JPH1051070A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPH1051070A
JPH1051070A JP19939096A JP19939096A JPH1051070A JP H1051070 A JPH1051070 A JP H1051070A JP 19939096 A JP19939096 A JP 19939096A JP 19939096 A JP19939096 A JP 19939096A JP H1051070 A JPH1051070 A JP H1051070A
Authority
JP
Japan
Prior art keywords
layer
type
doped
gan
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19939096A
Other languages
Japanese (ja)
Inventor
Akito Kuramata
朗人 倉又
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP19939096A priority Critical patent/JPH1051070A/en
Publication of JPH1051070A publication Critical patent/JPH1051070A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a low contact resistance, by providing a p-type contact layer formed out of a p-type InN semiconductor or a p-type In-Ga-N-based semiconductor on the p-type clad layer of the laser structure including an active layer, an n-type clad layer and a p-type clad layer using GaN-based semiconductors. SOLUTION: In a semiconductor laser, a contact layer has the composition of x>0.2 in p-type Inx Ga1-x N. Further, in the laser, an Si-doped n-type GaN buffer layer 2, an Si-doped n-type Al0.15 Ga0.85 N clad layer 3, an Si-doped n-type GaN optical confinement layer 4, an undoped InGaN multiple quantum well(MQW) active layer 5, an Mg-doped p-type GaN optical confinement layer 6, an Mg-doped p-type Al0.15 Ga0.85 N clad layer 7, an Mg-doped p-type contact layer 8, a p-type InGaN inclined-composition layer 9 with a gradually increased In composition and an Mg-doped p-type InN contact layer 10 are grown in succession on a substrate 1. The p-type InGaN inclined composition layer 9 with a gradally increased In composition reduces a potential barrier present between the Mg-doped p-type contact layer 8 and the Mg-doped p-type InN contact layer 10 to make a low contact resistance obtainable.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体レーザに関
し、特に短波長光の発振に適したGaN系半導体を用い
た半導体レーザに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser, and more particularly to a semiconductor laser using a GaN-based semiconductor suitable for oscillating short-wavelength light.

【0002】本明細書において、GaN系半導体とは、
GaNを少なくとも成分として含む半導体を言う。
[0002] In this specification, a GaN-based semiconductor is
A semiconductor containing GaN as a component.

【0003】[0003]

【従来の技術】GaN系半導体、特にGaN系窒化物半
導体(GaN、Inx Ga1-x N、Aly Ga1-y
等)は比較的広いバンドギャップを有し、特に青から紫
外域に発光波長を有する発光素子の構成材料として注目
されている。たとえば現在赤色発光の半導体レーザが用
いられている光磁気ディスク等のデジタル情報記録装置
に青色発光や紫外域発光の半導体レーザを用いることが
できれば、記録密度を大幅に向上させることが可能とな
る。
BACKGROUND ART GaN-based semiconductor, particularly a GaN-based nitride semiconductor (GaN, In x Ga 1- x N, Al y Ga 1-y N
), Which has a relatively wide bandgap and is particularly attracting attention as a constituent material of a light-emitting element having an emission wavelength in the blue to ultraviolet region. For example, if a blue-emitting or ultraviolet-emitting semiconductor laser can be used in a digital information recording device such as a magneto-optical disk in which a red-emitting semiconductor laser is currently used, the recording density can be greatly improved.

【0004】図2は、1996年に日亜化学工業のグル
ープにより初めて実現されたGaN系レーザの層構造を
概略的に示す(S. Nakamura et al, Jpn. J. Appl. Phy
s. 35, L74 (1996) )。サファイア基板51上に、n型
GaNバッファ層51、n型AlGaNクラッド層5
2、n型GaN光閉じ込め層53を積層した後、InG
aN多重量子井戸(MQW)活性層54を形成する。M
QW活性層54は、厚さ2.5nmのIn0.2 Ga0.8
N井戸層と、厚さ5nmのIn0.5 Ga0.5 Nのバリア
層の26周期から構成されている。
FIG. 2 schematically shows the layer structure of a GaN-based laser first realized by a group of Nichia Corporation in 1996 (S. Nakamura et al, Jpn. J. Appl. Phy.
s. 35, L74 (1996)). On a sapphire substrate 51, an n-type GaN buffer layer 51, an n-type AlGaN cladding layer 5
2. After stacking the n-type GaN optical confinement layer 53, the InG
An aN multiple quantum well (MQW) active layer 54 is formed. M
The QW active layer 54 is made of In 0.2 Ga 0.8 with a thickness of 2.5 nm.
It consists of 26 periods of an N well layer and a barrier layer of In 0.5 Ga 0.5 N having a thickness of 5 nm.

【0005】MQW活性層54の上に、p型GaN光閉
じ込め層55、p型AlGaNクラッド層56、p型G
aNコンタクト層57を積層し、pn接合ダイオードが
形成される。このpn接合構造のうち、n型層はSiで
ドープされ、p型層はMgでドープされている。p型G
aNコンタクト層57表面から、n型GaNバッファ層
51の途中までをエッチングで除去し、ストライプ状の
メサ構造が形成される。
On the MQW active layer 54, a p-type GaN light confinement layer 55, a p-type AlGaN cladding layer 56, a p-type G
By stacking the aN contact layers 57, a pn junction diode is formed. In this pn junction structure, the n-type layer is doped with Si, and the p-type layer is doped with Mg. p-type G
A part of the n-type GaN buffer layer 51 is removed by etching from the surface of the aN contact layer 57 to form a stripe-shaped mesa structure.

【0006】n型バッファ層51表面上にn型電極60
が形成され、p型コンタクト層57表面上にp型電極6
1が形成される。n型電極60は、Ti/Al積層で形
成され、p型電極61は、Ni/Auで形成されてい
る。この構成により、波長417nmで発振が得られた
と報告されている。
An n-type electrode 60 is provided on the surface of the n-type buffer layer 51.
Is formed, and the p-type electrode 6 is formed on the surface of the p-type contact layer 57.
1 is formed. The n-type electrode 60 is formed of a Ti / Al stack, and the p-type electrode 61 is formed of Ni / Au. It is reported that oscillation was obtained at a wavelength of 417 nm by this configuration.

【0007】[0007]

【発明が解決しようとする課題】バンドギャップの広い
GaNに良好なオーミックコンタクトを取ることは容易
ではない。特に、p型領域に対するp型電極の抵抗が高
くなり易い。通常、p型GaNのドーパントとしては、
Mgが用いられる。
It is not easy to make good ohmic contact to GaN having a wide band gap. In particular, the resistance of the p-type electrode to the p-type region tends to increase. Usually, as a dopant of p-type GaN,
Mg is used.

【0008】しかしながら、Mgドープのp型層のキャ
リア濃度は一般的には1×1018cm-3程度、例外的に
高くても5×1018cm-3程度である。GaNの仕事関
数は、真空準位から離れており、n型領域には低抵抗の
コンタクトを取りやすいが、p型領域には低抵抗のコン
タクトを取りにくい特性を有する。このような事情によ
り、p型電極のコンタクト抵抗は10-3Ωcm程度であ
り、レーザ装置としては、満足できるほど低抵抗とはな
っていない。
However, the carrier concentration of the Mg-doped p-type layer is generally about 1 × 10 18 cm −3 , and is exceptionally high at about 5 × 10 18 cm −3 . The work function of GaN is far from the vacuum level, and has a characteristic that it is easy to make a low-resistance contact in the n-type region but hard to make a low-resistance contact in the p-type region. Under such circumstances, the contact resistance of the p-type electrode is about 10 −3 Ωcm, and the resistance is not sufficiently low as a laser device.

【0009】コンタクト抵抗が大きいと、レーザの駆動
に大きな電圧が必要となる。コンタクト抵抗部分の電圧
降下は無駄に消費される電力を生じさせ、この無駄な電
力消費により発熱も生じ、レーザ特性を悪化させる。
When the contact resistance is large, a large voltage is required for driving the laser. The voltage drop in the contact resistance portion generates wasteful power consumption, and the wasteful power consumption also generates heat, thereby deteriorating laser characteristics.

【0010】本発明の目的は、p型電極のコンタクト抵
抗が低いGaN系半導体レーザを提供することである。
An object of the present invention is to provide a GaN-based semiconductor laser having a low contact resistance of a p-type electrode.

【0011】[0011]

【課題を解決するための手段】本発明の一観点によれ
ば、GaNを少なくとも成分として含むGaN系半導体
を用い、活性層、n型クラッド層、p型クラッド層を含
むレーザ構造と、前記p型クラッド層上に形成され、p
型InNまたはp型Inx Ga1-x N(x>0.2)で
形成されたp型コンタクト層とを有する。
According to one aspect of the present invention, there is provided a laser structure using a GaN-based semiconductor containing at least GaN as a component, including an active layer, an n-type cladding layer, and a p-type cladding layer. Formed on the mold cladding layer,
And a p-type contact layer formed in the mold InN or p-type In x Ga 1-x N ( x> 0.2).

【0012】InNはGaNに比べて狭いバンドギャッ
プ(約1.9eV)を有し、低抵抗率の領域を作るのに
適している。In組成の高いInGaN混晶も、InN
に近い性質を有する。In組成が0.2より大であれ
ば、InN類似の効果が期待できよう。このようなIn
NまたはIn組成の高いInGaN層にp型電極を接触
させると、低いコンタクト抵抗を得ることが可能とな
る。
InN has a narrow band gap (about 1.9 eV) as compared with GaN, and is suitable for forming a low resistivity region. InGaN mixed crystals with a high In composition also
Has properties close to If the In composition is larger than 0.2, an effect similar to InN can be expected. Such In
When a p-type electrode is brought into contact with an InGaN layer having a high N or In composition, a low contact resistance can be obtained.

【0013】[0013]

【発明の実施の形態】図1は、本発明の実施例によるG
aN系半導体レーザの構成を概略的に示す。結晶構造6
Hを有するSiCの(0001)面基板上に有機金属気
相成長法(MOVPE)により、半導体レーザを構成す
るのに必要な各層の成長を行う。まず、基板1表面上に
厚さ約2μm、不純物濃度5×1018cm-3のSiドー
プn型GaNバッファ層2を成長した後、厚さ約0.4
μm、不純物濃度約5×1017cm-3のSiドープn型
Al0.15Ga0.85Nクラッド層3、厚さ約0.1μm、
不純物濃度約5×1017cm-3のSiドープn型GaN
光閉じ込め層4を成長する。クラッド層3は、光閉じ込
め層4よりも屈折率が低く、光閉じ込め層4内の光に対
し、光閉じ込め効果を発する。
FIG. 1 shows a G according to an embodiment of the present invention.
1 schematically shows a configuration of an aN-based semiconductor laser. Crystal structure 6
Each layer necessary for forming a semiconductor laser is grown on a (0001) plane substrate of SiC having H by metal organic chemical vapor deposition (MOVPE). First, a Si-doped n-type GaN buffer layer 2 having a thickness of about 2 μm and an impurity concentration of 5 × 10 18 cm −3 is grown on the surface of the substrate 1 and then has a thickness of about 0.4 μm.
μm, an Si-doped n-type Al 0.15 Ga 0.85 N clad layer 3 having an impurity concentration of about 5 × 10 17 cm −3 , a thickness of about 0.1 μm,
Si-doped n-type GaN with an impurity concentration of about 5 × 10 17 cm -3
The light confinement layer 4 is grown. The cladding layer 3 has a lower refractive index than the light confinement layer 4 and has a light confinement effect on light in the light confinement layer 4.

【0014】図1(B)に示すように、光閉じ込め層4
の表面上に、ノンドープのInGaN多重量子井戸(M
QW)活性層5を形成する。MQW活性層5は、それぞ
れ厚さ3nmの30層のIn0.3 Ga0.7 N井戸層5a
の間に、厚さ3nmのGaNバリア層5bを挟んだ構成
である。
As shown in FIG. 1B, the light confinement layer 4
Undoped InGaN multiple quantum wells (M
QW) The active layer 5 is formed. The MQW active layer 5 includes 30 In 0.3 Ga 0.7 N well layers 5 a each having a thickness of 3 nm.
Between them, a GaN barrier layer 5b having a thickness of 3 nm is interposed therebetween.

【0015】MQW活性層5の上に、n側領域と対称的
なp側領域を形成する。すなわち、MQW活性層5の上
に、厚さ約0.1μm、不純物濃度約5×1017cm-3
のMgドープp型GaN光閉じ込め層6、厚さ約0.4
μm、不純物濃度約5×10 17cm-3のMgドープp型
Al0.15Ga0.85Nクラッド層7を成長する。クラッド
層7の上に、さらに厚さ約0.3μm、不純物濃度約2
×1018cm-3、Mgドープのp型GaNコンタクト層
8を成長する。
On the MQW active layer 5, symmetrically with the n-side region
The p-side region is formed. That is, on the MQW active layer 5
Has a thickness of about 0.1 μm and an impurity concentration of about 5 × 1017cm-3
Mg-doped p-type GaN optical confinement layer 6 having a thickness of about 0.4
μm, impurity concentration about 5 × 10 17cm-3Mg-doped p-type
Al0.15Ga0.85The N cladding layer 7 is grown. Cladding
On the layer 7, a thickness of about 0.3 μm and an impurity concentration of about 2
× 1018cm-3, Mg-doped p-type GaN contact layer
Grow 8.

【0016】このp型コンタクト層8の上に、In組成
が次第に増加するp型InGaN組成傾斜層9を形成す
る。組成傾斜層は、たとえば厚さ約0.1μm、p型不
純物濃度2×1018cm-3以上である。In組成は、コ
ンタクト層8側で約0であり、上部表面で約1である。
On this p-type contact layer 8, a graded p-type InGaN composition layer 9 whose In composition gradually increases is formed. The composition gradient layer has, for example, a thickness of about 0.1 μm and a p-type impurity concentration of 2 × 10 18 cm −3 or more. The In composition is about 0 on the contact layer 8 side and about 1 on the upper surface.

【0017】なお、InN組成傾斜層9のIn組成は、
GaNコンタクト層8側からInNコンタクト層10側
に向かって徐々に増大することが望ましい。In組成の
変化は、連続的に変化しても、階段的に変化してもよ
い。
The In composition of the InN composition gradient layer 9 is as follows:
It is desirable that the density gradually increases from the GaN contact layer 8 side toward the InN contact layer 10 side. The change of the In composition may be changed continuously or stepwise.

【0018】また、InN層とGaN層を積層し、超格
子を形成すると、InGaN混晶類似の特性を実現する
ことができる。超格子内の隣接するInN層とGaN層
の厚さの比を徐々に変化させることにより、混晶組成を
変化させたのと同等の特性を得ることができる。組成傾
斜層9はこのような超格子構造によっても作成するとこ
ができる。
Further, when a superlattice is formed by laminating an InN layer and a GaN layer, characteristics similar to InGaN mixed crystal can be realized. By gradually changing the ratio of the thicknesses of the adjacent InN layer and GaN layer in the superlattice, it is possible to obtain the same characteristics as those obtained by changing the mixed crystal composition. The composition gradient layer 9 can also be formed by such a superlattice structure.

【0019】InGaN組成傾斜層9の上に、厚さ約
0.5μm、不純物濃度約1×1019cm-3のMgドー
プp型InNコンタクト層10を形成する。InNは、
比較的バンドギャップが狭いため、高濃度までアクセプ
タをドープすることができる。InGaN組成傾斜層9
は、p型コンタクト層8とp型コンタクト層10の間の
電位障壁を低減し、低い接触抵抗を可能にする。
On the InGaN composition gradient layer 9, a Mg-doped p-type InN contact layer 10 having a thickness of about 0.5 μm and an impurity concentration of about 1 × 10 19 cm -3 is formed. InN is
Since the band gap is relatively narrow, the acceptor can be doped to a high concentration. InGaN composition gradient layer 9
Reduces the potential barrier between the p-type contact layer 8 and the p-type contact layer 10 and enables low contact resistance.

【0020】InNは、GaNの上に単結晶成長するこ
とが可能であるが、格子不整合を有する。InGaN組
成傾斜層9を挿入することにより、格子不整合は緩和さ
れるが、InNコンタクト層10を形成することによ
り、GaNコンタクト層8界面付近より上に格子欠陥を
発生させることが避けにくい。しかしながら、このよう
な格子欠陥が発生しても、格子欠陥はMQW活性層5か
ら離れた位置にあり、レーザ素子特性に与える悪影響は
少ない。
InN can grow a single crystal on GaN, but has lattice mismatch. Although lattice mismatch is reduced by inserting the InGaN composition gradient layer 9, it is difficult to avoid generating lattice defects above the vicinity of the interface of the GaN contact layer 8 by forming the InN contact layer 10. However, even if such a lattice defect occurs, the lattice defect is located at a position distant from the MQW active layer 5 and has little adverse effect on the laser element characteristics.

【0021】積層を結晶成長した後、InNコンタクト
層10表面からGaNバッファ層2中間までをストライ
プ状領域を残してエッチングする。ストライプの方向は
〔1−100〕方向とする。これは、6H−SiC基板
および各エピタキシャル成長層の(1−100)面をへ
き開面として共振器を作成できるようにするためであ
る。なお、このエッチングはたとえば塩素を用いたドラ
イエッチングにより行うことができる。
After crystal growth of the stack, etching is performed from the surface of the InN contact layer 10 to the middle of the GaN buffer layer 2 while leaving a striped region. The direction of the stripe is the [1-100] direction. This is to make it possible to form a resonator using the (1-100) plane of the 6H-SiC substrate and each epitaxial growth layer as a cleavage plane. This etching can be performed by, for example, dry etching using chlorine.

【0022】露出したn型GaNバッファ層2表面にス
トライプ状のTi/Pt/Au積層によるn型電極11
を形成し、InNコンタクト層10表面にNi/Au積
層によるp型電極12を形成する。
On the exposed surface of the n-type GaN buffer layer 2, an n-type electrode 11 of Ti / Pt / Au laminated in stripes
Is formed, and a p-type electrode 12 is formed on the surface of the InN contact layer 10 by Ni / Au lamination.

【0023】その後、エピタキシャル成長層および基板
を(1−100)面でへき開し、〔1−100〕方向に
長いレーザ共振器を作成する。図1(A)において、紙
面に垂直な方向がレーザ共振器の共振方向となる。この
ようにして、GaN系半導体レーザが作成される。
After that, the epitaxial growth layer and the substrate are cleaved along the (1-100) plane to form a laser resonator long in the [1-100] direction. In FIG. 1A, the direction perpendicular to the paper is the resonance direction of the laser resonator. Thus, a GaN-based semiconductor laser is produced.

【0024】なお、基板はSiCの他、他の材料を用い
ることもできる。たとえば、図2で説明したサファイア
基板を用いてもよい。活性層は、上述の構成に限らな
い。たとえば、図2で説明した混晶組成の井戸層とバリ
ア層で形成されるMQW活性層を用いてもよい。また、
MQW活性層以外の活性層を用いてもよい。その他、混
晶組成の変更等により設計を変更することもできる。
The substrate may be made of another material other than SiC. For example, the sapphire substrate described with reference to FIG. 2 may be used. The active layer is not limited to the configuration described above. For example, an MQW active layer formed of a well layer and a barrier layer having the mixed crystal composition described with reference to FIG. 2 may be used. Also,
An active layer other than the MQW active layer may be used. In addition, the design can be changed by changing the mixed crystal composition or the like.

【0025】以上実施例に沿って本発明を説明したが、
本発明はこれらに制限されるものではない。例えば、種
々の変更、改良、組み合わせ等が可能なことは当業者に
自明であろう。
The present invention has been described in connection with the preferred embodiments.
The present invention is not limited to these. For example, it will be apparent to those skilled in the art that various modifications, improvements, combinations, and the like can be made.

【0026】[0026]

【発明の効果】以上説明したように、本発明によれば、
p型電極のコンタクト抵抗が低いGaN系半導体レーザ
を提供することができる。
As described above, according to the present invention,
A GaN-based semiconductor laser having a low contact resistance of a p-type electrode can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例によるGaN系半導体レーザの
構成を概略的に示す断面図である。
FIG. 1 is a sectional view schematically showing a configuration of a GaN-based semiconductor laser according to an embodiment of the present invention.

【図2】従来の技術によるGaN系半導体レーザの構成
を概略的に示す断面図である。
FIG. 2 is a cross-sectional view schematically showing a configuration of a GaN-based semiconductor laser according to a conventional technique.

【符号の説明】[Explanation of symbols]

1 SiC基板 2 n型GaNバッファ層 3 n型AlGaNクラッド層 4 n型GaN光閉じ込め層 5 InGaNMQW活性層 6 p型GaN光閉じ込め層 7 p型AlGaNクラッド層 8 p型GaNコンタクト層 9 p型AlGaN組成傾斜層 10 p型InNコンタクト層 11 n型電極 12 p型電極 Reference Signs List 1 SiC substrate 2 n-type GaN buffer layer 3 n-type AlGaN cladding layer 4 n-type GaN light confinement layer 5 InGaN MQW active layer 6 p-type GaN light confinement layer 7 p-type AlGaN cladding layer 8 p-type GaN contact layer 9 p-type AlGaN composition Inclined layer 10 p-type InN contact layer 11 n-type electrode 12 p-type electrode

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 GaNを少なくとも成分として含むGa
N系半導体を用い、活性層、n型クラッド層、p型クラ
ッド層を含むレーザ構造と、 前記p型クラッド層上に形成され、p型InNまたはp
型Inx Ga1-x N(x>0.2)で形成されたp型コ
ンタクト層とを有する半導体レーザ。
1. Ga containing at least GaN as a component
A laser structure including an active layer, an n-type cladding layer, and a p-type cladding layer using an N-based semiconductor; and a p-type InN or p-type layer formed on the p-type cladding layer.
A semiconductor laser having a p-type contact layer formed of In x Ga 1-x N (x> 0.2).
【請求項2】 さらに、前記p型クラッド層と前記p型
コンタクト層との間に配置され、実質的In組成が徐々
に変化するInGaN層で構成された組成傾斜層を有す
る請求項1記載の半導体レーザ。
2. The method according to claim 1, further comprising a composition gradient layer disposed between the p-type cladding layer and the p-type contact layer and composed of an InGaN layer whose substantial In composition changes gradually. Semiconductor laser.
【請求項3】 前記組成傾斜層のInの組成が、単調か
つ連続的または単調かつ階段的に変化する請求項2記載
の半導体レーザ。
3. The semiconductor laser according to claim 2, wherein the composition of In in said composition gradient layer changes monotonically and continuously or monotonically and stepwise.
【請求項4】 前記組成傾斜層がInN/GaN超格子
層であって、隣接するInN層とGaN層の厚さの比が
徐々に変化するInN/GaN超格子層である請求項2
記載の半導体レーザ。
4. The composition-graded layer is an InN / GaN superlattice layer, wherein the thickness ratio between the adjacent InN layer and the GaN layer gradually changes.
A semiconductor laser as described in the above.
JP19939096A 1996-07-29 1996-07-29 Semiconductor laser Pending JPH1051070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19939096A JPH1051070A (en) 1996-07-29 1996-07-29 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19939096A JPH1051070A (en) 1996-07-29 1996-07-29 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPH1051070A true JPH1051070A (en) 1998-02-20

Family

ID=16406988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19939096A Pending JPH1051070A (en) 1996-07-29 1996-07-29 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPH1051070A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11186601A (en) * 1997-12-19 1999-07-09 Showa Denko Kk Compound semiconductor light-emitting device
JP2002094110A (en) * 2000-09-12 2002-03-29 ▲さん▼圓光電股▲ふん▼有限公司 Structure of light emitting diode
JP2003046127A (en) * 2001-05-23 2003-02-14 Sanyo Electric Co Ltd Nitride semiconductor light-emitting element
KR100418888B1 (en) * 2001-06-20 2004-02-14 엘지전자 주식회사 p-Contact Growth Method of Light Emitting Diode/Laser Diode
KR100475005B1 (en) * 2001-03-28 2005-03-08 파이오니아 가부시키가이샤 Nitride semiconductor device
WO2006022498A1 (en) * 2004-08-26 2006-03-02 Lg Innotek Co., Ltd Nitride semicondctor light emitting device and fabrication method thereof
WO2006022497A1 (en) * 2004-08-26 2006-03-02 Lg Innotek Co., Ltd Nitride semiconductor light emitting device and fabrication method thereof
JP2006100475A (en) * 2004-09-29 2006-04-13 Toyoda Gosei Co Ltd Semiconductor light emitting element
JP2008066730A (en) * 2006-09-06 2008-03-21 Palo Alto Research Center Inc Variable period variable composition supperlattice and devices including the same
JP2008526013A (en) * 2004-12-23 2008-07-17 エルジー イノテック カンパニー リミテッド Nitride semiconductor light emitting device and manufacturing method thereof
JP2008235606A (en) * 2007-03-20 2008-10-02 Sony Corp Semiconductor light-emitting element, method for manufacturing semiconductor light-emitting element, backlight, display unit, electronic equipment, and light-emitting device
JP2009158685A (en) * 2007-12-26 2009-07-16 Kyocera Corp Light-emitting element and method of manufacturing the same, and lighting device
US8110849B2 (en) * 2008-09-01 2012-02-07 Lg Innotek Co., Ltd. Light emitting device and method of manufacturing the same
JP2013033978A (en) * 2011-05-18 2013-02-14 Toshiba Corp Semiconductor light-emitting element
CN105048285A (en) * 2015-08-31 2015-11-11 中国科学院半导体研究所 Method for improving the performance of gallium nitride laser
CN107204391A (en) * 2017-05-24 2017-09-26 湘能华磊光电股份有限公司 A kind of LED epitaxial growth methods
CN113659438A (en) * 2021-07-30 2021-11-16 西安理工大学 Semiconductor laser with low N-surface series contact resistance

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06140670A (en) * 1992-10-29 1994-05-20 Fujitsu Ltd Semiconductor light emitting device
JPH07170026A (en) * 1993-10-18 1995-07-04 Sony Corp Ii-vi compound semiconductor device
JPH0897468A (en) * 1994-09-28 1996-04-12 Rohm Co Ltd Semiconductor light emitting device
JPH09289351A (en) * 1996-04-19 1997-11-04 Matsushita Electric Ind Co Ltd Semiconductor light-emitting element
JPH09289352A (en) * 1996-02-22 1997-11-04 Sharp Corp Semiconductor laser device and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06140670A (en) * 1992-10-29 1994-05-20 Fujitsu Ltd Semiconductor light emitting device
JPH07170026A (en) * 1993-10-18 1995-07-04 Sony Corp Ii-vi compound semiconductor device
JPH0897468A (en) * 1994-09-28 1996-04-12 Rohm Co Ltd Semiconductor light emitting device
JPH09289352A (en) * 1996-02-22 1997-11-04 Sharp Corp Semiconductor laser device and manufacturing method thereof
JPH09289351A (en) * 1996-04-19 1997-11-04 Matsushita Electric Ind Co Ltd Semiconductor light-emitting element

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11186601A (en) * 1997-12-19 1999-07-09 Showa Denko Kk Compound semiconductor light-emitting device
JP2002094110A (en) * 2000-09-12 2002-03-29 ▲さん▼圓光電股▲ふん▼有限公司 Structure of light emitting diode
KR100475005B1 (en) * 2001-03-28 2005-03-08 파이오니아 가부시키가이샤 Nitride semiconductor device
JP2003046127A (en) * 2001-05-23 2003-02-14 Sanyo Electric Co Ltd Nitride semiconductor light-emitting element
KR100418888B1 (en) * 2001-06-20 2004-02-14 엘지전자 주식회사 p-Contact Growth Method of Light Emitting Diode/Laser Diode
US7808010B2 (en) 2004-08-26 2010-10-05 Lg Innotek Co., Ltd. Nitride semiconductor light emitting device and fabrication method thereof
JP2013058786A (en) * 2004-08-26 2013-03-28 Lg Innotek Co Ltd Nitride semiconductor light-emitting element
WO2006022497A1 (en) * 2004-08-26 2006-03-02 Lg Innotek Co., Ltd Nitride semiconductor light emitting device and fabrication method thereof
WO2006022498A1 (en) * 2004-08-26 2006-03-02 Lg Innotek Co., Ltd Nitride semicondctor light emitting device and fabrication method thereof
US8053794B2 (en) 2004-08-26 2011-11-08 Lg Innotek Co., Ltd Nitride semiconductor light emitting device and fabrication method thereof
US8193545B2 (en) 2004-08-26 2012-06-05 Lg Innotek Co., Ltd. Nitride semiconductor light emitting device and fabrication method thereof
JP2006100475A (en) * 2004-09-29 2006-04-13 Toyoda Gosei Co Ltd Semiconductor light emitting element
JP2008526013A (en) * 2004-12-23 2008-07-17 エルジー イノテック カンパニー リミテッド Nitride semiconductor light emitting device and manufacturing method thereof
US8704250B2 (en) 2004-12-23 2014-04-22 Lg Innotek Co., Ltd. Nitride semiconductor light emitting device and fabrication method thereof
JP2013065897A (en) * 2004-12-23 2013-04-11 Lg Innotek Co Ltd Nitride semiconductor light-emitting element
JP2008066730A (en) * 2006-09-06 2008-03-21 Palo Alto Research Center Inc Variable period variable composition supperlattice and devices including the same
JP2008235606A (en) * 2007-03-20 2008-10-02 Sony Corp Semiconductor light-emitting element, method for manufacturing semiconductor light-emitting element, backlight, display unit, electronic equipment, and light-emitting device
JP2009158685A (en) * 2007-12-26 2009-07-16 Kyocera Corp Light-emitting element and method of manufacturing the same, and lighting device
US8110849B2 (en) * 2008-09-01 2012-02-07 Lg Innotek Co., Ltd. Light emitting device and method of manufacturing the same
JP2013033978A (en) * 2011-05-18 2013-02-14 Toshiba Corp Semiconductor light-emitting element
JP2014042059A (en) * 2011-05-18 2014-03-06 Toshiba Corp Semiconductor light-emitting element
JP2015167248A (en) * 2011-05-18 2015-09-24 株式会社東芝 Semiconductor light emitting element
CN105048285A (en) * 2015-08-31 2015-11-11 中国科学院半导体研究所 Method for improving the performance of gallium nitride laser
CN107204391A (en) * 2017-05-24 2017-09-26 湘能华磊光电股份有限公司 A kind of LED epitaxial growth methods
CN113659438A (en) * 2021-07-30 2021-11-16 西安理工大学 Semiconductor laser with low N-surface series contact resistance

Similar Documents

Publication Publication Date Title
US6618413B2 (en) Graded semiconductor layers for reducing threshold voltage for a nitride-based laser diode structure
EP1328050B1 (en) Semiconductor laser structure
KR101083872B1 (en) - GaN -V COMPOUND SEMICONDUCTOR LIGHT-EMITTING DEVICE AND METHOD FOR MANUFACTURING SAME
US5727008A (en) Semiconductor light emitting device, semiconductor laser device, and method of fabricating semiconductor light emitting device
US6829273B2 (en) Nitride semiconductor layer structure and a nitride semiconductor laser incorporating a portion of same
EP1014455A1 (en) Nitride semiconductor device
US7755101B2 (en) Semiconductor light emitting device
WO1998039827A1 (en) Gallium nitride semiconductor light emitting element with active layer having multiplex quantum well structure and semiconductor laser light source device
JPH1051070A (en) Semiconductor laser
JP3754226B2 (en) Semiconductor light emitting device
JPH11298090A (en) Nitride semiconductor element
US20040061119A1 (en) Nitride-based semiconductor light-emitting device
US6618418B2 (en) Dual III-V nitride laser structure with reduced thermal cross-talk
JP5507792B2 (en) Group III nitride semiconductor optical device
JPH08111558A (en) Semiconductor laser element
JP3620292B2 (en) Nitride semiconductor device
KR20000069995A (en) Nitride Semiconductor Device
JP2003086903A (en) Semiconductor light emitting device and its manufacturing method
JP2000223790A (en) Nitride-based semiconductor laser device
JP4178807B2 (en) Semiconductor light emitting device and manufacturing method thereof
KR100511530B1 (en) The nitride semiconductor device
JPH09266351A (en) Alingan semiconductor light emitting element
JPH10256657A (en) Gallium nitride based semiconductor light emitting element and semiconductor laser light source device
JPH10261816A (en) Semiconductor light emitting element and its manufacture
JP2001358407A (en) Semiconductor laser device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040928

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050208