JPH0677592A - Semiconductor laser element - Google Patents
Semiconductor laser elementInfo
- Publication number
- JPH0677592A JPH0677592A JP22972992A JP22972992A JPH0677592A JP H0677592 A JPH0677592 A JP H0677592A JP 22972992 A JP22972992 A JP 22972992A JP 22972992 A JP22972992 A JP 22972992A JP H0677592 A JPH0677592 A JP H0677592A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- strain
- quantum well
- range
- semiconductor laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Semiconductor Lasers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、光情報端末或は光応用
計測用の光源に適する短波長可視半導体レーザ素子に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a short wavelength visible semiconductor laser device suitable for an optical information terminal or a light source for optical application measurement.
【0002】[0002]
【従来の技術】従来の技術では、短波長領域において低
閾値化を図ることを目標に、AlGaInPLDにおける4元A
lGaInP量子井戸(QW)層に対してGaAs基板とは格子定数
が整合しない組成を設定することにより圧縮歪を導入す
ることが例えば先行技術「エレクトロニクス・レター
ス」1992年,28巻,628頁(Electron.Lett.,28,628(1992)
において述べられている。2. Description of the Related Art In the prior art, with the goal of lowering the threshold value in the short wavelength region, quaternary A in AlGaInPLD is used.
It is possible to introduce compressive strain by setting a composition in which the lattice constant does not match the GaAs substrate for the lGaInP quantum well (QW) layer, for example, in the prior art "Electronic Letters", 1992, 28, 628 (Electron. .Lett., 28,628 (1992)
Are described in.
【0003】しかしながら、短波長領域における低閾値
かつ高温動作に関して、3元及び4元量子井戸層の幅や
層数に対する最適化及び歪量の導入についての詳細は述
べられておらず、また傾角基板上における多重量子井戸
(MQW)構造の設計についての内容を言及していない。However, regarding low threshold and high temperature operation in the short wavelength region, no details are given regarding the optimization of the width and the number of ternary and quaternary quantum well layers and the introduction of strain amount, and the tilted substrate Multiple quantum wells on
(MQW) Does not mention the content of the design of the structure.
【0004】[0004]
【発明が解決しようとする課題】上記従来技術では、歪
多重量子井戸活性層における歪QW幅及び層数や導入す
べき歪量の詳細が述べられておらず、また例えば発振波
長が630nm帯における低閾値動作や温度特性の向上
については触れられていない。In the above prior art, the details of the strain QW width and the number of layers and the strain amount to be introduced in the strained multiple quantum well active layer are not described, and for example, in the 630 nm band oscillation wavelength. No mention is made of low threshold operation or improvement of temperature characteristics.
【0005】本発明の目的は、傾角基板上に歪MQW構
造活性層を設け歪QW層幅及び層数を最適化することに
より、630nm帯或いはそれよりも短波長の領域にお
いて従来より閾値電流を低減しかつ50℃以上の高温動
作を安定に実現することにある。また、用いる傾角基板
のオフ角度を規定することにより、発振波長の短波長化
を図りかつMQW構造設計に関する裕度を拡大すること
にある。An object of the present invention is to provide a strained MQW structure active layer on a tilted substrate to optimize the strained QW layer width and the number of layers, so that a threshold current in the 630 nm band or a shorter wavelength region can be made higher than that in the prior art. It is to reduce the temperature and stably realize a high temperature operation of 50 ° C. or higher. Further, by defining the off-angle of the tilted substrate to be used, it is intended to shorten the oscillation wavelength and expand the margin regarding the MQW structure design.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するため
の手段を以下に説明する。Means for achieving the above object will be described below.
【0007】まず目的とするレーザ素子の発振波長を想
定して、その波長域に応じたデバイス作製条件及び構造
設計を行っていくことが必要がある。キャリアオ−バフ
ロ−が顕著になってくる発振波長630nm帯では低閾
値化や高温動作を図ることが困難になってくるので、上
記デバイス作製条件及び構造設計の最適化が特に重要と
なる。用いる有効な手段は2つあり、1つは(001)面上
から〔110〕〔-1-10〕または〔1-10〕〔-110〕方向にオ
フした面方位を有する傾角基板を用い、その上に比較的
高温の660〜780℃で成長した結晶により半導体レ
ーザ素子に基本的なダブルヘテロ構造を形成することで
ある。ここでカッコ内のマイナス符号は軸の負の方向を
表わす。もう1つは、活性層構造をMQW構造とし、か
つ個々のQW層に歪を導入して歪MQW活性層を形成す
ることであり、QW層に導入する歪量,QW層幅及び層
数を最適化することである。前者は主に高温動作に対し
て有効であり、後者は低閾値化を図る上で重要である。First, it is necessary to assume the oscillation wavelength of the target laser element and perform device manufacturing conditions and structural design according to the wavelength range. In the 630 nm oscillation wavelength band where the carrier overflow becomes remarkable, it becomes difficult to achieve a low threshold and a high temperature operation. Therefore, the optimization of the above device manufacturing conditions and structural design is particularly important. There are two effective means to use, one is using a tilted substrate having a plane orientation off from the (001) plane in the [110] [-1-10] or [1-10] [-110] direction, A basic double hetero structure is formed on the semiconductor laser device by a crystal grown at a relatively high temperature of 660 to 780 ° C. thereon. Here, the minus sign in parentheses indicates the negative direction of the axis. The other is that the active layer structure is an MQW structure, and strain is introduced into each QW layer to form a strained MQW active layer. The strain amount, the QW layer width, and the number of layers to be introduced into the QW layer are set. It is to optimize. The former is mainly effective for high temperature operation, and the latter is important for lowering the threshold value.
【0008】[0008]
【作用】目的を達成するため、上記手段の作用について
説明する。The operation of the above means for achieving the object will be described.
【0009】本発明で用いる(001)面上から〔-1-10〕
〔110〕または〔1-10〕〔-110〕方向にオフした面方位
を有する傾角基板の作用を述べる。上記傾角基板上で
は、Al組成の高いAlGaInP混晶において困難とされた1
×1018cm-3オーダーのp型キャリア濃度を容易に実
現できるので、p型AlGaInPクラッド層へオーバフロー
する電子に対してヘテロ障壁を増大させることが可能と
なる。この結果、従来CWレーザ動作が困難であった5
0℃以上の高温域においても主に電子を閉じ込める効果
が生じ閾キャリア密度を活性層において確保することが
可能となり、高温動作が向上する。傾角基板のオフ角度
が5°以上であれば、p型不純物量によってホール濃度
1×1018cm-3オーダーを設定でき、さらにそれ以上
にオフ角度を大きくするとp型不純物のキャリア活性化
率が向上することが判明した。From the (001) plane used in the present invention [-1-10]
The action of a tilted substrate having a plane orientation off in the [110] or [1-10] [-110] direction will be described. On the above tilted substrate, it was considered difficult in AlGaInP mixed crystal with high Al composition 1
Since a p-type carrier concentration on the order of × 10 18 cm -3 can be easily realized, it is possible to increase the hetero barrier against electrons overflowing into the p-type AlGaInP cladding layer. As a result, the conventional CW laser operation was difficult.
Even in a high temperature range of 0 ° C. or higher, the effect of mainly confining electrons occurs, and it becomes possible to secure the threshold carrier density in the active layer, and the high temperature operation is improved. If the off-angle of the tilted substrate is 5 ° or more, the hole concentration can be set to the order of 1 × 10 18 cm −3 depending on the amount of p-type impurities, and if the off-angle is further increased, the carrier activation rate of p-type impurities can be increased. It turned out to improve.
【0010】さらに、上記傾角基板上ではAlGaInPヘテ
ロ界面においてAl組成急峻性が格段に向上し、かつ界面
平坦性も改善されることが明らかとなった。特に、Al組
成の変化を周期的に繰り返したMQW構造に対する上記
効果は顕著であり、QW層におけるキャリアの状態密度
増大,発光効率の向上及び発光幅の低減に有効である。
また、上記傾角基板上ではAlGaInP材料系に特有なIII
族元素(Al,Ga及びIn)の秩序配列構造の生成を抑制する
ことができる。(001)ジャスト基板上では、III族元素の
秩序配列構造が生成したAlGaInP混晶において同じ組成
であってもバンドギャップエネルギーが縮小することが
わかっている。これに対し、傾角基板を用いると、その
上に成長した結晶層におけるIII族元素の秩序配列構造
を抑制しバンドギャップエネルギーを相対的に大きく保
つことになる。このことは、レーザ発振波長の短波長化
を図る上で有効であり、MQW構造の最適設計上重要と
なる。傾角基板においてオフ角度を15.8°とした(11
5)基板を用い、成長温度を比較的高い660〜780
℃、望ましくは740〜780℃の範囲に設定したとき
に、III族元素の秩序配列構造を完全に消失させること
ができる。これにより、オフ角度15.8°とした(115)
基板を用いることがバンドギャップエネルギーを最大に
設定できるので好ましいといえる。成長温度との兼ね合
いによって決定するが、傾角基板のオフ角度は0°より
大きく(111)面の54.7°の範囲、望ましくは5°以上
30°以下において設定する。Further, it was revealed that the Al composition steepness was remarkably improved at the AlGaInP hetero interface and the interface flatness was also improved on the tilted substrate. In particular, the above effect is remarkable for the MQW structure in which the Al composition is periodically changed, and it is effective for increasing the density of states of carriers in the QW layer, improving the emission efficiency, and reducing the emission width.
