JP2000223790A - Nitride-based semiconductor laser device - Google Patents

Nitride-based semiconductor laser device

Info

Publication number
JP2000223790A
JP2000223790A JP11021333A JP2133399A JP2000223790A JP 2000223790 A JP2000223790 A JP 2000223790A JP 11021333 A JP11021333 A JP 11021333A JP 2133399 A JP2133399 A JP 2133399A JP 2000223790 A JP2000223790 A JP 2000223790A
Authority
JP
Japan
Prior art keywords
layer
semiconductor laser
laser device
nitride
based semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11021333A
Other languages
Japanese (ja)
Other versions
JP3678399B2 (en
Inventor
Kazuhiko Itaya
和彦 板谷
Risa Sugiura
理砂 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2133399A priority Critical patent/JP3678399B2/en
Publication of JP2000223790A publication Critical patent/JP2000223790A/en
Application granted granted Critical
Publication of JP3678399B2 publication Critical patent/JP3678399B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a nitride-based semiconductor laser device which is excellent in the reproducibility of a process, which can be operated at a low threshold value, at a low operating voltage and with high reliability, and whose characteristic is good. SOLUTION: In this nitride-based semiconductor laser device, a multiple quantum well structure 16 which is composed of AlxGa1-xN/AlyGa1-yN (0<x<=1 and 0<=y<1) constituted on a substrate 11 or a superlattice structure is provided. The nitride-based semiconductor laser device is formed in such a way that its A composition is not uniform but step-shaped or graded in a part or all of AlxGa1-xN layers as barrier layers, or in the AlyGa1-yN layer to be used as a well-side layer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、窒化物半導体材料
を用いた半導体レーザに関する。
[0001] 1. Field of the Invention [0002] The present invention relates to a semiconductor laser using a nitride semiconductor material.

【0002】[0002]

【従来の技術】近年、高密度光ディスクシステム等への
応用を目的として短波長の半導体レーザの開発が進めら
れている。この種のレーザーでは記録密度を高めるため
に発振波長を短くすることが要求されている。短波長の
半導体レーザとしてInGaAlP材料による600n
m帯光源は、ディスクの読み込み、書き込みのどちらも
可能なレベルにまで特性改善され、すでに実用化されて
いる。
2. Description of the Related Art In recent years, short-wavelength semiconductor lasers have been developed for application to high-density optical disk systems and the like. In this type of laser, it is required to shorten the oscillation wavelength in order to increase the recording density. 600n of InGaAlP material as short wavelength semiconductor laser
The m-band light source has already been put to practical use with its characteristics improved to a level at which both reading and writing of a disk are possible.

【0003】さらなる記録密度向上を目指して青色体半
導体レーザの開発が盛んに行われている。すでにII-VI
族系による半導体レーザは発振動作が確認されている
が、信頼性が100時間程度にリミットされるなど実用
化への障壁は多く、また波長も480nm以下は作るこ
とが困難であるなど、次世代の光ディスクシステム等へ
の応用には材料的なリミットが数多く存在する。
[0003] Blue semiconductor lasers have been actively developed to further improve the recording density. Already II-VI
Oscillation has been confirmed for group-based semiconductor lasers, but there are many barriers to practical use, such as the reliability is limited to about 100 hours, and it is difficult to produce wavelengths of 480 nm or less. There are many material limitations in the application to optical disc systems and the like.

【0004】一方、GaN系型半導体レーザは、350
nm以下まで短波長が可能で、信頼性に関してもLED
において1万時間以上の信頼性が確認されるなど有望で
あり盛んに研究、開発が行われている。また、一部で
は、室温での電流注入によるレーザ発振も確認された。
このようにGaN系は材料的に次世代の光ディスクシス
テム光源必要な条件を満たす優れた材料である。
On the other hand, a GaN-based semiconductor laser has a
Short wavelength down to nm or less, and LED for reliability
Has been confirmed for more than 10,000 hours, and is promising and is being actively researched and developed. In some cases, laser oscillation due to current injection at room temperature was also confirmed.
As described above, the GaN-based material is an excellent material that satisfies the necessary conditions for the light source of the next-generation optical disk system.

【0005】また、半導体レーザを、光ディスクシステ
ム等へ応用可能にするためには、レーザの発振ビーム特
性が重要となる。発振ビーム特性を向上させるために
は、発光部に接合平面に平行方向に横モード制御構造を
形成することが必須となる。横モード制御構造は通常異
なる屈折率を有する半導体層で埋め込むメサ構造などの
方法で作り付けることができる。
[0005] In order to apply a semiconductor laser to an optical disk system or the like, the oscillation beam characteristics of the laser are important. In order to improve the oscillation beam characteristics, it is necessary to form a transverse mode control structure in the light emitting portion in a direction parallel to the bonding plane. The transverse mode control structure can be usually formed by a method such as a mesa structure in which semiconductor layers having different refractive indexes are embedded.

【0006】メサ構造の、安定した基本横モード特性を
得るためには十分に厚いクラッド層、リッジ幅を狭くす
るなどが必要となるが、クラッド層として用いるAlG
aN層はGaNとの格子不整合が大きいため厚くすると
クラックが入るという問題があった。またAlGaN層
は抵抗率が小さくできないため電圧を低くできないとう
いう問題があった。
In order to obtain a stable fundamental transverse mode characteristic of the mesa structure, it is necessary to have a sufficiently thick cladding layer and a narrow ridge width.
Since the aN layer has a large lattice mismatch with GaN, there is a problem that cracks occur when the aN layer is made thick. Further, the AlGaN layer has a problem that the voltage cannot be reduced because the resistivity cannot be reduced.

