JP3678399B2 - Nitride semiconductor laser device - Google Patents

Nitride semiconductor laser device Download PDF

Info

Publication number
JP3678399B2
JP3678399B2 JP2133399A JP2133399A JP3678399B2 JP 3678399 B2 JP3678399 B2 JP 3678399B2 JP 2133399 A JP2133399 A JP 2133399A JP 2133399 A JP2133399 A JP 2133399A JP 3678399 B2 JP3678399 B2 JP 3678399B2
Authority
JP
Japan
Prior art keywords
layer
substrate
semiconductor laser
nitride
laser device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2133399A
Other languages
Japanese (ja)
Other versions
JP2000223790A (en
Inventor
和彦 板谷
理砂 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2133399A priority Critical patent/JP3678399B2/en
Publication of JP2000223790A publication Critical patent/JP2000223790A/en
Application granted granted Critical
Publication of JP3678399B2 publication Critical patent/JP3678399B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、窒化物半導体材料を用いた半導体レーザに関する。
【0002】
【従来の技術】
近年、高密度光ディスクシステム等への応用を目的として短波長の半導体レーザの開発が進められている。この種のレーザーでは記録密度を高めるために発振波長を短くすることが要求されている。短波長の半導体レーザとしてInGaAlP材料による600nm帯光源は、ディスクの読み込み、書き込みのどちらも可能なレベルにまで特性改善され、すでに実用化されている。
【0003】
さらなる記録密度向上を目指して青色体半導体レーザの開発が盛んに行われている。すでにII-VI 族系による半導体レーザは発振動作が確認されているが、信頼性が100時間程度にリミットされるなど実用化への障壁は多く、また波長も480nm以下は作ることが困難であるなど、次世代の光ディスクシステム等への応用には材料的なリミットが数多く存在する。
【0004】
一方、GaN系型半導体レーザは、350nm以下まで短波長が可能で、信頼性に関してもLEDにおいて1万時間以上の信頼性が確認されるなど有望であり盛んに研究、開発が行われている。また、一部では、室温での電流注入によるレーザ発振も確認された。このようにGaN系は材料的に次世代の光ディスクシステム光源必要な条件を満たす優れた材料である。
【0005】
また、半導体レーザを、光ディスクシステム等へ応用可能にするためには、レーザの発振ビーム特性が重要となる。発振ビーム特性を向上させるためには、発光部に接合平面に平行方向に横モード制御構造を形成することが必須となる。横モード制御構造は通常異なる屈折率を有する半導体層で埋め込むメサ構造などの方法で作り付けることができる。
【0006】
メサ構造の、安定した基本横モード特性を得るためには十分に厚いクラッド層、リッジ幅を狭くするなどが必要となるが、クラッド層として用いるAlGaN層はGaNとの格子不整合が大きいため厚くするとクラックが入るという問題があった。またAlGaN層は抵抗率が小さくできないため電圧を低くできないとういう問題があった。
【0007】
このためクラッド層として、薄膜(2nm厚程度) GaNと15%程度のAl組成の薄膜(2nm厚程度) AlGaNとの超格子構造とすることで、クラックが防止でき、電圧も低くできることが提案されている。この構造では、クラッド層を超格子構造としているので、歪に対する臨界膜厚が増大し、クラックが入りにくい。
【0008】
また、このような構造では、図1(a)に示ように、バンドギャップの大きいAlGaN障壁層をn型にドーピングし、GaN井戸層をアンドープとする超格子構造では、ヘテロ界面に大きなバンドベンデングが生じ、2次元電子ガスが溜まる。超格子は薄く設計されており、隣どうしの2次元電子ガスがカップリングあるいはトンネリングし合い、抵抗率の高いAlGaNを介さずにキャリヤの輸送をエピ層の上下(図では左右)方向に円滑にすることができ、クラッド層の抵抗を低くすることが可能となる。p型の場合も略同様である。
【0009】
しかしながら、本発明者の研究によりば、サファイヤ基板上に超格子を形成した場合、状況は大きく変化することが判明した。窒化物半導体材料による超格子構造は、他の半導体材料の超格子構造に比べて、歪によるピエゾ効果や自発分極の影響で非常に大きな内部電界が発生していることが理論的、実験的にも明らかとなった。
【0010】
図1(b)に示すように、窒化物系半導体材料を用いた超格子構造では、障壁層、井戸層とも電界の影響で三角ポテンシャルになっておりキャリヤ注入に必須な2次元電子ガスを形成するのに十分なバンドベンデングが得られなく、そのためレーザの動作電圧も5V以下に低くすることは極めて困難である。このような2次元電子ガスが形成されない要因以外にも3角ポテンシャルにより実効的に高いヘテロバリヤが形成され、種々の電圧降下の要因を誘起していた。
【0011】
またさらなる光デスクへの記録密度向上のためには光源の短波長化をさらに進める必要があるが、有望となるGaN/AlGaNを量子井戸とする活性層をレーザに用いた場合においても、このような三角ポテンシャルは井戸部にも形成され、キャリヤ再結合のペアリングを著しく悪化させていた。
【0012】
このように従来の窒化物系半導体材料の超格子構造では動作電圧が低くモード特性も良好な横モード制御半導体レーザ装置を製作することは著しく困難であり、信頼性特性(特に高温での)も損なわれていた。
【0013】
【発明が解決しようとする課題】
上述したように、従来の窒化物系半導体材料を用いた超格子構造を有する横モード制御半導体レーザ装置では自発分極、ピエゾ効果により電圧の低く発光特性も良好にすることが非常に困難であるという問題点があった。
【0014】
本発明は上記事情を考慮してなされたもので、プロセスの再現性にも優れ、工程が易しく、歩留まりも高い低しきい値・低動作電圧で基本横モード動作が可能な、特性の良い窒化物半導体レーザ装置を提供することを目的とする。
【0015】
【課題を解決するための手段】
上記目的を解決するために、本発明は、基板上に設けられた窒化物系半導体からなる活性層と、前記基板上に設けられ前記活性層を挟むように設けられた第1及び第2のクラッド層とを具備し、前記第1及び第2のクラッド層の少なくともいずれかは、障壁層/井戸層( AlxGa1-xN/AlyGa1-yN 0 x 1,0 y 1 )からなる超格子構造からなるとともに、前記障壁層( AlxGa1-xN 0 x 1 )の一部あるいは全部の層のAl組成が、前記基板側から表面側に向かってグレーデッド状に増加していることを特徴する窒化物系半導体レーザ装置を提供する。
【0016】
また、本発明は、基板上に設けられた窒化物系半導体からなる活性層と、前記基板上に設けられ前記活性層を挟むように設けられた第1及び第2のクラッド層とを具備し、前記第1及び第2のクラッド層の少なくともいずれかは、障壁層/井戸層( AlxGa1-xN/AlyGa1-yN 0 x 1,0 y 1 )からなる超格子構造からなるとともに、前記井戸層( AlxGa1-xN 0 x 1 )の一部あるいは全部の層のAl組成が、前記基板側から表面側に向かってグレーデッド状に増加していることを特徴する窒化物系半導体レーザ装置を提供する。
【0017】