In addition, on the tilted substrate, III which is peculiar to AlGaInP material system
It is possible to suppress the formation of an ordered array structure of group elements (Al, Ga and In). It has been known that the band gap energy is reduced on the (001) just substrate even in the same composition in the AlGaInP mixed crystal in which the ordered arrangement structure of the group III elements is generated. On the other hand, the use of the tilted substrate suppresses the ordered arrangement structure of the group III elements in the crystal layer grown thereon and keeps the band gap energy relatively large. This is effective for shortening the laser oscillation wavelength, and is important for optimal design of the MQW structure. The off angle of the tilted substrate was set to 15.8 ° (11
5) Using a substrate, the growth temperature is relatively high at 660-780
When the temperature is set to ℃, preferably 740 to 780 ℃, it is possible to completely eliminate the ordered arrangement structure of the group III element. As a result, the off angle was set to 15.8 ° (115)
It can be said that it is preferable to use the substrate because the band gap energy can be set to the maximum. Although determined in consideration of the growth temperature, the off-angle of the tilted substrate is set to be larger than 0 ° and within the range of 54.7 ° of the (111) plane, preferably 5 ° or more and 30 ° or less.
【0011】上記傾角基板上に設ける活性層をMQW構
造とし、個々のQW層に歪を導入してその歪量,QW層
幅及び層数を最適化することが有効であることを以下に
述べる。歪MQW構造を最適設計する際に、最初に考慮
する必要があるのは発振波長である。例えば、発振波長
を630〜640nmの範囲を目標とした場合、キャリ
アオーバフローが著しくなるために、歪MQW構造を設
計する際に、設定すべきパラメータの範囲を十分に考慮
して低閾値化を図る必要がある。発振波長を630〜6
40nmの範囲に想定して、低閾値化を図れる歪MQW
構造に関して、以下に圧縮歪を導入する場合と引張歪を
導入する場合に分けて、上記パラメータの最適範囲を述
べる。It will be described below that it is effective to adopt an MQW structure as the active layer provided on the tilted substrate and introduce strain into each QW layer to optimize the strain amount, the QW layer width and the number of layers. . When optimally designing a strained MQW structure, the oscillation wavelength must be first considered. For example, when the oscillation wavelength is set in the range of 630 to 640 nm, carrier overflow becomes remarkable, and therefore, when designing the strained MQW structure, the range of parameters to be set is sufficiently taken into consideration to reduce the threshold value. There is a need. The oscillation wavelength is 630-6
Distorted MQW that can achieve a low threshold value assuming a range of 40 nm
Regarding the structure, the optimum range of the above parameters will be described below separately for the case of introducing compressive strain and the case of introducing tensile strain.
【0012】(AlxGa1-x)αIn1-αP量子井戸層において
圧縮歪を導入する場合(0.1<α<0.5)には、QW層
を形成する材料のバンドギャップエネルギーが小さくな
るので、薄膜のQW層が要求されキャリア閉じ込めの低
下を引き起こす。このため、3元GaInP層よりもバンド
ギャップエネルギーの大きい4元AlGaInP層によりQW
層を形成した方が同じ発振波長においてQW層幅を広く
でき、キャリア閉じ込めの向上が図れるので望ましい。
III族元素の秩序配列構造を完全に抑制できる(115)基板
上においても、上記発振波長を実現するためには無歪の
3元GaInPQW層幅は5〜6nmにする必要があり、圧
縮歪を導入するとQW層幅はそれ以下になり不利であ
る。4元AlGaInPQW層ではAl組成xを0.1にまで大き
くすると、QW層幅を7〜8nmの範囲で格子不整0.
7〜0.8%の圧縮歪を導入できる。4元QW層のAl組
成xを0.2に設定すると、同じQW層幅の範囲で格子
不整1.2〜1.4%の圧縮歪を導入できる。MQW構造
に導入できる歪量に関しては、臨界膜厚を考慮して格子
不整は0.5〜2.0%の範囲で圧縮歪を設定することが
望ましい。QW層数に関しては、層数が少ないとMQW
活性層においてキャリア閉じ込めが低下し、層数が多す
ぎると有効質量の大きなホールの不均一注入をまねくた
め、閾値電流の上昇を生ずる。以上を考慮して、圧縮歪
を導入するMQW構造では、4元QW層を用いることが
有利であり、Al組成xは0<x≦0.2の範囲、QW層
幅は6〜9nmの範囲及びQW層数は10層以下として
3〜7層の範囲が最適範囲であり、この範囲において格
子不整0.5〜2.0%の範囲となる圧縮歪を設定したと
きに従来より低閾値化が可能となった。When introducing compressive strain in the (Al x Ga 1-x ) α In 1-α P quantum well layer (0.1 <α <0.5), the band gap of the material forming the QW layer is Since the energy is low, a thin QW layer is required, which causes a decrease in carrier confinement. Therefore, the quaternary AlGaInP layer, which has a larger bandgap energy than the ternary GaInP layer, causes QW.
It is desirable to form a layer because the QW layer width can be widened at the same oscillation wavelength and carrier confinement can be improved.
Even on a (115) substrate that can completely suppress the ordered array structure of Group III elements, the strain-free ternary GaInPQW layer width needs to be 5 to 6 nm in order to realize the above oscillation wavelength, and compressive strain If it is introduced, the QW layer width becomes less than that, which is disadvantageous. In the quaternary AlGaInP QW layer, when the Al composition x is increased to 0.1, the QW layer width is 0.7 to 8 nm and the lattice mismatch is 0.
A compressive strain of 7-0.8% can be introduced. When the Al composition x of the quaternary QW layer is set to 0.2, a compressive strain of lattice misregistration of 1.2 to 1.4% can be introduced within the same QW layer width range. Regarding the amount of strain that can be introduced into the MQW structure, it is desirable to set the compressive strain within the range of 0.5 to 2.0% in lattice irregularity in consideration of the critical film thickness. Regarding the number of QW layers, if the number of layers is small, MQW
Carrier confinement in the active layer decreases, and if the number of layers is too large, non-uniform injection of holes with a large effective mass is caused, resulting in an increase in threshold current. In consideration of the above, it is advantageous to use a quaternary QW layer in the MQW structure introducing compressive strain, the Al composition x is in the range of 0 <x ≦ 0.2, and the QW layer width is in the range of 6 to 9 nm. And the number of QW layers is 10 or less, the optimum range is 3 to 7 layers, and when the compression strain is set to a range of 0.5 to 2.0% of lattice misalignment in this range, the threshold value becomes lower than the conventional one. Became possible.
【0013】一方、(AlxGa1-x)αIn1-αP量子井戸層に
おいて引張歪を導入する場合(0.5<α<0.8)には、
QW層を形成する材料のバンドギャップエネルギーが大
きくなるので、3元GaInP層によりQW層を形成しても
上記発振波長を有する歪MQW構造において低閾値化を
図る設計が可能となる。引張歪を導入し組成αを大きく
設定する方向では、間接遷移のX点が直接遷移のΓ点の
バンドギャップエネルギーに近づき発光効率が低下する
ので、格子不整は2.0%以上導入することは明らかに
不利であり1.5%以下に設定することが望ましい。以
上を考慮して、引張歪MQW構造では、QW層のAl組成
xは0≦x≦0.1の範囲、QW層幅は6〜9nmの範
囲及びQW層数は10層以下として3〜7層の範囲が最
適範囲であり、格子不整0.4〜1.2%の範囲となる引
張歪を設定したときに従来より低閾値化を図れた。On the other hand, when tensile strain is introduced in the (Al x Ga 1-x ) α In 1-α P quantum well layer (0.5 <α <0.8),
Since the bandgap energy of the material forming the QW layer becomes large, even if the QW layer is formed by the ternary GaInP layer, it is possible to design the strained MQW structure having the above oscillation wavelength so as to reduce the threshold value. In the direction of introducing the tensile strain and setting the composition α large, the X point of the indirect transition approaches the band gap energy of the Γ point of the direct transition and the light emission efficiency decreases, so it is not possible to introduce a lattice mismatch of 2.0% or more. It is clearly disadvantageous, and it is desirable to set it to 1.5% or less. In consideration of the above, in the tensile strain MQW structure, the Al composition x of the QW layer is in the range of 0 ≦ x ≦ 0.1, the QW layer width is in the range of 6 to 9 nm, and the number of QW layers is 10 or less. The range of layers was the optimum range, and when the tensile strain was set to a range of 0.4 to 1.2% of lattice misalignment, the threshold value could be made lower than before.
【0014】以上の結果、He-Neガスレーザの発振波長
632.8nmを置き換えることができる630〜64
0nmの領域においても、AlGaInP半導体レーザの特
性、主に従来困難であった50℃以上での安定動作及び
長期信頼性を可能にし、従来よりも低閾値電流でCW動
作が実現できた。As a result of the above, the oscillation wavelength 632.8 nm of the He-Ne gas laser can be replaced with 630-64.
Even in the 0 nm region, the characteristics of the AlGaInP semiconductor laser, stable operation at 50 ° C. or higher, which was difficult in the past, and long-term reliability were made possible, and CW operation was realized at a lower threshold current than in the past.
【0015】上記はレーザ素子の発振波長を630〜6
40nmの範囲に想定し、光出力3〜10mWの動作を
目標にした場合について述べたものである。目標の発振
波長を上記よりも短波長側の0.5μm帯に設定する場
合には、格子定数のより小さいGaP基板を用いてGaInP圧
縮歪QW層として歪MQW構造を設計するのが有効であ
り、実施例6に詳細を述べる。In the above, the oscillation wavelength of the laser element is 630 to 6
This is a case where a range of 40 nm is assumed and an operation with an optical output of 3 to 10 mW is targeted. When setting the target oscillation wavelength in the 0.5 μm band on the shorter wavelength side than the above, it is effective to design a strained MQW structure as a GaInP compressive strained QW layer using a GaP substrate with a smaller lattice constant. Details will be described in Example 6.
【0016】発振波長の目標が上記より長波長側に設定
できる場合やその波長域において上記よりも高出力特性
を実現することを目標とする場合には、請求項に記載し
た歪MQW構造の各パラメータ設計範囲において最適化
を別に図ることが重要である。When the target of the oscillation wavelength can be set to a longer wavelength side than the above or when it is aimed to realize a higher output characteristic than the above in the wavelength range, each of the strained MQW structures described in the claims. It is important to separately optimize the parameter design range.
【0017】[0017]
【実施例】実施例1 本発明の一実施例を図1,図2により説明する。まず図
1において、(001)面から〔110〕〔-1-10〕方向に15.
8°傾いた面を有するn型GaAs基板1を用いて、その上
にn型GaInPバッファ層2(d=0.5μm,ND=1×1018c
m-3),n型(Aly2Ga1-y2)αIn1-αP光導波層3(d=2.0μ
m,ND=1×1018cm-3,y2=0.7,αはGaAs基板と格子整合
する値0.51),膜厚5nmのアンドープ(AlxGa1-x)γIn1-γ
P(X=0,γ=0.29,格子不整1.7%)歪量子井戸層3層と,
膜厚8nmのアンドープ(Aly1Ga1-y1)βIn1-βP(y1=0.5,
βはGaAs基板と格子整合する値0.51)量子障壁層2層,
及び量子井戸層両側にAl組成を階段状に設定した光分離
閉じ込め層(障壁層から光導波層に至るまでAl組成y3を
0.5から0.7まで0.05ずつ段階的に変化させ、それぞれの
膜厚を7nmに設定したアンドープ(Aly3Ga1-y3)βIn1-βP
層(y3=0.5,0.55,0.6,0.65,βはGaAs基板と格子整合す
る値0.51)から構成される(多重量子井戸層周辺の伝導帯
バンド構造概略は図2のようになる)多重量子井戸活性
層4,p型(Aly2Ga1-y2)αIn1-αP光導波層5(d=1.8μ
m,NA=7〜8×1017cm-3,y2=0.7,αはGaAs基板と格子
整合する値0.51),p型Ga0.51In0.49Pバッファ層6(d=
0.05μm,NA=2×1018cm-3)を成長温度760℃におい
て有機金属気相成長法によりエピタキシャル成長した。
この後、ホトリソグラフィーによりSiO2マスク(膜厚d=
0.2μm,ストライプ幅4μm)を形成し、ケミカルエッ
チングにより層5を0.1〜0.2μm残すところまで層
6と層5をエッチング除去してリッジストライプを形成
する。次に、SiO2マスクを残したまま、n型GaAs電流狭
窄兼光吸収層7(d=1.3μm,ND=2×1018cm-3)を選択成
長する。さらに、p型GaAsコンタクト層8(d=2〜3μ
m,NA=5×1018〜1×1019cm-3)を埋め込み成長した後、
p電極9及びn電極10を蒸着する。さらに、劈開スク
ライブして素子の形に切り出し、図1の断面を有する素
子を得る。Embodiment 1 An embodiment of the present invention will be described with reference to FIGS. First, in FIG. 1, 15. in the [110] [-1-10] direction from the (001) plane.
An n-type GaAs substrate 1 having a surface inclined by 8 ° is used, on which an n-type GaInP buffer layer 2 (d = 0.5 μm, N D = 1 × 10 18 c
m -3 ), n-type (Al y2 Ga 1-y 2 ) α In 1-α P optical waveguide layer 3 (d = 2.0μ
m, N D = 1 × 10 18 cm -3 , y 2 = 0.7, α is a value 0.51 that lattice-matches the GaAs substrate), undoped (Al x Ga 1-x ) γ In 1-γ with a film thickness of 5 nm
P (X = 0, γ = 0.29, lattice mismatch 1.7%) strained quantum well layer 3 layers,
Undoped (Al y1 Ga 1-y1 ) β In 1-β P (y 1 = 0.5,
β is a value 0.51 that lattice-matches the GaAs substrate) 2 quantum barrier layers,
And the optical isolation confinement layer in which the Al composition is set stepwise on both sides of the quantum well layer (Al composition y 3 from the barrier layer to the optical waveguide layer is
Undoped (Al y3 Ga 1-y3 ) β In 1-β P with each film thickness set to 7 nm by changing it in steps of 0.5 to 0.7 in 0.05 steps
Layers (y 3 = 0.5,0.55,0.6,0.65, β is a value 0.51 that is lattice-matched to the GaAs substrate) (the conduction band structure around the multiple quantum well layer is shown in Fig. 2) Well active layer 4, p-type (Al y2 Ga 1-y2 ) α In 1-α P optical waveguide layer 5 (d = 1.8μ
m, N A = 7~8 × 10 17 cm -3, y 2 = 0.7, α values 0.51 to GaAs substrate and the lattice match), p-type Ga 0. 51 In 0. 49 P buffer layer 6 (d =
0.05 μm, N A = 2 × 10 18 cm −3 ) was epitaxially grown at a growth temperature of 760 ° C. by a metal organic chemical vapor deposition method.
After this, a SiO 2 mask (film thickness d =
0.2 .mu.m, stripe width 4 .mu.m) is formed, and layers 6 and 5 are removed by chemical etching until the layer 5 is left at 0.1 to 0.2 .mu.m to form a ridge stripe. Next, the n-type GaAs current constriction and light absorption layer 7 (d = 1.3 μm, N D = 2 × 10 18 cm −3 ) is selectively grown while leaving the SiO 2 mask. Furthermore, p-type GaAs contact layer 8 (d = 2 to 3 μm)
m, N A = 5 × 10 18 to 1 × 10 19 cm -3 ) after embedding and growing,
The p-electrode 9 and the n-electrode 10 are vapor-deposited. Further, cleavage scribing is performed to cut out the element to obtain an element having the cross section of FIG.
【0018】本実施例における歪多重量子井戸構造活性
層の光閉じ込め係数は0.025から0.035の範囲で
ある。共振器長600μmの素子において室温における
閾値電流が20〜30mAで直流動作し670〜680
nmの発振波長を有するレーザ素子を得た。最高レーザ
発振温度は130〜150℃が得られ、動作温度60℃
における光出力50mWの定出力動作で2000時間以
上の長期信頼性が達成された。The optical confinement coefficient of the strained multiple quantum well structure active layer in this embodiment is in the range of 0.025 to 0.035. A device having a cavity length of 600 μm operates at a room temperature with a threshold current of 20 to 30 mA and operates as a direct current at 670 to 680.
A laser device having an oscillation wavelength of nm was obtained. The maximum laser oscillation temperature is 130 to 150 ° C, and the operating temperature is 60 ° C.
The long-term reliability of 2000 hours or more was achieved by the constant output operation with the optical output of 50 mW.
【0019】実施例2 本発明の他実施例を図3,図4により説明する。まず図
3において、(001)面から〔110〕〔-1-10〕方向に15.
8°傾いた面を有するn型GaAs基板1を用いて、その上
にn型GaInPバッファ層2(d=0.1μm,ND=1×1018c
m-3),n型(Aly2Ga1-y2)αIn1-αP光導波層3(d=2.0μ
m,ND=1×1018cm-3,y2=0.7,αはGaAs基板と格子整合
する値0.51),膜厚7nmのアンドープ(AlxGa1-x)γIn1-γ
P(X=0.10,γ=0.24,格子不整2.0%))量子井戸層2層
と,膜厚10nmのアンドープ(Aly1Ga1-y1)βIn1-βP(y1=
0.5,βはGaAs基板と格子整合する値0.51)量子障壁層1
層,及び量子井戸層両側にAl組成を階段状に設定した光
分離閉じ込め層(障壁層から光導波層に至るまでAl組成
をy3=0.5から0.7まで0.05ずつ段階的に増やし各膜厚7n
mとしたアンドープ(Aly3Ga1-y3)βIn1-βP層(y3=0.5,
0.55,0.6,0.65,βはGaAs基板と格子整合する値0.51)と
から構成される(量子井戸層周辺の伝導帯バンド構造概
略は4図のようになる)多重量子井戸活性層11,p型
(Aly2Ga1-y2)αIn1-αP光導波層5(d=1.8μm,NA=5〜7
×1017cm-3,y2=0.7,αはGaAs基板と格子整合する値0.