【0007】このためクラッド層として、薄膜(2nm厚程
度) GaNと15%程度のAl組成の薄膜(2nm厚程度)
AlGaNとの超格子構造とすることで、クラックが防
止でき、電圧も低くできることが提案されている。この
構造では、クラッド層を超格子構造としているので、歪
に対する臨界膜厚が増大し、クラックが入りにくい。
For this reason, as a cladding layer, a thin film (about 2 nm thick) and a thin film of about 15% Al composition (about 2 nm thick)
It has been proposed that a crack can be prevented and the voltage can be reduced by using a superlattice structure with AlGaN. In this structure, since the cladding layer has a superlattice structure, the critical film thickness against strain increases, and cracks hardly occur.

【0008】また、このような構造では、図1(a)に
示ように、バンドギャップの大きいAlGaN障壁層を
n型にドーピングし、GaN井戸層をアンドープとする
超格子構造では、ヘテロ界面に大きなバンドベンデング
が生じ、2次元電子ガスが溜まる。超格子は薄く設計さ
れており、隣どうしの2次元電子ガスがカップリングあ
るいはトンネリングし合い、抵抗率の高いAlGaNを
介さずにキャリヤの輸送をエピ層の上下(図では左右)
方向に円滑にすることができ、クラッド層の抵抗を低く
することが可能となる。p型の場合も略同様である。
Further, in such a structure, as shown in FIG. 1A, in a superlattice structure in which an AlGaN barrier layer having a large band gap is doped n-type and a GaN well layer is undoped, a hetero-interface is formed. Large band bending occurs, and two-dimensional electron gas accumulates. The superlattice is designed to be thin, and the two-dimensional electron gas next to each other couples or tunnels with each other, and transports the carrier up and down the epilayer (left and right in the figure) without passing through AlGaN with high resistivity.
Direction, and the resistance of the cladding layer can be reduced. The same applies to the case of the p-type.

【0009】しかしながら、本発明者の研究によりば、
サファイヤ基板上に超格子を形成した場合、状況は大き
く変化することが判明した。窒化物半導体材料による超
格子構造は、他の半導体材料の超格子構造に比べて、歪
によるピエゾ効果や自発分極の影響で非常に大きな内部
電界が発生していることが理論的、実験的にも明らかと
なった。
However, according to the study of the present inventor,
It has been found that the situation changes significantly when a superlattice is formed on a sapphire substrate. Theoretically and experimentally, the superlattice structure made of nitride semiconductor material generates a very large internal electric field due to the piezo effect and spontaneous polarization caused by strain, compared to the superlattice structure made of other semiconductor materials. Became clear.

【0010】図1(b)に示すように、窒化物系半導体
材料を用いた超格子構造では、障壁層、井戸層とも電界
の影響で三角ポテンシャルになっておりキャリヤ注入に
必須な2次元電子ガスを形成するのに十分なバント゛ベン
デングが得られなく、そのためレーザの動作電圧も5V
以下に低くすることは極めて困難である。このような2
次元電子ガスが形成されない要因以外にも3角ポテンシ
ャルにより実効的に高いヘテロバリヤが形成され、種々
の電圧降下の要因を誘起していた。
As shown in FIG. 1B, in a superlattice structure using a nitride-based semiconductor material, both the barrier layer and the well layer have a triangular potential due to the influence of an electric field, and two-dimensional electrons essential for carrier injection. It is not possible to obtain sufficient band-bending to form gas, and therefore the operating voltage of the laser is 5 V
It is extremely difficult to lower it below. Such 2
In addition to the factors that do not form the three-dimensional electron gas, an effective high heterobarrier is formed due to the triangular potential, causing various factors of voltage drop.

【0011】またさらなる光デスクへの記録密度向上の
ためには光源の短波長化をさらに進める必要があるが、
有望となるGaN/AlGaNを量子井戸とする活性層
をレーザに用いた場合においても、このような三角ポテ
ンシャルは井戸部にも形成され、キャリヤ再結合のペア
リングを著しく悪化させていた。
In order to further increase the recording density on an optical disk, it is necessary to further shorten the wavelength of the light source.
Even when a promising active layer using GaN / AlGaN as a quantum well is used for a laser, such a triangular potential is also formed in a well portion, which significantly deteriorates carrier recombination pairing.

【0012】このように従来の窒化物系半導体材料の超
格子構造では動作電圧が低くモード特性も良好な横モー
ド制御半導体レーザ装置を製作することは著しく困難で
あり、信頼性特性(特に高温での)も損なわれていた。
As described above, with the conventional superlattice structure of a nitride-based semiconductor material, it is extremely difficult to manufacture a lateral mode control semiconductor laser device having a low operating voltage and good mode characteristics, and its reliability characteristics (particularly at high temperatures). ) Was also impaired.

【0013】[0013]

【発明が解決しようとする課題】上述したように、従来
の窒化物系半導体材料を用いた超格子構造を有する横モ
ード制御半導体レーザ装置では自発分極、ピエゾ効果に
より電圧の低く発光特性も良好にすることが非常に困難
であるという問題点があった。
As described above, in a conventional transverse mode control semiconductor laser device having a superlattice structure using a nitride-based semiconductor material, a voltage is low due to spontaneous polarization and a piezo effect, and emission characteristics are excellent. There is a problem that it is very difficult to do so.

【0014】本発明は上記事情を考慮してなされたもの
で、プロセスの再現性にも優れ、工程が易しく、歩留ま
りも高い低しきい値・低動作電圧で基本横モード動作が
可能な、特性の良い窒化物半導体レーザ装置を提供する
ことを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has excellent characteristics such as excellent process reproducibility, easy steps, and a high yield, capable of basic lateral mode operation at a low threshold value and a low operating voltage. It is an object to provide a nitride semiconductor laser device with good performance.