また、本発明は、前記障壁層あるいは井戸層のAl組成は単調に増加あるいは減少していることを特徴とする窒化物系半導体レーザ装置を提供する。基板上に構成された少なくともAlxGa1-xN/AlyGa1-yN(0 <x ≦1,0 ≦y <1)からなる超格子構造で、Al組成が一様ではなくグレーデッド状に形成することで、超格子構造のバンド構造を詳細に設計し、ピエゾ電界・自発分極の影響を防ぎ電圧が低く、発光効率や利得の高い窒化物半導体レーザ装置を提供できる。
【0018】
また、本発明は、プロセスの再現性にも優れ、工程が易しく、歩留まりも高い低しきい値・低動作電圧で基本横モード動作が可能となる。特に窒化物半導体レーザ装置の特性のうち、低動作電圧化、横モード特性の安定化のみならず、信頼性も向上することができる。
【0019】
【発明の実施の形態】
以下、本発明を図面を用いて詳細に説明する。
図2は本発明の第1の実施例に係わる青色窒化物半導体レーザ装置の概略構成を説明するための断面図である。
【0020】
各窒化物層はすべてMOCVD(有機金属気相成長法)により成長を行った。成長条件に関して、圧力は常圧、バッファー層以外のGaN 、AlGaN 層は基本的には窒素、水素、アンモニアを混合した雰囲気で1000℃から1100℃の範囲、活性層を含む成長は窒素とアンモニア雰囲気で、700℃から850℃の範囲とした。
【0021】
中11はサファイヤ基板であり、12は低温成長(550℃)のGaN バッファー層(0.03μm)である。14は高温成長(1100℃)のGaN で、ラテラル成長用のSiO2 ストライプ10を介して下部はアンドープ、上はn −GaNコンタクト層とした。13はn 側電極である。
【0022】
15はトータル厚さ1.0μmのn−AlGaN/ un−GaNの超格子構造からなるn型クラッド層、16は多重量子井戸構造(MQW )、光ガイド層を含む活性層部であり、厚さ0.1μmのGaNからなる光ガイド層を有し、井戸層は4nm厚のIn0.13 Ga0.87 N4層からなり、バリヤ層は厚さ8nmのIn0.03 Ga0.97 Nから構成される。
【0023】
17はトータル厚さ1.0μmのp−AlGaN/ un−GaNの超格子からなるp型クラッド層、20は厚さ0.5μmP −GaNコンタクト層(Mgドープ)で、最表面はさらにMgを高濃度化している。21はSiO2 狭窄層、22はp型電極、23は電極パッドである。
【0024】
図3に、この窒化物半導体レーザ装置の超格子構造のバンド図を示す。
ここではn側の伝導帯側を示す。障壁層、井戸層とも厚さは2nm、障壁層のみ5×1018cm-3のn型にドープしている。障壁層のAl組成を基板側から表面側に向って15%から20%にグレーデッドに変化させることでGaN側のバンドベンデングを急峻化させ2次元電子ガスの形成を確実にさせている。
【0025】
本実施例ではリッジ幅は3μmの場合、しきい値35mAで室温連続発振した。発振波長は400nm、動作電圧は4.0Vであった。ビーム特性は単峰であり、非点隔差は5μmと十分小さな値が得られた。最高光出力は連続発振で40mWまで得られ、信頼性に関しても50Cで2000時間以上安定に動作した。これらの特性は基板は下のままヒートシンクにボンデングした構造で得られた。雑音特性に関してももどり光の存在下でも10-13 dB/Hz 以下の特性が得られた。素子の歩留まりは極めて高く、90%の素子で、上記した横モード特性が得られた。
【0028】
は本発明の第の実施例に係わる青色窒化物半導体レーザ装置の概略構成を説明するための断面図である。第1の実施例との違いは基板としてハイドライド気相成長装置により成長したn型GaN基板24を用いていることである。GaN基板成長時にもラテラル成長技術を取り込んでおり、転位密度を10 4 cm -2 以下に抑制している。また、メサを形成後、再成長により選択成長でn-InGaN 吸収層(光導波層)18を形成し、その後コンタクト層20を成長している
【0029】
に、この窒化物半導体レーザ装置の超格子構造のバンド図を示す。ここでもn側の伝導帯側を示す。障壁層、井戸層とも厚さは2nm、障壁層のみ5×1018cm-3のn型にドープしている。ここでは井戸層のAl組成を基板側から表面側に向って0%から5%にグレーデッドに変化させることでGaN側のバンド底を擬似フラット化し、2次元電子ガスの形成を確実にさせた。
【0032】
本発明では、p型の場合も価電子帯側のバンドを考慮して同様に設計実施した。超格子の場合の電圧降下は主にピエゾ電界・自発分極の影響と見ており、基板−表面側の電界効果方向も図示した通りである
【0034】
なお本発明は本実施例に限られるものではなく、半導体層、基板としてSiCなども適用可能で、II-VI 族化合物半導体、Si、Geなどを用いても良い。
構造もレーザのしきい値に悪影響を与えないものであれば種々の適用が可能である。
その他、導波路構造、受光素子、トランジスターなどの光デバイス分野へも適用が可能である。
【0035】
【発明の効果】
以上詳述したように本発明によれば、超格子層は低抵抗化することができ、プロセスの再現性にも優れ、工程が易しく、歩留まりも高い低しきい値・低動作電圧で基本横モード動作が可能な、特性の良いナイトライド系横モード制御型構造レーザを提供する。特に半導体レーザの特性においては低動作電圧化、横モード特性の安定化のみならず、信頼性も向上せしめる大きな作用がある。その有用性は絶大である。
【図面の簡単な説明】
【図1】 従来背景を示す図
【図2】 本発明の第1の実施例の窒化物半導体レーザ装置の断面図
【図3】 本発明の第1の実施例の窒化物半導体レーザ装置の超格子構造のバンド図
【図4】 本発明の第の実施例の窒化物半導体レーザ装置の断面図
【図5】 本発明の第の実施例の窒化物半導体レーザ装置の超格子構造のバンド図
【符号の説明】
11…サファイヤ基板
12…バッファー層
13…n側電極
14…n−GaNコンタクト層
15…n−AlGaN/GaN 超格子クラッド層
16…多重量子井戸構造(MQW )光ガイド層を含む活性層部
17…p−AlGaN/GaN 超格子クラッド層
18…InGaN 吸収層(光導波層)
20…p−GaNコンタクト層
21…SiO2 狭窄層
22…p型電極
23…電極パッド
10…SiO2 ストライプマスク
24…n−GaN基板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor laser using a nitride semiconductor material.
[0002]
[Prior art]
In recent years, development of short-wavelength semiconductor lasers has been promoted for the purpose of application to high-density optical disk systems and the like. This type of laser is required to shorten the oscillation wavelength in order to increase the recording density. A 600 nm band light source made of InGaAlP material as a short-wavelength semiconductor laser has characteristics improved to a level at which both reading and writing of a disk are possible, and has already been put into practical use.
[0003]
Blue semiconductor lasers have been actively developed with the aim of further increasing recording density. Although semiconductor lasers based on II-VI groups have already been confirmed to oscillate, there are many barriers to practical use, such as the reliability being limited to about 100 hours, and it is difficult to make wavelengths below 480 nm. For example, there are many material limits for application to next-generation optical disc systems.
[0004]
On the other hand, GaN-based semiconductor lasers are promising and have been actively researched and developed, such as being capable of short wavelengths down to 350 nm or less, and having reliability of over 10,000 hours in LEDs. In some cases, laser oscillation by current injection at room temperature was also confirmed. As described above, the GaN-based material is an excellent material that satisfies the requirements of the next-generation optical disk system light source.
[0005]
Further, in order to make the semiconductor laser applicable to an optical disk system or the like, the oscillation beam characteristic of the laser is important. In order to improve the oscillation beam characteristics, it is essential to form a transverse mode control structure in the light emitting portion in a direction parallel to the bonding plane. The transverse mode control structure can be usually formed by a method such as a mesa structure embedded with semiconductor layers having different refractive indexes.
[0006]
In order to obtain stable fundamental transverse mode characteristics of the mesa structure, it is necessary to make the clad layer sufficiently thick and the ridge width narrow, but the AlGaN layer used as the clad layer is thick due to large lattice mismatch with GaN. Then, there was a problem of cracks. Further, the AlGaN layer has a problem that the voltage cannot be lowered because the resistivity cannot be reduced.
[0007]
For this reason, it is proposed that the clad layer has a superlattice structure of thin film (about 2 nm thick) GaN and a thin film of about 15% Al composition (about 2 nm thick) AlGaN to prevent cracks and reduce the voltage. ing. In this structure, since the cladding layer has a superlattice structure, the critical film thickness against strain increases and cracks are difficult to occur.
[0008]
In such a structure, as shown in FIG. 1A, in a superlattice structure in which an AlGaN barrier layer having a large band gap is doped n-type and a GaN well layer is undoped, a large band bend is formed at the heterointerface. Dengue occurs and the two-dimensional electron gas accumulates. The superlattice is designed to be thin, and the two-dimensional electron gas adjacent to each other is coupled or tunneled to smoothly transport carriers in the vertical direction (left and right in the figure) of the epilayer without going through high resistivity AlGaN. Therefore, the resistance of the cladding layer can be reduced. The same applies to the p-type.
[0009]
However, according to the research of the present inventors, it has been found that the situation changes greatly when a superlattice is formed on a sapphire substrate. Theoretically, experimentally, the superlattice structure made of nitride semiconductor material generates a very large internal electric field due to the piezo effect and spontaneous polarization due to strain compared to the superlattice structure of other semiconductor materials. It became clear.
[0010]
As shown in FIG. 1B, in the superlattice structure using a nitride-based semiconductor material, both the barrier layer and the well layer have a triangular potential due to the influence of an electric field and form a two-dimensional electron gas essential for carrier injection. Therefore, it is very difficult to reduce the operating voltage of the laser to 5 V or less. In addition to such a factor that the two-dimensional electron gas is not formed, an effective high hetero barrier is formed by the triangular potential, and various voltage drop factors are induced.