51),p型Ga0.51In0.49Pバッファ層6(d=0.03μm,NA=
2×1018cm-3)を成長温度760℃において有機金属気相
成長法によりエピタキシャル成長した。この後は、実施
例1と全く同様に素子を作製し、図5の断面を有する素
子を得る。Embodiment 2 Another embodiment of the present invention will be described with reference to FIGS. First, in FIG. 3, 15. from the (001) plane in the [110] [-1-10] direction.
An n-type GaAs substrate 1 having a surface inclined by 8 ° is used, on which an n-type GaInP buffer layer 2 (d = 0.1 μm, N D = 1 × 10 18 c
m -3 ), n-type (Al y2 Ga 1-y 2 ) α In 1-α P optical waveguide layer 3 (d = 2.0μ
m, N D = 1 × 10 18 cm -3 , y 2 = 0.7, α is a value that lattice-matches the GaAs substrate 0.51), undoped (Al x Ga 1-x ) γ In 1-γ with a thickness of 7 nm
P (X = 0.10, γ = 0.24, lattice mismatch 2.0%)) 2 quantum well layers and 10 nm thick undoped (Al y1 Ga 1-y1 ) β In 1-β P (y 1 =
0.5 and β are values that lattice-match with the GaAs substrate 0.51) Quantum barrier layer 1
Layers and quantum well layers Optical separation and confinement layers with Al composition set stepwise (Al composition is increased stepwise from y 3 = 0.5 to 0.7 by 0.05 from barrier layer to optical waveguide layer)
Undoped (Al y3 Ga 1-y3 ) β In 1-β P layer (y 3 = 0.5,
0.55, 0.6, 0.65, β is a value 0.51 which is lattice-matched to the GaAs substrate) (The conduction band band structure around the quantum well layer is as shown in Fig. 4) Multiple quantum well active layer 11, p-type
(Al y2 Ga 1-y 2 ) α In 1-α P Optical waveguide layer 5 (d = 1.8 μm, N A = 5 to 7)
× 10 17 cm -3 , y 2 = 0.7, α is a value that is lattice-matched with the GaAs substrate 0.
51), p-type Ga 0. 51 In 0. 49 P buffer layer 6 (d = 0.03μm, N A =
2 × 10 18 cm −3 ) was epitaxially grown at a growth temperature of 760 ° C. by the metal organic chemical vapor deposition method. After that, an element is manufactured in exactly the same manner as in Example 1 to obtain an element having the cross section of FIG.
【0020】本実施例における歪多重量子井戸構造活性
層の光閉じ込め係数は0.015から0.025の範囲で
ある。共振器長600μmの素子において室温における
閾値電流が10〜20mAで直流動作し670〜680
nmの発振波長を有するレーザ素子を得た。最高レーザ
発振温度は130〜150℃が得られ、動作温度60℃
における光出力70mWの定出力動作で2000時間以
上の長期信頼性が達成された。The optical confinement coefficient of the strained multiple quantum well structure active layer in this embodiment is in the range of 0.015 to 0.025. A device having a resonator length of 600 μm operates at a room temperature with a threshold current of 10 to 20 mA and operates as a direct current at 670 to 680.
A laser device having an oscillation wavelength of nm was obtained. The maximum laser oscillation temperature is 130 to 150 ° C, and the operating temperature is 60 ° C.
The long-term reliability of 2000 hours or more was achieved by the constant output operation with the optical output of 70 mW.
【0021】実施例3 本発明の他実施例を図5,図6により説明する。まず図
6において、(001)面から〔110〕〔-1-10〕方向に15.
8°傾いた面を有するn型GaAs基板1を用いて、その上
にn型GaInPバッファ層2(d=0.1μm,ND=1×1018c
m-3),n型(Aly2Ga1-y21-y2)αIn1-αP光導波層3(d=1.
1μm,ND=1×1018cm-3,y2=0.7,αはGaAs基板と格子
整合する値0.51),膜厚5nmのアンドープ(AlxGa1-x)γIn
1-γP(X=0,γ=0.42,格子不整0.5%)量子井戸層8層
と,膜厚6nmのアンドープ(Aly1Ga1-y1)βIn1-βP(y1=
0.5,βはGaAs基板と格子整合する値0.51)量子障壁層7
層,及び量子井戸層両側にAl組成を階段状に設定した光
分離閉じ込め層(障壁層から光導波層に至るまでAl組成
をy3=0.5から0.7まで0.05ずつ段階的に増やし各膜厚7n
mとしたアンドープ(Aly3Ga1-y3)βIn1-βP層(y3=0.5,
0.55,0.6,0.65,βはGaAs基板と格子整合する値0.51)と
から構成される(量子井戸層周辺の伝導帯バンド構造概
略は図6のようになる)多重量子井戸活性層12,p型
(Aly2Ga1-y2)αIn1-αP光導波層5(d=1.1μm,NA=5〜7
×1017cm-3,y2=0.7,αはGaAs基板と格子整合する値0.
51),p型Ga0.51In0.49Pバッファ層6(d=0.03μm,NA=
2×1018cm-3)を成長温度760℃において有機金属気相
成長法によりエピタキシャル成長した。この後は、実施
例1と全く同様に素子を作製し、5図の断面を有する素
子を得る。Embodiment 3 Another embodiment of the present invention will be described with reference to FIGS. First, in FIG. 6, 15. from the (001) plane in the [110] [-1-10] direction.
An n-type GaAs substrate 1 having a surface inclined by 8 ° is used, on which an n-type GaInP buffer layer 2 (d = 0.1 μm, N D = 1 × 10 18 c
m -3 ), n-type (Al y2 Ga 1-y21-y2 ) α In 1-α P optical waveguide layer 3 (d = 1.
1 μm, N D = 1 × 10 18 cm -3 , y 2 = 0.7, α is a lattice matching value with the GaAs substrate 0.51), undoped (Al x Ga 1-x ) γ In with a thickness of 5 nm
1-γ P (X = 0, γ = 0.42, lattice mismatch 0.5%) 8 quantum well layers and 6 nm thick undoped (Al y1 Ga 1-y1 ) β In 1-β P (y 1 =
0.5 and β are values that lattice match the GaAs substrate 0.51) Quantum barrier layer 7
Layers and quantum well layers Optical separation and confinement layers with Al composition set stepwise (Al composition is increased stepwise from y 3 = 0.5 to 0.7 by 0.05 from barrier layer to optical waveguide layer)
Undoped (Al y3 Ga 1-y3 ) β In 1-β P layer (y 3 = 0.5,
0.55, 0.6, 0.65, β is a value 0.51 that is lattice-matched to the GaAs substrate) (The conduction band band structure around the quantum well layer is as shown in Fig. 6) Multiple quantum well active layer 12, p-type
(Al y2 Ga 1-y 2 ) α In 1-α P Optical waveguide layer 5 (d = 1.1 μm, N A = 5 to 7)
× 10 17 cm -3 , y 2 = 0.7, α is a value that is lattice-matched with the GaAs substrate 0.
51), p-type Ga 0. 51 In 0. 49 P buffer layer 6 (d = 0.03μm, N A =
2 × 10 18 cm −3 ) was epitaxially grown at a growth temperature of 760 ° C. by the metal organic chemical vapor deposition method. After that, an element is manufactured in exactly the same manner as in Example 1 to obtain an element having a cross section of FIG.
【0022】本実施例における歪多重量子井戸構造活性
層の光閉じ込め係数は0.20から0.25の範囲であ
る。共振器長600μmの素子において室温における閾
値電流が60〜70mAで直流動作し630〜640n
mの発振波長を有するレーザ素子を得た。最高レーザ発
振温度は90〜100℃が得られ、動作温度50℃にお
ける光出力5mWの定出力動作で2000時間以上の長
期信頼性が達成された。The optical confinement coefficient of the strained multiple quantum well structure active layer in this embodiment is in the range of 0.20 to 0.25. A device with a cavity length of 600 μm operates at a room temperature with a threshold current of 60 to 70 mA, and operates as a direct current at 630 to 640 n.
A laser device having an oscillation wavelength of m was obtained. A maximum laser oscillation temperature of 90 to 100 ° C. was obtained, and long-term reliability of 2000 hours or more was achieved by a constant output operation with an optical output of 5 mW at an operating temperature of 50 ° C.
【0023】実施例4 本発明の他実施例を図7,図8により説明する。まず図
7において、(001)面から〔110〕〔-1-10〕方向に15.