【0015】[0015]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、窒化物系半導体からなる活性層と、前記
活性層を挟むように形成されたクラッド層とを具備し、
前記活性層は、障壁層/井戸層(AlxGa1-xN/AlyGa1-yN
0<x ≦1,0 ≦y <1)からなる超格子構造からなり、前
記障壁層(AlxGa1-xN 0<x ≦1 )の一部あるいは全部
の層、あるいは前記井戸層(AlyGa1-yN 0≦y <1 )の
一部あるいは全部の層のAl組成が階段状あるいはグレ
ーデッド状に変化していることを特徴する窒化物系半導
体レーザ装置を提供する。
Means for Solving the Problems To achieve the above object, the present invention comprises an active layer made of a nitride-based semiconductor, and a clad layer formed so as to sandwich the active layer,
The active layer is a barrier layer / well layer (AlxGa1-xN / AlyGa1-yN
It has a superlattice structure of 0 <x ≦ 1,0 ≦ y <1), and is a layer or a part of the barrier layer (AlxGa1-xN0 <x ≦ 1) or the well layer (AlyGa1-yN0). Provided is a nitride-based semiconductor laser device, characterized in that the Al composition of some or all of the layers of ≦ y <1) changes stepwise or graded.

【0016】また、本発明は、窒化物系半導体からなる
活性層と、前記活性層を挟むように形成されたクラッド
層とを具備し、前記クラッド層は、障壁層/井戸層(Al
xGa1-xN/AlyGa1-yN 0<x ≦1,0 ≦y <1)からなる超格
子構造からなり、前記障壁層(AlxGa1-xN 0<x ≦1 )
の一部あるいは全部の層、あるいは前記井戸層(AlyGa1
-yN 0≦y <1 )の一部あるいは全部の層のAl組成が
階段状あるいはグレーデッド状に変化していることを特
徴する窒化物系半導体レーザ装置を提供する。
Further, the present invention includes an active layer made of a nitride-based semiconductor and a clad layer formed so as to sandwich the active layer, wherein the clad layer includes a barrier layer / well layer (Al
xGa1-xN / AlyGa1-yN 0 <x ≦ 1,0 ≦ y <1) and a superlattice structure, wherein the barrier layer (AlxGa1-xN0 <x ≦ 1)
Part or all of the layers, or the well layer (AlyGa1
Provided is a nitride-based semiconductor laser device characterized in that the Al composition of part or all of -yN 0 ≤ y <1) changes stepwise or graded.

【0017】また、本発明は、前記障壁層あるいは井戸
層のAl組成は単調に増加あるいは減少していることを
特徴とする窒化物系半導体レーザ装置を提供する。基板
上に構成された少なくともAlxGa1-xN/AlyGa1-yN(0 <x
≦1,0 ≦y <1)からなる超格子構造で、Al組成が一様
ではなく階段状あるいはグレーデッド状に形成すること
で、超格子構造のバンド構造を詳細に設計し、ピエゾ電
界・自発分極の影響を防ぎ電圧が低く、また発光層とし
ても発光効率や利得の高い窒化物半導体レーザ装置を提
供できる。
The present invention also provides a nitride semiconductor laser device characterized in that the Al composition of the barrier layer or the well layer monotonically increases or decreases. At least AlxGa1-xN / AlyGa1-yN (0 <x
≦ 1,0 ≦ y <1) The Al composition is not uniform and is formed in a stepped or graded shape, so that the band structure of the superlattice structure is designed in detail and the piezo electric field and It is possible to provide a nitride semiconductor laser device in which the influence of spontaneous polarization is prevented, the voltage is low, and the light emitting layer has high luminous efficiency and high gain.

【0018】また、本発明は、プロセスの再現性にも優
れ、工程が易しく、歩留まりも高い低しきい値・低動作
電圧で基本横モード動作が可能となる。特に窒化物半導
体レーザ装置の特性のうち、低動作電圧化、横モード特
性の安定化のみならず、信頼性も向上することができ
る。
Further, according to the present invention, the basic lateral mode operation can be performed with a low threshold voltage and a low operating voltage, which is excellent in process reproducibility, easy in the process, and high in the yield. In particular, among the characteristics of the nitride semiconductor laser device, not only the operating voltage can be reduced and the transverse mode characteristics can be stabilized, but also the reliability can be improved.

【0019】[0019]

【発明の実施の形態】以下、本発明を図面を用いて詳細
に説明する。図2は本発明の第1の実施例に係わる青色
窒化物半導体レーザ装置の概略構成を説明するための断
面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings. FIG. 2 is a sectional view for explaining a schematic configuration of the blue nitride semiconductor laser device according to the first embodiment of the present invention.

【0020】各窒化物層はすべてMOCVD(有機金属
気相成長法)により成長を行った。成長条件に関して、
圧力は常圧、バッファー層以外のGaN 、AlGaN 層は基本
的には窒素、水素、アンモニアを混合した雰囲気で10
00℃から1100℃の範囲、活性層を含む成長は窒素
とアンモニア雰囲気で、700℃から850℃の範囲と
した。
Each nitride layer was grown by MOCVD (metal organic chemical vapor deposition). Regarding growth conditions,
The pressure is normal pressure, and the GaN and AlGaN layers other than the buffer layer are basically 10 atmospheres in a mixed atmosphere of nitrogen, hydrogen and ammonia.
The growth including the active layer was performed in a range of from 700 ° C. to 850 ° C. in a nitrogen and ammonia atmosphere.

【0021】図1中11はサファイヤ基板であり、12
は低温成長(550℃)のGaN バッファー層(0.03
μm)である。14は高温成長(1100℃)のGaN
で、ラテラル成長用のSiO2 ストライプ10を介して
下部はアンドープ、上はn −GaNコンタクト層とし
た。13はn 側電極である。
In FIG. 1, reference numeral 11 denotes a sapphire substrate;
Is a GaN buffer layer (0.03
μm). 14 is GaN grown at high temperature (1100 ° C)
The lower portion was undoped, and the upper portion was an n-GaN contact layer via a lateral growth SiO 2 stripe 10. 13 is an n-side electrode.

【0022】15はトータル厚さ1.0μmのn−Al
GaN/ un−GaNの超格子構造からなるn型クラッ
ド層、16は多重量子井戸構造(MQW )、光ガイド層を
含む活性層部であり、厚さ0.1μmのGaNからなる
光ガイド層を有し、井戸層は4nm厚のIn0.13 Ga
0.87 N4層からなり、バリヤ層は厚さ8nmのIn0.
03 Ga0.97 Nから構成される。
Reference numeral 15 denotes n-Al having a total thickness of 1.0 μm.
An n-type cladding layer having a GaN / un-GaN superlattice structure, an active layer portion 16 including a multiple quantum well structure (MQW) and an optical guide layer, and an optical guide layer made of GaN having a thickness of 0.1 μm. And the well layer is made of In0.13 Ga having a thickness of 4 nm.
0.87 N4 layer, the barrier layer is 8 nm thick InO.
03 Ga0.97N.

【0023】17はトータル厚さ1.0μmのp−Al
GaN/ un−GaNの超格子からなるp型クラッド
層、20は厚さ0.5μmP −GaNコンタクト層(M
gドープ)で、最表面はさらにMgを高濃度化してい
る。21はSiO2 狭窄層、22はp型電極、23は電
極パッドである。
Reference numeral 17 denotes p-Al having a total thickness of 1.0 μm.
A p-type cladding layer made of a GaN / un-GaN superlattice, 20 is a 0.5 μm P-GaN contact layer (M
(g-doped), and the outermost surface has a higher Mg concentration. 21 is a SiO 2 confinement layer, 22 is a p-type electrode, and 23 is an electrode pad.

【0024】図3に、この窒化物半導体レーザ装置の超
格子構造のバンド図を示す。ここではn側の伝導帯側を
示す。障壁層、井戸層とも厚さは2nm、障壁層のみ5
×1018cm-3のn型にドープしている。障壁層のAl
組成を基板側から表面側に向って15%から20%にグ
レーデッドに変化させることでGaN側のバンドベンデ
ングを急峻化させ2次元電子ガスの形成を確実にさせて
いる。
FIG. 3 shows a band diagram of the superlattice structure of the nitride semiconductor laser device. Here, the n-side conduction band side is shown. The thickness of both the barrier layer and the well layer is 2 nm, and only the barrier layer is 5
It is doped into an n-type of × 10 18 cm −3 . Al of barrier layer
By changing the composition graded from 15% to 20% from the substrate side to the surface side, the band bending on the GaN side is sharpened and the formation of a two-dimensional electron gas is ensured.

【0025】本実施例ではリッジ幅は3μmの場合、し
きい値35mAで室温連続発振した。発振波長は400
nm、動作電圧は4.0Vであった。ビーム特性は単峰
であり、非点隔差は5μmと十分小さな値が得られた。
最高光出力は連続発振で40mWまで得られ、信頼性に
関しても50Cで2000時間以上安定に動作した。こ
れらの特性は基板は下のままヒートシンクにボンデング
した構造で得られた。雑音特性に関してももどり光の存
在下でも10-13 dB/Hz 以下の特性が得られた。素子の歩
留まりは極めて高く、90%の素子で、上記した横モー
ド特性が得られた。
In this embodiment, when the ridge width is 3 μm, continuous oscillation at room temperature occurs at a threshold value of 35 mA. The oscillation wavelength is 400
nm, and the operating voltage was 4.0 V. The beam characteristics were unimodal, and the astigmatic difference was a sufficiently small value of 5 μm.
The maximum light output was obtained up to 40 mW by continuous oscillation, and the device operated stably at 50 C for 2000 hours or more in terms of reliability. These characteristics were obtained with a structure in which the substrate was bonded to a heat sink while keeping the substrate below. Regarding the noise characteristics, a characteristic of 10 -13 dB / Hz or less was obtained even in the presence of returning light. The yield of the devices was extremely high, and the above-mentioned transverse mode characteristics were obtained with 90% of the devices.

【0026】図4は本発明の第2の実施例に係わる青色
窒化物半導体レーザ装置の概略構成を説明するための断
面図である。本実施例では14のn−GaN層より上部
に位置する各窒化物層はすべて第1の実施例と同様MO
CVD(有機金属気相成長法)により成長を行った。成
長条件等も同様である。第1の実施例との違いは基板と
してハイドライド気相成長装置により成長したn型Ga
N基板24を用いていることである。GaN基板成長時
にもラテラル成長技術を取り込んでおり、転位密度を1
4 cm-2以下に抑制している。
FIG. 4 is a sectional view for explaining a schematic structure of a blue nitride semiconductor laser device according to a second embodiment of the present invention. In this embodiment, all the nitride layers located above the fourteen n-GaN layers are MO layers as in the first embodiment.
Growth was performed by CVD (metal organic chemical vapor deposition). The same applies to growth conditions and the like. The difference from the first embodiment is that n-type Ga grown as a substrate by a hydride vapor phase epitaxy apparatus is used.
That is, the N substrate 24 is used. Lateral growth technology is incorporated during GaN substrate growth, and dislocation density is reduced to 1
0 4 cm -2 is suppressed below.

【0027】図5に、この窒化物半導体レーザ装置の超
格子構造のバンド図を示す。ここでもn側の伝導帯側を
示す。障壁層、井戸層とも厚さは2nm、井戸層、障壁
層の両方を3×1018cm-3のn型にドープしている。
ここでは障壁層のAl組成を表面側から基板側に向って
12%から15%にグレーデッドに変化させて、障壁層
のバンドにスパイクやベンデングが極力発生しないよう
にした。この例では2次元電子ガスによる効果を必ずし
も積極的に活用したものではなく、通常のキャリヤ伝導
を用いたケースであるが、電圧は第1の実施例と同様に
低減できた。このレーザを接合面をヒートシンクにマウ
ントしたところ、しきい電流値やビーム特性は第1の実
施構造と同様であったが、最高連続発振温度は100℃
まで高くすることができた。信頼性試験も高温で試すこ
とがか可能となり、50℃で10000時間以上安定に
動作するのを確認した。横モード特性も第1の実施例と
同様、安定した特性が歩留まり良く得られた。
FIG. 5 shows a band diagram of the superlattice structure of the nitride semiconductor laser device. Here, the n-side conduction band side is also shown. Both the barrier layer and the well layer have a thickness of 2 nm, and both the well layer and the barrier layer are doped with 3 × 10 18 cm −3 n-type.
Here, the Al composition of the barrier layer was graded from 12% to 15% from the surface side to the substrate side so as to minimize spikes and bending in the band of the barrier layer. In this example, the effect of the two-dimensional electron gas is not necessarily utilized positively, but a case in which ordinary carrier conduction is used. However, the voltage could be reduced as in the first embodiment. When this laser was mounted on a heat sink with a bonding surface, the threshold current value and beam characteristics were the same as those of the first embodiment, but the maximum continuous oscillation temperature was 100 ° C.
Could be higher. The reliability test can be performed at a high temperature, and it has been confirmed that the device operates stably at 50 ° C. for 10,000 hours or more. As in the case of the first embodiment, stable transverse characteristics were obtained with good yield.

【0028】図6は本発明の第3の実施例に係わる青色
窒化物半導体レーザ装置の概略構成を説明するための断
面図である。本実施例では、GaN基板を用いるのは第
2の実施例と同様であるが、構造上の違いはメサを形成
後、再成長により選択成長でn-InGaN 吸収層(光導波
層)18を形成し、その後コンタクト層20を成長する
点である。
FIG. 6 is a sectional view for explaining a schematic structure of a blue nitride semiconductor laser device according to a third embodiment of the present invention. In this embodiment, the use of a GaN substrate is the same as that of the second embodiment. However, the difference in structure is that after forming the mesa, the n-InGaN absorption layer (optical waveguide layer) 18 is selectively grown by regrowth. Is formed, and then the contact layer 20 is grown.

【0029】図7に、この窒化物半導体レーザ装置の超
格子構造のバンド図を示す。ここでもn側の伝導帯側を
示す。障壁層、井戸層とも厚さは2nm、障壁層のみ5
×1018cm-3のn型にドープしている。ここでは井戸
層のAl組成を基板側から表面側に向って0%から5%
にグレーデッドに変化させることでGaN側のバンド底
を擬似フラット化し、2次元電子ガスの形成を確実にさ
せた。
FIG. 7 shows a band diagram of the superlattice structure of the nitride semiconductor laser device. Here, the n-side conduction band side is also shown. The thickness of both the barrier layer and the well layer is 2 nm, and only the barrier layer is 5
It is doped into an n-type of × 10 18 cm −3 . Here, the Al composition of the well layer is 0% to 5% from the substrate side to the surface side.
The band bottom on the GaN side was quasi-flattened by changing to a graded manner to ensure the formation of a two-dimensional electron gas.

【0030】図8には、別の実施例として、窒化物半導
体レーザ装置の活性層(MQW)のバンド図を示した。
障壁層、井戸層とも厚さは2nm、どちらもアンドープ
である。本レーザは350nm で発振する紫外レーザであり
井戸層はGaNベースであるが、図8のように井戸層の
Al組成を基板側から表面側に向って0%から5%添加
していくグレーデッド構造とすることでGaN側のバン
ド底をフラット化し、発光特性(しきい値)を改善し
た。
FIG. 8 shows a band diagram of an active layer (MQW) of a nitride semiconductor laser device as another embodiment.
Both the barrier layer and the well layer have a thickness of 2 nm, and both are undoped. This laser is an ultraviolet laser oscillating at 350 nm, and the well layer is based on GaN, but as shown in FIG. 8, graded by adding 0 to 5% of the Al composition of the well layer from the substrate side to the surface side. With this structure, the band bottom on the GaN side is flattened, and the light emission characteristics (threshold) are improved.

【0031】本実施例ではリッジ幅は3μmの場合、し
きい値65mAで室温連続発振した。発振波長は350
nm、動作電圧は4.5Vであった。ビーム特性は単峰
であり、非点隔差は5μmと十分小さな値が得られた。
最高光出力は連続発振で10mWまで得られ、信頼性に
関しても40Cで1000時間以上安定に動作した。
In this embodiment, when the ridge width was 3 μm, continuous oscillation at room temperature was performed at a threshold value of 65 mA. The oscillation wavelength is 350
nm and the operating voltage was 4.5V. The beam characteristics were unimodal, and the astigmatic difference was a sufficiently small value of 5 μm.
The maximum light output was obtained up to 10 mW by continuous oscillation, and the device stably operated at 40 C for 1,000 hours or more in terms of reliability.

【0032】本発明では、p型の場合も価電子帯側のバ
ンドを考慮して同様に設計実施した。超格子の場合の電
圧降下は主にピエゾ電界・自発分極の影響と見ており、
基板−表面側の電界効果方向も図示した通りであるが、
Al組成によっては組成グレーデッド化の方向を逆にさ
せても効果がある場合があった。
In the present invention, the p-type was also designed and implemented in consideration of the band on the valence band side. We see that the voltage drop in the superlattice is mainly due to the piezo electric field and spontaneous polarization.
The direction of the electric field effect on the substrate-surface side is also as illustrated,
Depending on the Al composition, reversing the composition graded direction may have an effect.

【0033】また上記実施例では主に組成はグレーデッ
ドとしたが階段状に段階的に変化させてもよい。また、
発光層としてInGaNを用いる場合も井戸層あるいは
障壁層をグレーデッド化してしきい値等低減できる。
In the above embodiment, the composition is mainly graded, but may be changed stepwise in a stepwise manner. Also,
Also when InGaN is used as the light emitting layer, the well layer or the barrier layer can be graded to reduce the threshold and the like.

【0034】なお本発明は本実施例に限られるものでは
なく、半導体層、基板としてSiCなども適用可能で、
II-VI 族化合物半導体、Si、Geなどを用いても良
い。構造もレーザのしきい値に悪影響を与えないもので
あれば種々の適用が可能である。その他、導波路構造、
受光素子、トランジスターなどの光デバイス分野へも適
用が可能である。
It should be noted that the present invention is not limited to this embodiment, and SiC or the like can be applied as a semiconductor layer and a substrate.
A II-VI compound semiconductor, Si, Ge, or the like may be used. Various applications are possible as long as the structure does not adversely affect the threshold value of the laser. Other, waveguide structure,
The present invention is also applicable to the field of optical devices such as light receiving elements and transistors.

【0035】[0035]

【発明の効果】以上詳述したように本発明によれば、超
格子層は低抵抗化することができ、プロセスの再現性に
も優れ、工程が易しく、歩留まりも高い低しきい値・低
動作電圧で基本横モード動作が可能な、特性の良いナイ
トライド系横モード制御型構造レーザを提供する。特に
半導体レーザの特性においては低動作電圧化、横モード
特性の安定化のみならず、信頼性も向上せしめる大きな
作用がある。その有用性は絶大である。
As described above in detail, according to the present invention, the superlattice layer can be made to have a low resistance, excellent in process reproducibility, easy to process, high in yield and low in threshold and low. Provided is a nitride-based transverse mode control type laser having good characteristics and capable of performing basic transverse mode operation at an operating voltage. In particular, in the characteristics of the semiconductor laser, there is a great effect of improving not only the operating voltage and stabilization of the transverse mode characteristics but also the reliability. Its usefulness is enormous.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 従来背景を示す図、FIG. 1 is a diagram showing a conventional background,

【図2】 本発明の第1の実施例の窒化物半導体レーザ
装置の断面図
FIG. 2 is a cross-sectional view of the nitride semiconductor laser device according to the first embodiment of the present invention.

【図3】 本発明の第1の実施例の窒化物半導体レーザ
装置の超格子構造のバンド図
FIG. 3 is a band diagram of the superlattice structure of the nitride semiconductor laser device according to the first embodiment of the present invention.

【図4】 本発明の第2の実施例の窒化物半導体レーザ
装置の断面図
FIG. 4 is a sectional view of a nitride semiconductor laser device according to a second embodiment of the present invention.

【図5】 本発明の第2の実施例の窒化物半導体レーザ
装置の超格子構造のバンド図
FIG. 5 is a band diagram of a superlattice structure of a nitride semiconductor laser device according to a second embodiment of the present invention.

【図6】 本発明の第3の実施例の窒化物半導体レーザ
装置の断面図
FIG. 6 is a sectional view of a nitride semiconductor laser device according to a third embodiment of the present invention.

【図7】 本発明の第1の実施例の窒化物半導体レーザ
装置の超格子構造のバンド図
FIG. 7 is a band diagram of the superlattice structure of the nitride semiconductor laser device according to the first embodiment of the present invention.

【図8】 本発明の別の実施例の窒化物半導体レーザ装
置の超格子構造のバンド図
FIG. 8 is a band diagram of a superlattice structure of a nitride semiconductor laser device according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11…サファイヤ基板 12…バッファー層 13…n側電極 14…n−GaNコンタクト層 15…n−AlGaN/GaN 超格子クラッド層 16…多重量子井戸構造(MQW )光ガイド層を含む活性
層部 17…p−AlGaN/GaN 超格子クラッド層 18…InGaN 吸収層(光導波層) 20…p−GaNコンタクト層 21…SiO2 狭窄層 22…p型電極 23…電極パッド 10…SiO2 ストライプマスク 24…n−GaN基板
REFERENCE SIGNS LIST 11 sapphire substrate 12 buffer layer 13 n-side electrode 14 n-GaN contact layer 15 n-AlGaN / GaN superlattice cladding layer 16 active layer portion including multiple quantum well structure (MQW) light guide layer 17 p-AlGaN / GaN superlattice cladding layer 18 ... InGaN absorbing layer (optical waveguide layer) 20 ... p-GaN contact layer 21 ... SiO 2 blocking layer 22 ... p-type electrode 23 ... electrode pad 10 ... SiO 2 stripe masks 24 ... n -GaN substrate

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】窒化物系半導体からなる活性層と、 前記活性層を挟むように形成されたクラッド層とを具備
し、 前記活性層は、障壁層/井戸層(AlxGa1-xN/AlyGa1-yN
0<x ≦1,0 ≦y <1)からなる超格子構造からなり、前
記障壁層(AlxGa1-xN 0<x ≦1 )の一部あるいは全部
の層、あるいは前記井戸層(AlyGa1-yN 0≦y <1 )の
一部あるいは全部の層のAl組成が階段状あるいはグレ
ーデッド状に変化していることを特徴する窒化物系半導
体レーザ装置
1. An active layer comprising a nitride-based semiconductor, and a clad layer formed so as to sandwich the active layer, wherein the active layer comprises a barrier layer / well layer (AlxGa1-xN / AlyGa1-yN).
It has a superlattice structure of 0 <x ≦ 1,0 ≦ y <1), and is a layer or a part of the barrier layer (AlxGa1-xN0 <x ≦ 1) or the well layer (AlyGa1-yN0). ≦ y <1) A nitride semiconductor laser device characterized in that the Al composition of some or all of the layers changes stepwise or graded.
【請求項2】窒化物系半導体からなる活性層と、 前記活性層を挟むように形成されたクラッド層とを具備
し、 前記クラッド層は、障壁層/井戸層(AlxGa1-xN/AlyGa1
-yN 0<x ≦1,0 ≦y<1)からなる超格子構造からな
り、前記障壁層(AlxGa1-xN 0<x ≦1 )の一部あるい
は全部の層、あるいは前記井戸層(AlyGa1-yN 0≦y <
1 )の一部あるいは全部の層のAl組成が階段状あるい
はグレーデッド状に変化していることを特徴する窒化物
系半導体レーザ装置
2. An active layer comprising a nitride-based semiconductor, and a clad layer formed so as to sandwich the active layer, wherein the clad layer is a barrier layer / well layer (AlxGa1-xN / AlyGa1).
-yN 0 <x ≤1,0 ≤y <1) and has a superlattice structure, and a part or all of the barrier layer (AlxGa1-xN 0 <x ≤1) or the well layer (AlyGa1- yN 0 ≦ y <
1) A nitride semiconductor laser device characterized in that the Al composition of some or all of the layers changes stepwise or graded.
【請求項3】前記障壁層あるいは井戸層のAl組成は単
調に増加あるいは減少していることを特徴とする請求項
1あるいは請求項2記載の窒化物系半導体レーザ装置
3. The nitride semiconductor laser device according to claim 1, wherein the Al composition of the barrier layer or the well layer monotonously increases or decreases.
JP2133399A 1999-01-29 1999-01-29 Nitride semiconductor laser device Expired - Fee Related JP3678399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2133399A JP3678399B2 (en) 1999-01-29 1999-01-29 Nitride semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2133399A JP3678399B2 (en) 1999-01-29 1999-01-29 Nitride semiconductor laser device

Publications (2)

Publication Number Publication Date
JP2000223790A true JP2000223790A (en) 2000-08-11
JP3678399B2 JP3678399B2 (en) 2005-08-03

Family

ID=12052215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2133399A Expired - Fee Related JP3678399B2 (en) 1999-01-29 1999-01-29 Nitride semiconductor laser device

Country Status (1)

Country Link
JP (1) JP3678399B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002080320A1 (en) * 2001-03-28 2002-10-10 Nichia Corporation Nitride semiconductor element
JP2003523075A (en) * 1999-12-30 2003-07-29 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Stripe laser diode element
WO2003065526A1 (en) * 2002-01-31 2003-08-07 Nec Corporation Quantum well structure and semiconductor element using it and production method of semiconductor element
JP2003527745A (en) * 1999-12-02 2003-09-16 クリー・ライティング・カンパニー Highly efficient optical emitter with reduced polarization induced charge
JP2005056973A (en) * 2003-08-01 2005-03-03 Hitachi Cable Ltd Semiconductor light emitting device and epitaxial wafer therefor for manufacturing the same
JP2008523623A (en) * 2004-12-06 2008-07-03 センサー エレクトロニック テクノロジー インコーポレイテッド Nitride-based light-emitting heterostructure
JP2008235606A (en) * 2007-03-20 2008-10-02 Sony Corp Semiconductor light-emitting element, method for manufacturing semiconductor light-emitting element, backlight, display unit, electronic equipment, and light-emitting device
JP2010080481A (en) * 2008-09-24 2010-04-08 Ngk Insulators Ltd Photodetector and method of manufacturing the same
JP2011187591A (en) * 2010-03-08 2011-09-22 Uv Craftory Co Ltd Nitride semiconductor ultraviolet light-emitting element
JP2014022736A (en) * 2012-07-16 2014-02-03 Advanced Optoelectronic Technology Inc Multiquantum well structure and light emitting diode having the same
US10134948B2 (en) 2011-02-25 2018-11-20 Sensor Electronic Technology, Inc. Light emitting diode with polarization control
JP2020136595A (en) * 2019-02-25 2020-08-31 日本電信電話株式会社 Semiconductor device

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07122812A (en) * 1993-10-27 1995-05-12 Fujitsu Ltd Semiconductor laser
JPH09139543A (en) * 1995-11-15 1997-05-27 Hitachi Ltd Semiconductor laser element
JPH09199799A (en) * 1996-01-19 1997-07-31 Hitachi Ltd Mode-locked laser
JPH1065271A (en) * 1996-08-13 1998-03-06 Toshiba Corp Gallium nitride based semiconductor light-emitting element
JPH1084132A (en) * 1996-09-08 1998-03-31 Toyoda Gosei Co Ltd Semiconductor light emitting element
JPH10152399A (en) * 1996-09-30 1998-06-09 Canon Inc Formation of device containing compound semiconductor laminated structure, formation of compound semiconductor laminated structure, device formed of the same, optical transmitter using the same, and optical transmitting system by using the same
JPH10326943A (en) * 1997-03-26 1998-12-08 Nichia Chem Ind Ltd Nitride semiconductor element
JPH10335757A (en) * 1997-01-09 1998-12-18 Nichia Chem Ind Ltd Nitride semiconductor element
JPH118406A (en) * 1997-06-18 1999-01-12 Daido Steel Co Ltd Surface-emitting element
JP2000174327A (en) * 1998-12-03 2000-06-23 Oki Electric Ind Co Ltd Vertical micro resonator light-emitting diode
JP2000232259A (en) * 1998-12-09 2000-08-22 Sanyo Electric Co Ltd Light emitting device and manufacture thereof
JP2000261106A (en) * 1999-01-07 2000-09-22 Matsushita Electric Ind Co Ltd Semiconductor light emitting element, its manufacture and optical disk device
JP2001168471A (en) * 1998-12-15 2001-06-22 Nichia Chem Ind Ltd Nitride semiconductor light-emitting element

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07122812A (en) * 1993-10-27 1995-05-12 Fujitsu Ltd Semiconductor laser
JPH09139543A (en) * 1995-11-15 1997-05-27 Hitachi Ltd Semiconductor laser element
JPH09199799A (en) * 1996-01-19 1997-07-31 Hitachi Ltd Mode-locked laser
JPH1065271A (en) * 1996-08-13 1998-03-06 Toshiba Corp Gallium nitride based semiconductor light-emitting element
JPH1084132A (en) * 1996-09-08 1998-03-31 Toyoda Gosei Co Ltd Semiconductor light emitting element
JPH10152399A (en) * 1996-09-30 1998-06-09 Canon Inc Formation of device containing compound semiconductor laminated structure, formation of compound semiconductor laminated structure, device formed of the same, optical transmitter using the same, and optical transmitting system by using the same
JPH10335757A (en) * 1997-01-09 1998-12-18 Nichia Chem Ind Ltd Nitride semiconductor element
JPH10326943A (en) * 1997-03-26 1998-12-08 Nichia Chem Ind Ltd Nitride semiconductor element
JPH118406A (en) * 1997-06-18 1999-01-12 Daido Steel Co Ltd Surface-emitting element
JP2000174327A (en) * 1998-12-03 2000-06-23 Oki Electric Ind Co Ltd Vertical micro resonator light-emitting diode
JP2000232259A (en) * 1998-12-09 2000-08-22 Sanyo Electric Co Ltd Light emitting device and manufacture thereof
JP2001168471A (en) * 1998-12-15 2001-06-22 Nichia Chem Ind Ltd Nitride semiconductor light-emitting element
JP2000261106A (en) * 1999-01-07 2000-09-22 Matsushita Electric Ind Co Ltd Semiconductor light emitting element, its manufacture and optical disk device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012256952A (en) * 1999-12-02 2012-12-27 Cree Inc High efficiency light emitter with reduced polarization induced charge
JP2003527745A (en) * 1999-12-02 2003-09-16 クリー・ライティング・カンパニー Highly efficient optical emitter with reduced polarization induced charge
JP2003523075A (en) * 1999-12-30 2003-07-29 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Stripe laser diode element
US7095051B2 (en) 2001-03-28 2006-08-22 Nichia Corporation Nitride semiconductor element
WO2002080320A1 (en) * 2001-03-28 2002-10-10 Nichia Corporation Nitride semiconductor element
WO2003065526A1 (en) * 2002-01-31 2003-08-07 Nec Corporation Quantum well structure and semiconductor element using it and production method of semiconductor element
US7183584B2 (en) 2002-01-31 2007-02-27 Nec Corporation Quantum well structure and semiconductor device using it and production method of semiconductor element
JP2005056973A (en) * 2003-08-01 2005-03-03 Hitachi Cable Ltd Semiconductor light emitting device and epitaxial wafer therefor for manufacturing the same
JP2008523623A (en) * 2004-12-06 2008-07-03 センサー エレクトロニック テクノロジー インコーポレイテッド Nitride-based light-emitting heterostructure
JP2008235606A (en) * 2007-03-20 2008-10-02 Sony Corp Semiconductor light-emitting element, method for manufacturing semiconductor light-emitting element, backlight, display unit, electronic equipment, and light-emitting device
JP2010080481A (en) * 2008-09-24 2010-04-08 Ngk Insulators Ltd Photodetector and method of manufacturing the same
JP2011187591A (en) * 2010-03-08 2011-09-22 Uv Craftory Co Ltd Nitride semiconductor ultraviolet light-emitting element
US10134948B2 (en) 2011-02-25 2018-11-20 Sensor Electronic Technology, Inc. Light emitting diode with polarization control
JP2014022736A (en) * 2012-07-16 2014-02-03 Advanced Optoelectronic Technology Inc Multiquantum well structure and light emitting diode having the same
US8912527B2 (en) 2012-07-16 2014-12-16 Advanced Optoelectronic Technology, Inc. Multi-quantum well structure and light emitting diode having the same
JP2020136595A (en) * 2019-02-25 2020-08-31 日本電信電話株式会社 Semiconductor device
WO2020175125A1 (en) * 2019-02-25 2020-09-03 日本電信電話株式会社 Semiconductor device
JP7338166B2 (en) 2019-02-25 2023-09-05 日本電信電話株式会社 semiconductor equipment

Also Published As

Publication number Publication date
JP3678399B2 (en) 2005-08-03

Similar Documents

Publication Publication Date Title
US6172382B1 (en) Nitride semiconductor light-emitting and light-receiving devices
US6677619B1 (en) Nitride semiconductor device
US8679876B2 (en) Laser diode and method for fabricating same
US20030116767A1 (en) Edge-emitting nitride-based laser diode with P-N tunnel junction current injection
JP2011101039A (en) Nitride semiconductor laser device
JP2002335052A (en) Nitride semiconductor element
JPH10290027A (en) Semiconductor light emitting device and manufacture thereof
JPH1065271A (en) Gallium nitride based semiconductor light-emitting element
JP3904709B2 (en) Nitride-based semiconductor light-emitting device and method for manufacturing the same
JP5507792B2 (en) Group III nitride semiconductor optical device
JP3678399B2 (en) Nitride semiconductor laser device
JP2003204122A (en) Nitride semiconductor element
JPH1051070A (en) Semiconductor laser
JP4197030B2 (en) Semiconductor laser, semiconductor laser manufacturing method, optical pickup, and optical disc apparatus
JP4877294B2 (en) Manufacturing method of semiconductor light emitting device
JP2006229210A (en) Nitride semiconductor laser device and its manufacturing method
JP3447920B2 (en) Gallium nitride based compound semiconductor laser and method of manufacturing the same
JP4178807B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP2001102690A (en) Nitride type semiconductor laser
JP2002261393A (en) Nitride semiconductor device
JP4955195B2 (en) Nitride semiconductor device
JP3552642B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP2007049209A (en) Semiconductor optical device and manufacturing method thereof
JP3963632B2 (en) Semiconductor optical device equipment
JP3278108B2 (en) Method for manufacturing nitride semiconductor laser element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040928

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050506

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050509

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees