JP3136672B2 - Gallium nitride based compound semiconductor light emitting device - Google Patents

Gallium nitride based compound semiconductor light emitting device

Info

Publication number
JP3136672B2
JP3136672B2 JP20130691A JP20130691A JP3136672B2 JP 3136672 B2 JP3136672 B2 JP 3136672B2 JP 20130691 A JP20130691 A JP 20130691A JP 20130691 A JP20130691 A JP 20130691A JP 3136672 B2 JP3136672 B2 JP 3136672B2
Authority
JP
Japan
Prior art keywords
layer
light emitting
electrode
emitting diode
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20130691A
Other languages
Japanese (ja)
Other versions
JPH0521846A (en
Inventor
真人 田牧
正宏 小滝
正樹 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP20130691A priority Critical patent/JP3136672B2/en
Publication of JPH0521846A publication Critical patent/JPH0521846A/en
Application granted granted Critical
Publication of JP3136672B2 publication Critical patent/JP3136672B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は青色発光の窒化ガリウム
系化合物半導体発光素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gallium nitride based compound semiconductor light emitting device which emits blue light.

【0002】[0002]

【従来技術】従来、青色の発光ダイオードとしてGaN
系の化合物半導体を用いたものが知られている。そのG
aN 系の化合物半導体は直接遷移であることから発光効
率が高いこと、光の3原色の1つである青色を発光色と
すること等から注目されている。このようなGaN 系の
化合物半導体を用いた発光ダイオードは、サファイヤ基
板上に直接又は窒化アルミニウムから成るバッファ層を
介在させて、n導電型のGaN 系の化合物半導体から成
るn層を成長させ、そのn層の上にp型不純物を添加し
てi型のGaN 系の化合物半導体から成るi層を成長さ
せた構造をとっている(特開昭62−119196号公
報、特開昭63−188977号公報)。
2. Description of the Related Art Conventionally, GaN has been used as a blue light emitting diode.
A device using a system compound semiconductor is known. That G
The aN 2 -based compound semiconductor has attracted attention because of its direct transition, which has high luminous efficiency, and uses blue, which is one of the three primary colors of light, as the luminescent color. In such a light emitting diode using a GaN-based compound semiconductor, an n-layer made of an n-conductivity-type GaN-based compound semiconductor is grown directly on a sapphire substrate or with a buffer layer made of aluminum nitride interposed therebetween. The structure is such that an i-layer made of an i-type GaN-based compound semiconductor is grown by adding a p-type impurity on the n-layer (Japanese Patent Application Laid-Open Nos. 62-119196 and 63-188977). Gazette).

【0003】[0003]

【発明が解決しようとする課題】ここで、図7に示すよ
うに、発光ダイオード60のi層の電極67はi層上に
直接、又、n層の電極68はi層の一部に設けられた孔
内を利用してAl などの金属をそれぞれ蒸着して形成さ
れている。この発光ダイオード60の発光強度を向上さ
せるには、その発光領域がi層の電極67の上部及びそ
の近傍に位置していることから、i層の電極67の電極
面積をなるべく大きくすれば良いことが知られている。
ところで、上述の理由により発光ダイオード60のi層
の電極67の電極面積が大きく取られるため、i層の電
極67とn層の電極68との電極間距離が発光領域の部
位により大きく違ってしまうことになる。そして、発光
ダイオード60の電極67,68は、はんだバンプを介
してリードフレーム70のリード部材71,72などに
ボンディングされ接合されている。すると、上記リード
フレーム70のリード部材71,72にて発光ダイオー
ド60に供給される電流は、i層の電極67とn層の電
極68との電極間距離が近い抵抗の少ない部分をより多
く流れることになる。従って、発光ダイオード60は発
光領域において発光ムラが生じることになる。このよう
な発光ダイオード60の発光状態においては、i層の電
極67の電極面積を大きく形成したにも拘わらず余り発
光強度が向上しないという問題があった。
As shown in FIG. 7, the i-layer electrode 67 of the light emitting diode 60 is provided directly on the i-layer, and the n-layer electrode 68 is provided on a part of the i-layer. Metals such as Al are deposited by utilizing the insides of the holes thus formed. In order to improve the light emission intensity of the light emitting diode 60, since the light emitting region is located above and near the i-layer electrode 67, the electrode area of the i-layer electrode 67 should be as large as possible. It has been known.
By the way, since the electrode area of the i-layer electrode 67 of the light emitting diode 60 is large for the above-described reason, the inter-electrode distance between the i-layer electrode 67 and the n-layer electrode 68 greatly differs depending on the position of the light emitting region. Will be. The electrodes 67 and 68 of the light emitting diode 60 are bonded and joined to the lead members 71 and 72 of the lead frame 70 via solder bumps. Then, the current supplied to the light emitting diode 60 by the lead members 71 and 72 of the lead frame 70 flows more through a portion with a small resistance where the distance between the i-layer electrode 67 and the n-layer electrode 68 is short. Will be. Therefore, the light emitting diode 60 has uneven light emission in the light emitting region. In such a light emitting state of the light emitting diode 60, there is a problem that the light emitting intensity is not improved much though the electrode area of the electrode 67 of the i layer is formed large.