8°傾いた面を有するn型GaAs基板1を用いて、その上
にn型GaInPバッファ層2(d=0.5μm,ND=1×1018c
m-3),n型(Aly2Ga1-y2)αIn1-αP光導波層3(d=1.2μ
m,ND=1×1018cm-3,y2=0.7,αはGaAs基板と格子整合
する値0.51),膜厚7nmのアンドープ(AlxGa1-x)γIn1-γ
P(X=0.10,γ=0.38,格子不整1.0%)量子井戸層5層と,
膜厚8nmのアンドープ(Aly1Ga1-y1)βIn1-βP(y1=0.5,
βはGaAs基板と格子整合する値0.51)量子障壁層4層,
及び量子井戸層両側にAl組成を階段状に設定した光分離
閉じ込め層(障壁層から光導波層に至るまで Al組成をy
3=0.5から0.7まで0.05ずつ段階的に増やし各膜厚10nmと
したアンドープ(Aly3Ga1-y3)βIn1-βP層(y3=0.5,0.5
5,0.6,0.65,βはGaAs基板と格子整合する値0.51)とか
ら構成される(量子井戸層周辺の伝導帯バンド構造概略
は図8のようになる)多重量子井戸活性層13,p型(Al
y2Ga1-y2)αIn1-αP光導波層5(d=1.2μm,NA=5〜7×1
017cm-3,y2=0.7,αはGaAs基板と格子整合する値0.5
1),p型 Ga0.51In0.49Pバッファ層6(d=0.03μm,NA=
2×1018cm-3)を成長温度760℃において有機金属気相
成長法によりエピタキシャル成長した。この後は、実施
例1と全く同様に素子を作製し、図7の断面を有する素
子を得る。Embodiment 4 Another embodiment of the present invention will be described with reference to FIGS. First, in FIG. 7, 15. from the (001) plane in the [110] [-1-10] direction.
An n-type GaAs substrate 1 having a surface inclined by 8 ° is used, on which an n-type GaInP buffer layer 2 (d = 0.5 μm, N D = 1 × 10 18 c
m -3 ), n-type (Al y2 Ga 1-y 2 ) α In 1-α P optical waveguide layer 3 (d = 1.2μ
m, N D = 1 × 10 18 cm -3 , y 2 = 0.7, α is a value that lattice-matches the GaAs substrate 0.51), undoped (Al x Ga 1-x ) γ In 1-γ with a thickness of 7 nm
P (X = 0.10, γ = 0.38, lattice mismatch 1.0%) 5 quantum well layers,
Undoped (Al y1 Ga 1-y1 ) β In 1-β P (y 1 = 0.5,
β is a value 0.51 that lattice-matches the GaAs substrate) 4 quantum barrier layers,
And the optical isolation confinement layer in which the Al composition is set stepwise on both sides of the quantum well layer (Al composition is y from the barrier layer to the optical waveguide layer).
By 0.05 3 = 0.5 to 0.7 stepwise increasing undoped that each film thickness 10nm (Al y3 Ga 1-y3 ) β In 1-β P layer (y 3 = 0.5,0.5
5, 0.6, 0.65 and β are values 0.51) that are lattice-matched to the GaAs substrate (the outline of the conduction band structure around the quantum well layer is as shown in Fig. 8). Multiple quantum well active layer 13, p-type (Al
y2 Ga 1-y2 ) α In 1-α P Optical waveguide layer 5 (d = 1.2 μm, N A = 5 to 7 × 1
0 17 cm -3 , y 2 = 0.7, α is a value 0.5 that lattice-matches the GaAs substrate
1), p-type Ga 0. 51 In 0. 49 P buffer layer 6 (d = 0.03μm, N A =
2 × 10 18 cm −3 ) was epitaxially grown at a growth temperature of 760 ° C. by the metal organic chemical vapor deposition method. After this, an element is manufactured in exactly the same manner as in Example 1, and an element having the cross section of FIG. 7 is obtained.
【0024】本実施例における歪多重量子井戸構造活性
層の光閉じ込め係数は0.15から0.20の範囲であ
る。共振器長600μmの素子において室温における閾
値電流が40〜50mAで直流動作し630〜640n
mの発振波長を有するレーザ素子を得た。最高レーザ発
振温度は100〜120℃が得られ、動作温度50℃に
おける光出力10mWの定出力動作で2000時間以上
の長期信頼性が達成された。The optical confinement coefficient of the strained multiple quantum well structure active layer in this embodiment is in the range of 0.15 to 0.20. A device having a resonator length of 600 μm operates as a direct current with a threshold current of 40 to 50 mA at room temperature, and operates at 630 to 640 n.
A laser device having an oscillation wavelength of m was obtained. A maximum laser oscillation temperature of 100 to 120 ° C. was obtained, and long-term reliability of 2000 hours or more was achieved by a constant output operation with an optical output of 10 mW at an operating temperature of 50 ° C.
【0025】実施例5 本発明の他実施例を図9,図10により説明する。まず
図9において、(001)面から〔110〕〔-1-10〕方向に1
5.8°傾いた面を有するn型GaAs基板1を用いて、そ
の上にn型GaInPバッファ層2(d=0.5μm,ND=1×1018c
m-3),n型(Aly2Ga1-y2)αIn1-αP光導波層3(d=1.5μ
m,ND=1×1018cm-3,y2=0.7,αはGaAs基板と格子整合
する値0.51),膜厚8nmのアンドープ(AlxGa1-x)γIn1-γ
P(X=0,γ=0.59,格子不整0.8%)量子井戸層4層と,膜
厚7nmのアンドープ(Aly1Ga1-y1)βIn1-βP(y1=0.5,β
はGaAs基板と格子整合する値0.51)量子障壁層3層,及
び量子井戸層両側にAl組成を階段状に設定した光分離閉
じ込め層(障壁層から光導波層に至るまでAl組成をy3=
0.5から0.7まで0.05ずつ段階的に増やし各膜厚10nmとし
たアンドープ(Aly3Ga1-y3)βIn1-Pβ層(y3=0.5,0.55,
0.6,0.65,βはGaAs基板と格子整合する値0.51)とから
構成される(量子井戸層周辺の伝導帯バンド構造概略は
図10のようになる)多重量子井戸活性層14,p型(Al
y2Ga1-y2)αIn1 -αP光導波層5(d=1.2μm,NA=5〜7×1
017cm-3,y2=0.7,αはGaAs基板と格子整合する値0.5
1),p型 Ga0.51In0.49Pバッファ層6(d=0.03μm,NA=
2×1018cm-3)を成長温度760℃において有機金属気相
成長法によりエピタキシャル成長した。この後は、実施
例1と全く同様に素子を作製し、図9の断面を有する素
子を得る。Embodiment 5 Another embodiment of the present invention will be described with reference to FIGS. First, in FIG. 9, 1 in the [110] [-1-10] direction from the (001) plane.
An n-type GaAs substrate 1 having a surface inclined at 5.8 ° was used, and an n-type GaInP buffer layer 2 (d = 0.5 μm, N D = 1 × 10 18 c) was formed thereon.
m -3 ), n-type (Al y2 Ga 1-y 2 ) α In 1-α P optical waveguide layer 3 (d = 1.5μ
m, N D = 1 × 10 18 cm -3 , y 2 = 0.7, α is a value 0.51) that is lattice-matched to the GaAs substrate, and 8 nm thick undoped (Al x Ga 1-x ) γ In 1-γ
P (X = 0, γ = 0.59, lattice mismatch 0.8%) 4 quantum well layers and 7 nm thick undoped (Al y1 Ga 1-y1 ) β In 1-β P (y 1 = 0.5, β
Is a value 0.51 which is lattice-matched with the GaAs substrate) and three optical barrier layers on both sides of the quantum well layer and a stepwise Al composition confinement layer (Al composition is y 3 = from the barrier layer to the optical waveguide layer).
Undoped (Al y3 Ga 1- y 3 ) β In 1- P β layer (y 3 = 0.5,0.55,
0.6, 0.65 and β are values 0.51 which are lattice-matched to the GaAs substrate (the outline of the conduction band structure around the quantum well layer is as shown in FIG. 10). Multiple quantum well active layer 14, p-type (Al
y2 Ga 1-y 2 ) α In 1 -α P Optical waveguide layer 5 (d = 1.2 μm, N A = 5 to 7 × 1
0 17 cm -3 , y 2 = 0.7, α is a value 0.5 that lattice-matches the GaAs substrate
1), p-type Ga 0. 51 In 0. 49 P buffer layer 6 (d = 0.03μm, N A =
2 × 10 18 cm −3 ) was epitaxially grown at a growth temperature of 760 ° C. by the metal organic chemical vapor deposition method. After that, an element is manufactured in exactly the same manner as in Example 1 to obtain an element having the cross section of FIG.
【0026】本実施例における歪多重量子井戸構造活性
層の光閉じ込め係数は0.12から0.18の範囲であ
る。共振器長600μmの素子において室温における閾
値電流が30〜40mAで直流動作し630〜640n
mの発振波長を有するレーザ素子を得た。最高レーザ発
振温度は100〜120℃が得られ、動作温度50℃に
おける光出力20mWの定出力動作で2000時間以上
の長期信頼性が達成された。The optical confinement coefficient of the strained multiple quantum well structure active layer in this embodiment is in the range of 0.12 to 0.18. A device having a cavity length of 600 μm operates as a DC device with a threshold current of 30 to 40 mA at room temperature and operates at 630 to 640 n.
A laser device having an oscillation wavelength of m was obtained. A maximum laser oscillation temperature of 100 to 120 ° C. was obtained, and long-term reliability of 2000 hours or more was achieved by a constant output operation with an optical output of 20 mW at an operating temperature of 50 ° C.
【0027】実施例6 本発明の他実施例を図11,図12により説明する。ま
ず11図において、(001)面から〔110〕〔-1-10〕方向
に15.8°傾いた面を有するn型GaP基板15上に、n
型GaP光導波層16(d=2.0μm,ND=1×1018cm-3),膜厚
5nmのアンドープGaγIn1-γP(γ=0.7,格子不整1.7%)歪
量子井戸層2層と,膜厚8nmのアンドープGaβIn1-βP
(β=0.9)量子障壁層1層,及び歪量子井戸層両側に光分
離閉じ込め層(膜厚8nmとしたアンドープGaβIn1-βP層
(β=0.9)とから構成される(量子井戸層周辺の伝導帯バ
ンド構造概略は図12のようになる)多重量子井戸活性
層17,p型GaP光導波層18(d=1.8μm,NA=7×1017
〜2×1018cm-3)を成長温度760℃において有機金属気
相成長法によりエピタキシャル成長した。この後、ホト
リソグラフィーによりSiO2マスク(膜厚d=0.2μm,ス
トライプ幅4μm)を形成し、ケミカルエッチングにより
層18を0.1〜0.2μm残すところまでエッチング除
去してリッジストライプを形成する。次に、SiO2マスク
を残したまま、n型GaP電流狭窄層19(d=1.3μm,ND=
3×1018cm-3)を選択成長する。さらに、p型GaPコンタ
クト層20(d=2〜3μm,NA=5×1018〜1×1019cm-3)を
埋め込み成長した後、p電極9及びn電極10を蒸着す
る。さらに、劈開スクライブして素子の形に切り出し、
図11の断面を有する素子を得る。Embodiment 6 Another embodiment of the present invention will be described with reference to FIGS. First, in FIG. 11, n is formed on the n-type GaP substrate 15 having a surface inclined by 15.8 ° from the (001) surface in the [110] [-1-10] direction.
-Type GaP optical waveguide layer 16 (d = 2.0 μm, N D = 1 × 10 18 cm -3 ), film thickness
5 nm undoped Ga γ In 1-γ P (γ = 0.7, lattice mismatch 1.7%) strained quantum well layer 2 layers and 8 nm thick undoped Ga β In 1-β P
(β = 0.9) 1 quantum barrier layer and optical isolation confinement layer on both sides of the strained quantum well layer (undoped Ga β In 1-β P layer with a thickness of 8 nm)
(β = 0.9) (the conduction band structure around the quantum well layer is as shown in FIG. 12) multiple quantum well active layer 17, p-type GaP optical waveguide layer 18 (d = 1.8 μm, N A = 7 × 10 17
˜2 × 10 18 cm −3 ) was epitaxially grown at a growth temperature of 760 ° C. by a metal organic chemical vapor deposition method. After that, a SiO 2 mask (film thickness d = 0.2 μm, stripe width 4 μm) is formed by photolithography, and the ridge stripe is formed by chemical etching to remove the layer 18 to the extent of leaving 0.1 to 0.2 μm. . Next, with the SiO 2 mask left, the n-type GaP current confinement layer 19 (d = 1.3 μm, N D =
Selectively grow 3 × 10 18 cm -3 ). Further, p-type GaP contact layer 20 was (d = 2~3μm, N A = 5 × 10 18 ~1 × 10 19 cm -3) the burying growth, depositing a p electrode 9 and n electrode 10. In addition, cleaving scribing and cutting out into the shape of the element,
An element having the cross section of FIG. 11 is obtained.
【0028】本実施例における歪多重量子井戸構造活性
層の光閉じ込め係数は0.010から0.025の範囲で
ある。共振器長600μmの素子において室温における
閾値電流が40〜50mAで直流動作し530〜540
nmの発振波長を有するレーザ素子を得た。最高レーザ
発振温度80〜90℃が得られ、動作温度50℃におけ
る光出力10mWの定出力動作で1000時間以上の長
期信頼性が達成された。The optical confinement coefficient of the strained multiple quantum well structure active layer in this embodiment is in the range of 0.010 to 0.025. A device having a cavity length of 600 μm operates as a DC device with a threshold current of 40 to 50 mA at room temperature and operates at 530 to 540.
A laser device having an oscillation wavelength of nm was obtained. A maximum laser oscillation temperature of 80 to 90 ° C. was obtained, and long-term reliability of 1000 hours or more was achieved by a constant output operation with an optical output of 10 mW at an operating temperature of 50 ° C.
【0029】[0029]
【発明の効果】本発明は、活性層からのキャリアオーバ
フローが顕著になる発振波長630〜640nmの範囲
においても、オフ角度を最適に設定した傾角基板を用い
てその上に歪QW層に導入する歪量やQW層幅及び層数
を最適範囲に設定した歪MQW構造を作製することによ
り、AlGaInP半導体レーザ特性の高性能化を図った。こ
れにより、650nm以下の短波長領域では従来困難で
あった低閾値動作および50℃以上での高温動作を可能
にした。According to the present invention, even in the oscillation wavelength range of 630 to 640 nm where the carrier overflow from the active layer becomes remarkable, the tilted QW layer is formed on the tilted substrate with the off angle set optimally. By producing a strained MQW structure in which the strain amount, the QW layer width, and the number of layers are set in the optimum range, the AlGaInP semiconductor laser characteristics are improved. As a result, the low threshold operation and the high temperature operation at 50 ° C. or higher, which have been difficult in the past in the short wavelength region of 650 nm or less, are enabled.
【0030】本発明の実施例によれば、室温において閾
値電流が30〜40mAで直流動作し630〜640n
mの発振波長を有するレーザ素子得た。共振器長600
μmの素子において、最高レーザ発振温度100〜12
0℃が得られ、動作温度50℃における光出力20mW
の定出力動作で2000時間以上の長期信頼性が達成さ
れた。According to the embodiment of the present invention, the DC operation is performed at room temperature with the threshold current of 30 to 40 mA, and the DC current is 630 to 640 n.
A laser device having an oscillation wavelength of m was obtained. Resonator length 600
Maximum laser oscillation temperature of 100 to 12 in μm device
0 ° C is obtained, and optical output is 20 mW at operating temperature of 50 ° C.
With the constant output operation, the long-term reliability of 2000 hours or more was achieved.
【0031】他実施例によって、室温において閾値電流
が40〜50mAで直流動作し530〜540nmの発
振波長を有するレーザ素子得た。共振器長600μmの
素子において、最高レーザ発振温度80〜90℃が得ら
れ、動作温度50℃における光出力10mWの定出力動
作で1000時間以上の長期信頼性が達成された。According to another embodiment, a laser device having a lasing wavelength of 530 to 540 nm operating at direct current with a threshold current of 40 to 50 mA at room temperature was obtained. In a device having a cavity length of 600 μm, a maximum laser oscillation temperature of 80 to 90 ° C. was obtained, and long-term reliability of 1000 hours or more was achieved by constant output operation with an optical output of 10 mW at an operating temperature of 50 ° C.
【0032】本発明では、AlGaInP材料系を用いて説明
したが、他の材料系で組成を変えることにより半導体基
板と格子不整となり歪QW層を形成するInGaAs/GaAs
系,GaAsP/GaAs系,GaAsSb/GaAs系及びInGaAsP/InP系等
に本発明を適用できる。Although the present invention has been described by using the AlGaInP material system, by changing the composition of the other material system, the lattice mismatch with the semiconductor substrate is caused and InGaAs / GaAs forming the strained QW layer is formed.
The present invention can be applied to systems, GaAsP / GaAs systems, GaAsSb / GaAs systems, InGaAsP / InP systems, and the like.
【図1】本発明の一実施例を示す素子構造断面図。FIG. 1 is a sectional view of a device structure showing an embodiment of the present invention.
【図2】本発明一実施例の歪多重量子井戸伝導帯バンド
構造を示す概略図。FIG. 2 is a schematic diagram showing a strained multiple quantum well conduction band structure according to one embodiment of the present invention.
【図3】本発明の他実施例を示す素子構造断面図。FIG. 3 is a cross-sectional view of an element structure showing another embodiment of the present invention.
【図4】本発明他実施例の歪多重量子井戸伝導帯バンド
構造を示す概略図。FIG. 4 is a schematic diagram showing a strained multiple quantum well conduction band structure according to another embodiment of the present invention.
【図5】本発明の他実施例を示す素子構造断面図。FIG. 5 is a cross-sectional view of an element structure showing another embodiment of the present invention.
【図6】本発明他実施例の歪多重量子井戸伝導帯バンド
構造を示す概略図。FIG. 6 is a schematic view showing a strained multiple quantum well conduction band structure according to another embodiment of the present invention.
【図7】本発明の他実施例を示す素子構造断面図。FIG. 7 is a cross-sectional view of an element structure showing another embodiment of the present invention.
【図8】本発明他実施例の歪多重量子井戸伝導帯バンド
構造を示す概略図。FIG. 8 is a schematic diagram showing a strained multiple quantum well conduction band structure according to another embodiment of the present invention.
【図9】本発明の他実施例を示す素子構造断面図。FIG. 9 is a sectional view of an element structure showing another embodiment of the present invention.
【図10】本発明他実施例の歪多重量子井戸伝導帯バン
ド構造を示す概略図。FIG. 10 is a schematic view showing a strained multiple quantum well conduction band structure according to another embodiment of the present invention.
【図11】本発明の他実施例を示す素子構造断面図。FIG. 11 is a cross-sectional view of an element structure showing another embodiment of the present invention.
【図12】本発明他実施例の歪多重量子井戸伝導帯バン
ド構造を示す概略図。FIG. 12 is a schematic view showing a strained multiple quantum well conduction band structure according to another embodiment of the present invention.
1…(001)面から〔110〕〔-1-10〕方向に15.8°オフ
したn型GaAs基板、2…n型GaInPバッファ層、3…n
型(Aly2Ga1-y2)αIn1-αP(y2=0.7,αはGaAs基板と格子
整合する値0.51)光導波層、4…GaγIn1-γP/(Aly1Ga
1-y1)βIn1-βP歪多重量子井戸構造活性層、5…p型(A
ly2Ga1-y2)αIn1-αP(y2=0.7,αはGaAs基板と格子整合
する値0.51)光導波層、6…p型Ga0.51In0.49Pバッファ
層、7…n型GaAs電流狭窄兼光吸収層、8…p型GaAsコ
ンタクト層、9…p電極、10…n電極、11…(AlxGa
1-x)γIn1-γP/(Aly1Ga1-y1)βIn1-βP歪多重量子井戸
構造活性層、12…GaγIn1-γP/(Aly1Ga1-y1)βIn1-β
P歪多重量子井戸構造活性層、13…(AlxGa1-x)γIn
1-γP/(Aly1Ga1-y1)βIn1-βP歪多重量子井戸構造活性
層、14…GaγIn1-γP/(Aly1Ga1-y1)βIn1-βP歪多重
量子井戸構造活性層、15…(001)面から〔110〕〔-1-1
0〕方向に15.8°オフしたn型GaP基板、16…n型G
aP光導波層、17…GaγIn1-γP/GaβIn1-βP歪多重量
子井戸構造活性層、18…p型GaP光導波層、19…n
型GaP電流狭窄層、20…p型GaPコンタクト層。1 ... n-type GaAs substrate turned off by 15.8 ° in the [110] [-1-10] direction from the (001) plane, 2 ... n-type GaInP buffer layer, 3 ... n
Type (Al y2 Ga 1-y2 ) α In 1-α P (y 2 = 0.7, α is a value 0.51 that lattice-matches the GaAs substrate) Optical waveguide layer, 4… Ga γ In 1-γ P / (Al y1 Ga
1-y1 ) β In 1-β P Strained multiple quantum well structure active layer, 5 ... p type (A
l y2 Ga 1-y2) α In 1-α P (y 2 = 0.7, α is a value 0.51 to GaAs substrate lattice matched) optical waveguide layer, 6 ... p-type Ga 0. 51 In 0. 49 P buffer layer, 7 ... n-type GaAs current constriction and light absorption layer, 8 ... p-type GaAs contact layer, 9 ... p electrode, 10 ... n electrode, 11 ... (Al x Ga
1-x ) γ In 1-γ P / (Al y1 Ga 1-y1 ) β In 1-β P Strained multiple quantum well structure active layer, 12… Ga γ In 1-γ P / (Al y1 Ga 1-y1 ) β In 1-β
P-strained multiple quantum well structure active layer, 13 ... (Al x Ga 1-x ) γ In
1-γ P / (Al y1 Ga 1-y1 ) β In 1-β P Strained multiple quantum well structure active layer, 14 ... Ga γ In 1-γ P / (Al y1 Ga 1-y1 ) β In 1-β P strained multiple quantum well structure active layer, 15 ... From the (001) plane [110] [-1-1
N-type GaP substrate with 15.8 ° off in the [0] direction, 16 ... n-type G
aP optical waveguide layer, 17 ... Ga γ In 1-γ P / Ga β In 1-β P strained multiple quantum well structure active layer, 18 ... p-type GaP optical waveguide layer, 19 ... n
-Type GaP current confinement layer, 20 ... p-type GaP contact layer.
Claims (11)
CVD)法又は分子線エピタキシ−(MBE)法により
成長された禁制帯幅の大きな光導波層(Aly2Ga1-y2)αIn
1-αP(0<y2≦1,0.2<α<0.8)に挾まれた多
重量子井戸構造(量子障壁層(Aly1GA1-y1)βIn1-βP
(0<y1<y2≦1,0.1<β<0.8)と量子井戸層
(AlxGa1-x)γIn1-γP(0≦x<y1<y2≦1,0.1<
γ<0.8)の周期構造からなる)において、該量子井
戸層における組成γを半導体基板と格子整合しない組成
に変えて歪量を導入するが、圧縮歪を導入する0.1<
γ<0.5の範囲では格子不整を0.3%から2.5%の
範囲、望ましくは0.5%以上2.0%以下とし、引張歪
を導入する0.5<γ<0.8の範囲では格子不整を0.
3%から1.8%の範囲、望ましくは0.4%以上1.2
%以下として、かつ該量子井戸層の繰返し層数を2層以
上10層以内に設定することを特徴とする半導体レーザ
素子。1. A metal organic chemical vapor deposition (MO) method on a semiconductor substrate.
CVD) or molecular beam epitaxy (MBE) grown optical waveguide layer (Al y2 Ga 1 -y2 ) α In with a large forbidden band width
Multiple quantum well structure (quantum barrier layer (Al y1 GA 1-y1 ) β In 1-β P sandwiched by 1-α P (0 <y 2 ≦ 1, 0.2 <α <0.8)
(0 <y 1 <y 2 ≦ 1, 0.1 <β <0.8) and quantum well layer
(Al x Ga 1-x ) γ In 1-γ P (0 ≦ x <y 1 <y 2 ≦ 1, 0.1 <
γ <0.8)), the amount of strain is introduced by changing the composition γ in the quantum well layer to a composition that does not lattice match with the semiconductor substrate, but compressive strain is introduced.
In the range of γ <0.5, the lattice irregularity is set in the range of 0.3% to 2.5%, preferably 0.5% or more and 2.0% or less, and 0.5 <γ <0.5 for introducing tensile strain. In the range of 8, the lattice irregularity is 0.
Range of 3% to 1.8%, preferably 0.4% or more 1.2
%, And the number of repeating layers of the quantum well layer is set to 2 layers or more and 10 layers or less.
て、該半導体基板に用いる基板面方位が(001)面から〔1
10〕〔-1-10〕方向又は〔1-10〕〔-110〕方向に0°か
ら54.7°の範囲、望ましくは5°以上30°以下の
傾いた基板面を有することを特徴とする半導体レーザ素
子。2. The semiconductor laser device according to claim 1, wherein the substrate plane orientation used for the semiconductor substrate is [001]
10] In the [-1-10] direction or the [1-10] [-110] direction, the substrate surface is inclined in the range of 0 ° to 54.7 °, preferably 5 ° or more and 30 ° or less. Semiconductor laser device.
おいて、該量子井戸層個々の間に設ける該量子障壁層個
々の膜厚を5nmから30nmの範囲、望ましくは8nm以上
15nm以下の範囲に設定し、該量子井戸層に導入する歪
量が大きいほど該量子障壁層個々の膜厚を大きく設定す
ることを特徴とする半導体レーザ素子。3. The semiconductor laser device according to claim 1, wherein the thickness of each of the quantum barrier layers provided between the quantum well layers is in the range of 5 nm to 30 nm, preferably 8 nm or more and 15 nm or less. A semiconductor laser device, wherein the thickness of each quantum barrier layer is set larger as the amount of strain introduced into the quantum well layer is larger.
子において、該量子障壁層は無歪とするか或は歪を導入
するが、上記歪量子井戸層個々に導入した歪と反対方向
に応力が加わる歪を導入するときにはその歪量は個々の
該量子井戸層と全く同じかそれ以上の歪量をとるように
設定されたことを特徴とする半導体レーザ素子。4. The semiconductor laser device according to claim 1, 2 or 3, wherein the quantum barrier layer is strain-free or introduces strain, but in a direction opposite to the strain introduced in each of the strained quantum well layers. A semiconductor laser device characterized in that when a strain to which stress is applied is introduced, the strain amount is set to be exactly the same as or more than that of each of the quantum well layers.
ザ素子において、該量子障壁層は無歪とするか或は歪を
導入するが、上記歪量子井戸層個々に導入した歪と同じ
方向に応力が加わる歪を導入するときにはその歪量は個
々の該量子井戸層の歪量よりも小さい値をとるように設
定され、歪を導入した該量子井戸層及び該量子障壁層が
繰り返された多重量子井戸構造全体の膜厚が臨界膜厚を
超えない範囲であることを特徴とする半導体レーザ素
子。5. The semiconductor laser device according to claim 1, 2, 3 or 4, wherein the quantum barrier layer is strain-free or introduces strain. When introducing strain to which stress is applied in the same direction, the amount of strain is set to be smaller than the amount of strain of each of the quantum well layers, and the quantum well layer and the quantum barrier layer in which strain is introduced are repeated. A semiconductor laser device characterized in that the film thickness of the entire multiple quantum well structure is within a range not exceeding the critical film thickness.
レーザ素子において、該歪量子井戸層の膜厚を4nmから
15nmの範囲に設定し、歪量子井戸層の膜厚が薄くなる
ほどそれに応じて量子井戸層数を2層から10層の範囲
で増加させて、光閉じ込め係数を0.01から0.30の
範囲に設定することを特徴とする半導体レーザ素子。6. The semiconductor laser device according to claim 1, 2, 3, 4 or 5, wherein the strain quantum well layer has a thickness of 4 nm to 15 nm, and the strain quantum well layer has a small thickness. A semiconductor laser device characterized in that the number of quantum well layers is increased accordingly in the range of 2 to 10 layers and the optical confinement coefficient is set in the range of 0.01 to 0.30.
導体レーザ素子において、該量子井戸層(AlxGa1-x)γIn
1-γP(0≦x<y1<y2≦1,0.1<γ<0.8)に
おけるAl組成xに関して、該量子井戸層に圧縮歪を導入
する0.1<γ<0.5のときには0≦x≦0.2の範囲
とし、該量子井戸層に引張歪を導入する0.5<γ<0.
8のときには0≦x≦0.1の範囲に設定することを特
徴とする半導体レーザ素子。7. The semiconductor laser device according to claim 1, 2, 3, 4, 5 or 6, wherein the quantum well layer (Al x Ga 1-x ) γ In
For Al composition x in 1-γ P (0 ≦ x <y 1 <y 2 ≦ 1, 0.1 <γ <0.8), 0.1 <γ <0 for introducing compressive strain into the quantum well layer When 0.5, the range is 0 ≦ x ≦ 0.2, and tensile strain is introduced into the quantum well layer, 0.5 <γ <0.5.
A semiconductor laser device characterized in that when 8 is set, the range is 0 ≦ x ≦ 0.1.
の半導体レーザ素子において、該量子井戸及び該量子障
壁層個々に導入する歪量は各膜厚が弾性エネルギ−を維
持でき転位や欠陥を発生しない臨界量以内であることを
特徴とする半導体レーザ素子。8. The semiconductor laser device according to claim 1, 2, 3, 4, 5, 6 or 7, wherein the amount of strain introduced into each of said quantum well and said quantum barrier layer is such that each film thickness has elastic energy. A semiconductor laser device characterized by being within a critical amount that can be maintained and does not generate dislocations or defects.
記載の半導体レーザ素子において、該量子障壁層のAl組
成y1から該光導波層のAl組成y2までにAl組成を徐々に
大きくしていったGRIN(Graded Index)層、または階
段状に大きくしていったステップ層を光導波かつ光閉じ
込め層として設けたことを特徴とする半導体レーザ素
子。9. Claims 1, 2, 3, 4, 5, 6, 7 or 8
In the semiconductor laser device according greater the Al composition y 1 of the quantum barrier layer on the light waveguide layer is gradually increased Al composition to the Al composition y 2 of GRIN (Graded Index) layer, or stepped A semiconductor laser device characterized in that the step layer described above is provided as an optical waveguide and an optical confinement layer.
又は9記載の半導体レーザ素子において、該半導体基板
に用いる材料がGaAs1-zPz(0≦z≦1)であることを
特徴とする半導体レーザ素子。10. Claims 1, 2, 3, 4, 5, 6, 7, 8
Alternatively, in the semiconductor laser element according to 9, the material used for the semiconductor substrate is GaAs 1-z P z (0 ≦ z ≦ 1).
6,7,8,9又は10記載の半導体レーザ素子におい
て、該半導体基板上に設けられる各結晶層が成長温度6
60〜780℃の範囲でエピタキシャル成長されること
を特徴とする半導体レーザ素子。11. Claim items 1, 2, 3, 4, 5,
In the semiconductor laser device according to 6, 7, 8, 9 or 10, each crystal layer provided on the semiconductor substrate has a growth temperature of 6
A semiconductor laser device, which is epitaxially grown in the range of 60 to 780 ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22972992A JPH0677592A (en) | 1992-08-28 | 1992-08-28 | Semiconductor laser element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22972992A JPH0677592A (en) | 1992-08-28 | 1992-08-28 | Semiconductor laser element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0677592A true JPH0677592A (en) | 1994-03-18 |
Family
ID=16896782
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22972992A Pending JPH0677592A (en) | 1992-08-28 | 1992-08-28 | Semiconductor laser element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0677592A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5923688A (en) * | 1996-09-02 | 1999-07-13 | Nec Corporation | Semiconductor laser |
KR100253933B1 (en) * | 1995-06-29 | 2000-05-01 | 다니구찌 이찌로오, 기타오카 다카시 | Semiconductor device and fabricating method thereof |
US6072196A (en) * | 1996-09-05 | 2000-06-06 | Ricoh Company, Ltd. | semiconductor light emitting devices |
US6452215B1 (en) | 1996-09-05 | 2002-09-17 | Ricoh Company, Ltd. | Semiconductor light emitting devices |
WO2002080320A1 (en) * | 2001-03-28 | 2002-10-10 | Nichia Corporation | Nitride semiconductor element |
KR100363242B1 (en) * | 1995-06-16 | 2003-02-11 | 삼성전자 주식회사 | Semiconductor laser diode |
US6542528B1 (en) | 1999-02-15 | 2003-04-01 | Ricoh Company, Ltd. | Light-emitting semiconductor device producing red wavelength optical radiation |
WO2017192718A1 (en) * | 2016-05-05 | 2017-11-09 | Macom Technology Solutions Holdings, Inc. | Semiconductor laser incorporating an electron barrier with low aluminum content |
-
1992
- 1992-08-28 JP JP22972992A patent/JPH0677592A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100363242B1 (en) * | 1995-06-16 | 2003-02-11 | 삼성전자 주식회사 | Semiconductor laser diode |
KR100253933B1 (en) * | 1995-06-29 | 2000-05-01 | 다니구찌 이찌로오, 기타오카 다카시 | Semiconductor device and fabricating method thereof |
US5923688A (en) * | 1996-09-02 | 1999-07-13 | Nec Corporation | Semiconductor laser |
US6072196A (en) * | 1996-09-05 | 2000-06-06 | Ricoh Company, Ltd. | semiconductor light emitting devices |
US6452215B1 (en) | 1996-09-05 | 2002-09-17 | Ricoh Company, Ltd. | Semiconductor light emitting devices |
US6542528B1 (en) | 1999-02-15 | 2003-04-01 | Ricoh Company, Ltd. | Light-emitting semiconductor device producing red wavelength optical radiation |
US6829271B2 (en) | 1999-02-15 | 2004-12-07 | Ricoh Company, Ltd. | Light-emitting semiconductor device producing red wavelength optical radiation |
WO2002080320A1 (en) * | 2001-03-28 | 2002-10-10 | Nichia Corporation | Nitride semiconductor element |
US7095051B2 (en) | 2001-03-28 | 2006-08-22 | Nichia Corporation | Nitride semiconductor element |
WO2017192718A1 (en) * | 2016-05-05 | 2017-11-09 | Macom Technology Solutions Holdings, Inc. | Semiconductor laser incorporating an electron barrier with low aluminum content |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0476689A2 (en) | Semiconductor laser and manufacturing method of the same | |
EP0545262B1 (en) | Strained quantum well laser diode | |
US5331656A (en) | Very short wavelength semiconductor laser | |
JPH09139543A (en) | Semiconductor laser element | |
JPH0677592A (en) | Semiconductor laser element | |
JPH06237039A (en) | Semiconductor laser | |
JPH10270787A (en) | Multiple quantum well optical semiconductor device and its manufacture | |
JPH0856045A (en) | Semiconductor laser device | |
JPH07249838A (en) | Semiconductor laser and its manufacture | |
EP0564915B1 (en) | Methods for growing compound semiconductor layers | |
JPH0541560A (en) | Semiconductor laser element | |
JP3033333B2 (en) | Semiconductor laser device | |
JPH0513884A (en) | Semiconductor laser | |
JPH0697592A (en) | Semiconductor laser and manufacture thereof | |
EP0528439A1 (en) | Semiconductor laser | |
JPH05211372A (en) | Manufacture of semiconductor laser | |
JPH07111366A (en) | Semiconductor laser device | |
JPH0439988A (en) | Semiconductor light emitting device | |
JPH0669589A (en) | Semiconductor laser element | |
JPH07111367A (en) | Semiconductor laser device | |
JPH06104534A (en) | Semiconductor laser element | |
JPH07122811A (en) | Semiconductor laser element | |
JPH08307005A (en) | Semiconductor laser element | |
JP2780625B2 (en) | Manufacturing method of semiconductor laser | |
JPH10290049A (en) | Semiconductor laser element |