JPH09139543A - Semiconductor laser element - Google Patents
Semiconductor laser elementInfo
- Publication number
- JPH09139543A JPH09139543A JP29647495A JP29647495A JPH09139543A JP H09139543 A JPH09139543 A JP H09139543A JP 29647495 A JP29647495 A JP 29647495A JP 29647495 A JP29647495 A JP 29647495A JP H09139543 A JPH09139543 A JP H09139543A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- quantum well
- semiconductor laser
- laser device
- strain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Semiconductor Lasers (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、光情報処理或は光
応用計測用に適した半導体レーザ素子に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser device suitable for optical information processing or optical application measurement.
【0002】[0002]
【従来の技術】従来の作製技術としては、例えば青色領
域の発光ダイオード素子に関し、素子を構成する素子構
造がアプライド・フィジックス・レター誌,1994年,64
巻,1687-1689頁(Appl. Phys. Lett., 64, 1687-1689(19
94).)において述べられており、GaInN/GaN/AlGaN材料を
用いた発光活性層が示されている。2. Description of the Related Art As a conventional manufacturing technique, for example, regarding a blue light emitting diode element, the element structure constituting the element is applied physics letter magazine, 1994, 64.
Volume, 1687-1689 (Appl. Phys. Lett., 64, 1687-1689 (19
94).) And a light emitting active layer using a GaInN / GaN / AlGaN material is shown.
【0003】[0003]
【発明が解決しようとする課題】上記論文誌が開示する
従来技術では、窒素系材料の青色発光ダイオードに適す
る発光活性層の構成について言及している。しかしなが
ら、発光素子の発光効率を向上させるための発光活性層
に関する具体的な方策を示しておらず、低い注入電流で
より大きな光学利得を生ずる活性層構造について詳細内
容を述べていない。また、低閾値でレーザ発振させるた
めのキャリア閉じ込めに対する明確な対策を説明してい
ない。In the prior art disclosed by the above-mentioned journals, reference is made to the structure of a light emitting active layer suitable for a blue light emitting diode made of a nitrogen-based material. However, it does not show a specific measure for the light emitting active layer for improving the light emitting efficiency of the light emitting device, and does not describe the details of the active layer structure that produces a larger optical gain at a low injection current. Moreover, no clear measure for carrier confinement for lasing at a low threshold value is described.
【0004】本発明の目的は、例えば上記論文誌が開示
する構造の発光素子の発光効率を向上するに適した素子
構造を提供することである。An object of the present invention is to provide an element structure suitable for improving the light emission efficiency of the light emitting element having the structure disclosed in the above journals, for example.
【0005】[0005]
【課題を解決するための手段】上述の本発明の目的は、
発光活性層を構成する結晶層を、結晶性がよくヘテロ界
面の急峻性が良好な多重量子井戸構造とし、且つ歪補償
型の活性層領域を構成することにより、従来より低閾値
で(即ち、素子への注入電流を低くして)GaInN/AlGaN
材料系からなる素子をレーザ発振させることで達成され
る。このため、本発明では発光素子の発光活性層をGaIn
N圧縮歪量子井戸層とAlGaN引張歪量子障壁層とからなる
周期的ヘテロ構造(異種の層を二重に接合する構造)と
し、且つ当該発光活性層を歪補償多重量子井戸構造活性
層として構成する。さらに当該発光活性層について詳細
を規定し、光学利得の発生効率に対する導入した歪の効
果やキャリアの閉じ込め効果を向上させる。このことに
より、低閾値かつ高効率で動作するレーザ素子を達成す
る。SUMMARY OF THE INVENTION The above-mentioned object of the present invention is as follows.
The crystal layer forming the light emitting active layer has a multiple quantum well structure with good crystallinity and good steepness of the hetero interface, and by forming the strain compensation type active layer region, a threshold value lower than that of the conventional one (that is, GaInN / AlGaN by lowering the injection current to the device)
This is achieved by oscillating a device made of a material system. Therefore, in the present invention, the light emitting active layer of the light emitting device is formed of GaIn.
A periodic heterostructure (structure in which different layers are double-bonded) composed of an N compressive strain quantum well layer and an AlGaN tensile strain quantum barrier layer, and the light emitting active layer is configured as a strain compensating multiple quantum well structure active layer To do. Further, the details of the light emitting active layer are specified to improve the effect of introduced strain and the effect of confining carriers on the generation efficiency of optical gain. This achieves a laser device that operates with low threshold and high efficiency.
【0006】上述の目的を達成するにあたり、本発明で
は半導体レーザ素子を以下の説明の如く構成する。To achieve the above object, the present invention configures a semiconductor laser device as described below.
【0007】本発明では、少なくとも3つ以上の元素か
らなる3元以上の混晶半導体で量子井戸層及び量子障壁
層を形成した多重量子井戸構造により活性層を構成し、
かつ量子井戸層と量子障壁層に導入する格子歪を反対符
合で設定して(即ち、隣接しあう量子井戸層と量子障壁
層の格子歪値の正負が逆となるように両層を積層して)
歪補償型とした歪補償多重量子井戸構造とする。格子歪
値の正負の違いは、例えば、一方の層に圧縮歪を加え、
他方の層に引っ張り歪を加えるようにして両層を積層す
ることで実現する。さらに、該多重量子井戸構造と隣接
して設ける光分離閉じ込め層にも格子歪を導入した結晶
層により構成して、多重量子井戸構造と光分離閉じ込め
層を含めた活性層領域全体において歪補償型とする。な
お、光分離閉じ込め層は、一方の面で量子井戸層と、他
方の面でp型又はn型の光導波層と夫々接合するとよ
い。歪補償型とすることにより、量子井戸層にはより大
きな格子歪を導入し、特に有効質量の重いキャリアを有
する窒素系材料に対して、価電子帯のバンド構造を変形
させて有効質量のより軽い正孔キャリアとすることが可
能となる。In the present invention, the active layer is constituted by a multi-quantum well structure in which a quantum well layer and a quantum barrier layer are formed of a ternary or more mixed crystal semiconductor composed of at least three or more elements,
Moreover, the lattice strains to be introduced into the quantum well layer and the quantum barrier layer are set with opposite signs (that is, both layers are laminated so that the positive and negative lattice strain values of the adjacent quantum well layer and quantum barrier layer are opposite to each other). hand)
A strain-compensated multiple quantum well structure is used. The difference between positive and negative lattice strain values is, for example, compressive strain is applied to one layer,
It is realized by laminating both layers so as to apply tensile strain to the other layer. Further, the optical isolation confinement layer provided adjacent to the multiple quantum well structure is also composed of a crystal layer in which lattice strain is introduced, and a strain compensation type is provided in the entire active layer region including the multiple quantum well structure and the optical isolation confinement layer. And The light separation / confinement layer may be bonded to the quantum well layer on one surface and to the p-type or n-type optical waveguide layer on the other surface. By adopting the strain compensation type, a larger lattice strain is introduced into the quantum well layer, and especially for a nitrogen-based material having a carrier with a heavy effective mass, the band structure of the valence band is deformed to improve the effective mass. It becomes possible to use a light hole carrier.
