JPH0541560A - Semiconductor laser element - Google Patents

Semiconductor laser element

Info

Publication number
JPH0541560A
JPH0541560A JP19637191A JP19637191A JPH0541560A JP H0541560 A JPH0541560 A JP H0541560A JP 19637191 A JP19637191 A JP 19637191A JP 19637191 A JP19637191 A JP 19637191A JP H0541560 A JPH0541560 A JP H0541560A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
lt
semiconductor laser
type
laser device
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19637191A
Other languages
Japanese (ja)
Inventor
Shigekazu Minagawa
Toshiaki Tanaka
Shinichiro Yano
俊明 田中
重量 皆川
振一郎 矢野
Original Assignee
Hitachi Ltd
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

PURPOSE:To realize operation in the oscillation wavelength of 0.5mum band at a room temperature by forming a double heterostructure consisting of mixed crystals of (AlGa)alphaIn1-alphaP (0.51<alpha<=0.73) on a semiconductor substrate via a buffer layer which eliminates misalignment of lattice of such crystals. CONSTITUTION:In a short-wavelength and visible semiconductor laser element which is suitable as a light source for optical information terminal or optical information processing, double heterostructures 2 to 4 consisting of mixed crystals of (AlGa)alphaIn1-alphaP(0.51<alpha<=0.73) are formed on a semiconductor substrate 1 via a buffer layer 1 which eliminates misalignment of lattices of these crystals. The optical waveguide layers 2, 4 of the double heterostructures 2 to 4 are formed of (AlyGa1-y)alphaIn1-alphaP (0<y<=1, 0.51<alpha<=0.73), while the light emitting active layer 3 is formed of (AlGa1-z)alphaIn1-alphaP (0<z<=y, 0.51<alpha<=0.73). Therefore, a stripe structure which guides the light beam using difference of gain or refractive index can be manufactured and thereby laser oscillation in 0.5mum band can be obtained under the room temperature.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】本発明は、光情報端末或は光情報処理用の光源に適する短波長可視半導体レーザ素子に関する。 The present invention relates to a short-wavelength visible semiconductor laser device suitable for optical information terminal or a light source for optical information processing.

【0002】 [0002]

【従来の技術】従来の短波長可視半導体レーザ素子は、 BACKGROUND OF THE INVENTION Conventional short wavelength visible semiconductor laser element,
例えば、ジャパン・ジャ−ナル・アプライド・フィジックス 1990年第29卷第L1669頁から第L1671頁( Jpn For example, Japan Jia - Naru Applied Physics 1990 29 卷第 L1669 pages from pp L1671 (Jpn
J.Appl.Phys.Lett. 29(1990) pp.L1669-L1671)に論じられているように、GaAs基板に格子整合した(AlGa) 0 . 5 I J.Appl.Phys.Lett. 29 as discussed in (1990) pp.L1669-L1671), is lattice-matched to GaAs substrate (AlGa) 0. 5 I
n 0 . 5 P混晶系で実現されており、その室温近傍における連続動作発振波長は630nmである。 n 0. are achieved at 5 P mixed crystal, continuous operation the oscillation wavelength in the vicinity of room temperature is 630 nm.

【0003】 [0003]

【発明が解決しようとする課題】しかし、室温において0.5μm帯の発振波長で動作するAlGaInP系半導体レーザ素子に関しては報告されていない。 [SUMMARY OF THE INVENTION] However, there is no report with respect to AlGaInP-based semiconductor laser device operating at an oscillation wavelength of 0.5μm band at rt.

【0004】本発明は、室温において0.5μm帯の発振波長で動作するAlGaInP系半導体レーザ素子を提供することを目的とする。 [0004] The present invention aims to provide an AlGaInP-based semiconductor laser device operating at an oscillation wavelength of 0.5μm band at rt.

【0005】 [0005]

【課題を解決するための手段】上記目的は、半導体基板上に(AlGa) α In 1―α P(0.51<α≦0.73)混晶から成るダブルヘテロ構造体を、両者の格子不整を解消するバッファ層を介して形成することにより達成できる。 SUMMARY OF THE INVENTION The above object is on a semiconductor substrate (AlGa) α In 1-α P (0.51 <α ≦ 0.73) a double hetero structure composed of mixed crystal, both the lattice It can be achieved by forming a buffer layer to eliminate the irregularities.

【0006】バッファ層としては、材料として(AlGa) α [0006] As the buffer layer, as a material (AlGa) α
In 1―α P混晶と組成Xで格子整合するGaAs 1―x P x混晶を用い、これの組成を半導体基板として用いるGaAs基板から(AlGa) α In 1―α P混晶にかけて0からXまでグレ−デッドに変えたものを用いることができる。 Using GaAs 1-x P x mixed crystal which is lattice-matched with an In 1-alpha P mixed crystal and composition X, from 0 GaAs substrate toward (AlGa) α In 1-α P mixed crystal using the same composition as the semiconductor substrate gray to X - it can be used for changing the dead. GaAs 1―x P x混晶バッファ層の膜厚は数十μm程度である。 The film thickness of the GaAs 1-x P x mixed crystal buffer layer is about several tens of [mu] m.

【0007】また別の方法として、GaAs基板に格子整合する(AlGa) 0 . 51 In 0 . 49 P混晶と格子不整を生じる(AlGa) [0007] Alternatively, lattice-matched to GaAs substrate (AlGa) 0. 51 In 0 . 49 results in a P mixed crystal and lattice mismatch (AlGa)
α In 1―α P混晶とで歪超格子層を形成したものをバッファ層として用いることができる。 one which formed strained superlattice layer between α In 1-α P mixed crystal can be used as a buffer layer.