【0004】本発明は、上記の課題を解決するために成
されたものであり、その目的とするところは、GaN 系
の化合物半導体の発光ダイオードの青色の発光領域の部
位における発光ムラをなくし、その発光強度を向上させ
ることである。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to eliminate uneven light emission in a blue light-emitting region of a GaN-based compound semiconductor light-emitting diode. The purpose is to improve the emission intensity.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
の発明の構成は、n型の窒化ガリウム系化合物半導体
(AlXGa1-XN;X=0を含む)から成る第1層と、p
型不純物を添加した窒化ガリウム系化合物半導体(AlX
Ga1-XN;X=0を含む)から成る第2層とを有する窒
化ガリウム系化合物半導体発光素子において、同一面側
に前記第1層の電極と前記第2層の電極とを有し、一方
の電極の全周且つ同じ層上に他方の電極を形成したこと
を特徴とする。又、発明の第2の構成は、上記構成にお
いて、第1層は第2層の下側層にあり、第2層の上面の
中央部全体に電極が形成されていることを特徴とする。
更に発明の第3の構成は、上記発明の第2の構成におい
て、第1層の電極は、第2層の上面の中央部全体に形成
された第2層の電極を囲むよう、第2層の上面外周部か
ら第1層の側面にかけて連続して形成されていることを
特徴とする。
The present invention for solving the above-mentioned problems comprises a first layer made of an n-type gallium nitride-based compound semiconductor (Al X Ga 1 -X N; including X = 0). , P
Gallium nitride compound semiconductor (Al X
A gallium nitride-based compound semiconductor light emitting device having a second layer of Ga 1-X N; including X = 0), wherein the first layer electrode and the second layer electrode are provided on the same surface side. The other electrode is formed all around the one electrode and on the same layer . According to a second structure of the present invention, in the above structure, the first layer is located below the second layer, and an electrode is formed over the entire central portion of the upper surface of the second layer.
Further, a third configuration of the invention is the same as the second configuration of the invention described above.
The electrode of the first layer is formed over the entire central portion of the upper surface of the second layer.
Around the upper surface of the second layer so as to surround the formed second layer electrode.
From the first layer to the side of the first layer.
Features.

【0006】[0006]

【作用及び効果】同一面側に第1層の電極と第2層の電
極とを有し、一方の電極の全周且つ同じ層上に他方の電
極が形成される。これにより、発光ダイオードの青色の
発光領域における発光ムラをなくすことができた。即
ち、発光ダイオードの第1層の電極と第2層の電極との
電極間距離をほぼ等しくできるため、それら電極間に流
れる電流を発光領域の部位に拘わらずほぼ同じとするこ
とができる。この作用により、発光ダイオードは青色の
発光強度が向上した。また、第1層の電極が第2層の上
面外周部から第1層の側面にかけて連続して形成するこ
とにより、発光領域から側面側に逃げようとする光が上
方に反射されることになり、更に発光ダイオードの発光
強度が向上される。
Operation and Effect The first layer electrode and the second layer electrode are provided on the same surface side, and the other electrode is formed all around one electrode and on the same layer . Thereby, it was possible to eliminate light emission unevenness in the blue light emitting region of the light emitting diode. That is, since the distance between the electrodes of the first layer and the electrodes of the second layer of the light emitting diode can be made substantially equal, the current flowing between the electrodes can be made substantially the same regardless of the position of the light emitting region. By this action, the light emitting diode has improved blue light emission intensity. Also, the first layer electrode is on the second layer
Formed continuously from the outer periphery of the surface to the side surface of the first layer.
As a result, light that tries to escape from the light emitting area to the side
Light from the light emitting diode
Strength is improved.

【0007】[0007]

【実施例】以下、本発明を具体的な実施例に基づいて説
明する。図1は本発明に係る発光ダイオード10を示
し、図1(a) は縦断面図、図1(b)は電極側から見た平
面図である。図1(a) において、発光ダイオード10
は、サファイヤ基板1を有しており、そのサファイヤ基
板1に 500ÅのAlN のバッファ層2が形成されてい
る。そのバッファ層2の下には、順に、膜厚 2.2μm の
GaN から成る第1層としての高キャリヤ濃度n+ 層3
と膜厚 1.5μm のGaN から成る第1層としての低キャ
リヤ濃度n層4が形成されており、更に、低キャリヤ濃
度n層4の下に膜厚 0.1μmのGaN から成る第2層と
してのi層5が形成されている。そして、i層5の中央
部に接続するアルミニウムから成る電極7が形成されて
いる。又、図1(b) に示すように、電極7の周囲で電極
間距離をほぼ等しくして高キャリヤ濃度n+ 層3に側面
から接続するアルミニウムから成る電極8が形成されて
いる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to specific embodiments. FIG. 1 shows a light emitting diode 10 according to the present invention. FIG. 1 (a) is a longitudinal sectional view, and FIG. 1 (b) is a plan view seen from an electrode side. In FIG. 1A, a light emitting diode 10 is shown.
Has a sapphire substrate 1 on which a buffer layer 2 of AlN of 500 ° is formed. Under the buffer layer 2, a high carrier concentration n + layer 3 as a first layer made of GaN having a thickness of 2.2 μm is sequentially formed.
And a low carrier concentration n layer 4 as a first layer made of GaN having a thickness of 1.5 μm, and a second layer made of GaN having a thickness of 0.1 μm under the low carrier concentration n layer 4.
And i layer 5 of are formed. Then, an electrode 7 made of aluminum connected to the center of the i-layer 5 is formed. Further, as shown in FIG. 1B, an electrode 8 made of aluminum is formed around the electrode 7 with the distance between the electrodes being substantially equal and connected to the high carrier concentration n + layer 3 from the side.

【0008】次に、この構造の発光ダイオード10の製
造工程について、図2、図3及び図4を参照して説明す
る。上記発光ダイオード10は、有機金属化合物気相成
長法( 以下、MOVPEと記す)による気相成長により
製造された。用いられたガスは、NH3 とキャリヤガス
2 とトリメチルガリウム(Ga(CH3)3)(以下、TM
Gと記す)とトリメチルアルミニウム(Al(CH3)3)
(以下、TMAと記す)とシラン(SiH4)とジエチル
亜鉛(以下、DEZと記す)である。先ず、有機洗浄及
び熱処理により洗浄したa面を主面とする単結晶のサフ
ァイヤ基板1をMOVPE装置の反応室に載置されたサ
セプタに装着する。次に、常圧でH2 を流速2 l/分で
反応室に流しながら温度1100℃でサファイヤ基板1を気
相エッチングした。次に、温度を 400℃まで低下させ
て、H2 を20 l/分、NH3を10 l/分、TMAを 1.8
×10-5モル/分で供給して 500Åの厚さのAlN から成
るバッファ層2を形成した。次に、サファイヤ基板1の
温度を1150℃に保持し、H2 を20 l/分、NH3 を10 l
/分、TMGを 1.7×10-4モル/分、H2 で0.86ppm ま
で希釈したシラン(SiH4)を 200ml/分の割合で30分
間供給し、膜厚 2.2μm 、キャリヤ濃度 1.5×1018/cm
3 のGaN から成る高キャリヤ濃度n+ 層3を形成し
た。続いて、サファイヤ基板1の温度を1150℃に保持
し、H2 を20 l/分、NH3 を10 l/分、TMGを1.7
×10-4モル/分の割合で20分間供給し、膜厚 1.5μm、
キャリヤ濃度 1×1015/cm3 のGaN から成る低キャリ
ヤ濃度n層4を形成した。次に、サファイヤ基板1を 9
00℃にして、H2 を20 l/分、NH3 を10 l/分、TM
Gを 1.7×10-4モル/分、DEZを 1.5×10-4モル/分
の割合で1分間供給して、膜厚 0.1μmのGaN から成
るi層5を形成した。このようにして、図2(a) に示す
ような多層構造が得られた。次に、図2(b) に示すよう
に、図2(a) の多層構造のウェーハに対して太い刃物
(例えば、 250μm 厚)を用いたダイシングによりi層
5から低キャリヤ濃度n層4、高キャリヤ濃度n+
3、バッファ層2、サファイヤ基板1の上面一部まで格
子状に所謂ハーフカットにて切り込みを入れる。次に、
図2(c) に示すように、試料の上全面及び側面(垂直
面)に、試料の回転を伴うアルミニウムの蒸着によりA
l 層11を 0.3μm の厚さに形成した。そして、そのA
l 層11の上にフォトレジスト12を塗布して、フォト
リソグラフィにより、そのフォトレジスト12が高キャ
リヤ濃度n+ 層3及びi層5に対する電極部が残るよう
に、所定形状にパターン形成した。
Next, a manufacturing process of the light emitting diode 10 having this structure will be described with reference to FIGS. 2, 3 and 4. FIG. The light emitting diode 10 was manufactured by vapor phase growth using a metal organic compound vapor phase epitaxy method (hereinafter referred to as MOVPE). The gases used were NH 3 , carrier gas H 2 and trimethylgallium (Ga (CH 3 ) 3 ) (hereinafter referred to as TM
G) and trimethylaluminum (Al (CH 3 ) 3 )
(Hereinafter referred to as TMA), silane (SiH 4 ), and diethylzinc (hereinafter referred to as DEZ). First, a single-crystal sapphire substrate 1 having an a-plane as a main surface cleaned by organic cleaning and heat treatment is mounted on a susceptor placed in a reaction chamber of a MOVPE apparatus. Next, the sapphire substrate 1 was subjected to gas phase etching at a temperature of 1100 ° C. while flowing H 2 into the reaction chamber at a flow rate of 2 l / min at normal pressure. Next, the temperature was lowered to 400 ° C., H 2 was 20 l / min, NH 3 was 10 l / min, and TMA was 1.8 l / min.
A buffer layer 2 made of AlN having a thickness of 500 ° was formed by supplying at a rate of × 10 -5 mol / min. Next, the temperature of the sapphire substrate 1 was maintained at 1150 ° C., H 2 was 20 l / min, and NH 3 was 10 l / min.
/ Min, 1.7 × 10 -4 mol / min of TMG and silane (SiH 4 ) diluted to 0.86 ppm with H 2 at a rate of 200 ml / min for 30 minutes, a film thickness of 2.2 μm and a carrier concentration of 1.5 × 10 18 /cm
A high carrier concentration n.sup. + Layer 3 of 3 GaN was formed. Subsequently, the temperature of the sapphire substrate 1 was maintained at 1150 ° C., H 2 was 20 l / min, NH 3 was 10 l / min, and TMG was 1.7 l / min.
× 10 -4 mol / min at a rate of 20 minutes, and a film thickness of 1.5 μm
A low carrier concentration n layer 4 made of GaN having a carrier concentration of 1 × 10 15 / cm 3 was formed. Next, sapphire substrate 1
H 2 O, 20 l / min, NH 3 10 l / min, TM
G was supplied at a rate of 1.7 × 10 −4 mol / min and DEZ was supplied at a rate of 1.5 × 10 −4 mol / min for 1 minute to form an i-layer 5 made of GaN having a thickness of 0.1 μm. Thus, a multilayer structure as shown in FIG. 2A was obtained. Next, as shown in FIG. 2B, the wafer having the multilayer structure shown in FIG. 2A is diced from the i-layer 5 to the low carrier concentration n-layer 4, A notch is formed in a lattice shape so-called half-cut to the high carrier concentration n + layer 3, the buffer layer 2, and a part of the upper surface of the sapphire substrate 1. next,
As shown in FIG. 2 (c), the entire surface and the side surface (vertical surface) of the sample were subjected to A deposition by rotating aluminum with rotation of the sample.
The layer 11 was formed to a thickness of 0.3 μm. And that A
A photoresist 12 was applied on the l layer 11, and was patterned by photolithography in a predetermined shape so that the photoresist 12 remained in the electrode portions for the high carrier concentration n + layer 3 and the i layer 5.

【0009】次に、図3(d) に示すように、フォトレジ
スト12をマスクとして下層のAl層11の露出部を硝
酸系エッチング液でエッチングし、フォトレジスト12
をアセトンで除去し、i層5の電極7を形成した。尚、
図4は、この工程完了状態におけるウェーハを上から見
た平面図を示す。次に、図3(e) に示すように、細い刃
物(例えば、 150μm 厚)を用いたダイシングによりA
l 層11が蒸着されたサファイヤ基板1を切り離して個
片とし、高キャリヤ濃度n+ 層3の電極8を形成した。
このようにして、図1に示すMIS(Metal Insulat
or Semiconductor)構造の窒化ガリウム系発光素子を
製造することができる。
Next, as shown in FIG. 3D, the exposed portion of the lower Al layer 11 is etched with a nitric acid-based
Was removed with acetone to form an electrode 7 of the i-layer 5. still,
FIG. 4 is a plan view of the wafer in a state where the process is completed, as viewed from above. Next, as shown in FIG. 3 (e), dicing using a thin blade (for example, 150 μm thick)
The sapphire substrate 1 on which the l layer 11 was deposited was cut off into individual pieces to form the electrodes 8 of the high carrier concentration n + layer 3.
Thus, the MIS (Metal Insulat) shown in FIG.
gallium nitride-based light-emitting device having a (or semiconductor) structure.

【0010】そして、発光ダイオード10は電極7,8
に形成されたはんだバンプを介して、図5に示すよう
に、リードフレーム20のリード部材21,22に接合
される。すると、i層5の電極7はその周囲に形成され
た高キャリヤ濃度n+ 層3の電極8との電極間距離がほ
ぼ等しいことになる。即ち、発光ダイオード10の電極
間を流れる電流を発光領域の部位に拘わらずほぼ同じと
することができる。従って、発光ダイオード10の青色
の発光領域における発光ムラをなくすことができると共
に発光強度を向上させることができた。又、本実施例の
発光ダイオード10においては、高キャリヤ濃度n+
3に接続するようにアルミニウムにて側面を覆って電極
8が形成されている。このため、i層の電極7の上部及
びその近傍に位置している発光領域から側面側に逃げよ
うとする光が上方に反射されることになり、更に、発光
ダイオード10の発光強度が向上される。
The light emitting diode 10 has electrodes 7, 8
5 are joined to the lead members 21 and 22 of the lead frame 20 via the solder bumps formed on the lead frame 20. As shown in FIG. Then, the distance between the electrode 7 of the i layer 5 and the electrode 8 of the high carrier concentration n + layer 3 formed therearound is substantially equal. That is, the current flowing between the electrodes of the light emitting diode 10 can be made substantially the same regardless of the position of the light emitting region. Therefore, the light emission unevenness in the blue light emitting region of the light emitting diode 10 can be eliminated and the light emission intensity can be improved. Further, in the light emitting diode 10 of this embodiment, the electrode 8 is formed so as to cover the side surface with aluminum so as to be connected to the high carrier concentration n + layer 3. For this reason, light that escapes to the side from the light emitting region located above and near the electrode 7 of the i-layer is reflected upward, and the light emitting intensity of the light emitting diode 10 is further improved. You.

【0011】図6は本発明に係る他の実施例である発光
ダイオード30を示し、図6(a) は縦断面図、図6(b)
は電極側から見た平面図である。尚、上述の発光ダイオ
ード10と同じ層構造から成るものについては同じ符号
を付してその説明を省略する。この発光ダイオード30
においては、上述の図2(a) に示す多層構造のウェーハ
に対して、i層5とその下の低キャリヤ濃度n層4と高
キャリヤ濃度n+ 層3の上面の一部をドライエッチング
して孔を形成し、その試料の上全面に蒸着によりAl 層
を形成した。そして、Al 層をエッチングして高キャリ
ヤ濃度n+ 層3の電極38、i層5の電極37を形成し
た。すると、図6(b) に示すように、高キャリヤ濃度n
+ 層3の電極38はその周囲に形成されたi層5の電極
37との電極間距離がほぼ等しいことになる。即ち、発
光ダイオード30の電極間を流れる電流を発光領域の部
位に拘わらずほぼ同じとすることができる。従って、発
光ダイオード30の青色の発光領域における発光ムラを
なくすことができると共に発光強度を向上させることが
できた。又、上述の発光ダイオード30の電極配置とは
反対に、i層5の電極をi層5の中央部にできるだけ広
範囲に形成し、その周囲に上述と同様にドライエッチン
グして高キャリヤ濃度n+ 層3まで到達するような溝を
形成し、高キャリヤ濃度n+ 層3の電極を形成する。こ
の時、高キャリヤ濃度n+ 層3の電極とi層5の電極と
の電極間距離をほぼ等しくする。すると、この発光ダイ
オードにおいても電極間を流れる電流を発光領域の部位
に拘わらずほぼ同じとすることができ、同様の効果が得
られることになる。尚、この発光ダイオードにおける発
光領域は、i層5の電極の上部及びその近傍である中央
部分となり、上述の発光ダイオード30では周囲部分で
ある。
FIG. 6 shows a light emitting diode 30 according to another embodiment of the present invention. FIG. 6 (a) is a longitudinal sectional view, and FIG.
Is a plan view seen from the electrode side. Elements having the same layer structure as the light emitting diode 10 described above are denoted by the same reference numerals, and description thereof is omitted. This light emitting diode 30
2 (a), a part of the upper surface of the i-layer 5, the low carrier concentration n-layer 4 and the high carrier concentration n + layer 3 under the i-layer 5 is dry-etched on the multi-layer wafer shown in FIG. A hole was formed, and an Al layer was formed on the entire surface of the sample by vapor deposition. Then, the Al layer was etched to form an electrode 38 of the high carrier concentration n + layer 3 and an electrode 37 of the i layer 5. Then, as shown in FIG. 6B, the high carrier concentration n
The distance between the electrode 38 of the + layer 3 and the electrode 37 of the i layer 5 formed therearound is substantially equal. That is, the current flowing between the electrodes of the light emitting diode 30 can be substantially the same regardless of the position of the light emitting region. Therefore, it was possible to eliminate the uneven light emission in the blue light emitting region of the light emitting diode 30 and to improve the light emission intensity. Contrary to the electrode arrangement of the light-emitting diode 30, the electrode of the i-layer 5 is formed as wide as possible in the center of the i-layer 5, and the periphery thereof is dry-etched as described above to obtain a high carrier concentration n +. A groove reaching the layer 3 is formed, and an electrode of the high carrier concentration n + layer 3 is formed. At this time, the distance between the electrode of the high carrier concentration n + layer 3 and the electrode of the i layer 5 is made substantially equal. Then, also in this light emitting diode, the current flowing between the electrodes can be made substantially the same regardless of the position of the light emitting region, and the same effect can be obtained. Note that the light emitting region of the light emitting diode is a central portion above and near the electrode of the i layer 5, and is a peripheral portion in the light emitting diode 30 described above.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の具体的な一実施例に係る発光ダイオー
ドを示した構成図である。
FIG. 1 is a configuration diagram illustrating a light emitting diode according to a specific embodiment of the present invention.

【図2】同実施例に係る発光ダイオードの製造工程を示
した縦断面図である。
FIG. 2 is a longitudinal sectional view showing a manufacturing process of the light emitting diode according to the embodiment.

【図3】同実施例に係る発光ダイオードの製造工程を示
した図2に続く縦断面図である。
FIG. 3 is a vertical sectional view showing a manufacturing step of the light emitting diode according to the embodiment, following FIG. 2;

【図4】同実施例に係る発光ダイオードの製造工程の途
中におけるウェーハの状態を示した平面図である。
FIG. 4 is a plan view showing the state of the wafer during the manufacturing process of the light emitting diode according to the example.

【図5】同実施例に係る発光ダイオードとリードフレー
ムとの接合状態を示した部分縦断面図である。
FIG. 5 is a partial longitudinal sectional view showing a joint state between the light emitting diode and the lead frame according to the embodiment.

【図6】本発明に係る発光ダイオードの他の実施例を示
した構成図である。
FIG. 6 is a configuration diagram showing another embodiment of the light emitting diode according to the present invention.

【図7】従来の発光ダイオードとリードフレームとの接
合状態を示した部分縦断面図である。
FIG. 7 is a partial vertical cross-sectional view showing a conventional light-emitting diode and a lead frame joined state.

【符号の説明】[Explanation of symbols]

1−サファイヤ基板 2−バッファ層 3−高キャ
リヤ濃度n+ 層 4−低キャリヤ濃度n層 5−i層 7,8−電極 10−発光ダイオード
1-Sapphire substrate 2-Buffer layer 3-High carrier concentration n + layer 4-Low carrier concentration n layer 5-i layer 7,8-electrode 10-Light emitting diode

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−287675(JP,A) 特開 昭55−9442(JP,A) 特開 昭54−6787(JP,A) 実開 平4−103666(JP,U) (58)調査した分野(Int.Cl.7,DB名) H01L 33/00 H01S 5/00 - 5/50 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-62-287675 (JP, A) JP-A-55-9442 (JP, A) JP-A-54-6787 (JP, A) 103666 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) H01L 33/00 H01S 5/00-5/50

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 n型の窒化ガリウム系化合物半導体(A
lXGa1-XN;X=0を含む)から成る第1層と、p型不
純物を添加した窒化ガリウム系化合物半導体(AlXGa
1-XN;X=0を含む)から成る第2層とを有する窒化
ガリウム系化合物半導体発光素子において、 同一面側に前記第1層の電極と前記第2層の電極とを有
し、一方の電極の全周且つ同じ層上に他方の電極を形成
したことを特徴とする半導体発光素子。
1. An n-type gallium nitride compound semiconductor (A)
a first layer composed of l X Ga 1-X N; including X = 0, and a gallium nitride-based compound semiconductor (Al X Ga) doped with a p-type impurity.
A gallium nitride-based compound semiconductor light emitting device having a second layer of 1- XN; including X = 0), wherein the first layer electrode and the second layer electrode are provided on the same surface side; A semiconductor light emitting device, wherein the other electrode is formed all around one electrode and on the same layer .
【請求項2】 前記第1層は前記第2層の下側層にあ
り、前記第2層の上面の中央部全体に電極が形成されて
いることを特徴とする請求項1に記載の半導体発光素
子。
2. The semiconductor according to claim 1, wherein the first layer is located below the second layer, and an electrode is formed over the entire central portion of the upper surface of the second layer. Light emitting element.
【請求項3】 前記第1層の電極は、前記第2層の上面3. The electrode of the first layer is provided on an upper surface of the second layer.
の中央部全体に形成された前記第2層の電極を囲むよSurrounding the electrode of the second layer formed over the entire central portion of
う、前記第2層の上面外周部から前記第1層の側面にかFrom the outer periphery of the upper surface of the second layer to the side surface of the first layer.
けて連続して形成されていることを特徴とする請求項23. The semiconductor device according to claim 2, wherein:
に記載の半導体発光素子。3. The semiconductor light emitting device according to item 1.
JP20130691A 1991-07-16 1991-07-16 Gallium nitride based compound semiconductor light emitting device Expired - Fee Related JP3136672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20130691A JP3136672B2 (en) 1991-07-16 1991-07-16 Gallium nitride based compound semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20130691A JP3136672B2 (en) 1991-07-16 1991-07-16 Gallium nitride based compound semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH0521846A JPH0521846A (en) 1993-01-29
JP3136672B2 true JP3136672B2 (en) 2001-02-19

Family

ID=16438820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20130691A Expired - Fee Related JP3136672B2 (en) 1991-07-16 1991-07-16 Gallium nitride based compound semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3136672B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007091432A1 (en) 2006-02-08 2007-08-16 Mitsubishi Chemical Corporation Light emitting element
US7271426B2 (en) 2004-05-11 2007-09-18 Stanley Electric Co., Ltd. Semiconductor light emitting device on insulating substrate and its manufacture method

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07254732A (en) * 1994-03-15 1995-10-03 Toshiba Corp Semiconductor light emitting device
US6996150B1 (en) 1994-09-14 2006-02-07 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor
JP3333356B2 (en) * 1995-07-12 2002-10-15 株式会社東芝 Semiconductor device
JP3556080B2 (en) * 1997-11-14 2004-08-18 日亜化学工業株式会社 Nitride semiconductor device
JP3540605B2 (en) * 1998-05-15 2004-07-07 三洋電機株式会社 Light emitting element
US6828596B2 (en) * 2002-06-13 2004-12-07 Lumileds Lighting U.S., Llc Contacting scheme for large and small area semiconductor light emitting flip chip devices
JP3912219B2 (en) * 2002-08-01 2007-05-09 日亜化学工業株式会社 Nitride semiconductor light emitting device
JP4474892B2 (en) * 2003-10-14 2010-06-09 日亜化学工業株式会社 Flip chip type LED
KR101007128B1 (en) * 2009-02-19 2011-01-10 엘지이노텍 주식회사 Light emitting device and method for fabricating the same
KR101886156B1 (en) * 2012-08-21 2018-09-11 엘지이노텍 주식회사 Light emitting device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7271426B2 (en) 2004-05-11 2007-09-18 Stanley Electric Co., Ltd. Semiconductor light emitting device on insulating substrate and its manufacture method
US7605403B2 (en) 2004-05-11 2009-10-20 Stanley Electric Co., Ltd. Semiconductor light-emitting device and fabrication method of the same
WO2007091432A1 (en) 2006-02-08 2007-08-16 Mitsubishi Chemical Corporation Light emitting element
US7977682B2 (en) 2006-02-08 2011-07-12 Mitsubishi Chemical Corporation Light emitting device

Also Published As

Publication number Publication date
JPH0521846A (en) 1993-01-29

Similar Documents

Publication Publication Date Title
JP2666228B2 (en) Gallium nitride based compound semiconductor light emitting device
JP3239774B2 (en) Substrate separation method for group III nitride semiconductor light emitting device
EP0579897B1 (en) Light-emitting device of gallium nitride compound semiconductor
JP2698796B2 (en) Group III nitride semiconductor light emitting device
JP3423328B2 (en) Gallium nitride based compound semiconductor light emitting device
JP3795624B2 (en) Nitrogen-3 group element compound semiconductor light emitting device
JPH06151968A (en) Nitrogen-iii group semiconductor luminous element and manufacture thereof
JP3136672B2 (en) Gallium nitride based compound semiconductor light emitting device
JPH1027924A (en) Nitride-group-iii element compound light emitting element
JP2932769B2 (en) Semiconductor light emitting device
JP2658009B2 (en) Gallium nitride based compound semiconductor light emitting device
JP3341576B2 (en) Group III nitride compound semiconductor light emitting device
JP3497790B2 (en) Method for manufacturing p-type gallium nitride based semiconductor and light emitting device using p-type gallium nitride based semiconductor
JP3336855B2 (en) Group III nitride compound semiconductor light emitting device
JPH11126923A (en) Method for manufacturing gallium nitride compound semiconductor element
JP2661420B2 (en) Method of manufacturing gallium nitride based compound semiconductor light emitting device
JPH07131068A (en) Nitrogen-group-iii element compound semiconductor light emitting element
JPH0992880A (en) Group iii nitride semiconductor light emitting device
JP3620923B2 (en) Group 3 nitride semiconductor light emitting device
JP3262087B2 (en) Method for manufacturing semiconductor light emitting device
JP3026102B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2661009B2 (en) Gallium nitride based compound semiconductor light emitting device
JPH11126924A (en) Method of manufacturing gallium nitride compound semiconductor element
JP3727091B2 (en) Group 3 nitride semiconductor device
JP3684841B2 (en) Gallium nitride compound semiconductor light emitting device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081208

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees