 2 was obtained. 3 to 7 described below are cross-sectional views showing only one element on a wafer; in reality, processing is performed on a wafer in which this element is successively repeated, and then each element is disconnected every time. As shown in FIG. 3, a layer 11 of Sin was formed to a thickness of 200 OA on the 9 layers 5 by sputtering. Next, a photoresist 12 is coated on the S+02 layer 11, and the photoresist 12 is applied by photolithography.
2 was formed into a pattern in which the electrode formation area A for the high carrier concentration n1 layer 3 and the area B for forming a groove for insulating and separating the electrode formation area A from the electrode for the 9 layer 5 were removed. Next, as shown in FIG. 4, the 5ins layer 11 not covered by the photoresist 12 was removed using a hydrofluoric acid etching solution. Next, as shown in FIG.
iO* layer 11, top layer 1, uncovered portion 9 layer 5, lower carrier concentration n layer 4 and high carrier concentration n layer 3
A part of the upper surface of the
.. 4411/CIII, CCj? , F, gas 10d
After dry etching was carried out by supplying the film at a rate of 1/min, dry etching was performed using Ar. Next, as shown in FIG.
02 layer 11 was removed with hydrofluoric acid. Next, as shown in FIG. 7, an A1 layer 1
3 was formed by vapor deposition. Then, a photoresist 14 was coated on the AI layer 13, and the photoresist 14 was patterned into a predetermined shape by photolithography so that electrode portions for the high carrier concentration n+ layer 3 and 9 layer 5 remained. . Next, as shown in FIG. 7, using the photoresist 14 as a mask, the exposed portion of the lower A1 layer 13 is etched with a nitric acid-based etching solution, and the photoresist 14 is removed with acetone. An electrode 8 of the high carrier concentration n'' layer 3 and an electrode 7 of the layer 5 were formed.Then, the wafer processed as described above was cut into individual devices, and a gallium nitride based pn structure shown in FIG. A light emitting device was obtained. The light emitting intensity of the light emitting diode 10 manufactured in this manner was measured and found to be LOMCD. This is simply the i layer and the carrier concentration of 5x 10'?/ad. Compared to conventional light emitting diodes that connect layers, the light emission intensity was improved 10 times.Also, when observing the light emitting surface, it was observed that the number of light emitting points increased. For this purpose, the above samples were manufactured with various carrier concentrations in the low carrier concentration n-layer 4, and the emission intensity and emission spectrum were measured.The results are shown in Fig. 8.As the carrier concentration increases, As a result, the emission intensity decreases,
Moreover, it can be seen that the emission wavelength shifts to the red side. This seems to be because silicon, which is a doping element, is diffused or mixed into the 9th layer 5 as an impurity element. The carrier concentration of the low carrier concentration n-layer 4 is IX
10"~lx 10"/cxl, film thickness 0.5~2
/jm is desirable. Carrier concentration is 1xlO”/c!1
If it is more than that, the emission intensity will decrease, which is undesirable, and I
XIQ"/co! or less is undesirable because the series resistance of the light emitting element becomes too high and generates heat when current is passed through it. Also, when the film thickness exceeds 2 μm, the series resistance of the light emitting element becomes too high and heat generation occurs when current flows through it, which is undesirable. If the film thickness is less than 0.5 μm, the emission intensity will decrease, which is undesirable.Furthermore, the carrier concentration of the high carrier concentration n4 layer 3 is lx
IQI 7~lx 10"/co! and film thickness 2~10μ
m is desirable. If the carrier concentration exceeds lX10"/a+!, it is undesirable because the crystallinity deteriorates.
``/cut or less is undesirable because the series resistance of the light emitting element becomes too high, causing current to flow and generating heat.Furthermore, if the film thickness is 10 μm or more, the substrate will curve, which is undesirable.If the film thickness is less than 2 μmJ2J, no light will be emitted. This is not desirable because the series resistance of the element becomes too high and heat is generated when current is passed through it.Next, the variable color light emitting diode 30 will be explained.In Figs. 10 and 11, the lead frames 20 are arranged in parallel at intervals. It is composed of a pair of positive and negative lead members 41.31 and a third lead member 35.The first and second lead members 41.31 have their tip portions 42.32. A flat portion 43.33 constituting the first and second lands is formed at the top, and a reflective portion 44.34 that slopes outward is integrally formed following the flat portion 43.33. , the end surface 351 of the third lead member 35 constitutes a third land.The flat portions (first and second lands) 43.33 of the lead member 41.31 are A light emitting diode chip 10 is cross-linked, and the electrodes 7 of the chip 10,
8 are bump-bonded to the flat portions 43 and 33 using conductive paste, respectively. Further, the second light emitting diode chip 36 has a p-Aj'GaAs layer 361 and an n-AlGaAs layer 361, as shown in FIG.
As layer 362, p-AA'GaAsAlGaA
Gold thread electrodes 363 and 384 are formed on the upper surface of the S layer 362 and the GaAs layer 362, respectively. In the second light emitting diode chip 36, the electrode 363 on one side is placed on the flat part (second land) 33 of the second lead member 31, and is bonded with a conductive paste. Further, the electrode 364 on the other side is connected to the end surface (third land) 351 of the third lead member 35 and the gold wire 37.
wire bonded. Next, the lead frame 20 to which the first light emitting diode chip 1o and the second light emitting diode chip 36 are bonded is assembled.
As shown in FIG. 9, transparent resin such as epoxy resin is potted. The lens member 39 is molded by this botting. In such an arrangement state, the first lead member 41,
In the order of the second lead member 31 and the third lead member 35,
By applying a lower positive potential, a forward bias is applied to both the first light emitting diode chip 1o and the second light emitting diode chip 36, and both of them emit light. At this time, the variable color light emitting diode 30 emits red-purple light as a whole. Further, when a positive voltage is applied only between the first lead member 41 and the second lead member 310, only the first light emitting diode chip 1o emits light, and this variable color light emitting diode 30
emits blue light. Further, when a positive voltage is applied only between the second lead member 31 and the third lead member 35, only the second light emitting diode chip 36 emits light, and this variable color light emitting diode 30 emits red light. Furthermore, by changing the magnitude of the voltage applied to each lead member, it is possible to emit light in a mixed color between blue and red. As described above, since the first light emitting diode chip 10 is composed of a pn junction of a p layer and an n layer, and the n layer has a double structure of a low carrier concentration n layer and a high carrier concentration n1 layer, The operating voltage of the blue LED can be lowered,
The brightness of blue light emission could be improved. As a result,
For the first time, it has become possible to mix with red, making it possible to control a wide range of emitted colors. In the above embodiments, the n layer of the first light emitting diode chip has a double structure consisting of a low carrier concentration n layer and a high carrier concentration n+ layer, but it may have a single layer structure. Even if the n-layer has a single layer structure, a light emitting diode with a pn junction
Since the light emitting efficiency and luminous efficiency are improved compared to the conventional light emitting diode formed by joining an i layer and an n layer, it is possible to combine it with light emitting diodes of other colors as in the above embodiment. In addition to the above-mentioned gases, the doping gas for magnesium Mg is methylcyclopentadienylmagnesium Mg (
C5H5)C18 may also be used. Further, although the second light emitting diode chip emitted light in red, a green light emitting diode chip such as GaP may be used. In addition, by making the lead frame 20 have the above structure, 2
In addition to the light emitted from the surfaces of the two light emitting diode chips 10.36, the light emitted from the end faces of those two chips is also
Lead member 41. Since the light is reflected forward by the reflecting portion 44.34 provided on the lead member 31 of i2, the light emitting efficiency can be improved. Other Examples The first light emitting diode 10 having a pn junction can also be manufactured as follows. In a manner similar to that described above, each layer is laminated as shown in FIG. However, instead of 9 layers 5, 1 layer 50 (1st
Figure 3) are stacked. That is, the first layer 50 is not irradiated with the electron beam. Therefore, in this laminated state, one layer has 5
0 is a semi-insulator (i-type). Next, in this stacked wafer, as shown in FIG. 13, a groove was formed by etching only in the electrode forming area A for one layer 3. Next, as shown in FIG. 14, only a part of the first layer 50 has
A p-type portion 5 of a p-conductivity type semiconductor was formed by irradiation with an electron beam. At this time, the portion other than the p-type portion 5, that is, the portion not irradiated with the electron beam, remains as a single layer 50 of semi-insulator. Therefore, the p-type part 5 forms a pn junction with the first layer 3 in the vertical direction, but in the horizontal direction, the nine layers 5 are electrically isolated from the surroundings by the first layer 50. be done. Next, as shown in FIG.
An A1 layer 60 was formed by vapor deposition over the entire upper surface of the electrode formation site A for layer 3. Then, a photoresist 6 is applied on top of the Af layer 60.
1 was applied, and the photoresist 61 was patterned into a predetermined shape by photolithography so that electrode portions for the 1st layer 3 and the 9th layer 5 remained. Next, using the photoresist 61 as a mask, the exposed portion of the lower layer 1 60 is etched with a nitric acid-based etching solution, and the photoresist 61 is removed with acetone, so that the electrodes of the layer 1 3 are etched as shown in FIG. 52, the electrode 51 of the p-type part 5 was formed. Thereafter, the wafer formed as described above was cut into each element to obtain a first light emitting diode chip having a pn junction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の具体的な一実施例に係る可変色発光ダ
イオードの1つの構成要素の第1の発光ダイオードチッ
プの構成を示した構成図、第2図乃至第7図はその発光
ダイオードチップの製造工程を示した断面図、第8図は
低キャリア濃度n層のキャリア濃度と発光強度及び発光
波長との関係を示した測定図、第9図は同実施例の可変
色発光ダイオードの全体の構成を示した縦断面図、第1
0図は同可変色発光ダイオードのリードフレームを示し
た縦断面図。9J11図は第10図におけるリードフレ
ームを発光ダイオードチップ側から見た平面図。第12
図は、第2の発光ダイオードチップの構成を示した構成
図。第13図乃至第15図は、他の製造方法による第1
の発光ダイオードの製造工程を示した断面図。第16図
は他の製造方法による第1の発光ダイオ−゛トチツブの
構成を示した構成図である。 10−゛第1の発光ダイオード 1 ”−サファイア基板 2′−″バッファ層3−高キ
ャリア濃度n+層、n層 4°゛・−低キヤリア濃度n層 5°°p層50・−1
層 ?、8,51.52°゛電極41′第1のリード部
材 31 ゛第2のリード部材 35 第3のリード部材 43.33.351゛・・平坦部(第1、第2、第3の
ランド)   44.31・−反射部36−第2の発光
ダイオードチップ 39゛−・レンズ部材 20− リードフレーム 特許出願人  ・豊田合成株式会社
FIG. 1 is a block diagram showing the configuration of a first light emitting diode chip, which is one component of a variable color light emitting diode according to a specific embodiment of the present invention, and FIGS. 2 to 7 are diagrams showing the structure of the light emitting diode. FIG. 8 is a cross-sectional view showing the manufacturing process of the chip. FIG. 8 is a measurement diagram showing the relationship between the carrier concentration of the low carrier concentration n-layer, the emission intensity, and the emission wavelength. FIG. Longitudinal cross-sectional view showing the overall configuration, 1st
Figure 0 is a vertical sectional view showing the lead frame of the variable color light emitting diode. 9J11 is a plan view of the lead frame in FIG. 10, viewed from the light emitting diode chip side. 12th
The figure is a configuration diagram showing the configuration of a second light emitting diode chip. FIG. 13 to FIG. 15 show the first
FIG. FIG. 16 is a block diagram showing the structure of a first light emitting diode chip produced by another manufacturing method. 10-゛First light emitting diode 1 "-Sapphire substrate 2'-"Buffer layer 3-High carrier concentration n+ layer, n layer 4°.--Low carrier concentration n layer 5°°p layer 50.-1
Layer? , 8, 51.52°゛Electrode 41'First lead member 31゛Second lead member 35 Third lead member 43.33.351゛...Flat part (first, second, third land) ) 44.31 - Reflection part 36 - Second light emitting diode chip 39 - Lens member 20 - Lead frame patent applicant - Toyoda Gosei Co., Ltd.

Claims (1)

【特許請求の範囲】 p型を示す窒化ガリウム系化合物半導体(Al_XGa
_1_−_XN;X=0を含む)からなるp層と、前記
p層に接合するn型窒化ガリウム系化合物半導体(Al
_XGa_1_−_XN;X=0を含む)から成るn層
とを有し、前記p層及び前記n層の電極が同一面上に形
成された第1の発光ダイオードチップと、 前記第1の発光ダイオードチップと異なる発光色を有す
る第2の発光ダイオードチップと、前記第1の発光ダイ
オードチップの両電極が接合される離間して形成された
第1及び第2のランドを有し、その一方のランドは前記
第2の発光ダイオードチップの1つの電極が接合されて
おり、そのランドと離間して形成され、前記第2の発光
ダイオードチップの他の電極がリード接続される第3の
ランドを有するリードフレームとを有する可変色発光ダ
イオード。
[Claims] Gallium nitride-based compound semiconductor (Al_XGa
_1_-_XN; including X=0), and an n-type gallium nitride compound semiconductor (Al
a first light emitting diode chip having an n layer consisting of _XGa_1_−_XN; a second light emitting diode chip having a different emission color from that of the chip, and first and second lands formed apart to which both electrodes of the first light emitting diode chip are bonded, one of the lands; is a lead to which one electrode of the second light emitting diode chip is bonded, a third land formed apart from the land and to which the other electrode of the second light emitting diode chip is connected as a lead; A variable color light emitting diode having a frame.
JP2290054A 1990-10-27 1990-10-27 Variable color light emitting diode Pending JPH04163972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2290054A JPH04163972A (en) 1990-10-27 1990-10-27 Variable color light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2290054A JPH04163972A (en) 1990-10-27 1990-10-27 Variable color light emitting diode

Publications (1)

Publication Number Publication Date
JPH04163972A true JPH04163972A (en) 1992-06-09

Family

ID=17751191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2290054A Pending JPH04163972A (en) 1990-10-27 1990-10-27 Variable color light emitting diode

Country Status (1)

Country Link
JP (1) JPH04163972A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06151968A (en) * 1992-10-29 1994-05-31 Toyoda Gosei Co Ltd Nitrogen-iii group semiconductor luminous element and manufacture thereof
JPH07335942A (en) * 1994-06-14 1995-12-22 Nichia Chem Ind Ltd Full-color led display
WO1998034285A1 (en) * 1997-01-31 1998-08-06 Matsushita Electronics Corporation Light emitting element, semiconductor light emitting device, and method for manufacturing them
US6357889B1 (en) 1999-12-01 2002-03-19 General Electric Company Color tunable light source
CN100405622C (en) * 1997-01-31 2008-07-23 松下电器产业株式会社 Light-emitting element
US8017967B2 (en) 2004-09-09 2011-09-13 Toyoda Gosei Co., Ltd. Light-emitting element including a fusion-bonding portion on contact electrodes

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06151968A (en) * 1992-10-29 1994-05-31 Toyoda Gosei Co Ltd Nitrogen-iii group semiconductor luminous element and manufacture thereof
JPH07335942A (en) * 1994-06-14 1995-12-22 Nichia Chem Ind Ltd Full-color led display
WO1998034285A1 (en) * 1997-01-31 1998-08-06 Matsushita Electronics Corporation Light emitting element, semiconductor light emitting device, and method for manufacturing them
US6333522B1 (en) 1997-01-31 2001-12-25 Matsushita Electric Industrial Co., Ltd. Light-emitting element, semiconductor light-emitting device, and manufacturing methods therefor
US6597019B2 (en) 1997-01-31 2003-07-22 Matsushita Electric Industrial Co., Ltd Semiconductor light-emitting device comprising an electrostatic protection element
US6642072B2 (en) 1997-01-31 2003-11-04 Matsushita Electric Industrial Co., Ltd. Light-emitting element, semiconductor light-emitting device, and manufacturing methods therefor
CN100405622C (en) * 1997-01-31 2008-07-23 松下电器产业株式会社 Light-emitting element
US6357889B1 (en) 1999-12-01 2002-03-19 General Electric Company Color tunable light source
US8017967B2 (en) 2004-09-09 2011-09-13 Toyoda Gosei Co., Ltd. Light-emitting element including a fusion-bonding portion on contact electrodes

Similar Documents

Publication Publication Date Title
US5369289A (en) Gallium nitride-based compound semiconductor light-emitting device and method for making the same
US5733796A (en) Light-emitting semiconductor device using gallium nitride group compound
US7071015B2 (en) Semiconductor light emitting device and method for producing the same
US5278433A (en) Light-emitting semiconductor device using gallium nitride group compound with double layer structures for the n-layer and/or the i-layer
US5744828A (en) Semiconductor light emitting device with blocking layer
JP4091261B2 (en) Semiconductor light emitting device and manufacturing method thereof
US6472690B1 (en) Gallium nitride group compound semiconductor
US5652438A (en) Light-emitting semiconductor device using group III nitride compound
JPH10107316A (en) Semiconductor light-emitting device of iii group nitride
US20100258826A1 (en) Light emitting diode and method for manufacturing the same
JP2009503823A (en) Optoelectronic semiconductor chip
JP2009519604A (en) AC driven light emitting diode with improved transparent electrode structure
JP3675044B2 (en) Group 3 nitride semiconductor light emitting device
JPH08255926A (en) Semiconductor light emitting element and fabrication thereof
JPH11340505A (en) Gallium nitride-based compound semiconductor light emitting element
US6984536B2 (en) Method for manufacturing a gallium nitride group compound semiconductor
JP3136672B2 (en) Gallium nitride based compound semiconductor light emitting device
JPH04163972A (en) Variable color light emitting diode
WO2002097902A1 (en) Semiconductor led device
JP3336855B2 (en) Group III nitride compound semiconductor light emitting device
KR101081055B1 (en) Light emitting device package and method for fabricating the same
KR100670929B1 (en) Flip chip light-emitting device and Method of manufacturing the same
JPH07131068A (en) Nitrogen-group-iii element compound semiconductor light emitting element
JPH03252177A (en) Light emitting element of gallium nitride compound semiconductor
KR100289595B1 (en) Group III-nitride semiconductor light emitting device