【0008】また、有機金属気相成長法により成長された(AlGa) α In 1―α P混晶は、III族元素の秩序配列構造が生じるため、バンドギャップエネルギ−が小さくなる。 Further, it is grown by metal organic chemical vapor deposition (AlGa) α In 1-α P mixed crystal, because the orderly arrangement of group III elements occurs, the band gap energy - is reduced. この秩序配列構造を抑制するため、活性層に不純物をドーピングするか又はGaAs傾角基板を用いることができる。 To suppress the ordered array structure, it can be used or GaAs inclination substrate is doped with an impurity into the active layer.

【0009】 [0009]

【作用】直接遷移型でバンドギャップエネルギ−が大きく、0.5μm帯の発光波長が得られるIII-V族半導体材料として、(AlGa) α In 1―α P(0.51<α≦0.7 [Action] band gap energy in a direct transition type - is large, as III-V semiconductor material emission wavelength of 0.5μm band is obtained, (AlGa) α In 1- α P (0.51 <α ≦ 0. 7
3)混晶があげられる。 3) mixed crystal, and the like. しかし、この材料はGaAs基板には格子整合せず、GaAs基板上に成長するときには格子歪を解消するための手段が必要である。 However, this material is not lattice matched to GaAs substrate, there is a need for a means for eliminating the lattice strain when grown on GaAs substrates. そのため、上記バッファ層が考えられる。 Therefore, the buffer layer can be considered. GaAs 1―x P x混晶バッファ層の場合は、GaAs基板に組成Xを0から徐々に変えて成長し、 For GaAs 1-x P x mixed crystal buffer layer, the composition X a GaAs substrate grown gradually changed from 0,
最上層を(AlGa) α In 1―α P混晶に格子整合する組成とする。 A composition which is lattice-matched to the top layer to the (AlGa) α In 1-α P mixed crystal. 例えば、組成0.7の(AlGa) 0 . 7 In 0 . 3 P混晶に格子整合するGaAs 1―x P x混晶の組成Xは0.4である。 For example, the composition X of GaAs 1-x P x mixed crystal which is lattice-matched to the (AlGa) 0. 7 In 0 . 3 P mixed crystal composition 0.7 is 0.4. GaAs基板上に組成を徐々に変えて上層の組成を0.4としたGaA GaA that the composition of the upper layer and 0.4 by changing gradually the composition on a GaAs substrate
s 1―x P x (X=0〜0.4)混晶を成長した基板を用いれば、格子歪を解消できる。 s 1-x P x (X = 0~0.4) By using grown substrate a mixed crystal can be eliminated lattice strain.

【0010】(AlGa) 0 . 51 In 0 . 49 P混晶と(AlGa) α In 1―α [0010] (AlGa) 0. 51 In 0 . 49 P mixed crystal and (AlGa) α In 1-α
P混晶との歪超格子層バッファ層の場合は、この歪超格子層に格子歪を閉じ込めて上部に成長する(AlGa) α In For strained superlattice layer buffer layer between the P mixed crystal, it is grown on top confine lattice strain in the strained superlattice layer (AlGa) α In
1―α P混晶に欠陥や歪の影響を及ぼさない。 It does not exert an influence of defects and strain in the 1-α P mixed crystal.

【0011】これにより、半導体基板上に0.5μm帯の発光波長を有する(AlGa) α In 1―α P混晶を成長させることができる。 [0011] Thus, it is possible to grow the (AlGa) α In 1-α P mixed crystal having an emission wavelength of 0.5μm band on a semiconductor substrate.

【0012】また、GaAs 0 . 6 P 0 . 4混晶上に有機金属気相成長法により成長された(AlGa) 0 . 7 In 0 . 3 P混晶中にはIII Furthermore, GaAs 0. 6 P 0. Grown by metal organic chemical vapor deposition on 4 mixed crystals (AlGa) 0. 7 In 0 . 3 is in the P mixed crystal III
族元素の秩序配列構造が生成し、これに伴ってバンドギャップエネルギーが無秩序配列構造の場合より70〜9 Generated by the ordered array structure of group elements, 70-9 than the band gap energy of the disordered array structure along with this
0meV小さくなる。 0meV smaller. より短い発振波長を得るためには、秩序配列構造の生成を抑制しなければならない。 To obtain a shorter oscillation wavelength must suppress the formation of ordered array structure. 秩序配列構造を抑制しレーザ構造を作製するのに有効な方法として、不純物を活性層にドーピングするか又は基板面方位が(100)面から傾いたGaAs基板上に成長する方法を用いた。 As an effective way to produce a laser structure suppresses ordered array structure, using the method of growing the or plane surfaces are doped with an impurity into the active layer (100) tilted from the surface of GaAs substrate.

【0013】さらに、活性層を単一量子井戸構造或は多重量子井戸構造とすることによって、実質的にバンドギャップエネルギーを大きくできるが、秩序配列構造が量子井戸及び量子障壁層において生じることが問題となる。 Furthermore, by making the active layer and the single quantum well structure or multiple quantum well structure, although substantially the band gap energy can be increased, ordered array structure to occur in the quantum well and quantum barrier layer problem to become. このため、量子井戸構造に対して不純物を一様にドープするか量子障壁層に変調ドープして秩序配列構造を抑制することにより、量子準位エネルギーを大きくとるようにした。 Therefore, by suppressing the modulation doping to ordered array structure or the quantum barrier layer is uniformly doped with an impurity with respect to the quantum well structure, and so a large quantum level energy.

【0014】 [0014]

【実施例】実施例1 本発明の一実施例を図1により説明する。 An example of EXAMPLE 1 The present invention will be described with reference to FIG. まず、(10 First of all, (10
0)面を有するn型GaAs基板1上にn型GaAs 1-x P x混晶を組成0から0.4まで徐々に変えたバッファ層1'を設けた混晶半導体基板1''を用いて、その上にn型(Al y Ga With 0) n-type GaAs 1-x P x 'mixed crystal semiconductor substrate 1 provided with the' mixed crystals from composition 0 buffer layer 1 was changed gradually to 0.4 on the n-type GaAs substrate 1 having a surface ' Te, n-type thereon (Al y Ga
1-y ) 0 . 7 In 0 . 3 P光導波層2(d=1.5μm,n D =1×10 18 c 1-y) 0. 7 In 0. 3 P optical waveguide layer 2 (d = 1.5μm, n D = 1 × 10 18 c
m -3 ,y=0.7),アンドープ(Al z Ga 1-z ) 0 . 7 In 0 . 3 P活性層3 m -3, y = 0.7), an undoped (Al z Ga 1-z) 0. 7 In 0. 3 P active layer 3
(d=0.04〜0.08μm,z=0),p型(Al 0 . 7 Ga 0 . 3 ) 0 . 7 In 0 . 3 P (d = 0.04~0.08μm, z = 0 ), p -type (Al 0. 7 Ga 0. 3) 0. 7 In 0. 3 P
光導波層4(d=1.2μm,n A =5〜7×10 17 cm -3 ,y=0.7), Optical waveguide layer 4 (d = 1.2μm, n A = 5~7 × 10 17 cm -3, y = 0.7),
p型Ga 0 . 7 In 0 . 3 Pバッファ層5(d=0.1μm,n A =2×10 18 c p-type Ga 0. 7 In 0. 3 P buffer layer 5 (d = 0.1μm, n A = 2 × 10 18 c
m -3 ),n型(Al y Ga 1-y ) 0 . 7 In 0 . 3 P電流狭窄層6(d=0.1μ m -3), n-type (Al y Ga 1-y) 0. 7 In 0. 3 P current confinement layer 6 (d = 0.1 [mu]
m,n D =2×10 18 cm -3 ,y=0)を成長温度700℃において有機金属気相成長法によりエピタキシャル成長する。 m, epitaxially grown by n D = 2 × 10 18 cm -3, y = 0) metal organic chemical vapor deposition at a growth temperature 700 ° C. The. この後、ホトリソグラフィ−によりレジストマスク(ストライプ幅6〜8μm)を形成し、ケミカルエッチングにより層6を層5に至るまでエッチング除去する。 Thereafter, photolithography - by forming a resist mask (stripe width 6 to 8 [mu] m), is removed by etching down to the layer 6 to layer 5 by chemical etching. 次に、p Then, p
型Ga 0 . 7 In 0 . 3 Pコンタクト層7(d=1〜2μm,n A =5×10 18 Type Ga 0. 7 In 0. 3 P contact layer 7 (d = 1~2μm, n A = 5 × 10 18
〜1×10 19 cm -3 )を埋め込み成長した後、p電極8及びn ~1 × 10 19 cm -3) after the burying growth, p electrode 8 and n
電極9を蒸着する。 Depositing electrode 9. さらに、劈開スクライブして素子の形に切り出し、図1の断面を有する素子を得る。 Further, cut in the form of the element is cleaved scribed to obtain an element having a cross-section of FIG.

【0015】本実施例によって、利得差によって導波される0.5μm帯のレーザ構造を実現できた。 The present examples, could be realized a laser structure of 0.5μm band, which is guided by the gain difference. 本素子では、室温において閾値電流が150〜200mAで動作し、585〜595nmのレーザ発振波長を得た。 In this device, the threshold current is operated at 150~200mA at room temperature to obtain a laser oscillation wavelength of 585~595Nm.

【0016】実施例2 本発明の他実施例を図2により説明する。 [0016] Other embodiments of the Example 2 invention will be described with reference to FIG. 実施例1の作製方法において、図2に示すようにn型GaAs 1-x P x混晶バッファ層1'とn型(Al y Ga 1-y ) 0 . 7 In 0 . 3 P光導波層2の間に、n型Ga 0 . 7 In 0 . 3 P層とn型(Al y Ga 1-y ) 0 . 7 In 0 . 3 P層 In the manufacturing method of Example 1, n-type GaAs 1-x P x mixed crystal buffer layer 1 'and the n-type as shown in FIG. 2 (Al y Ga 1-y ) 0. 7 In 0. 3 P optical waveguide layer between 2, n-type Ga 0. 7 in 0. 3 P layer and the n-type (Al y Ga 1-y) 0. 7 in 0. 3 P layer
(d=3〜5nm,n D =1×10 18 cm -3 )を積み重ねた超格子層1 (d = 3~5nm, n D = 1 × 10 18 cm -3) superlattice layer 1 stacked
0を設ける。 0 is provided. その他は、全く実施例1と同様である。 Others are the same at all in Example 1. この超格子層10を設けることによって、上層の光導波層及び活性層の結晶性及び発光効率が向上した。 By providing the superlattice layer 10, with improved crystallinity and luminous efficiency of the upper optical waveguide layer and the active layer.

【0017】本実施例によって、室温において閾値電流を100〜150mAに低減できた。 [0017] The examples could be reduced threshold current to 100~150mA at room temperature. レーザ発振波長は実施例1と同様の範囲であった。 Lasing wavelength was the same range as that of Example 1.

【0018】実施例3 本発明の他実施例を3図により説明する。 [0018] will be described with reference to Figure 3 another embodiment of a third embodiment the present invention. (100)面を有するGaAs基板1上にn型Ga 0 . 51 In 0 . 49 P層とn型G (100) n-type Ga 0 on the GaAs substrate 1 having a surface. 51 In 0. 49 P layer and the n-type G
a 0 . 7 In 0 . 3 P層(d=3〜5nm,n D =1×10 18 cm -3 )を積み重ねた歪超格子層11を設ける。 a 0. 7 In 0. 3 P layer provided (d = 3~5nm, n D = 1 × 10 18 cm -3) strained superlattice layer 11 stacked. この後、実施例1と全く同様の方法により素子を作製する。 Thereafter, to prepare the device by exactly the same method as in Example 1.

【0019】本実施例によっても、実施例2と同様の効果を得た。 The present embodiment also, to obtain the same effects as in Embodiment 2.

【0020】実施例4 本発明の他実施例を4図により説明する。 [0020] will be described with reference to Figure 4 another embodiment of Example 4 the present invention. 実施例1と同様にして、p型Ga 0 . 7 In 0 . 3 Pバッファ層5まで成長する。 In the same manner as in Example 1, p-type Ga 0. 7 In 0. 3 grows P to the buffer layer 5. この後、ホトリソグラフィーによってSiO 2ストライプマスク(d=0.2〜0.4μm,ストライプ幅4〜6μm)を形成して、ケミカルエッチングにより層4を0.2〜0.4 Thereafter, SiO 2 stripe mask (d = 0.2 to 0.4 [mu] m, the stripe width 4 to 6 [mu] m) by photolithography to form, by chemical etching a layer 4 of 0.2 to 0.4
μm残したリッジストライプを作製する。 To produce a μm ridge stripe leaving. さらに、SiO 2 In addition, SiO 2
ストライプマスクを残したまま、n型Ga 0 . 7 In 0 . 3 P電流狭窄兼光吸収層12(d=1μm,n D =2×10 18 cm -3 )を選択成長する。 Leaving the stripe mask, n-type Ga 0. 7 In 0. 3 P current confinement and light absorbing layer 12 (d = 1μm, n D = 2 × 10 18 cm -3) is selectively grown. この後、SiO 2ストライプマスクをエッチング除去し、次にp型Ga 0 . 7 In 0 . 3 Pコンタクト層7(d=1〜2μ Thereafter, the SiO 2 stripe mask is removed by etching, then p-type Ga 0. 7 In 0. 3 P contact layer 7 (d = 1~2μ
m,n A =5×10 18 〜1×10 19 cm -3 )を埋め込み成長して前記実施例と同様に素子作製を行う。 m, n A = 5 × 10 18 ~1 × 10 19 cm -3) embedding growing performs similarly element manufactured with the embodiment.

【0021】本実施例によると、屈折率差によって導波されるストライプ構造を作製でき、基本横モード制御されたレーザ光を得ることができた。 [0021] According to this embodiment, can prepare a stripe structure that is guided by the refractive index difference, it was possible to obtain a fundamental transverse mode controlled laser beam. 本素子では、室温において閾値電流を80〜100mAに低減できた。 In this device it could reduce the threshold current to 80~100mA at room temperature. レーザ発振波長に関しては、前記実施例と同様の範囲であった。 For the lasing wavelength was the same range as the previous examples.

【0022】実施例5 本発明の他実施例を以下に説明する。 [0022] illustrating another embodiment of a fifth embodiment the present invention below. 前記実施例1から4までの素子作製方法において、活性層3に対してp型又はn型の不純物を6×10 17 〜1×10 18 cm -3ドーピングすることを行った。 In device manufacturing methods according to Examples 1 to 4, went to a p-type or n-type impurity to 6 × 10 17 ~1 × 10 18 cm -3 doping the active layer 3. その他は、全く前記実施例と同様に素子を作製した。 Others A device was produced in the same manner as at all the examples.

【0023】本実施例によると、室温におけるレーザ発振波長を565〜575nmに短波長化できた。 [0023] According to this embodiment, it was shorter wavelength in 565~575nm lasing wavelength at room temperature.

【0024】実施例6 本発明の他実施例を以下に説明する。 [0024] illustrating another embodiment of a sixth embodiment the present invention below. 前記実施例1から4までの素子作製方法において、n型GaAs基板1に関して(100)面から〔110〕〔−1−10〕方向又は〔1−10〕〔−110〕方向に角度15.8°傾いた(511)面を有するGaAs基板を用いることによって、 In device manufacturing methods according to Examples 1 to 4, with respect to n-type GaAs substrate 1 (100) [110] from the plane [- 1-10] direction or [1-10] [- 110] angle 15.8 in the direction ° by using a GaAs substrate having a tilted (511) surface,
前記実施例と同様に素子作製した。 And elements manufactured in the same manner as the previous examples.

【0025】本実施例によっても実施例5と同様にレーザ発振波長を565〜575nmに短波長化できた。 The present embodiment also similarly lasing wavelength as in Example 5 was shorter wavelength in 565~575Nm. また、本実施例では(511)面を有するGaAs基板を用いたが、54.7°までの角度を有する傾角基板であれば、実施例1〜4よりも短波長化の効果があり、565 Further, in the present embodiment was used GaAs substrate having a (511) plane, if the inclination angle a substrate having an angle of up to 54.7 °, has the effect of a short wavelength than that of Example 1-4, 565
〜585nmの範囲の発振波長を得た。 To obtain an oscillation wavelength in the range of ~585nm.

【0026】実施例7 本発明の他実施例を5図により説明する。 [0026] Other embodiments of Example 7 the present invention will be described by Figure 5. 実施例4と同様にして、n型(Al y Ga 1-y ) 0 . 7 In 0 . 3 P光導波層2まで成長した後、アンドープ多重量子井戸活性層13(膜厚3〜 In the same manner as in Example 4, n-type (Al y Ga 1-y) 0. 7 In 0. 3 was grown to P optical waveguide layer 2, an undoped multiple quantum well active layer 13 (thickness 3
7nmの(Al z1 Ga 1-z1 ) 0 . 7 In 0 . 3 P量子井戸8〜10層,膜厚 (Al z1 Ga 1-z1) 0 of 7nm. 7 In 0. 3 P quantum wells 8-10 layers, thickness
4〜8nmの(Al z2 Ga 1-z2 ) 0 . 7 In 0 . 3 P量子障壁9〜11層, (Al z2 Ga 1-z2) 0 of 4~8nm. 7 In 0. 3 P quantum barrier 9-11 layers,
0≦z 1 <z 2 <y)を成長する。 0 ≦ z 1 <z 2 to grow <y). この後は、全く実施例4と同様にして素子作製を行う。 Thereafter, perform device produced in the same manner exactly Example 4.

【0027】本実施例によると、室温において閾値電流が50〜80mAで低減でき、540〜550nmのレーザ発振波長を得ることができた。 [0027] According to this embodiment, it is possible to threshold current at room temperature can be reduced by 50~80MA, obtain a laser oscillation wavelength of 540~550Nm.

【0028】実施例8 本発明の他実施例を以下に説明する。 [0028] illustrating another embodiment of a eighth embodiment the present invention below. 実施例7と同様に素子を作製するが、実施例5と同様の不純物ドーピングを多重量子井戸活性層13に対して一様に行うか又は量子障壁層に変調して行った。 While making device in the same manner as in Example 7 was carried out by modulating the same impurity doping as in Example 5 to or quantum barrier layer uniformly performed on the multiple quantum well active layer 13.

【0029】本実施例によると、室温におけるレーザ発振波長を530〜540nmに短波長化することができた。 [0029] According to this embodiment, it is possible to shorten the wavelength of the laser oscillation wavelength 530~540nm at room temperature.

【0030】実施例9 本発明の他実施例を以下に説明する。 [0030] illustrating another embodiment of Example 9 the invention below. 実施例7と同様に素子を作製するが、実施例6と同様の傾角基板を用いて、(100)面から〔110〕〔−1−10〕方向又は〔1−10〕〔−110〕方向に角度15.8°傾いた(511)面を有するGaAs基板上に素子を作製した。 While making device in the same manner as in Example 7, using the same inclination substrate as in Example 6, (100) [110] from the plane [- 1-10] direction or [1-10] [- 110] direction a device was produced in the angle of 15.8 ° tilted (511) on a GaAs substrate having a surface.

【0031】本実施例においても、実施例8と同様に室温におけるレーザ発振波長を530〜540nmに短波長化することができた。 [0031] Also in this embodiment, it is possible to shorten the wavelength of the 530~540nm lasing wavelength at room temperature in the same manner as in Example 8. また、(100)面から〔11 Also, from (100) plane [11
0〕〔−1−10〕方向又は〔1−10〕〔−110〕 0] [- 1-10] direction or [1-10] [- 110]
方向に傾いた角度が54.7°までの傾角基板であれば短波長化に有効である。 An oblique angle to the direction is effective to shorten the wavelength of as long as inclination substrates up 54.7 °.

【0032】上記実施例では、結晶の成長は700℃で行なったが、650〜750℃の範囲にある他の温度でも良い。 [0032] In the above embodiment, crystal growth has been performed at 700 ° C., or at other temperatures in the range of 650 to 750 ° C..

【0033】 [0033]

【発明の効果】本発明によれば、GaAs基板上に組成をグレーデッドに変えたGaAs 1-x P x混晶バッファ層或は(AlG According to the present invention, GaAs and changing the composition on a GaAs substrate to a graded 1-x P x mixed crystal buffer layer or (AlGaAs
a) 0 . 51 In 0 . 49 P混晶と(AlGa) 0 . 7 In 0 . 3 P混晶による歪超格子バッファ層を介して約1.4%の格子不整のある(AlG a) 0. 51 In 0. 49 and P mixed crystal (AlGa) 0. 7 In 0 . a 1.4% lattice mismatch through the strained superlattice buffer layer by 3 P mixed crystal (AlGaAs
a) 0 . 7 In 0 . 3 P混晶を結晶性良く成長でき、欠陥密度や歪量を小さくできた。 a) 0. 7 In 0. 3 a P mixed crystal can good crystallinity growth, can be reduced defect density and strain amount. これにより、(AlGa) 0 . 7 In 0 . 3 P混晶によるダブルヘテロ接合が形成できた。 Thus, (AlGa) 0. 7 In 0. Double heterojunction by 3 P mixed crystal was formed. 利得差或は屈折率差によって導波されるストライプ構造を作製することにより、室温において0.5μm帯のレーザ発振を得た。 By making the stripe structure that is guided by the gain difference or refractive index difference, to obtain a laser oscillation of 0.5μm band at rt. 活性層を多重量子井戸構造とすることにより、室温において閾値電流が50〜80mAで530〜540n By the active layer and the multiple quantum well structure, 530~540N threshold current at 50~80mA at room temperature
mの発振波長が実現できた。 Oscillation wavelength of m can be realized.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明の実施例1、実施例5および実施例6の素子構造断面図である。 [1] Embodiment 1 of the present invention, a device structure cross-sectional view of Examples 5 and 6.

【図2】本発明の実施例2、実施例5および実施例6の素子構造断面図である。 [2] Example 2 of the present invention, a device structure cross-sectional view of Examples 5 and 6.

【図3】本発明の実施例3、実施例5および実施例6の素子構造断面図である。 [3] Embodiment 3 of the present invention, a device structure cross-sectional view of Examples 5 and 6.

【図4】本発明の実施例4乃至実施例6の素子構造断面図である。 4 is a device structure cross-sectional view of the fourth embodiment to the sixth embodiment of the present invention.

【図5】本発明の実施例7乃至実施例9の素子構造断面図である。 5 is a device structure cross-sectional view of an embodiment 7 to embodiment 9 of the present invention.

【符号の説明】 DESCRIPTION OF SYMBOLS

1…(100)面n型GaAs基板又は(100)面から傾いた面を有するn型GaAs基板、1'…組成を0から0.4まで徐々に変えたn型GaAs 1-x P x混晶バッファ層、1''…符号1と1'により形成される混晶半導体基板、2…n型(Al y Ga 1 ... (100) plane n-type GaAs substrate or the n-type GaAs substrate having a plane inclined from the (100) plane, 1 '... n-type GaAs 1-x P x mixed with gradually changing composition from 0 to 0.4 crystallization buffer layer, a mixed crystal semiconductor substrate which is formed by 1 '' ... code 1 and 1 ', 2 ... n-type (Al y Ga
1-y ) 0 . 7 In 0 . 3 P光導波層、3…(Al z Ga 1-z ) 0 . 7 In 0 . 3 P活性層、4…p型(Al y Ga 1-y ) 0 . 7 In 0 . 3 P光導波層、5…p型G 1-y) 0. 7 In 0. 3 P optical waveguide layer, 3 ... (Al z Ga 1 -z) 0. 7 In 0. 3 P active layer, 4 ... p-type (Al y Ga 1-y) 0 . 7 In 0. 3 P optical waveguide layer, 5 ... p-type G
a 0 . 7 In 0 . 3 Pバッファ層、6…n型(Al y Ga 1-y ) 0 . 7 In 0 . 3 P a 0. 7 In 0. 3 P buffer layer, 6 ... n-type (Al y Ga 1-y) 0. 7 In 0. 3 P
電流狭窄層、7…p型Ga 0 . 7 In 0 . 3 Pコンタクト層、8… The current confinement layer, 7 ... p-type Ga 0. 7 In 0. 3 P contact layer, 8 ...
p電極、9…n電極、10…n型Ga 0 . 7 In 0 . 3 P/n型(Al p electrode, 9 ... n electrode, 10 ... n-type Ga 0. 7 In 0. 3 P / n -type (Al
y Ga 1-y ) 0 . 7 In 0 . 3 P超格子バッファ層、11…n型Ga 0 . 7 I y Ga 1-y) 0. 7 In 0. 3 P superlattice buffer layer, 11 ... n-type Ga 0. 7 I
n 0 . 3 P/n型Ga 0 . 7 In 0 . 3 P歪超格子バッファ層、12…n n 0. 3 P / n-type Ga 0. 7 In 0. 3 P strained superlattice buffer layer, 12 ... n
型Ga 0 . 7 In 0 . 3 P電流狭窄兼光吸収層、13…(Al z1 G Type Ga 0. 7 In 0. 3 P current confinement and light absorbing layer, 13 ... (Al z1 G
a 1-z1 ) 0 . 7 In 0 . 3 P/(Al z2 Ga 1-z2 ) 0 . 7 In 0 . 3 P量子井戸構造。 a 1-z1) 0. 7 In 0. 3 P / (Al z2 Ga 1-z2) 0. 7 In 0. 3 P quantum well structure.

Claims (16)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】半導体基板上に、(AlGa) α In 1―α P(0. To 1. A semiconductor substrate, (AlGa) α In 1- α P (0.
    51<α≦0.73)混晶から成るダブルヘテロ構造体を、両者の格子不整を解消するバッファ層を介して形成し、かつ上記ダブルヘテロ構造体の光導波層は(Al y Ga 51 <α ≦ 0.73) a double hetero structure composed of mixed crystal, formed via a buffer layer to eliminate both lattice mismatch, and optical waveguide layer in the double hetero structure (Al y Ga
    1-y ) α In 1-α P(0<y≦1,0.51<α≦0.73) 1-y) α In 1- α P (0 <y ≦ 1,0.51 <α ≦ 0.73)
    から成り、発光活性層は(Al z Ga 1-z ) α In 1-α P(0≦z Made, the light emitting active layer (Al z Ga 1-z) α In 1-α P (0 ≦ z
    <y,0.51<α≦0.73)から成ることを特徴とする半導体レーザ素子。 <Y, the semiconductor laser device characterized in that it consists of 0.51 <α ≦ 0.73).
  2. 【請求項2】上記半導体基板はGaAsから成り、上記バッファ層はGaAs 1-x P xから成りかつその組成Xは上記GaAs Wherein said semiconductor substrate is made of GaAs, the buffer layer is made of GaAs 1-x P x and the composition X is the GaAs
    基板面側を0として膜厚方向に徐々に大きくなっており、上記ダブルヘテロ構造体の光導波層側で該層と格子整合するXとなっている請求項1記載の半導体レーザ素子。 The substrate surface is gradually increased in the direction of film thickness as a 0, a semiconductor laser device according to claim 1, characterized in that a X to the layer lattice-matched with the optical waveguide layer side of the double hetero structure.
  3. 【請求項3】上記半導体基板はGaAsから成り、上記バッファ層は該GaAs基板に対して格子整合する(Al β Ga 1-β ) Wherein said semiconductor substrate is made of GaAs, the buffer layer is lattice-matched to the GaAs substrate (Al β Ga 1-β)
    0 . 51 In 0 . 49 P(0≦β≦1)層と格子不整を生じる(Al β 0. 51 In 0. 49 P (0 ≦ β ≦ 1) results in a layer with lattice mismatch (Al beta
    Ga 1-β ) α In 1-α P(0≦β≦1)層の周期構造からなる歪超格子層から成る請求項1記載の半導体レーザ素子。 Ga 1-β) α In 1 -α P (0 ≦ β ≦ 1) layer semiconductor laser device according to claim 1, wherein consisting strained superlattice layer consisting of periodic structure.
  4. 【請求項4】上記GaAs 1-x P x層と上記光導波層との間に、Ga α In 1-α P層と(Al y Ga 1-y ) α In 1-α P層の周期構造からなる超格子層を設けた請求項2記載の半導体レーザ素子。 Between wherein said GaAs 1-x P x layer and the optical waveguide layer, Ga α In 1-α P layer (Al y Ga 1-y) α period of In 1-α P layer structure the semiconductor laser device according to claim 2, wherein providing the superlattice layer composed of.
  5. 【請求項5】上記光導波層及び発光活性層の組成αは0.7である請求項1乃至4のいずれか一に記載の半導体レーザ素子。 5. A semiconductor laser device according to any one of claims 1 to 4 The composition α of the optical waveguide layer and the light emitting active layer is 0.7.
  6. 【請求項6】上記光導波層及び発光活性層の組成αは0.7であり、上記GaAs 1-x P x混晶の最上層は組成X= 6. A composition α of the optical waveguide layer and the light emitting active layer is 0.7, the top layer of the GaAs 1-x P x mixed crystal composition X =
    0.4である請求項2又は4に記載の半導体レーザ素子。 The semiconductor laser device according to claim 2 or 4 is 0.4.
  7. 【請求項7】上記GaAs基板の結晶面は、(100)面、 7. The crystal plane of the GaAs substrate, (100) plane,
    或は(100)面から〔110〕〔−1−10〕方向又は〔1−10〕〔−110〕方向に54.7°までの角度傾いた結晶面、或は(110)面である請求項1乃至6のいずれか一に記載の半導体レーザ素子。 Or (100) [110] from the plane [- 1-10] direction or [1-10] [- 110] angle inclined crystal plane to the direction 54.7 °, or (110) plane and is claimed the semiconductor laser device according to any one of claims 1 to 6.
  8. 【請求項8】上記発光活性層は、p型またはn型の不純物がド−ピングされている請求項1乃至7のいずれか一に記載の半導体レーザ素子。 8. The light emitting active layer, p-type or n-type impurity de of - the semiconductor laser device according to any one of claims 1 to 7 are ping.
  9. 【請求項9】上記発光活性層は、(Al z1 Ga 1-z1 ) α In 1-α 9. The light emitting active layer, (Al z1 Ga 1-z1 ) α In 1-α
    P(0≦z 1 <y)単一量子井戸層の両側に(Al z2 Ga 1-z2 ) P on both sides of (0 ≦ z 1 <y) single quantum well layer (Al z2 Ga 1-z2)
    α In 1-α P(0≦z 1 <z 2 <y)光導波層を設けた単一量子井戸構造から成る請求項1乃至7のいずれか一に記載の半導体レーザ素子。 α In 1-α P (0 ≦ z 1 <z 2 <y) semiconductor laser device according to any one of claims 1 to 7 comprising a single quantum well structure in which a light waveguide layer.
  10. 【請求項10】上記発光活性層は、(Al z1 Ga 1-z1 ) α In 10. The light emitting active layer, (Al z1 Ga 1-z1 ) α In
    1-α P(0≦z 1 <y)量子井戸層と(Al z2 Ga 1-z2 ) α In 1-α P (0 ≦ z 1 <y) quantum well layer (Al z2 Ga 1-z2) α In
    1-α P(0≦z 1 <z 2 <y)量子障壁層を繰り返し設けた多重量子井戸構造から成る請求項1乃至7のいずれか一に記載の半導体レーザ素子。 1-α P (0 ≦ z 1 <z 2 <y) semiconductor laser device according to any one of claims 1 to 7 comprising a multiple quantum well structure in which repeated quantum barrier layer.
  11. 【請求項11】上記発光活性層は、p型またはn型の不純物が一様にド−ピングされている請求項9又は10に記載の半導体レーザ素子。 11. The light emitting active layer, p-type or n-type impurity is uniformly de of - the semiconductor laser device according to claim 9 or 10 is ping.
  12. 【請求項12】上記単一量子井戸構造における光導波層にp型またはn型の不純物が変調ドーピングされている請求項9記載の半導体レーザ素子。 12. The semiconductor laser device of the p-type or n-type according to claim 9, wherein the impurities are modulation-doped in the optical waveguide layer in the single quantum well structure.
  13. 【請求項13】上記多重量子井戸構造における量子障壁層にp型またはn型の不純物が変調ドーピングされている請求項10記載の半導体レーザ素子。 13. A semiconductor laser device according to claim 10, wherein the p-type or n-type impurities into the quantum barrier layer of the multiple quantum well structure is modulated doping.
  14. 【請求項14】上記p型又はn型の不純物濃度は5×1 The impurity concentration of 14. The p-type or n-type 5 × 1
    17 〜2×10 18 cm -3の範囲である請求項8、11、 0 17 ranges from ~2 × 10 18 cm -3 claims 8 and 11,
    12又は13に記載の半導体レーザ素子。 The semiconductor laser device according to 12 or 13.
  15. 【請求項15】上記p型の不純物種はZn、Mg又はBeからなる請求項14記載の半導体レーザ素子。 15. The semiconductor laser device of the p-type impurity species of Zn, claim 14 consisting of Mg or Be.
  16. 【請求項16】上記n型の不純物種はSi又はSeから成る請求項14記載の半導体レーザ素子。 16. A semiconductor laser device according to claim 14, wherein said n-type impurity species is made of Si or Se.
JP19637191A 1991-08-06 1991-08-06 Semiconductor laser element Pending JPH0541560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19637191A JPH0541560A (en) 1991-08-06 1991-08-06 Semiconductor laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19637191A JPH0541560A (en) 1991-08-06 1991-08-06 Semiconductor laser element

Publications (1)

Publication Number Publication Date
JPH0541560A true true JPH0541560A (en) 1993-02-19

Family

ID=16356750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19637191A Pending JPH0541560A (en) 1991-08-06 1991-08-06 Semiconductor laser element

Country Status (1)

Country Link
JP (1) JPH0541560A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07261220A (en) * 1994-03-25 1995-10-13 Atr Koudenpa Tsushin Kenkyusho:Kk Semiconductor optical element
WO1999009602A1 (en) * 1997-08-20 1999-02-25 Sanyo Electric Co., Ltd. Compound semiconductor device based on gallium nitride
US6072196A (en) * 1996-09-05 2000-06-06 Ricoh Company, Ltd. semiconductor light emitting devices
US6452215B1 (en) 1996-09-05 2002-09-17 Ricoh Company, Ltd. Semiconductor light emitting devices
US6542528B1 (en) 1999-02-15 2003-04-01 Ricoh Company, Ltd. Light-emitting semiconductor device producing red wavelength optical radiation
US7684456B2 (en) 1999-08-04 2010-03-23 Ricoh Company, Ltd. Laser diode and semiconductor light-emitting device producing visible-wavelength radiation

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07261220A (en) * 1994-03-25 1995-10-13 Atr Koudenpa Tsushin Kenkyusho:Kk Semiconductor optical element
US6072196A (en) * 1996-09-05 2000-06-06 Ricoh Company, Ltd. semiconductor light emitting devices
US6452215B1 (en) 1996-09-05 2002-09-17 Ricoh Company, Ltd. Semiconductor light emitting devices
WO1999009602A1 (en) * 1997-08-20 1999-02-25 Sanyo Electric Co., Ltd. Compound semiconductor device based on gallium nitride
US6388275B1 (en) 1997-08-20 2002-05-14 Sanyo Electric Co., Ltd. Compound semiconductor device based on gallium nitride
US6542528B1 (en) 1999-02-15 2003-04-01 Ricoh Company, Ltd. Light-emitting semiconductor device producing red wavelength optical radiation
US6829271B2 (en) 1999-02-15 2004-12-07 Ricoh Company, Ltd. Light-emitting semiconductor device producing red wavelength optical radiation
US7684456B2 (en) 1999-08-04 2010-03-23 Ricoh Company, Ltd. Laser diode and semiconductor light-emitting device producing visible-wavelength radiation
US8009714B2 (en) 1999-08-04 2011-08-30 Ricoh Company, Ltd. Laser diode and semiconductor light-emitting device producing visible-wavelength radiation
US8537870B2 (en) 1999-08-04 2013-09-17 Ricoh Company, Limited Laser diode and semiconductor light-emitting device producing visible-wavelength radiation

Similar Documents

Publication Publication Date Title
US6266355B1 (en) Group III-V nitride laser devices with cladding layers to suppress defects such as cracking
US7193246B1 (en) Nitride semiconductor device
US4750183A (en) Semiconductor laser device
US6121634A (en) Nitride semiconductor light emitting device and its manufacturing method
US20030118066A1 (en) Graded semiconductor layers for reducing threshold voltage for a nitride-based laser diode structure
US6841409B2 (en) Group III-V compound semiconductor and group III-V compound semiconductor device using the same
US20020094002A1 (en) Nitride semiconductor layer structure and a nitride semiconductor laser incorporating a portion of same
US4635268A (en) Semiconductor laser device having a double heterojunction structure
US6563851B1 (en) Laser diode having an active layer containing N and operable in a 0.6 μm wavelength band
US6542528B1 (en) Light-emitting semiconductor device producing red wavelength optical radiation
JP3515974B2 (en) Nitride semiconductor, manufacturing method thereof and a nitride semiconductor device
US5619518A (en) Semiconductor laser diode
US20050238075A1 (en) Laser diode having an active layer containing N and operable in a 0.6mum wavelength band
US5345463A (en) Semiconductor laser with improved oscillation wavelength reproducibility
JP2001168471A (en) Nitride semiconductor light-emitting element
US6697404B1 (en) Laser diode operable in 1.3μm or 1.5μm wavelength band with improved efficiency
US20050280022A1 (en) Semiconductor laser device and manufacturing method thereof
JPH09232629A (en) Semiconductor element
JP2003332697A (en) Nitride semiconductor element and its manufacturing method
JPH11251685A (en) Semiconductor laser
JP2002335052A (en) Nitride semiconductor element
JPH1065271A (en) Gallium nitride based semiconductor light-emitting element
JP2003092426A (en) Nitride compound semiconductor light emitting element and its manufacturing method
US5556804A (en) Method of manufacturing semiconductor laser
JPH11298090A (en) Nitride semiconductor element