【0008】III−V族化合物からなる発光活性層を有
する半導体レーザ素子において、量子井戸層にInを含ま
せると、発光効率は向上する。このことは、窒化物材料
系(V族元素として窒素を含むIII−V族化合物からな
る)半導体レーザ素子でも同様である。さらに、窒化物
材料系半導体レーザ素子の発光活性層を結晶性良く(欠
陥フリーで)形成するには、GaNからなる基板又は膜の
上部に発光活性層を成長させることが望ましい(因みに
基板又は膜がAlを含むと、発光活性層に欠陥が生じ易
い)。GaNの基板又は膜の上部に、GaInN結晶からなる量
子井戸層とAlGaN結晶からなる量子障壁層を成長させる
と、前者には圧縮歪が、後者には引張歪が導入される。
GaN結晶の表面において、Gaより原子半径の大きい元素
(In)を含む前者の膜が成長するとき、この膜の結晶格
子は成長方向に伸びるため、Inを含みながらもGaN結晶
と格子整合することができる。換言すれは、前者の膜は
成長方向に垂直な方向(即ち、膜の側面)から圧縮され
たような形の結晶として形成される。このとき、前者の
膜即ちGaInN結晶には圧縮歪が加わる。後者の膜、即ちG
aより原子半径の小さい元素(Al)を含む膜は、前者と
反対である。このことは、後者の膜をGaN結晶の表面に
成長することを考えれば明らかである。後者の膜は、そ
の結晶格子を成長方向に縮ませることで、GaN結晶と格
子整合しながら成長する。このため、後者の膜は成長方
向に垂直な方向へ引っ張られたような形の結晶として形
成され、この膜即ちAlGaN結晶には引張歪が加わる。前
者の膜と後者の膜とを直接接合した場合、前者の膜に圧
縮歪が、後者の膜に引張歪が夫々加わることはいうまで
もない。In a semiconductor laser device having a light emitting active layer made of a III-V group compound, if the quantum well layer contains In, the light emitting efficiency is improved. This also applies to a nitride material type semiconductor laser device (comprising a III-V group compound containing nitrogen as a V group element). Further, in order to form the light emitting active layer of the nitride-based semiconductor laser device with good crystallinity (defect-free), it is desirable to grow the light emitting active layer on the substrate or film made of GaN (for reference, the substrate or film). If contains Al, defects are likely to occur in the light emitting active layer). When a quantum well layer made of GaInN crystal and a quantum barrier layer made of AlGaN crystal are grown on a GaN substrate or film, compressive strain is introduced into the former and tensile strain is introduced into the latter.
When the former film containing an element (In) with a larger atomic radius than Ga grows on the surface of the GaN crystal, the crystal lattice of this film extends in the growth direction, so it must be lattice-matched with the GaN crystal even if it contains In. You can In other words, the former film is formed as a crystal having a shape compressed from the direction perpendicular to the growth direction (that is, the side surface of the film). At this time, compressive strain is applied to the former film, that is, the GaInN crystal. The latter membrane, namely G
The film containing an element (Al) having a smaller atomic radius than a is the opposite of the former. This is clear considering the latter film grown on the surface of the GaN crystal. The latter film grows while being lattice-matched with the GaN crystal by shrinking its crystal lattice in the growth direction. Therefore, the latter film is formed as a crystal having a shape that is pulled in a direction perpendicular to the growth direction, and tensile strain is applied to this film, that is, the AlGaN crystal. It goes without saying that when the former film and the latter film are directly bonded, compressive strain is applied to the former film and tensile strain is applied to the latter film.
【0009】ここまでは、理解のために量子井戸層をGa
InN結晶で、量子障壁層をAlGaN結晶で形成した例で説明
したが、本発明の半導体レーザは量子井戸層が他の層に
対して原子半径の大きい原子(換言すれば、質量の大き
い原子)を多く含み、量子障壁層は量子井戸層に対して
原子半径の小さい原子(換言すれば、質量の小さい原
子)を多く含むところに特徴を有する。結晶の単位胞
(unit cell)を構成する原子の平均質量で見れば、量
子井戸層の方が量子障壁層より大きいという特徴がある
といえよう。双方の層(結晶膜)を成長するに際し、そ
の膜厚を臨界膜厚(歪による結晶欠陥が生じない最大の
膜厚値)以下に抑えるのも肝要である。Up to this point, for the sake of understanding, the quantum well layer is Ga
Although the quantum barrier layer is formed of an InGaN crystal and the quantum barrier layer is formed of an AlGaN crystal, the quantum well layer of the present invention has an atom whose atomic radius is larger than that of other layers (in other words, an atom whose mass is large). The quantum barrier layer is characterized in that it contains many atoms having a small atomic radius (in other words, atoms having a small mass) with respect to the quantum well layer. It can be said that the quantum well layer is larger than the quantum barrier layer in terms of the average mass of atoms constituting a unit cell of a crystal. When growing both layers (crystal films), it is important to keep the film thickness below the critical film thickness (the maximum film thickness value at which crystal defects due to strain do not occur).
【0010】また本発明の半導体レーザ素子では、発光
活性層たる多重量子井戸構造を2元化合物半導体を用い
ずに、3元以上の混晶半導体で構成することにより、発
光活性層における格子歪の緩和を高める。発光活性層領
域全体において歪を補償することにより、例えばGaInN
圧縮歪量子井戸層におけるIn組成をより大きく導入する
ことが可能となる。つまり、より大きな歪の効果を利用
でき、かつ量子井戸層のポテンシャル井戸を大きくでき
る二つの効果によって、光学利得を大きく発生させるこ
とが実現できる。また、量子障壁層に禁制帯幅が大き
く、伝導帯バンドオフセットの大きなAlGaN層を利用で
きるので、量子井戸層に対するエネルギー障壁を十分高
く設定することが可能である。このため、多重量子井戸
構造におけるキャリア閉じ込めの効果をより向上でき
る。また、歪補償型の活性層領域では、従来の単体活性
層の場合に比べて、格段に結晶性の改善を図ることがで
きる。歪補償型の多重量子井戸構造では、量子井戸層の
格子歪をより大きく導入して利用できること、また活性
層領域全体において歪を補償して結晶性を良好に保つこ
とができる点で有効である。少なくとも3つ以上の元素
からなる3元以上の混晶半導体でもって、量子井戸層及
び量子障壁層を形成することにより、格子歪緩和の柔軟
性を持たせる。具体的に、窒化物材料系では、量子井戸
層に圧縮歪を導入したGaInN結晶層を用い、量子障壁層
には引張歪を導入したAlGaN結晶層とする。発光活性層
領域全体において歪を補償することにより、量子井戸層
のIn組成を大きく導入してポテンシャル井戸の深さを大
きくし、量子障壁層のAl組成によりエネルギー障壁をよ
り高く設定できるので、量子井戸層におけるキャリアを
十分閉じ込め、高注入時でも光学利得の飽和が生じな
い、利得発生効率の高いレ−ザ素子を達成できる。これ
により、室温以上の高温までレーザ発振が安定に得られ
る。また、本発明による窒化物半導体の歪補償多重量子
井戸構造においては、低温成長が必要なGaInN量子井戸
層に対して、高温で安定なAlGaN量子障壁層で覆う形を
繰り返すことになるので、高温成長時でのGaInN結晶層
の再離脱を防ぐことができる。これは、半導体レーザ素
子の作製においてAlGaN量子障壁層を成長する際、GaInN
量子井戸層成長時に比べて基板温度を高くするという成
膜条件の要請(低温成長では結晶性劣化)に基づくもの
である。III族原子においてはIn、Ga、Alの順で加熱時
の蒸発量が多く、AlGaN層の成長時におけるGaInN層中の
Inの脱離が問題であったが、本発明による構成では、既
に成膜されたGaInN量子井戸層がAlGaN量子障壁層で覆わ
れた形状を有するため、Inの脱離を抑制できる。つま
り、本発明の歪補償多重量子井戸構造によって、量子井
戸層の結晶性とヘテロ界面や組成の急俊性を一原子オー
ダで良好に保つことが可能であった。さらには光分離閉
じ込め層も含めて歪補償としており(光分離歪層として
構成しており)、発光活性層領域の全体において結晶性
を良好に確保できた。In the semiconductor laser device of the present invention, the multi-quantum well structure, which is the light emitting active layer, is composed of a ternary or more mixed crystal semiconductor without using a binary compound semiconductor, so that the lattice strain in the light emitting active layer is reduced. Increase mitigation. By compensating for strain in the entire light emitting active layer region, for example, GaInN
It becomes possible to introduce a larger In composition in the compressive strain quantum well layer. That is, a large optical gain can be realized by the two effects that a larger strain effect can be utilized and the potential well of the quantum well layer can be increased. Moreover, since an AlGaN layer having a large forbidden band width and a large conduction band offset can be used for the quantum barrier layer, it is possible to set the energy barrier to the quantum well layer sufficiently high. Therefore, the effect of carrier confinement in the multiple quantum well structure can be further improved. Further, in the strain compensation type active layer region, the crystallinity can be remarkably improved as compared with the case of the conventional single active layer. The strain-compensated multi-quantum well structure is effective in that the lattice strain of the quantum well layer can be introduced and utilized more, and strain can be compensated in the entire active layer region to maintain good crystallinity. . By forming a quantum well layer and a quantum barrier layer with a ternary or more mixed crystal semiconductor composed of at least three or more elements, flexibility of lattice strain relaxation is provided. Specifically, in the nitride material system, a GaInN crystal layer having a compressive strain introduced into the quantum well layer is used, and an AlGaN crystal layer having a tensile strain introduced into the quantum barrier layer. By compensating for the strain in the entire light emitting active layer region, the In composition of the quantum well layer is largely introduced to increase the depth of the potential well, and the energy barrier can be set higher by the Al composition of the quantum barrier layer. It is possible to achieve a laser device having a high gain generation efficiency in which the carriers in the well layer are sufficiently confined and the optical gain is not saturated even at the time of high injection. As a result, stable laser oscillation can be obtained up to a high temperature above room temperature. Further, in the strain-compensated multiple quantum well structure of the nitride semiconductor according to the present invention, the GaInN quantum well layer requiring low temperature growth is repeatedly covered with the AlGaN quantum barrier layer which is stable at high temperature. It is possible to prevent the GaInN crystal layer from re-separating during the growth. This is because GaInN grows when an AlGaN quantum barrier layer is grown in the fabrication of a semiconductor laser device.
This is based on the requirement of film forming conditions that the substrate temperature is made higher than that at the time of growing the quantum well layer (deterioration of crystallinity at low temperature growth). In Group III atoms, In, Ga, and Al are evaporated in the order of heating, and the GaInN layer in the AlGaN layer grows.
Although the desorption of In was a problem, in the structure according to the present invention, since the already formed GaInN quantum well layer has a shape covered with the AlGaN quantum barrier layer, the desorption of In can be suppressed. That is, with the strain-compensated multiple quantum well structure of the present invention, the crystallinity of the quantum well layer and the abruptness of the hetero interface or composition could be favorably maintained in the order of one atom. Furthermore, strain compensation is performed including the light separation / confinement layer (it is configured as a light separation strain layer), and good crystallinity can be secured in the entire light emitting active layer region.
【0011】多重量子井戸構造の活性層においては、キ
ャリアの注入効率を考慮しなければならない。特に、有
効質量の重いキャリアを有する窒化物半導体では、キャ
リアの輸送と一つ一つの量子井戸層におけるキャリア捕
獲を十分向上させる必要がある。このため、本発明で
は、図1に示す量子井戸層と量子障壁層の繰り返しだけ
ではなく、図2や図3に示した、量子障壁層を少なくと
も2段階にした構造を設けることにより、量子井戸層に
おけるキャリア捕獲を改善することを考案した。これに
よると、図1の場合よりも、素子の低閾値動作が可能で
あり、閾値電流は2/3から1/2にまで低減できた。In the active layer having the multiple quantum well structure, the carrier injection efficiency must be taken into consideration. Particularly, in a nitride semiconductor having carriers with a large effective mass, it is necessary to sufficiently improve carrier transport and carrier trapping in each quantum well layer. Therefore, in the present invention, not only the quantum well layer and the quantum barrier layer shown in FIG. 1 are repeated, but also the structure having the quantum barrier layer in at least two stages shown in FIGS. It was devised to improve carrier capture in the layer. According to this, a lower threshold operation of the device is possible than in the case of FIG. 1, and the threshold current can be reduced from 2/3 to 1/2.
【0012】以上により、結晶性がよくヘテロ界面の急
峻性が原子層オーダで良好であり、より高温までキャリ
ア閉じ込めがよく、光学利得の飽和が生じにくく利得発
生効率を高めた、歪補償型多重量子井戸構造として、Ga
InN/AlGaN材料系のレーザ発振を低閾値で実現し、かつ
室温以上の高温まで動作するレーザ素子を得た。As described above, the strain-compensated multiplex resonator having good crystallinity, good steepness of the hetero interface in the order of atomic layer, good carrier confinement at higher temperatures, less saturation of optical gain, and improved gain generation efficiency. Ga as a quantum well structure
We have obtained a laser device that realizes laser oscillation of the InN / AlGaN material system at a low threshold and operates up to room temperature or higher.
【0013】[0013]
実施例1 本発明の一実施例を図4により説明する。まず(0001)C
面を有するサファイア(α-Al2O3)基板1上に、有機金属
気相成長法により温度450〜550℃においてGaNバッファ
層2を成長し、成長温度1000〜1100℃において、n型Ga
N光導波層3、n型AlαGa1-αN(α=0.25)光導波層4、
アンドープAlαGa1-αN(α=0.10)光分離閉じ込め層とア
ンドープAlαGa1-αN(α=0.10)引張歪量子障壁層及びア
ンドープGa1-βInβN(β=0.20)圧縮歪量子井戸層からな
る歪補償多重量子井戸活性層5、p型AlGaN光導波層
6、p型GaN光導波層7、p型GaInNコンタクト層8を設
ける。この際、歪補償多重量子井戸活性層5には、図1
に示す構造を用いた。歪補償多重量子井戸活性層5の形
成において、特にアンドープAlαGa1-αN層をアンドー
プGa1-βInβN層上に形成する際には、アンモニア雰囲
気で行うとInの脱離を抑制できる。また、p型光導波層
6とp型光導波層7及びp型コンタクト層8には、p型
不純物Mgをドープしており、p型光導波層6とp型光導
波層7には、5×1017〜2×1018/cm3の範囲で設定し、p
型コンタクト層8に対しては、5×1018〜2×1019/cm3の
範囲に設定した。次に、フォトリソグラフィーとエッチ
ング加工により、図4に示すように、結晶層の一部を層
3に到るまで除去する。その後、絶縁膜9を設けて、ス
トライプ方向を該基板1の(11-20)A面と平行な方向に形
成する。また、リソグラフィーにより、p側電極10と
n側電極11を蒸着する。最後に、光導波路ストライプ
に対して垂直な方向に基板を劈開することによって、図
4に示す素子断面を得る。Embodiment 1 An embodiment of the present invention will be described with reference to FIG. First (0001) C
A GaN buffer layer 2 is grown on a sapphire (α-Al 2 O 3 ) substrate 1 having a surface at a temperature of 450 to 550 ° C. by a metal organic chemical vapor deposition method, and n-type Ga is grown at a growth temperature of 1000 to 1100 ° C.
N optical waveguide layer 3, n-type Al α Ga 1-α N (α = 0.25) optical waveguide layer 4,
Undoped Al α Ga 1-α N (α = 0.10) Optical isolation confinement layer and undoped Al α Ga 1-α N (α = 0.10) Tensile strain quantum barrier layer and undoped Ga 1-β In β N (β = 0.20) A strain compensation multi-quantum well active layer 5, which is a compressive strain quantum well layer, a p-type AlGaN optical waveguide layer 6, a p-type GaN optical waveguide layer 7, and a p-type GaInN contact layer 8 are provided. At this time, the strain compensation multiple quantum well active layer 5 is
The structure shown in was used. In the formation of the strain-compensated multi-quantum well active layer 5, especially when the undoped Al α Ga 1-α N layer is formed on the undoped Ga 1-β In β N layer, the desorption of In is performed if it is performed in an ammonia atmosphere. Can be suppressed. Further, the p-type optical waveguide layer 6, the p-type optical waveguide layer 7 and the p-type contact layer 8 are doped with a p-type impurity Mg, and the p-type optical waveguide layer 6 and the p-type optical waveguide layer 7 are Set within the range of 5 × 10 17 to 2 × 10 18 / cm 3 , p
For the mold contact layer 8, it was set in the range of 5 × 10 18 to 2 × 10 19 / cm 3 . Next, as shown in FIG. 4, a part of the crystal layer is removed by photolithography and etching until the layer 3 is reached. After that, the insulating film 9 is provided and the stripe direction is formed in the direction parallel to the (11-20) A plane of the substrate 1. Further, the p-side electrode 10 and the n-side electrode 11 are vapor-deposited by lithography. Finally, the substrate is cleaved in the direction perpendicular to the optical waveguide stripe to obtain the element cross section shown in FIG.
【0014】本実施例によると、活性層構造において格
子歪を補償しているので、GaInN量子井戸層のIn組成を
歪補償しない場合に比べて大きく導入することが可能で
あり、ポテンシャル井戸の深さを大きくとれる。さら
に、禁制帯幅が大きく伝導帯バンドオフセットを大きく
とれるAlGaN結晶層を量子障壁層に用いているので、エ
ネルギー障壁をより高く設定できた。これにより、量子
井戸層におけるキャリア、特に電子キャリアを十分閉じ
込め、光学利得の発生効率が高い、低閾値で室温以上の
高温まで動作するレーザ素子を得た。また、歪補償多重
量子井戸構造においては、低温成長が必要なGaInN量子
井戸層に対して、高温で安定なAlGaN量子障壁層でもっ
てカバーすることになるので、GaInN結晶層の再離脱を
防ぎ、圧縮歪量子井戸層の結晶性と組成ヘテロ界面の急
俊性を良好に保つことが可能となった。さらには歪補償
型の多重量子井戸構造を設けているので、発光活性層領
域の全体において結晶性を良好に設定できた。本実施例
では、活性層横方向に対して利得差を設けることにより
横モードを導波する利得導波構造を有しており、発振波
長410〜430nmの範囲でレーザ発振する素子を得
た。According to this embodiment, since the lattice strain is compensated in the active layer structure, it is possible to introduce the In composition of the GaInN quantum well layer to a greater extent than in the case where the strain is not compensated, and the depth of the potential well is increased. You can take big. Furthermore, since the AlGaN crystal layer, which has a large forbidden band width and a large conduction band offset, is used as the quantum barrier layer, the energy barrier can be set higher. As a result, a laser device was obtained that operates well up to room temperature or higher at a low threshold value, in which carriers in the quantum well layer, particularly electron carriers are sufficiently confined, and the efficiency of generating optical gain is high. Further, in the strain-compensated multi-quantum well structure, the GaInN quantum well layer, which needs to be grown at low temperature, will be covered by the AlGaN quantum barrier layer which is stable at high temperature. The crystallinity of the compressive strained quantum well layer and the abruptness of the composition hetero interface can be maintained well. Further, since the strain compensation type multiple quantum well structure is provided, the crystallinity can be set well in the entire light emitting active layer region. In this example, a gain waveguide structure for guiding a transverse mode by providing a gain difference in the lateral direction of the active layer is provided, and an element that oscillates a laser in an oscillation wavelength range of 410 to 430 nm was obtained.
【0015】実施例2 本発明の他実施例を図5により説明する。実施例1と同
様にして素子を作製するが、層7まで設けた後、フォト
リソグラフィーとエッチングにより、層6に到るまで層
7を除去してリッジストライプを形成する。次に、絶縁
膜マスクを利用して、n型GaN電流狭窄層12を選択成
長する。絶縁膜マスクを除去した後、p型GaN埋め込み
層13とp型GaInNコンタクト層8を結晶成長する。次
に、フォトリソグラフィーとエッチング加工により、図
5に示すように、リッジストライプ構造の両側を層3に
到るまで除去する。その後、実施例1と全く同様にし
て、素子を作製し、図5に示す素子断面を得る。Embodiment 2 Another embodiment of the present invention will be described with reference to FIG. A device is manufactured in the same manner as in Example 1, but after the layer 7 is provided, the layer 7 is removed by photolithography and etching until the layer 6 is reached to form a ridge stripe. Next, the n-type GaN current confinement layer 12 is selectively grown using the insulating film mask. After removing the insulating film mask, the p-type GaN buried layer 13 and the p-type GaInN contact layer 8 are crystal-grown. Next, both sides of the ridge stripe structure are removed to the layer 3 by photolithography and etching as shown in FIG. After that, an element is manufactured in the same manner as in Example 1, and the element cross section shown in FIG. 5 is obtained.
【0016】本実施例によると、活性層横方向に対して
実屈折率差を設けることにより、基本横モードを安定に
導波する屈折率導波構造を有したリッジストライプ構造
を作製でき、実施例1よりも低閾値で動作し、実施例1
に比べて閾値電流は1/3〜1/5にまで低減した素子を得
た。発振波長は、青紫色波長域の410〜430nmの
範囲であった。According to the present embodiment, a ridge stripe structure having a refractive index guiding structure for stably guiding the fundamental transverse mode can be manufactured by providing an actual refractive index difference in the lateral direction of the active layer. Working at a lower threshold than Example 1, Example 1
Compared with, the threshold current was reduced to 1/3 to 1/5. The oscillation wavelength was in the blue-violet wavelength range of 410 to 430 nm.
【0017】実施例3 本発明の他実施例を図6により説明する。まず、実施例
1や2と同様にして、層3まで設ける。次に、フォトリ
ソグラフィーとエッチングにより選択成長用絶縁膜マス
ク14を形成する。その後、n型GaN光導波層3,n型A
lGaN光導波層4,アンドープAlαGa1-αN(α=0.10)引張
歪光分離閉じ込め層とアンドープAlαGa1-αN(α=0.10)
引張歪量子障壁層及びアンドープGa1-βInβN(β=0.20)
圧縮歪量子井戸層からなる歪補償多重量子井戸活性層
5,p型AlGaN光導波層6,p型GaN光導波層7,p型Ga
InNコンタクト層8を選択成長する。その後、絶縁膜9
を形成して、リソグラフィーにより、p側電極10とn
側電極11のパターンを蒸着形成する。さらに、導波路
とは垂直な方向に基板を劈開することによって図6に示
す素子断面を得る。Embodiment 3 Another embodiment of the present invention will be described with reference to FIG. First, the layers up to layer 3 are provided in the same manner as in Examples 1 and 2. Next, the selective growth insulating film mask 14 is formed by photolithography and etching. Then, n-type GaN optical waveguide layer 3, n-type A
lGaN optical waveguide layer 4, undoped Al α Ga 1-α N (α = 0.10) Tensile strain optical isolation confinement layer and undoped Al α Ga 1-α N (α = 0.10)
Tensile strain quantum barrier layer and undoped Ga 1-β In β N (β = 0.20)
Strain-compensated multiple quantum well active layer composed of compressive strained quantum well layer 5, p-type AlGaN optical waveguide layer 6, p-type GaN optical waveguide layer 7, p-type Ga
The InN contact layer 8 is selectively grown. Then, the insulating film 9
And p-side electrode 10 and n are formed by lithography.
The pattern of the side electrode 11 is formed by vapor deposition. Further, by cleaving the substrate in a direction perpendicular to the waveguide, the device cross section shown in FIG. 6 is obtained.
【0018】本実施例によると、活性層横方向に対して
実屈折率差を大きく設けることができるので、導波光を
安定に伝搬するとともに、アスペクト比が小さく円形に
近い基本横モードを導波する屈折率導波構造を有したB
Hストライプ構造を作製できた。本素子は、実施例1や
2よりも低閾値動作が可能であり、閾値電流が実施例2
に比べて1/2から1/3にまで低減した素子を得た。発振波
長は、青紫色波長域の410〜430nmの範囲であっ
た。実屈折率差によって基本横モードを安定に導波する
BHストライプ構造を作製できた。本素子では、実施例
1の素子よりも、活性層横方向の屈折率差が大きくとれ
るので、導波光を安定に伝搬できる。さらに、電流狭窄
効果も大きいので、低閾値動作が可能であった。閾値電
流は、実施例2に比べて、さらに1/2から1/3にまで低減
できた。発振波長は、青紫色波長域の410〜430n
mの範囲であった。According to this embodiment, since a large difference in actual refractive index can be provided in the lateral direction of the active layer, guided light can be stably propagated, and a fundamental transverse mode having a small aspect ratio and a circular shape can be guided. B having a refractive index guiding structure
An H stripe structure could be produced. This device is capable of lower threshold operation than the first and second embodiments, and has a threshold current of the second embodiment.
We obtained an element that is reduced from 1/2 to 1/3 compared to. The oscillation wavelength was in the blue-violet wavelength range of 410 to 430 nm. A BH stripe structure that stably guides the fundamental transverse mode by the difference in real refractive index was produced. In this device, the difference in the refractive index in the lateral direction of the active layer can be made larger than that of the device of Example 1, so that the guided light can be stably propagated. Furthermore, since the current constriction effect is large, low threshold operation was possible. The threshold current could be further reduced from 1/2 to 1/3 as compared with Example 2. The oscillation wavelength is 410 to 430n in the blue-violet wavelength range.
m.
【0019】実施例4 本発明の他実施例を説明する。本実施例では、実施例1
から3までの素子を同様にして作製するが、歪補償多重
量子井戸活性層5に対して量子障壁層を少なくとも2段
階に設けた図2又は図3の構造を導入した。その他は、
実施例1から3までの素子構造を同様に作製し、それぞ
れの素子断面を得た。Embodiment 4 Another embodiment of the present invention will be described. In this embodiment, the first embodiment
2 to 3 are produced in the same manner, but the structure of FIG. 2 or FIG. 3 in which the quantum barrier layer is provided in at least two stages with respect to the strain compensation multiple quantum well active layer 5 is introduced. Others
The device structures of Examples 1 to 3 were manufactured in the same manner, and respective device cross sections were obtained.
【0020】本実施例によると、実施例1や2及び3と
同様な素子構造を作製し、発光活性層を図1から図2又
は図3の構造に変えて導入したところ、より低閾値動作
が可能となり、それぞれの実施例の場合に比べて、閾値
電流は2/3から1/2にまで低減できた。発振波長は、青紫
色波長域の410〜430nmの範囲であった。According to the present embodiment, a device structure similar to those of the embodiments 1, 2 and 3 was produced, and the light emitting active layer was changed from the structure of FIG. 1 to the structure of FIG. The threshold current can be reduced from 2/3 to 1/2 as compared with the respective examples. The oscillation wavelength was in the blue-violet wavelength range of 410 to 430 nm.
【0021】実施例5 本発明の他実施例を説明する。本実施例では、サファイ
ア(α-Al2O3)基板の代わりに、基板1を六方晶系Wurtzi
te構造であり基板面方位が(0001)C面であるn型の炭化
珪素(α-SiC)として、その上にn型GaNバッファ層を設
けて、その後実施例1から3までの素子構造を同様にし
て作製し、それぞれの素子断面を得た。本実施例による
と、基板がn型の導電性であるため、n側電極を基板裏
面に蒸着して、基板上面のp側電極から窒化物半導体を
経由して基板下面のn側電極の方へと電流を通すことが
可能であった。これにより、チップ素子の組立時におい
て、接合部を下にしたマウントが可能となるので、放熱
性を格段に向上できた。本実施例では、上記実施例より
も高い温度で動作するレーザ素子を得た。Embodiment 5 Another embodiment of the present invention will be described. In this example, instead of the sapphire (α-Al 2 O 3 ) substrate, the substrate 1 was a hexagonal Wurtzi system.
As an n-type silicon carbide (α-SiC) having a te structure and a substrate plane orientation of (0001) C plane, an n-type GaN buffer layer is provided thereon, and then the element structures of Examples 1 to 3 are formed. It produced similarly and obtained each element cross section. According to the present embodiment, since the substrate is n-type conductive, the n-side electrode is vapor-deposited on the rear surface of the substrate, and the n-side electrode on the lower surface of the substrate is transferred from the p-side electrode on the upper surface of the substrate through the nitride semiconductor. It was possible to pass a current through. As a result, when the chip element is assembled, it is possible to mount the joint part downward, so that the heat dissipation can be significantly improved. In this example, a laser element that operates at a higher temperature than the above examples was obtained.
【0022】[0022]
【発明の効果】本発明によると、特にIII-V族窒化物半
導体AlGaInN材料において、GaInN圧縮歪量子井戸層とAl
GaN引張歪量子障壁層を繰り返して形成される歪補償多
重量子井戸構造を活性層に導入することにより、ポテン
シャル井戸の深さを大きくし、エネルギー障壁をより高
く設定できるので、量子井戸層におけるキャリアを十分
閉じ込め、高注入時でも光学利得の飽和が生じない、利
得発生効率の高いレーザ素子を達成した。また、本発明
による歪補償多重量子井戸構造においては、低温成長が
必要なGaInN量子井戸層に対して、高温で安定なAlGaN量
子障壁層で覆う形を繰り返すことになるので、高温成長
時でのGaInN結晶層の再離脱を防ぎ、量子井戸層の結晶
性とヘテロ界面や組成の急俊性を一原子オーダで良好に
保つことが可能であった。さらには光分離閉じ込め層も
含めて歪補償としており、発光活性層領域の全体におい
て結晶性を良好に確保できた。その結果、低閾値で動作
し、かつ室温以上の高温まで発振するレーザ素子を得
た。本実施例では、活性層横方向に対して、利得差を設
けて横モードを導波する利得導波構造と実屈折率差を設
けて基本横モードを安定に導波する屈折率導波構造を作
製した。屈折率導波構造の素子では、利得導波構造より
も低閾値で動作し、閾値電流は1/3から1/5にまで低減し
た素子を得た。さらに、歪補償多重量子井戸構造を図1
の構造から図2や図3の構造にして導入することによ
り、さらに閾値電流を2/3から1/2にまで低減した。本素
子の発振波長は、410〜430nmの範囲であった。According to the present invention, particularly in a III-V nitride semiconductor AlGaInN material, a GaInN compressive strain quantum well layer and an Al
By introducing a strain-compensated multi-quantum well structure formed by repeating GaN tensile strain quantum barrier layers into the active layer, the depth of the potential well can be increased and the energy barrier can be set higher. We have achieved a laser device with high gain generation efficiency, in which the optical gain is not saturated even during high injection. Further, in the strain-compensated multi-quantum well structure according to the present invention, the GaInN quantum well layer that requires low-temperature growth is repeatedly covered with the AlGaN quantum barrier layer that is stable at high temperature. It was possible to prevent re-desorption of the GaInN crystal layer and maintain the crystallinity of the quantum well layer and the abruptness of the hetero-interface and composition on the order of one atom. Furthermore, strain compensation is performed including the light separation and confinement layer, and good crystallinity can be secured in the entire light emitting active layer region. As a result, a laser device which operates at a low threshold and oscillates up to a high temperature above room temperature was obtained. In this embodiment, in the lateral direction of the active layer, a gain guiding structure for providing a gain difference and guiding a lateral mode and a refractive index guiding structure for providing a real refractive index difference and stably guiding a fundamental lateral mode are provided. Was produced. The device with a refractive index guided structure operates at a lower threshold than the gain guided structure, and the threshold current is reduced from 1/3 to 1/5. Furthermore, the strain-compensated multiple quantum well structure is shown in FIG.
The threshold current is further reduced from 2/3 to 1/2 by introducing the structure of FIG. The oscillation wavelength of this device was in the range of 410 to 430 nm.
【図1】歪補償型多重量子井戸構造活性層領域の伝導帯
および価電子帯バンド構造を示す概略図。FIG. 1 is a schematic diagram showing the conduction band and valence band band structures of a strain-compensated multiple quantum well structure active layer region.
【図2】歪補償型多重量子井戸構造活性層領域の伝導帯
および価電子帯バンド構造を示す概略図。FIG. 2 is a schematic diagram showing the conduction band and valence band band structures of a strain compensation type multiple quantum well structure active layer region.
【図3】歪補償型多重量子井戸構造活性層領域の伝導帯
および価電子帯バンド構造を示す概略図。FIG. 3 is a schematic diagram showing the conduction band and valence band band structures of a strain-compensated multiple quantum well structure active layer region.
【図4】本発明の一実施例を示す素子構造断面図。FIG. 4 is a sectional view of an element structure showing an embodiment of the present invention.
【図5】本発明の他実施例を示す素子構造断面図。FIG. 5 is a cross-sectional view of an element structure showing another embodiment of the present invention.
【図6】本発明の他実施例を示す素子構造断面図。FIG. 6 is a sectional view of an element structure showing another embodiment of the present invention.
1…(0001)C面サファイア単結晶基板、2…GaNバッファ
層、3…n型GaN光導波層、4…n型AlGaN光導波層、5
…アンドープGaInN/AlGaN歪補償多重量子井戸構造活性
層、6…p型AlGaN光導波層、7…p型GaN光導波層、8
…p型GaInNコンタクト層、9…絶縁膜マスク、10…
p側電極、11…n側電極、12…n型GaN電流狭窄
層、13…p型GaN埋め込み層、14…選択成長用絶縁
膜マスク。1 ... (0001) C-plane sapphire single crystal substrate, 2 ... GaN buffer layer, 3 ... n-type GaN optical waveguide layer, 4 ... n-type AlGaN optical waveguide layer, 5
... undoped GaInN / AlGaN strain compensation multiple quantum well structure active layer, 6 ... p-type AlGaN optical waveguide layer, 7 ... p-type GaN optical waveguide layer, 8
... p-type GaInN contact layer, 9 ... insulating film mask, 10 ...
p-side electrode, 11 ... N-side electrode, 12 ... N-type GaN current confinement layer, 13 ... P-type GaN buried layer, 14 ... Insulating film mask for selective growth.
Claims (15)
禁制帯幅の大きな光導波層とそれらに挾まれた禁制帯幅
の小さな発光活性層を有した異種二重接合構造を設けて
おき、該基板上に設ける結晶層はIII-V族の混晶及び化
合物半導体材料から構成され、少なくとも該発光活性層
はIII族元素が2つ以上であるか又はV族元素が2つ以
上で構成された3元以上の混晶半導体によりすべて形成
されており、かつ格子歪を導入した3元以上の混晶半導
体により量子井戸層または量子障壁層を繰り返し形成し
た歪多重量子井戸構造を構成していることを特徴とする
半導体レーザ素子。1. A light emitting device provided on a single crystal substrate, comprising:
A heterojunction double-junction structure having an optical waveguide layer having a large forbidden band width and an emission active layer having a small forbidden band sandwiched between them is provided, and the crystal layer provided on the substrate is a III-V group mixed crystal. And a compound semiconductor material, and at least the light emitting active layer is entirely formed of a ternary or more mixed crystal semiconductor containing two or more Group III elements or two or more Group V elements, A semiconductor laser device characterized by comprising a strained multiple quantum well structure in which a quantum well layer or a quantum barrier layer is repeatedly formed by a ternary or more mixed crystal semiconductor having lattice strain introduced.
する歪量子井戸層と歪量子障壁層には少なくとも反対符
号の格子歪が導入してあり、該発光活性層全体において
格子歪が補償できていることを特徴とする請求項1に記
載の半導体レーザ素子。2. The strain quantum well layer and the strain quantum barrier layer constituting the strained multiple quantum well structure light emitting active layer are introduced with lattice strains of at least opposite signs, and the lattice strain is compensated in the entire light emitting active layer. The semiconductor laser device according to claim 1, wherein the semiconductor laser device is manufactured.
に設ける光分離閉じ込め層にも格子歪を導入し、該歪多
重量子井戸構造発光活性層と光分離閉じ込め層を含めた
全体で、格子歪が補償できている歪補償型の発光活性領
域を有していることを特徴とする請求項1に記載の半導
体レーザ素子。3. A lattice strain is introduced also into the light splitting / confining layers provided on both sides of the strained multiple quantum well structure light emitting active layer, and the strained multiple quantum well structure light emitting active layer and the light splitting and confining layer are included as a whole. 2. The semiconductor laser device according to claim 1, wherein the semiconductor laser device has a strain compensation type light emitting active region capable of compensating for lattice strain.
障壁層は圧縮歪或いは引張歪のどちらか一方であるか、
圧縮歪と圧縮歪、引張歪と引張歪、或いは圧縮歪と引張
歪を導入した2段階の結晶層により構成してあることを
特徴とする請求項1乃至3のいずれかに記載の半導体レ
ーザ素子。4. The strained quantum barrier layer in the strained multiple quantum well active layer has either compressive strain or tensile strain,
4. The semiconductor laser device according to claim 1, wherein the semiconductor laser device comprises a two-stage crystal layer in which compressive strain and compressive strain, tensile strain and tensile strain, or compressive strain and tensile strain are introduced. .
を構成するIII-V族半導体材料は窒化物系の混晶または
化合物半導体からなり、AlGaInN材料を用いて構成され
ていることを特徴とする請求項1乃至4に記載の半導体
レーザ素子。5. The III-V group semiconductor material forming the strained multiple quantum well active layer and the optical waveguide layer is made of a nitride-based mixed crystal or compound semiconductor, and is made of an AlGaInN material. The semiconductor laser device according to claim 1, wherein the semiconductor laser device is a semiconductor laser device.
量子井戸層とAlGaN引張歪量子障壁層の繰り返しにより
形成してあることを特徴とする請求項5に記載の半導体
レーザ素子。6. The semiconductor laser device according to claim 5, wherein the strained multiple quantum well active layer is formed by repeating a GaInN compressive strained quantum well layer and an AlGaN tensile strained quantum barrier layer.
歪量子井戸層とAl組成を段階的に変えた少なくとも2段
階のAlGaN引張歪量子障壁層を設けることにより、該量
子井戸層と該量子障壁層を交互に繰り返して形成してあ
ることを特徴とする請求項4又は5に記載の半導体レー
ザ素子。7. The strained multiple quantum well active layer comprises a GaInN compressive strained quantum well layer and an AlGaN tensile strained quantum barrier layer having at least two stages in which the Al composition is changed stepwise, thereby providing the quantum well layer and the quantum well layer. 6. The semiconductor laser device according to claim 4, wherein the quantum barrier layers are alternately and repeatedly formed.
歪量子井戸層と、該量子井戸層よりもIn組成を小さくし
たGaInN圧縮歪量子障壁層とAlGaN引張歪量子障壁層を少
なくとも2段階に設けた量子障壁層とにより構成し、該
量子井戸層と該量子障壁層を交互に繰り返して形成して
あることを特徴とする請求項4又は5に記載の半導体レ
ーザ素子。8. The strained multiple quantum well active layer comprises a GaInN compressive strained quantum well layer, a GaInN compressive strained quantum barrier layer having an In composition smaller than that of the quantum well layer, and an AlGaN tensile strained quantum barrier layer in at least two stages. 6. The semiconductor laser device according to claim 4, wherein the semiconductor laser device is formed of a quantum barrier layer provided in the above, and the quantum well layers and the quantum barrier layers are alternately and repeatedly formed.
晶層を用いて形成してあることを特徴とする請求項5乃
至8のいずれかに記載の半導体レーザ素子。9. The semiconductor laser device according to claim 5, wherein the optical isolation confinement layer is formed by using an AlGaN tensile strain crystal layer.
造を有した単結晶基板であることを特徴とする請求項5
乃至9のいずれかに記載の半導体レーザ素子。10. The single crystal substrate is a single crystal substrate having a hexagonal Wurtzite structure.
10. The semiconductor laser device according to any one of items 9 to 9.
(0001)C面を有するサファイア(α-Al2O3)基板であるか
或いは(0001)C面を有する炭化珪素(α-SiC)であること
を特徴とする請求項10記載の半導体レーザ素子。11. The single crystal substrate has a Wurtzite structure.
11. The semiconductor laser device according to claim 10, which is a sapphire (α-Al 2 O 3 ) substrate having a (0001) C plane or silicon carbide (α-SiC) having a (0001) C face. .
導波路構造を設ける際に、導波路を形成する方向を該基
板の(11-20)A面に平行であるか、或いは垂直となる方向
に設定することを特徴とする請求項5乃至11のいずれ
かに記載の半導体レーザ素子。12. When the optical waveguide structure is provided on the hexagonal Wurtzite structure substrate, the direction in which the waveguide is formed is parallel to or perpendicular to the (11-20) A plane of the substrate. The semiconductor laser device according to claim 5, wherein the semiconductor laser device is set in a direction.
層にはp型GaInN結晶層を設定してあることを特徴とす
る請求項5乃至12項のいずれかに記載の半導体レーザ
素子。13. The semiconductor laser device according to claim 5, wherein a p-type GaInN crystal layer is set in the p-type contact layer in contact with the p-side electrode.
タクト層には、活性化したキャリア濃度として少なくと
も5×1018/cm3以上を設けてあり、5×1018〜5×1019/cm
3の範囲で任意に設定できていることを特徴とする請求
項13に記載の半導体レーザ素子。14. The p-type GaInN contact layer in contact with the p-side electrode is provided with an activated carrier concentration of at least 5 × 10 18 / cm 3 or more, and 5 × 10 18 to 5 × 10 19 / cm
14. The semiconductor laser device according to claim 13, wherein the semiconductor laser device can be arbitrarily set within the range of 3 .
するp型不純物にはMgを用いてド−プすることを特徴と
する請求項5乃至14のいずれかに記載の半導体レーザ
素子。15. The semiconductor laser device according to claim 5, wherein the p-type impurity generating the activated hole carrier concentration is doped with Mg.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29647495A JPH09139543A (en) | 1995-11-15 | 1995-11-15 | Semiconductor laser element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29647495A JPH09139543A (en) | 1995-11-15 | 1995-11-15 | Semiconductor laser element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09139543A true JPH09139543A (en) | 1997-05-27 |
Family
ID=17834029
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29647495A Pending JPH09139543A (en) | 1995-11-15 | 1995-11-15 | Semiconductor laser element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09139543A (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000223790A (en) * | 1999-01-29 | 2000-08-11 | Toshiba Corp | Nitride-based semiconductor laser device |
EP1248303A1 (en) * | 1999-12-13 | 2002-10-09 | Nichia Corporation | Light-emitting device |
WO2002089220A1 (en) * | 2001-04-25 | 2002-11-07 | Toyoda Gosei Co., Ltd. | Iii group nitride compound semiconductor luminescent element |
US6567443B2 (en) * | 1999-09-29 | 2003-05-20 | Xerox Corporation | Structure and method for self-aligned, index-guided, buried heterostructure AlGalnN laser diodes |
US6570898B2 (en) * | 1999-09-29 | 2003-05-27 | Xerox Corporation | Structure and method for index-guided buried heterostructure AlGalnN laser diodes |
KR100418888B1 (en) * | 2001-06-20 | 2004-02-14 | 엘지전자 주식회사 | p-Contact Growth Method of Light Emitting Diode/Laser Diode |
JP2004087763A (en) * | 2002-08-27 | 2004-03-18 | Sony Corp | Nitride semiconductor light emitting device |
JP2005142456A (en) * | 2003-11-10 | 2005-06-02 | Furukawa Electric Co Ltd:The | Surface emitting laser |
WO2005076374A1 (en) | 2004-02-05 | 2005-08-18 | Epivalley Co., Ltd. | Iii-nitride compound semiconductor light emitting device |
EP1667292A1 (en) * | 2003-08-26 | 2006-06-07 | Sony Corporation | GaN III-V COMPOUND SEMICONDUCTOR LIGHT-EMITTING DEVICE AND METHOD FOR MANUFACTURING SAME |
JP2007142482A (en) * | 2007-03-05 | 2007-06-07 | Philips Lumileds Lightng Co Llc | Optical semiconductor element and manufacturing method thereof |
JP2007318085A (en) * | 2006-05-23 | 2007-12-06 | Lg Electronics Inc | Nitride-based luminous element |
US7501664B2 (en) | 2004-02-13 | 2009-03-10 | Epivalley Co., Ltd. | III-Nitride compound semiconductor light emitting device |
DE112005001337B4 (en) | 2004-06-10 | 2010-07-01 | Toyoda Gosei Co., Ltd., Nishikasugai-gun | Process for producing a FET |
US7923749B2 (en) | 2004-03-25 | 2011-04-12 | EipValley Co., Ltd. | III-nitride compound semiconductor light emitting device |
WO2012150647A1 (en) * | 2011-05-02 | 2012-11-08 | パナソニック株式会社 | Super-luminescent diode |
JP2012256952A (en) * | 1999-12-02 | 2012-12-27 | Cree Inc | High efficiency light emitter with reduced polarization induced charge |
-
1995
- 1995-11-15 JP JP29647495A patent/JPH09139543A/en active Pending
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000223790A (en) * | 1999-01-29 | 2000-08-11 | Toshiba Corp | Nitride-based semiconductor laser device |
US6567443B2 (en) * | 1999-09-29 | 2003-05-20 | Xerox Corporation | Structure and method for self-aligned, index-guided, buried heterostructure AlGalnN laser diodes |
US6570898B2 (en) * | 1999-09-29 | 2003-05-27 | Xerox Corporation | Structure and method for index-guided buried heterostructure AlGalnN laser diodes |
US6875627B2 (en) * | 1999-09-29 | 2005-04-05 | Xerox Corporation | Structure and method for index-guided buried heterostructure AlGaInN laser diodes |
JP2012256952A (en) * | 1999-12-02 | 2012-12-27 | Cree Inc | High efficiency light emitter with reduced polarization induced charge |
EP1248303A1 (en) * | 1999-12-13 | 2002-10-09 | Nichia Corporation | Light-emitting device |
EP1248303A4 (en) * | 1999-12-13 | 2008-08-06 | Nichia Corp | Light-emitting device |
WO2002089220A1 (en) * | 2001-04-25 | 2002-11-07 | Toyoda Gosei Co., Ltd. | Iii group nitride compound semiconductor luminescent element |
US7030414B2 (en) | 2001-04-25 | 2006-04-18 | Toyoda Gosei Co., Ltd. | III group nitride compound semiconductor luminescent element |
KR100418888B1 (en) * | 2001-06-20 | 2004-02-14 | 엘지전자 주식회사 | p-Contact Growth Method of Light Emitting Diode/Laser Diode |
JP2004087763A (en) * | 2002-08-27 | 2004-03-18 | Sony Corp | Nitride semiconductor light emitting device |
EP1667292A4 (en) * | 2003-08-26 | 2007-09-19 | Sony Corp | GaN III-V COMPOUND SEMICONDUCTOR LIGHT-EMITTING DEVICE AND METHOD FOR MANUFACTURING SAME |
EP1667292A1 (en) * | 2003-08-26 | 2006-06-07 | Sony Corporation | GaN III-V COMPOUND SEMICONDUCTOR LIGHT-EMITTING DEVICE AND METHOD FOR MANUFACTURING SAME |
JP2005142456A (en) * | 2003-11-10 | 2005-06-02 | Furukawa Electric Co Ltd:The | Surface emitting laser |
JP4579526B2 (en) * | 2003-11-10 | 2010-11-10 | 古河電気工業株式会社 | Surface emitting laser |
EP1721341A4 (en) * | 2004-02-05 | 2007-10-24 | Epivalley Co Ltd | Iii-nitride compound semiconductor light emitting device |
EP1721341A1 (en) * | 2004-02-05 | 2006-11-15 | Epivalley Co., Ltd. | Iii-nitride compound semiconductor light emitting device |
WO2005076374A1 (en) | 2004-02-05 | 2005-08-18 | Epivalley Co., Ltd. | Iii-nitride compound semiconductor light emitting device |
US7547909B2 (en) | 2004-02-05 | 2009-06-16 | Epivalley Co., Ltd. | III-nitride compound semiconductor light emitting device |
US7501664B2 (en) | 2004-02-13 | 2009-03-10 | Epivalley Co., Ltd. | III-Nitride compound semiconductor light emitting device |
US7923749B2 (en) | 2004-03-25 | 2011-04-12 | EipValley Co., Ltd. | III-nitride compound semiconductor light emitting device |
US7981744B2 (en) | 2004-06-10 | 2011-07-19 | Toyoda Gosei Co., Ltd. | Field-effect transistor, semiconductor device, a method for manufacturing them, and a method of semiconductor crystal growth |
DE112005001337B4 (en) | 2004-06-10 | 2010-07-01 | Toyoda Gosei Co., Ltd., Nishikasugai-gun | Process for producing a FET |
JP2007318085A (en) * | 2006-05-23 | 2007-12-06 | Lg Electronics Inc | Nitride-based luminous element |
US8110841B2 (en) | 2006-05-23 | 2012-02-07 | Lg Electronics Inc. | Nitride based light emitting device |
US8742439B2 (en) | 2006-05-23 | 2014-06-03 | Lg Electronics Inc. | Nitride based light emitting device |
JP2007142482A (en) * | 2007-03-05 | 2007-06-07 | Philips Lumileds Lightng Co Llc | Optical semiconductor element and manufacturing method thereof |
WO2012150647A1 (en) * | 2011-05-02 | 2012-11-08 | パナソニック株式会社 | Super-luminescent diode |
JP5958916B2 (en) * | 2011-05-02 | 2016-08-02 | パナソニックIpマネジメント株式会社 | Super luminescent diode |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2839077B2 (en) | Gallium nitride based compound semiconductor light emitting device | |
US7655485B2 (en) | Semiconductor layer formed by selective deposition and method for depositing semiconductor layer | |
US20070008998A1 (en) | Semiconductor light emitting device | |
JPH09139543A (en) | Semiconductor laser element | |
WO2002054549A1 (en) | Semiconductor luminous element and method for manufacture thereof, and semiconductor device and method for manufacture thereof | |
US7683392B2 (en) | Semiconductor device with anisotropy-relaxed quantum dots | |
JPH08111558A (en) | Semiconductor laser element | |
JPH09116225A (en) | Semiconductor light emitting device | |
JPH09129974A (en) | Semiconductor laser device | |
US5331656A (en) | Very short wavelength semiconductor laser | |
JP4097232B2 (en) | Semiconductor laser element | |
WO2012114074A1 (en) | Semiconductor device and fabrication method | |
JPH09298341A (en) | Semiconductor laser element | |
JP4178807B2 (en) | Semiconductor light emitting device and manufacturing method thereof | |
JP2003506877A (en) | Semiconductor structure using group III nitride quaternary material system | |
JPH0677592A (en) | Semiconductor laser element | |
JPH09232675A (en) | Semiconductor laser | |
JP3716395B2 (en) | Semiconductor light emitting device | |
JPH1187764A (en) | Semiconductor light-emitting device and its manufacture | |
US5302847A (en) | Semiconductor heterostructure having a capping layer preventing deleterious effects of As-P exchange | |
JPH0541560A (en) | Semiconductor laser element | |
JP3033333B2 (en) | Semiconductor laser device | |
JPH0669589A (en) | Semiconductor laser element | |
JP2556270B2 (en) | Strained quantum well semiconductor laser | |
JPH08307005A (en) | Semiconductor laser element |