[0011]
In order to further improve the recording density on the optical desk, it is necessary to further shorten the wavelength of the light source. However, even when an active layer having a promising GaN / AlGaN quantum well is used for the laser, Such a triangular potential was also formed in the well portion, which significantly deteriorated carrier recombination pairing.
[0012]
Thus, with the conventional superlattice structure of nitride-based semiconductor material, it is extremely difficult to manufacture a transverse mode control semiconductor laser device with low operating voltage and good mode characteristics, and reliability characteristics (especially at high temperatures) are also high. It was damaged.
[0013]
[Problems to be solved by the invention]
As described above, in a lateral mode control semiconductor laser device having a superlattice structure using a conventional nitride-based semiconductor material, it is extremely difficult to achieve low voltage and good light emission characteristics due to spontaneous polarization and the piezoelectric effect. There was a problem.
[0014]
The present invention has been made in consideration of the above circumstances, has excellent process reproducibility, is easy to process, has a high yield, has a low threshold and a low operating voltage, and can operate in a basic transverse mode and has excellent characteristics. An object of the present invention is to provide a semiconductor laser device.
[0015]
[Means for Solving the Problems]
In order to solve the above object, the present invention provides an active layer made of a nitride-based semiconductor provided on a substrate, and first and second layers provided on the substrate so as to sandwich the active layer. And at least one of the first and second cladding layers is a barrier layer / well layer ( AlxGa1-xN / AlyGa1-yN The barrier layer ( AlxGa1-xN ) has a superlattice structure of 0 < x 1,0 y < 1 ). The nitride-based semiconductor laser device is characterized in that the Al composition of a part or all of 0 < x 1 ) increases in a graded manner from the substrate side to the surface side .
[0016]
The present invention also includes an active layer made of a nitride-based semiconductor provided on a substrate, and first and second cladding layers provided on the substrate so as to sandwich the active layer. , At least one of the first and second cladding layers is a barrier layer / well layer ( AlxGa1-xN / AlyGa1-yN The well layer ( AlxGa1-xN ) has a superlattice structure of 0 < x 1,0 y < 1 ). The nitride-based semiconductor laser device is characterized in that the Al composition of a part or all of 0 < x 1 ) increases in a graded manner from the substrate side to the surface side .
[0017]
The present invention also provides a nitride semiconductor laser device characterized in that the Al composition of the barrier layer or well layer monotonously increases or decreases. With a superlattice structure composed of at least AlxGa1-xN / AlyGa1-yN (0 <x ≦ 1,0 ≦ y <1) configured on the substrate, the Al composition is not uniform and is formed in a graded shape , By designing the band structure of the superlattice structure in detail, it is possible to provide a nitride semiconductor laser device that prevents the influence of the piezo electric field and spontaneous polarization, has a low voltage, and has a high emission efficiency and gain.
[0018]
