JP2001053336A - Iii nitride compound semiconductor light emitting element - Google Patents

Iii nitride compound semiconductor light emitting element

Info

Publication number
JP2001053336A
JP2001053336A JP22201899A JP22201899A JP2001053336A JP 2001053336 A JP2001053336 A JP 2001053336A JP 22201899 A JP22201899 A JP 22201899A JP 22201899 A JP22201899 A JP 22201899A JP 2001053336 A JP2001053336 A JP 2001053336A
Authority
JP
Japan
Prior art keywords
light emitting
layer
emitting device
well
iii nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP22201899A
Other languages
Japanese (ja)
Inventor
Masayoshi Koike
正好 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP22201899A priority Critical patent/JP2001053336A/en
Priority to US09/631,980 priority patent/US6620643B1/en
Publication of JP2001053336A publication Critical patent/JP2001053336A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/08Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a plurality of light emitting regions, e.g. laterally discontinuous light emitting layer or photoluminescent region integrated within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a one-chip white LED coping with full color range which can be manufacture by relatively inexpensive production facilities and whose color reproducibility range is sufficiently, when it is used as an illuminator. SOLUTION: On an intermediate layer 104, an MQW active layer 160, of about 500 Å thickness is formed of a total of five semiconductor layers. This MQW active layer 160 constitutes a MQW structure, with a total of two barrier layers 162 consisting of GaN of about 100 Å thickness and a total of three well layers differing in wavelength of light emission laminated alternately. These three well layers are laminated in the order of a red light-emitting well layer 161R, consisting of Al0.1In0.9N of about 20 Å thickness where impurities (Zn, Si) are added, a green light-emitting well layer 161G with no addition of impurities consisting of Ga0.8In0.2N of about 50 Å thickness, and a blue light-emitting well layer 161B with addition of impurities consisting of Ga0.95In0.05 N of about 30 Å thickness. According to the illumination of this white LED, red can be seen, which cannot be seen with a one-chip white LED.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、色再現範囲の広い
白色発光の III族窒化物系化合物半導体発光素子に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a white light-emitting group III nitride compound semiconductor light emitting device having a wide color reproduction range.

【0002】[0002]

【従来の技術】白色発光のLED( III族窒化物系化合
物半導体発光素子)としては、「赤崎勇:”青色発光デ
バイスの魅力”,Kbooks series 122(株)工業調査
会,1997.5.1」(以下「引用文献1」と言う。)に記載
されているもの、或いは、公開特許公報「特開平5−1
52609:発光ダイオード」(以下「引用文献2」と
言う。)に記載されているもの等が一般に広く知られて
いる。
2. Description of the Related Art As a white light emitting LED (a group III nitride compound semiconductor light emitting device), "Isao Akasaki:" Attraction of Blue Light Emitting Devices ", Kbooks series 122, Industrial Research Institute, Ltd., 1997.5.1" ( (Hereinafter referred to as "Cited Document 1"), or the published patent publication "JP-A-5-1
52609: Light-Emitting Diode ”(hereinafter referred to as“ Cited Document 2 ”) and the like are generally widely known.

【0003】図4に、上記引用文献1の白色発光の半導
体発光素子400の断面図を示す。本半導体発光素子4
00は、金属カップ内に載置された青色発光の III族窒
化物系化合物半導体発光素子(ダイオード・チップ)の
周囲に、青色光を黄色光に変換するYAG系の蛍光体を
入れたものである。
FIG. 4 is a cross-sectional view of a white light emitting semiconductor light emitting device 400 disclosed in the above cited document 1. The present semiconductor light emitting device 4
Reference numeral 00 denotes a YAG-based phosphor that converts blue light into yellow light placed around a blue-emitting group III nitride compound semiconductor light-emitting element (diode chip) mounted in a metal cup. is there.

【0004】図5に、この半導体発光素子400の発光
スペクトルのグラフを示す。チップから直接得られる光
は450nm付近に鋭いピークを示し、蛍光体からの光
は550nm付近をピークとするブロードなスペクトル
を示している。この白色LED(半導体発光素子40
0)は、使用する蛍光体の量や化学組成比を調整するこ
とにより、発光色の色度を変化させることができる。
FIG. 5 is a graph showing an emission spectrum of the semiconductor light emitting device 400. The light obtained directly from the chip shows a sharp peak around 450 nm, and the light from the phosphor shows a broad spectrum with a peak around 550 nm. This white LED (semiconductor light emitting element 40
In the case of 0), the chromaticity of the emission color can be changed by adjusting the amount of the phosphor used and the chemical composition ratio.

【0005】図6は、半導体発光素子400の色再現範
囲を示した色度図である。この様に使用する蛍光体の量
や化学組成比を調整することにより、本色度図中央の扇
形内部の任意の色を発光するLEDを実現することが可
能である。
FIG. 6 is a chromaticity diagram showing the color reproduction range of the semiconductor light emitting device 400. By adjusting the amount and chemical composition ratio of the phosphor used in this way, it is possible to realize an LED that emits an arbitrary color inside the sector at the center of the chromaticity diagram.

【0006】また、上記引用文献1に記載されている白
色発光の「3in1フルカラーLED」においては、赤色
発光のLEDチップとしてGaAlAsより成る半導体発光素
子を使用している。
Further, in the “3 in 1 full color LED” of white light emission described in the above cited document 1, a semiconductor light emitting element made of GaAlAs is used as a red light emitting LED chip.

【0007】[0007]

【発明が解決しようとする課題】例えば、図6に示した
様に、従来の半導体発光素子400によれば、色再現範
囲が十分に広くはないため、これらを照明として用いた
際、特に緑色や赤色が見えなかった。この様に、従来
は、色再現範囲が十分に広いフルカラー対応の照明を1
チップの半導体発光素子で実現することは容易ではなか
った。
For example, as shown in FIG. 6, according to the conventional semiconductor light emitting device 400, the color reproduction range is not sufficiently wide. And red was not seen. As described above, conventionally, a full-color compatible illumination having a sufficiently wide color reproduction range is used.
It has not been easy to realize the semiconductor light emitting device of a chip.

【0008】また、上記の「3in1フルカラーLED」
においては、白色を得るためのチップ数が多くなるため
に、製造工程が複雑になり、製造に時間がかかると共に
生産コストが高くなるという問題があった。
Further, the above-mentioned “3 in 1 full color LED”
However, there is a problem in that the number of chips for obtaining white color increases, which complicates the manufacturing process, takes a long time to manufacture, and increases the production cost.

【0009】また、上記の「3in1フルカラーLED」
などの従来の半導体発光素子においては、赤色発光チッ
プを実現するために赤色発光の半導体層の中に砒素(As)
を使用していた。しかし、砒素(As)化合物等を用いた製
品を量産する際には、生態系や環境に対する細かな配慮
が特に必要となり、設備投資や生産性の面で問題があっ
た。
Further, the above-mentioned “3 in 1 full color LED”
In conventional semiconductor light emitting devices such as, for example, arsenic (As) is embedded in a red light emitting semiconductor layer in order to realize a red light emitting chip.
Was used. However, when mass-producing a product using an arsenic (As) compound or the like, it is necessary to pay particular attention to the ecosystem and the environment, and there has been a problem in terms of capital investment and productivity.

【0010】本発明は、上記の課題を解決するために成
されたものであり、その目的は、砒素(As)化合物等を使
用せず、よって特別な配慮を必要としない比較的安価な
生産設備により製造が可能な、色再現範囲が十分に広い
フルカラー対応の1チップ白色LEDを提供することで
ある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to use a relatively inexpensive production method that does not use an arsenic (As) compound or the like and therefore does not require special consideration. An object of the present invention is to provide a full-color one-chip white LED that can be manufactured by equipment and has a sufficiently wide color reproduction range.

【0011】[0011]

【課題を解決するための手段】上記の課題を解決するた
めには、以下の手段が有効である。即ち、第1の手段
は、量子井戸構造を有する(Alx Ga1-x ) y In1-y N(0
≦x≦1;0 ≦y≦1)からなる III族窒化物系化合物よ
り形成された半導体層が積層された半導体発光素子にお
いて、複数の井戸層の内の少なくとも3層以上の井戸層
の各混晶比を互いに異ならせ、少なくとも1つの井戸層
にはアクセプタ不純物及びドナー不純物を添加すること
で井戸層を構成し、少なくとも3層以上の井戸層から発
光される各光の色度を互いに異ならせることにより、全
井戸層の発光に基づいて光取出面から放射される合成光
を白色光とすることである。
In order to solve the above-mentioned problems, the following means are effective. That is, the first means has a quantum well structure (Al x Ga 1 -x ) y In 1 -y N (0
.Ltoreq.x.ltoreq.1; 0.ltoreq.y.ltoreq.1) In a semiconductor light emitting device in which semiconductor layers formed of a group III nitride compound are stacked, at least three or more well layers out of a plurality of well layers are used. The mixed crystal ratios are different from each other, and an acceptor impurity and a donor impurity are added to at least one well layer to form a well layer, and the chromaticity of each light emitted from at least three or more well layers is different from each other. In this case, the combined light emitted from the light extraction surface based on the light emission of all the well layers is converted to white light.

【0012】尚、上記の各々の井戸層は、単一量子井戸
構造を成す井戸層であっても、多重量子井戸構造を構成
する井戸層であっても良い。また、上記の各々の井戸層
は、その井戸層の中に更に膜厚の薄いバリア層を備えて
いても良い。また、上記の各々の井戸層は、互いに各々
相互干渉するものであっても、互いに各々相互干渉しな
いものであっても良い。
Each of the well layers may be a well layer having a single quantum well structure or a well layer having a multiple quantum well structure. Further, each of the well layers described above may include a barrier layer with a smaller thickness in the well layer. In addition, the respective well layers may mutually interfere with each other or may not mutually interfere with each other.

【0013】また、第2の手段は、上記の第1の手段に
おいて、赤色発光井戸層の混晶比をAly In1-y N(0≦
y≦0.1 )とすることである。
The second means is the first means, wherein the mixed crystal ratio of the red light emitting well layer is Al y In 1-y N (0 ≦ 0).
y ≦ 0.1).

【0014】また、第3の手段は、上記の第1又は第2
の手段において、不純物が添加されていないIn1-y Gay
N (0.7 ≦y<1)より形成された青色発光井戸層及び
緑色発光井戸層を備えることである。ただし、この青色
発光井戸層は、青色(455nm〜485nm)よりも若干発光波長
の短い青紫色(380nm〜455nm)の光を発光する井戸層であ
っても良い。
Further, the third means may be the first or the second means.
In 1-y Ga y to which no impurity is added
A blue light emitting well layer and a green light emitting well layer formed of N (0.7 ≦ y <1). However, the blue light emitting well layer may be a well layer that emits blue-violet (380 nm to 455 nm) light whose emission wavelength is slightly shorter than blue (455 nm to 485 nm).

【0015】また、第4の手段は、上記の第1乃至第3
の何れか1つの手段において、アクセプタ不純物及びド
ナー不純物の濃度をそれぞれ1×1017/cm3 以上、1×
1021/cm3 以下にすることである。
Further, the fourth means includes the first to third means.
The concentration of the acceptor impurity and the concentration of the donor impurity are 1 × 10 17 / cm 3 or more and 1 × 10 17 / cm 3 or more, respectively.
It is to be 10 21 / cm 3 or less.

【0016】また、第5の手段は、上記の第1乃至第4
の何れか1つの手段において、アクセプタ不純物とし
て、亜鉛(Zn)、ベリリウム(Be)、カルシウム
(Ca)、ストロンチウム(Sr)、バリウム(B
a)、又はマグネシウム(Mg)を用いることである。
The fifth means includes the first to fourth means.
In any one of means, zinc (Zn), beryllium (Be), calcium (Ca), strontium (Sr), barium (B
a) or using magnesium (Mg).

【0017】また、第6の手段は、上記の第1乃至第5
の何れか1つの手段において、ドナー不純物として、炭
素(C)、シリコン(Si)、スズ(Sn)、硫黄(S )、セレン
(Se)、又はテルル(Te)を用いることである。
Further, the sixth means comprises the first to fifth means.
In any one of the means, carbon (C), silicon (Si), tin (Sn), sulfur (S), selenium
(Se) or tellurium (Te).

【0018】また、第7の手段は、上記の第1乃至第6
の何れか1つの手段において、井戸層を光取出面に近付
く程発光波長が短くなる順に積層することである。
Further, the seventh means includes the first to sixth means.
In any one of the means, the well layers are stacked in order of decreasing emission wavelength as approaching the light extraction surface.

【0019】更に、第8の手段は、上記の第1乃至第7
の何れか1つの手段において、各井戸層の膜厚、混晶
比、添加不純物の種類、添加不純物の濃度、又は各発光
波長別の層数を各々調整することにより、井戸層から発
光される各光の色度図上における色度座標の、明度によ
る加重平均座標を白色点座標(1/3,1/3 )に略一致する
様に構成することである。以上の手段により、前記の課
題を解決することができる。
Further, the eighth means includes the first to seventh means.
In any one of the means, light is emitted from the well layer by adjusting the thickness of each well layer, the mixed crystal ratio, the type of the added impurity, the concentration of the added impurity, or the number of layers for each emission wavelength. The weighted average coordinates of the chromaticity coordinates on the chromaticity diagram of each light according to the lightness are configured to substantially match the white point coordinates (1/3, 1/3). With the above means, the above-mentioned problem can be solved.

【0020】[0020]

【作用及び発明の効果】本発明の手段によれば、赤色発
光井戸層と、赤色以外に発光する2つ以上の井戸層とが
構成されるため、少なくとも3層以上の井戸層から互い
に色度の異なる光が発光される。従って、本発明の白色
LEDを照明として用いた場合、従来の1チップ白色L
EDによる照明では見ることができなかった赤色が見え
るようになる。
According to the means of the present invention, since a red light emitting well layer and two or more well layers emitting light other than red light are formed, the chromaticity of at least three or more well layers is determined. Are emitted. Therefore, when the white LED of the present invention is used as illumination, the conventional one-chip white LED L
The red color that could not be seen with the ED illumination becomes visible.

【0021】この時、光取出面から放射される合成光の
色度座標を(x,y) 、各井戸層から発光される光の色
度座標と明度をそれぞれ(xi ,yi )、Mi とすれ
ば、これらの数値の間には、次の関係が成り立つ。
[0021] In this case, the chromaticity coordinates of the combined light emitted from the light output surface (x, y), respectively chromaticity coordinates and brightness of light emitted from each well layer (x i, y i), if M i, between these values, the following relationship holds.

【数1】 ( i=1ΣN i )(x,y) = i=1ΣN {Mi (xi ,yi )} …(1) ただし、ここで、Nは全井戸層の層数である。[Number 1] (i = 1 Σ N M i ) (x, y) = i = 1 Σ N {M i (x i, y i)} ... (1) However, where, N is the total well layer Number of layers.

【0022】ここで、各井戸層の混晶比、添加不純物の
種類、添加不純物の濃度は、各井戸層の発光波長を決定
するパラメーターとなり得、また、各井戸層の膜厚、及
び各発光波長別の層数は、各発光波長毎の発光強度(明
度)を決定するパラメーターとなり得る。従って、上記
の各種パラメーターを各井戸層毎に各々最適に調整すれ
ば、これらの各井戸層から発光される光の色度座標点
(xi ,yi )を各頂点とする色度図上における多角形
の内部に位置する任意の色をこれらの光の合成により全
て再現することが可能となる。
Here, the mixed crystal ratio of each well layer, the type of the added impurity, and the concentration of the added impurity can be parameters for determining the emission wavelength of each well layer, and the film thickness of each well layer and each light emission. The number of layers for each wavelength can be a parameter for determining the emission intensity (brightness) for each emission wavelength. Therefore, if the various parameters described above are adjusted optimally for each well layer, the chromaticity coordinate point (x i , y i ) of the light emitted from each well layer becomes a vertex on the chromaticity diagram. , It is possible to reproduce all the arbitrary colors located inside the polygon by combining these lights.

【0023】例えば、計3層の井戸層により上記の多角
形(よって三角形)を構成する場合には、赤色発光井戸
層、緑色発光井戸層、及び青色発光井戸層の3層で全井
戸層を構成することにより、最も広範囲の色を再現する
ことが可能となる(図3)。ただし、この青色発光井戸
層は、青色(455nm〜485nm)よりも若干発光波長の短い青
紫色(380nm〜455nm)の光を発光する井戸層であっても良
い。
For example, when the above-mentioned polygon (thus, a triangle) is constituted by a total of three well layers, all the well layers are composed of the red light emitting well layer, the green light emitting well layer, and the blue light emitting well layer. With this configuration, the widest range of colors can be reproduced (FIG. 3). However, the blue light emitting well layer may be a well layer that emits blue-violet (380 nm to 455 nm) light whose emission wavelength is slightly shorter than blue (455 nm to 485 nm).

【0024】従って、特に、上記の多角形を色度図上に
広範にとり、全井戸層から発光される各光の色度図上に
おける色度座標の明度による加重平均座標を白色点座標
(1/3,1/3 )に略一致する様に構成すれば、式(1)に
示す光の合成作用により、白色照明等に利用した際に色
再現範囲が十分に広いフルカラー対応の1チップ白色L
EDを実現することができる。
Accordingly, in particular, the above polygons are extensively drawn on the chromaticity diagram, and the weighted average coordinates of the light emitted from all the well layers by the brightness of the chromaticity coordinates on the chromaticity diagram are represented by white point coordinates (1). / 3,1 / 3), the light synthesizing function shown in equation (1) enables a full-color 1-chip white color with a sufficiently wide color reproduction range when used for white illumination or the like. L
ED can be realized.

【0025】また、井戸層を光取出面に近付く程発光波
長が短くなる順に積層すれば、各井戸層から発光された
光が光取出面側に存在する井戸層で吸収される光吸収作
用が防止され、光の取出効率が高くなるともに、色度の
制御性が向上する。
Also, if the well layers are stacked in order of decreasing emission wavelength as approaching the light extraction surface, light emitted from each well layer is absorbed by the well layer existing on the light extraction surface side. As a result, the light extraction efficiency is increased, and the controllability of chromaticity is improved.

【0026】更に、本発明の手段によれば、製品( III
族窒化物系化合物半導体発光素子)及び製造工程におい
て、砒素(As)化合物等を使用しなくて良い。このため、
特別な配慮を必要としない比較的安価な生産設備により
白色LEDを製造することが可能となる。これらの作用
・効果により、前記の課題を解決し、本発明の目的を達
成することができる。
Furthermore, according to the means of the present invention, the product (III
An arsenic (As) compound or the like need not be used in the group nitride semiconductor light emitting device) and the manufacturing process. For this reason,
A white LED can be manufactured by relatively inexpensive production equipment that does not require special consideration. By these actions and effects, the above-mentioned problem can be solved and the object of the present invention can be achieved.

【0027】[0027]

【発明の実施の形態】以下、本発明を具体的な実施例に
基づいて説明する。図1に、本発明によるワイヤー・ボ
ンディング型の半導体発光素子100の断面図を示す。
サファイヤ基板101の上には窒化アルミニウム(AlN)
から成る膜厚約200Åのバッファ層102が設けら
れ、その上にシリコン(Si)ドープのGaN から成る膜厚約
4.0 μmのn型コンタクト層103が形成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described based on specific embodiments. FIG. 1 is a cross-sectional view of a wire bonding type semiconductor light emitting device 100 according to the present invention.
Aluminum nitride (AlN) on the sapphire substrate 101
A buffer layer 102 having a thickness of about 200 ° is formed, and a silicon (Si) -doped GaN film is formed thereon.
A 4.0 μm n-type contact layer 103 is formed.

【0028】このn型コンタクト層103の上には、ノ
ンドープのIn0.03Ga0.97N から成る膜厚約2000Åの
中間層104が形成されている。
On the n-type contact layer 103, an intermediate layer 104 made of non-doped In 0.03 Ga 0.97 N and having a thickness of about 2000 ° is formed.

【0029】そして、中間層104の上には、膜厚約2
50ÅのGaNから成るn型クラッド層105が形成さ
れ、その上に計5層の半導体層により厚さ約300Åの
MQW活性層160が形成されている。本MQW活性層
160は、膜厚約100ÅのGaNから成る計4層のバリ
ア層162と、発光波長が相異なる計3層の井戸層とが
交互に積層されることによりMQW構造を成している。
The intermediate layer 104 has a thickness of about 2
An n-type cladding layer 105 of GaN having a thickness of 50 ° is formed, and an MQW active layer 160 having a thickness of about 300 ° is formed by a total of five semiconductor layers thereon. The MQW active layer 160 has an MQW structure by alternately stacking a total of four barrier layers 162 made of GaN having a thickness of about 100 ° and a total of three well layers having different emission wavelengths. I have.

【0030】この3層の井戸層は、不純物(Zn,Si) が添
加された膜厚約20ÅのAl0.1In0.9Nから成る赤色発光
井戸層161R、膜厚約50ÅのIn0.2 Ga0.8 Nから成
る不純物無添加の緑色発光井戸層161G、膜厚約30
ÅのIn0.05Ga0.95Nから成る不純物無添加の青色発光井
戸層161Bの順にそれぞれバリア層162を介して積
層されている。
The three well layers are composed of a red light emitting well layer 161R made of Al 0.1 In 0.9 N having a thickness of about 20 ° to which impurities (Zn, Si) are added, and an In 0.2 Ga 0.8 N film having a thickness of about 50 °. Green light-emitting well layer 161G having a thickness of about 30
The blue light-emitting well layers 161B made of In 0.05 Ga 0.95 N and not doped with impurities are stacked in this order via the barrier layer 162.

【0031】このMQW活性層160の上には、膜厚約
100ÅのGaNキャップ層107が形成され、その上
にp型Al0.12Ga0.88N から成る膜厚約200Åのp型ク
ラッド層108が形成されており、更に、p型クラッド
層108の上にはp型Al0.05Ga0.95N から成る膜厚約6
00Åのp型コンタクト層109が形成されている。
On this MQW active layer 160, a GaN cap layer 107 having a thickness of about 100 ° is formed, and a p-type cladding layer 108 made of p-type Al 0.12 Ga 0.88 N having a thickness of about 200 ° is formed thereon. Further, on the p-type cladding layer 108, a film thickness of about 6 of p-type Al 0.05 Ga 0.95 N is formed.
A p-type contact layer 109 of 00 ° is formed.

【0032】又、p型コンタクト層109の上には金属
蒸着による透光性薄膜正電極110が、n型コンタクト
層103上には負電極140が形成されている。透光性
薄膜正電極110は、p型コンタクト層109に接合す
る膜厚約15Åのコバルト(Co)より成る薄膜正電極第1層
111と、Coに接合する膜厚約60Åの金(Au)より成る薄
膜正電極第2層112とで構成されている。
A translucent thin-film positive electrode 110 is formed on the p-type contact layer 109 by metal evaporation, and a negative electrode 140 is formed on the n-type contact layer 103. The translucent thin-film positive electrode 110 has a thin-film first positive electrode layer 111 made of cobalt (Co) with a thickness of about 15 ° bonded to the p-type contact layer 109, and a gold (Au) film with a thickness of about 60 ° bonded to Co. And the second thin-film positive electrode layer 112.

【0033】厚膜正電極120は、膜厚約175Åのバ
ナジウム(V)より成る厚膜正電極第1層121と、膜
厚約15000Åの金(Au)より成る厚膜正電極第2
層122と、膜厚約100Åのアルミニウム(Al)よ
り成る厚膜正電極第3層123とを透光性薄膜正電極1
10の上から順次積層させることにより構成されてい
る。
The thick-film positive electrode 120 includes a thick-film positive electrode first layer 121 of about 175 ° in thickness of vanadium (V) and a thick-film positive electrode second layer of about 15000 ° in thickness of gold (Au).
Layer 122 and a third layer 123 of thick positive electrode made of aluminum (Al) having a thickness of about 100 °
It is configured by sequentially laminating the layers 10 on top.

【0034】多層構造の負電極140は、n型コンタク
ト層103の一部露出された部分の上から、膜厚約17
5Åのバナジウム(V) 層141と、膜厚約1000Åの
アルミニウム(Al)層142と、膜厚約500Åのバナジ
ウム(V) 層143と、膜厚約5000Åのニッケル(Ni)
層144と、膜厚8000Åの金(Au)層145とを
順次積層させることにより構成されている。
The negative electrode 140 having a multilayer structure has a film thickness of about 17 from the exposed portion of the n-type contact layer 103.
5% vanadium (V) layer 141, aluminum (Al) layer 142 having a thickness of about 1000 mm, vanadium (V) layer 143 having a thickness of about 500 mm, and nickel (Ni) having a thickness of about 5000 mm
It is constituted by sequentially laminating a layer 144 and a gold (Au) layer 145 having a thickness of 8000 °.

【0035】また、最上部には、SiO2 膜より成る保
護膜130が形成されており、また、サファイヤ基板1
01の底面に当たる反対側の最下部には、膜厚約500
0Åのアルミニウム(Al)より成る反射金属層150
が、金属蒸着により成膜されている。尚、この反射金属
層150は、Rh,Ti,W等の金属の他、TiN,H
fN等の窒化物でも良い。
A protective film 130 made of a SiO 2 film is formed on the uppermost part.
The lowermost part on the opposite side, which corresponds to the bottom surface of No. 01, has a thickness of about 500
Reflective metal layer 150 made of 0 ° aluminum (Al)
Is formed by metal evaporation. The reflective metal layer 150 is made of a metal such as Rh, Ti, W, etc., as well as TiN, H
A nitride such as fN may be used.

【0036】次に、この発光素子100の製造方法につ
いて説明する。上記発光素子100は、有機金属気相成
長法(MOVPE法)による気相成長により製造され
た。用いられたガスは、アンモニア(NH3) 、キャリアガ
ス(H2,N2) 、トリメチルガリウム(Ga(CH3)3)(以下「TM
G 」と記す)、トリメチルアルミニウム(Al(CH3)3)(以
下「TMA 」と記す)、トリメチルインジウム(In(CH3)3)
(以下「TMI 」と記す)、シラン(SiH4)とシクロペンタ
ジエニルマグネシウム(Mg(C5H5)2) (以下「CP2Mg 」と
記す)である。まず、有機洗浄により洗浄したa面を主
面とした単結晶のサファイア基板101をMOVPE 装置の
反応室に載置されたサセプタに装着する。次に、常圧で
H2を反応室に流しながら温度1150℃で基板101を
ベーキングした。次に、基板101の温度を400℃ま
で低下させて、H2、NH3 及びTMA を供給してAlN のバッ
ファ層102を約200Åの膜厚に形成した。
Next, a method for manufacturing the light emitting device 100 will be described. The light emitting device 100 was manufactured by vapor phase growth using metal organic chemical vapor deposition (MOVPE). The gases used were ammonia (NH 3 ), carrier gas (H 2 , N 2 ), trimethylgallium (Ga (CH 3 ) 3 ) (hereinafter “TM
G ”), trimethylaluminum (Al (CH 3 ) 3 ) (hereinafter referred to as“ TMA ”), trimethylindium (In (CH 3 ) 3 )
(Hereinafter referred to as "TMI"), a silane (SiH 4) and cyclopentadienyl magnesium (Mg (C 5 H 5) 2) ( hereinafter referred to as "CP 2 Mg"). First, a single-crystal sapphire substrate 101 whose main surface is the a-plane cleaned by organic cleaning is mounted on a susceptor placed in a reaction chamber of a MOVPE apparatus. Next, at normal pressure
The substrate 101 was baked at a temperature of 1150 ° C. while flowing H 2 into the reaction chamber. Next, the temperature of the substrate 101 was lowered to 400 ° C., and H 2 , NH 3 and TMA were supplied to form the AlN buffer layer 102 to a thickness of about 200 °.

【0037】次に、基板101の温度を1150℃にま
で上げ、H2、NH3 、TMG 及びシランを供給し、膜厚約4.
0 μm、電子濃度2 ×1018/cm3のシリコン(Si)ドー
プのGaN から成るn型コンタクト層103を形成した。
次に、基板11の温度を850℃にし、N2又はH2、N
H3 、TMG 及びTMI を供給して、膜厚約2000ÅのIn
0.03Ga0.97N から成る中間層104を形成した。
Next, the temperature of the substrate 101 is raised to 1150 ° C., H 2 , NH 3 , TMG and silane are supplied, and the film thickness is reduced to about 4.
An n-type contact layer 103 made of GaN doped with silicon (Si) having a thickness of 0 μm and an electron concentration of 2 × 10 18 / cm 3 was formed.
Next, the temperature of the substrate 11 is set to 850 ° C., and N 2 or H 2 , N
By supplying H 3 , TMG and TMI, In 2000
An intermediate layer 104 made of 0.03 Ga 0.97 N was formed.

【0038】上記の中間層104を形成した後、基板1
01の温度は850℃のままにし、N2又はH2、NH3 、TM
G を供給して、膜厚約250ÅのGaN から成るn型クラ
ッド層105を形成した。次に、N2又はH2、NH3 、TMA
、TMI 、DEZ 及びシランを供給して、亜鉛(Zn)、及び
シリコン(Si)が、それぞれ濃度2 ×1017/cm3のアクセプ
タ不純物、及び濃度3×1017/cm3のドナー不純物として
添加された膜厚約20ÅのAl0.1In0.9Nから成る赤色発
光井戸層161Rを形成した。
After forming the intermediate layer 104, the substrate 1
01 at 850 ° C., N 2 or H 2 , NH 3 , TM
G was supplied to form an n-type cladding layer 105 of GaN with a thickness of about 250 °. Then, N 2 or H 2, NH 3, TMA
, TMI, DEZ and silane to add zinc (Zn) and silicon (Si) as acceptor impurities at a concentration of 2 × 10 17 / cm 3 and donor impurities at a concentration of 3 × 10 17 / cm 3 respectively A red light emitting well layer 161R made of Al 0.1 In 0.9 N with a thickness of about 20 ° was formed.

【0039】次に、N2又はH2、NH3 、TMG を供給して、
膜厚約100ÅのGaN から成るバリア層162を形成し
た。その後、N2又はH2、NH3 、TMG 及びTMI を供給し
て、膜厚約50ÅのIn0.2 Ga 0.8 Nから成る不純物無添
加の緑色発光井戸層161Gを形成した。
Next, NTwoOr HTwo, NHThree, Supply TMG,
A barrier layer 162 made of GaN having a thickness of about 100 ° is formed.
Was. Then NTwoOr HTwo, NHThree, TMG and TMI
And the film thickness of about 50 °0.2Ga 0.8N-free
An additional green light emitting well layer 161G was formed.

【0040】次に、N2又はH2、NH3 、TMG を供給して、
膜厚約100ÅのGaN から成るバリア層162を形成し
た。その後、N2又はH2、NH3 、TMG 及びTMI を供給し
て、膜厚約30ÅのIn0.05Ga 0.95Nから成る不純物無添
加の青色発光井戸層161Bを形成した。この様にし
て、計5層の半導体層より成る厚さ約300ÅのMQW
活性層160を形成した。
Next, NTwoOr HTwo, NHThree, Supply TMG,
A barrier layer 162 made of GaN having a thickness of about 100 ° is formed.
Was. Then NTwoOr HTwo, NHThree, TMG and TMI
And the thickness of about 30mm In0.05Ga 0.95N-free
An additional blue light emitting well layer 161B was formed. Like this
And an MQW of about 300.degree.
An active layer 160 was formed.

【0041】次に、N2又はH2、NH3 、TMG を供給して、
膜厚約100ÅのGaN から成るキャップ層107を形成
した。
Next, N 2 or H 2 , NH 3 , and TMG are supplied.
A cap layer 107 made of GaN having a thickness of about 100 ° was formed.

【0042】次に、基板11の温度を1150℃にし、N2
はH2、NH3 、TMG 、TMA 及びCP2Mgを供給して、膜厚約
200Å、マグネシウム(Mg)をドープしたp型Al0.12Ga
0.88N から成るp型クラッド層108を形成した。次
に、基板11の温度を1100℃に保持し、N2又はH2、N
H3 、TMG 、TMA 及びCP 2Mg を供給して、膜厚約600
Å、マグネシウム(Mg)をドープしたp型Al0.05Ga 0.95N
から成るp型コンタクト層109を形成した。
Next, the temperature of the substrate 11 is set to 1150 ° C.Twoor
Is HTwo, NHThree, TMG, TMA and CPTwoSupply Mg, film thickness about
200 °, p-type Al doped with magnesium (Mg)0.12Ga
0.88A p-type cladding layer 108 of N 2 was formed. Next
And the temperature of the substrate 11 is maintained at 1100 ° C.TwoOr HTwo, N
HThree, TMG, TMA and CP TwoBy supplying Mg, the film thickness is about 600
P, p-type Al doped with magnesium (Mg)0.05Ga 0.95N
A p-type contact layer 109 made of was formed.

【0043】次に、p型コンタクト層109の上にエッ
チングマスクを形成し、所定領域のマスクを除去して、
マスクで覆われていない部分のp型コンタクト層10
9、p型クラッド層108、キャップ層107、MQW
活性層160、n型クラッド層105、中間層104、
n型コンタクト層103の一部を塩素を含むガスによる
反応性イオンエッチングによりエッチングして、n型コ
ンタクト層103の表面を露出させた。次に、以下の手
順で、n型コンタクト層103に接合する負電極140
と、p型コンタクト層109に接合する透光性薄膜正電
極110とを形成した。
Next, an etching mask is formed on the p-type contact layer 109, and the mask in a predetermined region is removed.
P-type contact layer 10 not covered by mask
9, p-type cladding layer 108, cap layer 107, MQW
Active layer 160, n-type cladding layer 105, intermediate layer 104,
A part of the n-type contact layer 103 was etched by reactive ion etching using a gas containing chlorine to expose the surface of the n-type contact layer 103. Next, in the following procedure, the negative electrode 140 bonded to the n-type contact layer 103 is formed.
And a translucent thin film positive electrode 110 bonded to the p-type contact layer 109.

【0044】(1) 蒸着装置にて、10-4Paオーダ以下の
高真空に排気した後、表面に一様に膜厚約15ÅのCoを成
膜し、このCoより形成された薄膜正電極第1層111の
上に膜厚約60ÅのAuより成る薄膜正電極第2層112を
成膜する。 (2) 次に、表面上にフォトレジストを一様に塗布して、
フォトリソグラフィにより、p型コンタクト層109の
上に積層する、透光性薄膜正電極110の形成部分以外
のフォトレジストを除去する。
(1) After evacuating to a high vacuum of the order of 10 −4 Pa or less using a vapor deposition apparatus, a Co film having a thickness of about 15 ° is uniformly formed on the surface, and a thin film positive electrode formed of this Co is formed. On the first layer 111, a thin-film positive electrode second layer 112 of Au having a thickness of about 60 ° is formed. (2) Next, apply photoresist uniformly on the surface,
By photolithography, the photoresist laminated on the p-type contact layer 109 except for the portion where the light-transmitting thin-film positive electrode 110 is formed is removed.

【0045】(3) 次に、エッチングにより露出している
Co、Auを除去した後、フォトレジストを除去して、p型
コンタクト層109上に透光性薄膜正電極110を形成
する。 (4) 次に、フォトレジストを塗布し、フォトリソグラフ
ィによりn型コンタクト層103の露出面上の所定領域
に窓を形成して、10-4Paオーダ以下の高真空に排気し
た後、膜厚約175Åのバナジウム(V) 層141と、膜
厚約1.8μmのアルミニウム(Al)層142とを順次蒸
着した。次に、フォトレジストを除去する。これにより
n型コンタクト層103の露出面上に負電極140が形
成される。上記の工程により形成された透光性薄膜正電
極110上に、更に、厚膜正電極120を形成するため
に、フォトレジストを一様に塗布して、厚膜正電極12
0の形成部分のフォトレジストに窓を開ける。その後、
膜厚約175Åのバナジウム(V)層121と、膜厚約
15000Åの金(Au)層122と、膜厚約100Å
のアルミニウム(Al)層123とを透光性薄膜正電極
110の上に順次蒸着により成膜させ、(4) の工程と同
様にリフトオフ法により厚膜正電極120を形成する。
(3) Next, exposed by etching
After removing Co and Au, the photoresist is removed, and a translucent thin film positive electrode 110 is formed on the p-type contact layer 109. (4) Next, a photoresist is applied, a window is formed in a predetermined region on the exposed surface of the n-type contact layer 103 by photolithography, and the window is evacuated to a high vacuum of the order of 10 −4 Pa or less. A vanadium (V) layer 141 having a thickness of about 175 ° and an aluminum (Al) layer 142 having a thickness of about 1.8 μm were sequentially deposited. Next, the photoresist is removed. Thus, a negative electrode 140 is formed on the exposed surface of the n-type contact layer 103. On top of the light-transmitting thin-film positive electrode 110 formed by the above steps, a photoresist is evenly applied to form a thick-film positive electrode 120 to form a thick-film positive electrode 12.
A window is opened in the photoresist at the portion where 0 is formed. afterwards,
A vanadium (V) layer 121 having a thickness of about 175 °, a gold (Au) layer 122 having a thickness of about 15000 °, and a thickness of about 100 °
The aluminum (Al) layer 123 is sequentially formed on the translucent thin-film positive electrode 110 by vapor deposition, and the thick-film positive electrode 120 is formed by the lift-off method as in the process (4).

【0046】(5) その後、n型コンタクト層と負電極1
40、並びに、p型コンタクト層109と透光性薄膜正
電極110とのコンタクト抵抗を低減させるための熱処
理(シンタリンブ)を行った。即ち、試料雰囲気を真空
ポンプで排気し、O2ガスを供給して圧力10Paとし、
その状態で雰囲気温度を約 570℃にして、約4 分程度加
熱した。
(5) Thereafter, the n-type contact layer and the negative electrode 1
40, and heat treatment (sintering) for reducing the contact resistance between the p-type contact layer 109 and the translucent thin film positive electrode 110 was performed. That is, the sample atmosphere was evacuated by a vacuum pump, and O 2 gas was supplied to a pressure of 10 Pa.
In that state, the temperature of the atmosphere was set to about 570 ° C., and the heating was performed for about 4 minutes.

【0047】その後、蒸着により、上部に露出している
最上層に一様にSiO2 より成る保護膜130を形成
し、フォトレジストの塗布、フォトリソグラフィー工程
を経て、厚膜正電極120および負電極140に外部露
出部分ができるようにほぼ同面積の窓をそれぞれ一つづ
つウエットエッチングにより形成した。また、サファイ
ア基板の裏面には、蒸着により、Rhの反射膜を形成し
た。
Thereafter, a protective film 130 made of SiO 2 is uniformly formed on the uppermost layer exposed at the upper portion by vapor deposition, and a thick film positive electrode 120 and a negative electrode 120 are formed through a photoresist coating and a photolithography process. Windows having substantially the same area were formed by wet etching one by one so that an externally exposed portion was formed at 140. On the back surface of the sapphire substrate, a Rh reflection film was formed by vapor deposition.

【0048】このようにして、図1に示した半導体発光
素子100を形成した。図2に、本半導体発光素子10
0の発光スペクトルのグラフを示す。本グラフより、赤
色発光井戸層161Rから発光される光は460nm付
近に鋭いピークを持ち、緑色発光井戸層161Gから発
光される光は530nm付近に鋭いピークを持ち、青色
発光井戸層161Bから発光される光は650nm付近
に鋭いピークを持つことが判る。
Thus, the semiconductor light emitting device 100 shown in FIG. 1 was formed. FIG. 2 shows the present semiconductor light emitting device 10.
4 shows a graph of an emission spectrum of 0. According to this graph, light emitted from the red light emitting well layer 161R has a sharp peak near 460 nm, light emitted from the green light emitting well layer 161G has a sharp peak near 530 nm, and light emitted from the blue light emitting well layer 161B. It can be seen that this light has a sharp peak near 650 nm.

【0049】図3は、半導体発光素子100の色再現範
囲を示した色度図である。図中の記号R,G,Bは、上
記の各光のピーク値付近における色度を表している。上
記の各井戸層161R,161G,161Bの膜厚を適
当に設定することにより、本半導体発光素子100にお
いては、式(1)に示した色度座標の明度による加重平
均座標(x,y)が白色点Wの座標(1/3,1/3 )に略一
致する様に構成されている。
FIG. 3 is a chromaticity diagram showing the color reproduction range of the semiconductor light emitting device 100. Symbols R, G, and B in the figure represent chromaticity near the peak value of each light. By appropriately setting the thickness of each of the well layers 161R, 161G, and 161B, in the semiconductor light emitting device 100, the weighted average coordinates (x, y) based on the brightness of the chromaticity coordinates shown in Expression (1) Are substantially coincident with the coordinates (1/3, 1/3) of the white point W.

【0050】これにより、白色照明等に利用した際に色
再現範囲が十分に広いフルカラー対応の1チップ白色L
EDを実現することができた。即ち、本半導体発光素子
100を照明として使用すれば、本色度図中央の三角形
内部の任意の色をこの照明により再現することができ
る。
Thus, a one-chip white L corresponding to a full color having a sufficiently wide color reproduction range when used for white illumination or the like.
ED was realized. That is, if the present semiconductor light emitting device 100 is used as illumination, an arbitrary color inside the triangle at the center of the chromaticity diagram can be reproduced by this illumination.

【0051】また、本半導体発光素子100によれば、
紫外線、及び赤外線が発光されないので、エネルギー効
率が高く、眼に優しい照明を1チップで実現することが
できる。
According to the semiconductor light emitting device 100,
Since ultraviolet light and infrared light are not emitted, energy efficiency is high and eye-friendly illumination can be realized with one chip.

【0052】尚、上記の実施例においては、ワイヤボン
ディング型の1チップ白色LEDを示したが、本発明は
フリップチップ型等の任意の型の1チップ白色LEDと
して適用することができる。
In the above embodiment, a one-chip white LED of a wire bonding type has been described, but the present invention can be applied to an arbitrary type of one-chip white LED such as a flip chip type.

【0053】例えば、フリップチップ型の場合において
は、複数の井戸層を上記の実施例とは逆の積層順序で積
層する。これによりフリップチップ型の場合において
も、井戸層を光取出面に近付く程発光波長が短くなる順
で積層できるので、各井戸層から発光された光が光取出
面側に存在する井戸層で吸収される光吸収作用が防止さ
れる。従って、上記の実施例と同様に光の取出効率が高
く、色再現範囲が十分に広いフルカラー対応の1チップ
白色LEDを得ることができる。
For example, in the case of the flip-chip type, a plurality of well layers are stacked in the reverse order of the above-described embodiment. As a result, even in the case of the flip-chip type, the well layers can be stacked in the order of decreasing emission wavelength as approaching the light extraction surface, so that light emitted from each well layer is absorbed by the well layer existing on the light extraction surface side. Light absorption effect is prevented. Therefore, as in the above embodiment, a full-color one-chip white LED having high light extraction efficiency and a sufficiently wide color reproduction range can be obtained.

【0054】尚、フリップチップ型の場合には、反射金
属層150は不要であり、透光性薄膜正電極110の代
わりに、ロジウム(Rh)等の反射率の良好な金属を用いた
膜厚約2000Å程度の非透光性の厚膜電極を形成す
る。この場合には、厚膜正電極120は不要である。
In the case of the flip-chip type, the reflective metal layer 150 is unnecessary, and instead of the translucent thin-film positive electrode 110, a film made of a metal having good reflectivity such as rhodium (Rh) is used. A non-light-transmitting thick film electrode of about 2000 ° is formed. In this case, the thick film positive electrode 120 is unnecessary.

【0055】また、上記の実施例では、井戸層を赤色発
光、緑色発光、青色発光の計3層としたが、黄色発光
や、或いは青緑色発光の井戸層を更に設けても良い。こ
の様に発光波長の異なる井戸層の層数を増やせば、図3
の三角形をより広範な多角形に変更することができるの
で、より広範囲の色度を再現可能なフルカラー対応の1
チップ白色LEDを実現することができる。
In the above embodiment, the well layer has a total of three layers of red light emission, green light emission, and blue light emission. However, a well layer of yellow light emission or blue light emission may be further provided. By increasing the number of well layers having different emission wavelengths as shown in FIG.
Can be changed to a wider range of polygons, so a full-color compatible one that can reproduce a wider range of chromaticity
A chip white LED can be realized.

【0056】また、上記の実施例では、各発光波長別の
光の明度を各井戸層の膜厚で調整したが、各発光波長別
の光の明度は、各発光波長別の井戸層の層数により調整
しても良い。
In the above embodiment, the brightness of the light for each emission wavelength is adjusted by the thickness of each well layer. However, the brightness of the light for each emission wavelength is adjusted for the layer of the well layer for each emission wavelength. It may be adjusted by the number.

【0057】また、上記実施例では、MQW活性層16
0を活性層としているが、活性層は、複数の単一量子井
戸より構成しても良い。即ち、本発明における各々の井
戸層は、単一量子井戸構造を成す井戸層であっても、多
重量子井戸構造を構成する井戸層であっても良い。ま
た、本発明の各々の井戸層は、その井戸層の中に更に膜
厚の薄いバリア層を備えていても良い。また、本発明の
各々の井戸層は、互いに各々相互干渉するものであって
も、互いに各々相互干渉しないものであっても良い。本
発明は、これらの任意の量子井戸構造を有する半導体発
光素子に適用することができる。
In the above embodiment, the MQW active layer 16
Although 0 is the active layer, the active layer may be composed of a plurality of single quantum wells. That is, each well layer in the present invention may be a well layer having a single quantum well structure or a well layer having a multiple quantum well structure. Further, each well layer of the present invention may include a thinner barrier layer in the well layer. In addition, the respective well layers of the present invention may mutually interfere with each other or may not mutually interfere with each other. The present invention can be applied to a semiconductor light emitting device having any of these quantum well structures.

【0058】又、亜鉛、及びシリコンの添加量は、1 ×
1017〜1 ×1021/cm3程度で不純物レベル間の遷移による
発光が得られる。又、アクセプタ不純物元素には、亜鉛
の他、II族元素又は、IV族元素を使用でき、ドナー不純
物元素には、シリコンの他、IV族元素、VI族元素を用い
ることができる。尚、本発明において、無添加の層と
は、形成時に故意に不純物を添加しない層のことをい
う。
The amount of zinc and silicon added is 1 ×
Light emission due to transition between impurity levels can be obtained at about 10 17 to 1 × 10 21 / cm 3 . A group II element or a group IV element other than zinc can be used as the acceptor impurity element, and a group IV element or a group VI element other than silicon can be used as the donor impurity element. Note that, in the present invention, the non-added layer refers to a layer to which an impurity is not intentionally added at the time of formation.

【0059】また、上記実施例では、サファイア基板を
用いたが、結晶成長基板にはサファイアの他にも、Si、
SiC 、GaN 、MgAl2O4 等を用いることができる。又、バ
ッファ層にはAlN を用いたがAlGaN 、GaN 、InAlGaN 等
を用いることができる。
In the above embodiment, a sapphire substrate was used. However, in addition to sapphire, Si,
SiC, GaN, MgAl 2 O 4 or the like can be used. Although AlN is used for the buffer layer, AlGaN, GaN, InAlGaN, or the like can be used.

【0060】又、上記の実施例におけるMQW活性層1
60のバリア層にはGaN層を用いたが、バリア層には
GaN層の他にも、井戸層よりもエネルギーバンドギャ
ップが大きい層、即ち、例えば、AlGaN層、AlN
層、AlInN層、InAlGaN層等を用いることが
できる。
The MQW active layer 1 in the above embodiment is
Although a GaN layer was used for the barrier layer 60, the barrier layer was not limited to the GaN layer, but had a larger energy band gap than the well layer, for example, an AlGaN layer, an AlN layer.
Layer, an AlInN layer, an InAlGaN layer, or the like can be used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例における白色発光の半導体発光
素子100の断面図。
FIG. 1 is a sectional view of a white light emitting semiconductor light emitting device 100 according to an embodiment of the present invention.

【図2】半導体発光素子100の発光スペクトルを示し
たグラフ。
FIG. 2 is a graph showing an emission spectrum of the semiconductor light emitting device 100.

【図3】半導体発光素子100の色再現範囲を示した色
度図。
FIG. 3 is a chromaticity diagram showing a color reproduction range of the semiconductor light emitting device 100.

【図4】従来技術による白色発光の半導体発光素子40
0の断面図。
FIG. 4 shows a white light emitting semiconductor light emitting device 40 according to the prior art.
FIG.

【図5】半導体発光素子400の発光スペクトルを示し
たグラフ。
FIG. 5 is a graph showing an emission spectrum of the semiconductor light emitting element 400.

【図6】半導体発光素子400の色再現範囲を示した色
度図。
FIG. 6 is a chromaticity diagram showing a color reproduction range of the semiconductor light emitting element 400.

【符号の説明】[Explanation of symbols]

100,400 … 半導体発光素子 101 … サファイヤ基板 102 … バッファ層 103 … 高キャリア濃度n+ 層 104 … 中間層 105 … n型クラッド層 160 … MQW活性層 161B… 青色発光井戸層 161G… 緑色発光井戸層 161R… 赤色発光井戸層 162 … バリア層 107 … キャップ層 108 … p型クラッド層 109 … p型コンタクト層 120 … 正電極 121 … 第1金属層 122 … 第2金属層 123 … 第3金属層 130 … 保護膜 140 … 負電極 W … 白色点 B … 青色発光点 G … 緑色発光点 R … 赤色発光点100, 400: semiconductor light emitting element 101: sapphire substrate 102: buffer layer 103: high carrier concentration n + layer 104: intermediate layer 105: n-type cladding layer 160: MQW active layer 161B: blue light emitting well layer 161G: green light emitting well layer 161R red emission well layer 162 barrier layer 107 cap layer 108 p-type cladding layer 109 p-type contact layer 120 positive electrode 121 first metal layer 122 second metal layer 123 third metal layer 130 Protective film 140: negative electrode W: white point B: blue light emitting point G: green light emitting point R: red light emitting point

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 量子井戸構造を有する(Alx Ga1-x ) y
In1-y N(0≦x≦1;0 ≦y≦1)からなる III族窒化物
系化合物より形成された半導体層が積層された半導体発
光素子において、 複数の井戸層の内の少なくとも3層以上の井戸層の各混
晶比を互いに異ならせ、少なくとも1つの井戸層にはア
クセプタ不純物及びドナー不純物を添加することで井戸
層を構成し、 少なくとも3層以上の井戸層から発光される各光の色度
を互いに異ならせることにより、 全井戸層の発光に基づいて光取出面から放射される合成
光を白色光としたことを特徴とする III族窒化物系化合
物半導体発光素子。
(Al x Ga 1 -x ) y having a quantum well structure
In a semiconductor light emitting device in which a semiconductor layer formed of a group III nitride compound composed of In 1-y N (0 ≦ x ≦ 1; 0 ≦ y ≦ 1) is laminated, at least three of the plurality of well layers are formed. At least one well layer is formed by adding an acceptor impurity and a donor impurity to each other so that the mixed crystal ratios of the at least three well layers are different from each other. A group III nitride-based compound semiconductor light emitting device characterized in that, by making light chromaticities different from each other, synthetic light emitted from a light extraction surface based on light emission of all well layers is white light.
【請求項2】 前記赤色発光井戸層の混晶比は、 Aly In1-y N(0≦y≦0.1 )であることを特徴とする
請求項1に記載の III族窒化物系化合物半導体発光素
子。
2. The group III nitride compound semiconductor according to claim 1, wherein the mixed crystal ratio of the red light emitting well layer is Al y In 1-y N (0 ≦ y ≦ 0.1). Light emitting element.
【請求項3】 不純物が添加されていないIn1-y Gay N
(0.7 ≦y<1)より形成された青色発光井戸層及び緑
色発光井戸層を有することを特徴とする請求項1又は請
求項2に記載の III族窒化物系化合物半導体発光素子。
3. In 1-y Ga y N to which impurities are not added
3. The group III nitride compound semiconductor light emitting device according to claim 1, further comprising a blue light emitting well layer and a green light emitting well layer formed of (0.7 ≦ y <1).
【請求項4】 前記アクセプタ不純物及び前記ドナー不
純物の濃度は、 それぞれ1×1017/cm3 以上、1×1021/cm3 以下であ
ることを特徴とする請求項1乃至請求項3のいずれか1
項に記載の III族窒化物系化合物半導体発光素子。
4. The method according to claim 1, wherein the concentrations of the acceptor impurity and the donor impurity are respectively 1 × 10 17 / cm 3 or more and 1 × 10 21 / cm 3 or less. Or 1
Item 13. The group III nitride compound semiconductor light-emitting device according to item 9.
【請求項5】 前記アクセプタ不純物は、 亜鉛(Zn)、ベリリウム(Be)、カルシウム(C
a)、ストロンチウム(Sr)、バリウム(Ba)、又
はマグネシウム(Mg)であることを特徴とする請求項
1乃至請求項4のいずれか1項に記載の III族窒化物系
化合物半導体発光素子。
5. The acceptor impurities include zinc (Zn), beryllium (Be), and calcium (C
The group III nitride compound semiconductor light emitting device according to any one of claims 1 to 4, wherein the light emitting device is a), strontium (Sr), barium (Ba), or magnesium (Mg).
【請求項6】 前記ドナー不純物は、 炭素(C)、シリコン(Si)、スズ(Sn)、硫黄(S )、セレ
ン(Se)、又はテルル(Te)であることを特徴とする請求項
1乃至請求項5のいずれか1項に記載の III族窒化物系
化合物半導体発光素子。
6. The method according to claim 1, wherein the donor impurity is carbon (C), silicon (Si), tin (Sn), sulfur (S), selenium (Se), or tellurium (Te). A group III nitride compound semiconductor light-emitting device according to claim 1.
【請求項7】 前記井戸層は、前記光取出面に近付く程
発光波長が短くなる順に積層されていることを特徴とす
る請求項1乃至請求項6のいずれか1項に記載の III族
窒化物系化合物半導体発光素子。
7. The group III nitride according to claim 1, wherein the well layers are stacked in order of decreasing emission wavelength as approaching the light extraction surface. Compound semiconductor light emitting device.
【請求項8】 前記井戸層から発光される各光の色度図
上における色度座標の、明度による加重平均座標は、 前記各井戸層の膜厚、混晶比、添加不純物の種類、添加
不純物の濃度、又は各発光波長別の層数を各々調整する
ことにより、 白色点座標(1/3,1/3 )に略一致する様に構成されてい
ることを特徴とする請求項1乃至請求項7のいずれか1
項に記載の III族窒化物系化合物半導体発光素子。
8. The weighted average coordinates of the chromaticity coordinates of each light emitted from the well layer on the chromaticity diagram according to lightness are: the film thickness of each of the well layers, the mixed crystal ratio, the type of added impurities, 4. The method according to claim 1, wherein the white point coordinates (1/3, 1/3) substantially coincide with each other by adjusting the impurity concentration or the number of layers for each emission wavelength. Any one of claims 7
Item 13. The group III nitride compound semiconductor light-emitting device according to item 9.
JP22201899A 1999-08-05 1999-08-05 Iii nitride compound semiconductor light emitting element Withdrawn JP2001053336A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP22201899A JP2001053336A (en) 1999-08-05 1999-08-05 Iii nitride compound semiconductor light emitting element
US09/631,980 US6620643B1 (en) 1999-08-05 2000-08-03 Light-emitting device using group III nitride compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22201899A JP2001053336A (en) 1999-08-05 1999-08-05 Iii nitride compound semiconductor light emitting element

Publications (1)

Publication Number Publication Date
JP2001053336A true JP2001053336A (en) 2001-02-23

Family

ID=16775824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22201899A Withdrawn JP2001053336A (en) 1999-08-05 1999-08-05 Iii nitride compound semiconductor light emitting element

Country Status (2)

Country Link
US (1) US6620643B1 (en)
JP (1) JP2001053336A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002049121A1 (en) * 2000-12-11 2002-06-20 Mitsubishi Cable Industries, Ltd. Multi-wavelength luminous element
WO2002067660A1 (en) * 2001-02-28 2002-09-06 Ccs Inc. Method of cultivating plant and illuminator for cultivating plant
JP2003163373A (en) * 2001-11-26 2003-06-06 Toyoda Gosei Co Ltd Iii nitride compound semiconductor light emitting element
KR20040013394A (en) * 2002-08-06 2004-02-14 주식회사 옵토웨이퍼테크 A Light Emitting Diode and A Method for Manufacturing thereof
JP2004311822A (en) * 2003-04-09 2004-11-04 Solidlite Corp Purplish red light emitting diode
WO2005029595A1 (en) * 2003-09-16 2005-03-31 Toyoda Gosei Co., Ltd. Group iii-nitride-based compound semiconductor device
JP2005260246A (en) * 2004-03-11 2005-09-22 Samsung Electro Mech Co Ltd Monolithic white light emitting device
US6965126B2 (en) * 2001-06-13 2005-11-15 Toyoda Gosei Co., Ltd. Light-emitting element
WO2006011675A1 (en) * 2004-07-30 2006-02-02 Sumitomo Chemical Company, Limited Nitride compound semiconductor and process for producing the same
KR100847847B1 (en) * 2007-01-22 2008-07-23 삼성전기주식회사 White light emitting device and method of manufacturing the same
US8288787B2 (en) 2002-06-26 2012-10-16 Lg Electronics, Inc. Thin film light emitting diode
US9137874B2 (en) 2011-12-02 2015-09-15 Biological Illumination, Llc Illumination and grow light system and associated methods
JP2016111131A (en) * 2014-12-04 2016-06-20 学校法人 名城大学 Nitride semiconductor light-emitting element with periodic gain active layer
JP2016225568A (en) * 2015-06-03 2016-12-28 シャープ株式会社 Nitride semiconductor light-emitting element
JP2017045787A (en) * 2015-08-25 2017-03-02 シャープ株式会社 Nitride semiconductor light-emitting element
CN108365064A (en) * 2018-03-26 2018-08-03 郭秀丽 A kind of multiple quantum well light emitting diode and preparation method thereof
US10257988B2 (en) 2011-12-02 2019-04-16 Biological Illumination, Llc Illumination and grow light system and associated methods

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2270875B1 (en) * 2000-04-26 2018-01-10 OSRAM Opto Semiconductors GmbH Sermiconductor light emitting device and method of manufacturing the same
DE10051465A1 (en) * 2000-10-17 2002-05-02 Osram Opto Semiconductors Gmbh Method for producing a GaN-based semiconductor component
JP2003533030A (en) * 2000-04-26 2003-11-05 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Manufacturing method of light emitting diode chip and light emitting diode structure element based on GaN
TWI292227B (en) * 2000-05-26 2008-01-01 Osram Opto Semiconductors Gmbh Light-emitting-dioed-chip with a light-emitting-epitaxy-layer-series based on gan
US20030132433A1 (en) * 2002-01-15 2003-07-17 Piner Edwin L. Semiconductor structures including a gallium nitride material component and a silicon germanium component
US20030189215A1 (en) 2002-04-09 2003-10-09 Jong-Lam Lee Method of fabricating vertical structure leds
JP2004128444A (en) * 2002-07-31 2004-04-22 Shin Etsu Handotai Co Ltd Light emitting device and lighting device using it
US6900474B2 (en) * 2002-12-20 2005-05-31 Lumileds Lighting U.S., Llc Light emitting devices with compact active regions
US20060006375A1 (en) * 2003-04-14 2006-01-12 Chen Ou Light Mixing LED
TW200525779A (en) * 2004-01-27 2005-08-01 Super Nova Optoelectronics Corp White-like light emitting device and its manufacturing method
CN100341162C (en) * 2004-03-19 2007-10-03 元砷光电科技股份有限公司 Light-emitting diode structure
US7345298B2 (en) * 2005-02-28 2008-03-18 The Regents Of The University Of California Horizontal emitting, vertical emitting, beam shaped, distributed feedback (DFB) lasers by growth over a patterned substrate
US8227820B2 (en) * 2005-02-09 2012-07-24 The Regents Of The University Of California Semiconductor light-emitting device
US7022597B2 (en) * 2004-07-16 2006-04-04 Tekcore Co., Ltd. Method for manufacturing gallium nitride based transparent conductive oxidized film ohmic electrodes
US7323721B2 (en) * 2004-09-09 2008-01-29 Blue Photonics Inc. Monolithic multi-color, multi-quantum well semiconductor LED
US7223998B2 (en) * 2004-09-10 2007-05-29 The Regents Of The University Of California White, single or multi-color light emitting diodes by recycling guided modes
US7271418B2 (en) * 2004-09-24 2007-09-18 National Central University Semiconductor apparatus for white light generation and amplification
KR100674831B1 (en) * 2004-11-05 2007-01-25 삼성전기주식회사 White light emitting diode package and method of producing the same
KR100691444B1 (en) * 2005-11-19 2007-03-09 삼성전기주식회사 Nitride semiconductor light emitting device
DE102006039369A1 (en) * 2005-12-30 2007-07-05 Osram Opto Semiconductors Gmbh LED semiconductor for e.g. multiple coach lighting, has two radiation-generating active layers, arranged one above another in vertical direction
KR20080106402A (en) 2006-01-05 2008-12-05 일루미텍스, 인크. Separate optical device for directing light from an led
KR100771772B1 (en) * 2006-08-25 2007-10-30 삼성전기주식회사 White light led module
EP2070123A2 (en) 2006-10-02 2009-06-17 Illumitex, Inc. Led system and method
EP2240968A1 (en) 2008-02-08 2010-10-20 Illumitex, Inc. System and method for emitter layer shaping
JP5325506B2 (en) * 2008-09-03 2013-10-23 株式会社東芝 Semiconductor light emitting device and manufacturing method thereof
US8101965B2 (en) * 2008-12-02 2012-01-24 Epivalley Co., Ltd. III-nitride semiconductor light emitting device having a multilayered pad
KR100960280B1 (en) * 2008-12-02 2010-06-04 주식회사 에피밸리 Iii-nitride semiconductor light emitting device
TW201034256A (en) 2008-12-11 2010-09-16 Illumitex Inc Systems and methods for packaging light-emitting diode devices
US8449128B2 (en) 2009-08-20 2013-05-28 Illumitex, Inc. System and method for a lens and phosphor layer
US8585253B2 (en) 2009-08-20 2013-11-19 Illumitex, Inc. System and method for color mixing lens array
JP5361925B2 (en) * 2011-03-08 2013-12-04 株式会社東芝 Semiconductor light emitting device and manufacturing method thereof
US9037204B2 (en) * 2011-09-07 2015-05-19 Covidien Lp Filtered detector array for optical patient sensors
US9450152B2 (en) 2012-05-29 2016-09-20 Micron Technology, Inc. Solid state transducer dies having reflective features over contacts and associated systems and methods
CN110137326A (en) * 2019-05-22 2019-08-16 佛山市国星半导体技术有限公司 A kind of epitaxial structure and preparation method thereof that luminous efficacy can be promoted under low current density

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05152609A (en) 1991-11-25 1993-06-18 Nichia Chem Ind Ltd Light emitting diode
US5777350A (en) * 1994-12-02 1998-07-07 Nichia Chemical Industries, Ltd. Nitride semiconductor light-emitting device
JPH08167737A (en) 1994-12-09 1996-06-25 Toyoda Gosei Co Ltd Group iii nitride semiconductor light emitting device
US5874747A (en) * 1996-02-05 1999-02-23 Advanced Technology Materials, Inc. High brightness electroluminescent device emitting in the green to ultraviolet spectrum and method of making the same
JP3675044B2 (en) 1996-06-28 2005-07-27 豊田合成株式会社 Group 3 nitride semiconductor light emitting device
JP3543498B2 (en) 1996-06-28 2004-07-14 豊田合成株式会社 Group III nitride semiconductor light emitting device
US5684309A (en) * 1996-07-11 1997-11-04 North Carolina State University Stacked quantum well aluminum indium gallium nitride light emitting diodes

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002049121A1 (en) * 2000-12-11 2002-06-20 Mitsubishi Cable Industries, Ltd. Multi-wavelength luminous element
WO2002067660A1 (en) * 2001-02-28 2002-09-06 Ccs Inc. Method of cultivating plant and illuminator for cultivating plant
US6965126B2 (en) * 2001-06-13 2005-11-15 Toyoda Gosei Co., Ltd. Light-emitting element
JP2003163373A (en) * 2001-11-26 2003-06-06 Toyoda Gosei Co Ltd Iii nitride compound semiconductor light emitting element
US10825962B2 (en) 2002-06-26 2020-11-03 Lg Innotek Co., Ltd. Thin film light emitting diode
US9281454B2 (en) 2002-06-26 2016-03-08 Lg Innotek Co., Ltd. Thin film light emitting diode
US10326059B2 (en) 2002-06-26 2019-06-18 Lg Innotek Co., Ltd. Thin film light emitting diode
US9716213B2 (en) 2002-06-26 2017-07-25 Lg Innotek Co., Ltd. Thin film light emitting diode
US8288787B2 (en) 2002-06-26 2012-10-16 Lg Electronics, Inc. Thin film light emitting diode
US8384091B2 (en) 2002-06-26 2013-02-26 Lg Electronics Inc. Thin film light emitting diode
US8445921B2 (en) 2002-06-26 2013-05-21 Lg Electronics, Inc. Thin film light emitting diode
KR20040013394A (en) * 2002-08-06 2004-02-14 주식회사 옵토웨이퍼테크 A Light Emitting Diode and A Method for Manufacturing thereof
JP2004311822A (en) * 2003-04-09 2004-11-04 Solidlite Corp Purplish red light emitting diode
WO2005029595A1 (en) * 2003-09-16 2005-03-31 Toyoda Gosei Co., Ltd. Group iii-nitride-based compound semiconductor device
CN100386895C (en) * 2003-09-16 2008-05-07 丰田合成株式会社 Group iii-nitride-based compound semiconductor device
JP2005260246A (en) * 2004-03-11 2005-09-22 Samsung Electro Mech Co Ltd Monolithic white light emitting device
GB2432047B (en) * 2004-07-30 2008-10-08 Sumitomo Chemical Co Nitride compound semiconductor and process for producing the same
GB2432047A (en) * 2004-07-30 2007-05-09 Sumitomo Chemical Co Nitride compound semiconductor and process for producing the same
WO2006011675A1 (en) * 2004-07-30 2006-02-02 Sumitomo Chemical Company, Limited Nitride compound semiconductor and process for producing the same
KR100847847B1 (en) * 2007-01-22 2008-07-23 삼성전기주식회사 White light emitting device and method of manufacturing the same
US9137874B2 (en) 2011-12-02 2015-09-15 Biological Illumination, Llc Illumination and grow light system and associated methods
US10257988B2 (en) 2011-12-02 2019-04-16 Biological Illumination, Llc Illumination and grow light system and associated methods
JP2016111131A (en) * 2014-12-04 2016-06-20 学校法人 名城大学 Nitride semiconductor light-emitting element with periodic gain active layer
JP2016225568A (en) * 2015-06-03 2016-12-28 シャープ株式会社 Nitride semiconductor light-emitting element
JP2017045787A (en) * 2015-08-25 2017-03-02 シャープ株式会社 Nitride semiconductor light-emitting element
CN108365064A (en) * 2018-03-26 2018-08-03 郭秀丽 A kind of multiple quantum well light emitting diode and preparation method thereof
CN108365064B (en) * 2018-03-26 2019-05-24 郭秀丽 A kind of multiple quantum well light emitting diode and preparation method thereof

Also Published As

Publication number Publication date
US6620643B1 (en) 2003-09-16

Similar Documents

Publication Publication Date Title
JP2001053336A (en) Iii nitride compound semiconductor light emitting element
JP3543498B2 (en) Group III nitride semiconductor light emitting device
KR100532650B1 (en) Semiconductor luminous element of iii nitride group
JP3567790B2 (en) Group III nitride compound semiconductor light emitting device
JP4116260B2 (en) Semiconductor light emitting device
JP3763754B2 (en) Group III nitride compound semiconductor light emitting device
JP3298390B2 (en) Method for manufacturing nitride semiconductor multicolor light emitting device
JP3454200B2 (en) Light emitting element
KR100680430B1 (en) Iii group nitride compound semiconductor light emitting element
JP2007273989A (en) White light-emitting element
JP2000286448A (en) Iii group nitride compound semiconductor luminous element
KR20080089859A (en) Nitride semiconductor light emitting device and manufacturing method thereof
JP3675044B2 (en) Group 3 nitride semiconductor light emitting device
JP3470622B2 (en) Nitride semiconductor light emitting device
JP3978858B2 (en) Gallium nitride compound semiconductor light emitting device
JP4501194B2 (en) Nitride semiconductor light emitting device
JP2002185044A (en) Nitride semiconductor multi-colored light-emitting element
JPH0653549A (en) Semiconductor light emitting element and fabrication thereof
JP3341576B2 (en) Group III nitride compound semiconductor light emitting device
JP2000286506A (en) Gallium nitride light-emitting device
JP2003078169A (en) Light emitting element
JP2000091629A (en) Gallium nitride-based compound semiconductor light emitting element
JP3646502B2 (en) Method for manufacturing group 3 nitride semiconductor device
JPH11233824A (en) Gallium nitride compound semiconductor device
JP2003017741A (en) GaN-BASED LIGHT EMITTING ELEMENT

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041124

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20041221