In addition, the present invention is excellent in process reproducibility, easy to process, and can operate in a basic transverse mode with a low threshold and a low operating voltage with a high yield. In particular, among the characteristics of the nitride semiconductor laser device, not only the operating voltage can be lowered and the transverse mode characteristics can be stabilized, but also the reliability can be improved.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings.
FIG. 2 is a cross-sectional view for explaining a schematic configuration of the blue nitride semiconductor laser device according to the first embodiment of the present invention.
[0020]
All the nitride layers were grown by MOCVD (metal organic chemical vapor deposition). Regarding growth conditions, pressure is normal pressure, GaN other than buffer layer, AlGaN layer is basically in the range of 1000 ° C to 1100 ° C in a mixed atmosphere of nitrogen, hydrogen and ammonia, growth including active layer is nitrogen and ammonia atmosphere Thus, the temperature range was 700 ° C to 850 ° C.
[0021]
In FIG. 2 , 11 is a sapphire substrate, and 12 is a GaN buffer layer (0.03 μm) grown at a low temperature (550 ° C.). Reference numeral 14 denotes GaN grown at a high temperature (1100 ° C.). The lower portion is undoped through the SiO 2 stripe 10 for lateral growth, and the upper portion is an n-GaN contact layer. Reference numeral 13 denotes an n-side electrode.
[0022]
Reference numeral 15 denotes an n-type cladding layer made of a superlattice structure of n-AlGaN / un-GaN having a total thickness of 1.0 μm. Reference numeral 16 denotes an active layer portion including a multiple quantum well structure (MQW) and a light guide layer. It has a light guide layer made of GaN having a thickness of 0.1 μm, the well layer is made of In0.13 Ga0.87 N4 layer having a thickness of 4 nm, and the barrier layer is made of In0.03 Ga0.97N having a thickness of 8 nm.
[0023]
17 is a p-type cladding layer made of p-AlGaN / un-GaN superlattice with a total thickness of 1.0 μm, 20 is a 0.5 μm P-GaN contact layer (Mg-doped), and the outermost surface is made of higher Mg. Concentration. 21 is a SiO 2 constriction layer, 22 is a p-type electrode, and 23 is an electrode pad.
[0024]
FIG. 3 shows a band diagram of the superlattice structure of the nitride semiconductor laser device.
Here, the n conduction band side is shown. Both the barrier layer and the well layer have a thickness of 2 nm, and only the barrier layer is doped to an n-type of 5 × 10 18 cm −3 . By changing the Al composition of the barrier layer from 15% to 20% graded from the substrate side to the surface side, the band bending on the GaN side is sharpened to ensure the formation of the two-dimensional electron gas.
[0025]
In this example, when the ridge width was 3 μm, continuous oscillation at room temperature was performed at a threshold of 35 mA. The oscillation wavelength was 400 nm and the operating voltage was 4.0V. The beam characteristics were unimodal, and the astigmatic difference was as small as 5 μm. The maximum light output was obtained up to 40 mW with continuous oscillation, and the reliability was stable for more than 2000 hours at 50C. These characteristics were obtained with a structure bonded to a heat sink with the substrate still below. As for the noise characteristics, the characteristics of 10 -13 dB / Hz or less were obtained even in the presence of return light. The device yield was extremely high, and the transverse mode characteristics described above were obtained with 90% of the devices.
[0028]
FIG. 4 is a cross-sectional view for explaining a schematic configuration of a blue nitride semiconductor laser device according to the second embodiment of the present invention. The difference from the first embodiment is that an n-type GaN substrate 24 grown by a hydride vapor phase growth apparatus is used as the substrate. Lateral growth technology is also incorporated during the growth of the GaN substrate, and the dislocation density is suppressed to 10 4 cm -2 or less. Further, after forming the mesa, n-InGaN absorbing layer (optical waveguide layer) 18 is formed by selective growth by regrowth, growing then contact layer 20.
[0029]
FIG. 5 shows a band diagram of the superlattice structure of the nitride semiconductor laser device. Again, the n side conduction band side is shown. Both the barrier layer and the well layer are 2 nm thick, and only the barrier layer is doped to an n-type of 5 × 10 18 cm −3. Here, by changing the Al composition of the well layer from 0% to 5% graded from the substrate side to the surface side, the band bottom on the GaN side is quasi-flatted to ensure the formation of the two-dimensional electron gas. .
[0032]
In the present invention, the p-type was similarly designed in consideration of the band on the valence band side. Voltage drop in the case of the superlattice is expected to affect mainly piezoelectric field-spontaneous polarization, the substrate - field effect direction of the surface side is as shown.
[0034]
Note that the present invention is not limited to this embodiment, and SiC or the like can be applied as the semiconductor layer or substrate, and II-VI group compound semiconductors, Si, Ge, or the like may be used.
As long as the structure does not adversely affect the laser threshold, various applications are possible.
In addition, the present invention can also be applied to the field of optical devices such as waveguide structures, light receiving elements, and transistors.
[0035]
【The invention's effect】
As described above in detail, according to the present invention, the resistance of the superlattice layer can be reduced, the process can be easily reproducible, the process is easy, the yield is high, and the basic threshold voltage is low and the operating voltage is low. Provided is a nitride-based transverse mode control type structure laser capable of mode operation and having good characteristics. Particularly in the characteristics of the semiconductor laser, not only the operation voltage is lowered and the transverse mode characteristic is stabilized, but also there is a great effect of improving the reliability. Its usefulness is tremendous.
[Brief description of the drawings]
FIG. 1 is a diagram showing a conventional background .
FIG. 2 is a sectional view of the nitride semiconductor laser device according to the first embodiment of the present invention .
FIG. 3 is a band diagram of the superlattice structure of the nitride semiconductor laser device according to the first embodiment of the present invention .
FIG. 4 is a sectional view of a nitride semiconductor laser device according to a second embodiment of the present invention .
FIG. 5 is a band diagram of a superlattice structure of a nitride semiconductor laser device according to a second embodiment of the present invention .
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 ... Sapphire substrate 12 ... Buffer layer 13 ... N side electrode 14 ... n-GaN contact layer 15 ... n-AlGaN / GaN superlattice clad layer 16 ... Active layer part containing multiple quantum well structure (MQW) light guide layer 17 ... p-AlGaN / GaN superlattice cladding layer 18... InGaN absorption layer (optical waveguide layer)
20 ... p-GaN contact layer 21 ... SiO2 constriction layer 22 ... p-type electrode 23 ... electrode pad 10 ... SiO2 stripe mask 24 ... n-GaN substrate

Claims (4)

基板上に設けられた窒化物系半導体からなる活性層と、前記基板上に設けられ前記活性層を挟むように設けられた第1及び第2のクラッド層とを具備し、前記第1及び第2のクラッド層の少なくともいずれかは、障壁層/井戸層(AlxGa1-xN/AlyGa1-yN 0<x ≦1,0 ≦y<1)からなる超格子構造からなるとともに、前記障壁層(AlxGa1-xN 0<x ≦1 )の一部あるいは全部の層のAl組成が、前記基板側から表面側に向かってグレーデッド状に増加していることを特徴する窒化物系半導体レーザ装置 An active layer made of a nitride-based semiconductor provided on a substrate; and first and second cladding layers provided on the substrate so as to sandwich the active layer . At least one of the second cladding layer, a barrier layer / well layer (AlxGa1-xN / AlyGa1-yN 0 <x ≦ 1,0 ≦ y <1) , such a superlattice structure consisting Rutotomoni, the barrier layer (AlxGa1 -xN 0 <x ≦ 1) of the part or the Al composition of the whole of the layer, the nitride semiconductor laser device characterized in that it increases toward the surface side grayed Rededdo shape from the substrate side. 基板上に設けられた窒化物系半導体からなる活性層と、前記基板上に設けられ前記活性層を挟むように設けられた第1及び第2のクラッド層とを具備し、前記第1及び第2のクラッド層の少なくともいずれかは、障壁層/井戸層(AlxGa1-xN/AlyGa1-yN 0<x ≦1,0 ≦y<1)からなる超格子構造からなるとともに前記井戸層(AlxGa1-xN 0<x ≦1 )の一部あるいは全部の層のAl組成が、前記基板側から表面側に向かってグレーデッド状に増加していることを特徴する窒化物系半導体レーザ装置 An active layer made of a nitride-based semiconductor provided on a substrate; and first and second cladding layers provided on the substrate so as to sandwich the active layer . At least one of the second cladding layer, a barrier layer / well layer (AlxGa1-xN / AlyGa1-yN 0 <x ≦ 1,0 ≦ y <1) , such a superlattice structure consisting Rutotomoni, the well layer (AlxGa1 -xN 0 <x ≦ 1) of the part or the Al composition of the whole of the layer, the nitride semiconductor laser device characterized in that it increases toward the surface side grayed Rededdo shape from the substrate side. 基板上に設けられた窒化物系半導体からなる活性層と、前記基板上に設けられ前記活性層を挟むようにそれぞれ設けられたn型クラッド層及びp型クラッド層とを具備し、前記n型クラッド層は、障壁層/井戸層( AlxGa1-xN/AlyGa1-yN 0 x 1,0 y 1 )からなる超格子構造からなり、前記障壁層( AlxGa1-xN 0 x 1 )の一部あるいは全部の層のAl組成が、前記基板側から表面側に向かってグレーデッド状に増加していることを特徴する窒化物系半導体レーザ装置。 An active layer made of a nitride-based semiconductor provided on a substrate, and an n-type cladding layer and a p-type cladding layer provided on the substrate so as to sandwich the active layer, respectively, The clad layer is a barrier layer / well layer ( AlxGa1-xN / AlyGa1-yN The barrier layer ( AlxGa1-xN ) has a superlattice structure of 0 < x 1,0 y < 1 ). 0 < x 1 ) A nitride semiconductor laser device characterized in that the Al composition of a part or all of the layers increases in a graded manner from the substrate side toward the surface side . 基板上に設けられた窒化物系半導体からなる活性層と、前記基板上に設けられ前記活性層を挟むようにそれぞれ設けられたn型クラッド層及びp型クラッド層とを具備し、前記n型クラッド層は、障壁層/井戸層(An active layer made of a nitride semiconductor provided on a substrate, and an n-type cladding layer and a p-type cladding layer provided on the substrate so as to sandwich the active layer, respectively, The cladding layer is a barrier layer / well layer ( AlxGa1-xN/AlyGa1-yNAlxGa1-xN / AlyGa1-yN 00 < x x 1,0 1,0 yy < 11 )からなる超格子構造からなり、前記井戸層(), And the well layer ( AlxGa1-xNAlxGa1-xN 00 < x x 1 1 )の一部あるいは全部の層のAl組成が、前記基板側から表面側に向かってグレーデッド状に増加していることを特徴する窒化物系半導体レーザ装置。The nitride-based semiconductor laser device is characterized in that the Al composition of some or all of the layers increases in a graded manner from the substrate side to the surface side.
JP2133399A 1999-01-29 1999-01-29 Nitride semiconductor laser device Expired - Fee Related JP3678399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2133399A JP3678399B2 (en) 1999-01-29 1999-01-29 Nitride semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2133399A JP3678399B2 (en) 1999-01-29 1999-01-29 Nitride semiconductor laser device

Publications (2)

Publication Number Publication Date
JP2000223790A JP2000223790A (en) 2000-08-11
JP3678399B2 true JP3678399B2 (en) 2005-08-03

Family

ID=12052215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2133399A Expired - Fee Related JP3678399B2 (en) 1999-01-29 1999-01-29 Nitride semiconductor laser device

Country Status (1)

Country Link
JP (1) JP3678399B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6515313B1 (en) * 1999-12-02 2003-02-04 Cree Lighting Company High efficiency light emitters with reduced polarization-induced charges
DE19963807A1 (en) * 1999-12-30 2001-07-19 Osram Opto Semiconductors Gmbh Strip laser diode element
TW536859B (en) 2001-03-28 2003-06-11 Nichia Corp Nitride semiconductor device
JP2003229645A (en) * 2002-01-31 2003-08-15 Nec Corp Quantum well structure, semiconductor element employing it and its fabricating method
JP2005056973A (en) * 2003-08-01 2005-03-03 Hitachi Cable Ltd Semiconductor light emitting device and epitaxial wafer therefor for manufacturing the same
US7326963B2 (en) * 2004-12-06 2008-02-05 Sensor Electronic Technology, Inc. Nitride-based light emitting heterostructure
JP2008235606A (en) * 2007-03-20 2008-10-02 Sony Corp Semiconductor light-emitting element, method for manufacturing semiconductor light-emitting element, backlight, display unit, electronic equipment, and light-emitting device
JP5363055B2 (en) * 2008-09-24 2013-12-11 日本碍子株式会社 Light receiving element and method for manufacturing light receiving element
JP2011187591A (en) * 2010-03-08 2011-09-22 Uv Craftory Co Ltd Nitride semiconductor ultraviolet light-emitting element
US10134948B2 (en) 2011-02-25 2018-11-20 Sensor Electronic Technology, Inc. Light emitting diode with polarization control
CN103545406A (en) * 2012-07-16 2014-01-29 展晶科技(深圳)有限公司 Multi-quantum well structure and light-emitting diode
JP7338166B2 (en) * 2019-02-25 2023-09-05 日本電信電話株式会社 semiconductor equipment

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07122812A (en) * 1993-10-27 1995-05-12 Fujitsu Ltd Semiconductor laser
JPH09139543A (en) * 1995-11-15 1997-05-27 Hitachi Ltd Semiconductor laser element
JPH09199799A (en) * 1996-01-19 1997-07-31 Hitachi Ltd Mode-locked laser
JPH1065271A (en) * 1996-08-13 1998-03-06 Toshiba Corp Gallium nitride based semiconductor light-emitting element
JP3304782B2 (en) * 1996-09-08 2002-07-22 豊田合成株式会社 Semiconductor light emitting device
JP3854693B2 (en) * 1996-09-30 2006-12-06 キヤノン株式会社 Manufacturing method of semiconductor laser
JP3374737B2 (en) * 1997-01-09 2003-02-10 日亜化学工業株式会社 Nitride semiconductor device
JP3496480B2 (en) * 1997-03-26 2004-02-09 日亜化学工業株式会社 Nitride semiconductor device
JPH118406A (en) * 1997-06-18 1999-01-12 Daido Steel Co Ltd Surface-emitting element
JP2000174327A (en) * 1998-12-03 2000-06-23 Oki Electric Ind Co Ltd Vertical micro resonator light-emitting diode
JP3519990B2 (en) * 1998-12-09 2004-04-19 三洋電機株式会社 Light emitting device and manufacturing method thereof
JP3705047B2 (en) * 1998-12-15 2005-10-12 日亜化学工業株式会社 Nitride semiconductor light emitting device
JP2000261106A (en) * 1999-01-07 2000-09-22 Matsushita Electric Ind Co Ltd Semiconductor light emitting element, its manufacture and optical disk device

Also Published As

Publication number Publication date
JP2000223790A (en) 2000-08-11

Similar Documents

Publication Publication Date Title
US6741623B2 (en) Semiconductor device, semiconductor laser, their manufacturing methods and etching methods
JP4018177B2 (en) Gallium nitride compound semiconductor light emitting device
US6185238B1 (en) Nitride compound semiconductor laser and its manufacturing method
US7508001B2 (en) Semiconductor laser device and manufacturing method thereof
US7606278B2 (en) Semiconductor laser, method of manufacturing semiconductor device, optical pickup, and optical disk apparatus
JP2002335052A (en) Nitride semiconductor element
JPH1065271A (en) Gallium nitride based semiconductor light-emitting element
JP3904709B2 (en) Nitride-based semiconductor light-emitting device and method for manufacturing the same
JP2010021576A (en) Method of manufacturing semiconductor device
JP3678399B2 (en) Nitride semiconductor laser device
JP5507792B2 (en) Group III nitride semiconductor optical device
JP2005057262A (en) Semiconductor device with superlattice structure semiconductor layer, and its manufacturing method
JP2003204122A (en) Nitride semiconductor element
JP4197030B2 (en) Semiconductor laser, semiconductor laser manufacturing method, optical pickup, and optical disc apparatus
JPH1051070A (en) Semiconductor laser
JP3682827B2 (en) Nitride semiconductor laser device
JP2003243772A (en) Semiconductor light emitting device and its manufacturing method
JP2001102690A (en) Nitride type semiconductor laser
JP4955195B2 (en) Nitride semiconductor device
KR20050082251A (en) Semiconductor laser device
JP3278108B2 (en) Method for manufacturing nitride semiconductor laser element
JP3963632B2 (en) Semiconductor optical device equipment
JP2003060314A (en) Nitride semiconductor element
JPH11330614A (en) Nitride semiconductor element
JP2001223434A (en) Nitride-based semiconductor laser device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040928

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050506

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050509

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees