JPH0513884A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPH0513884A
JPH0513884A JP3161794A JP16179491A JPH0513884A JP H0513884 A JPH0513884 A JP H0513884A JP 3161794 A JP3161794 A JP 3161794A JP 16179491 A JP16179491 A JP 16179491A JP H0513884 A JPH0513884 A JP H0513884A
Authority
JP
Japan
Prior art keywords
layer
quantum well
layers
gaas
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3161794A
Other languages
Japanese (ja)
Other versions
JP3128788B2 (en
Inventor
Tsukuru Katsuyama
造 勝山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP16179491A priority Critical patent/JP3128788B2/en
Publication of JPH0513884A publication Critical patent/JPH0513884A/en
Application granted granted Critical
Publication of JP3128788B2 publication Critical patent/JP3128788B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To sufficiently increase an effective band difference between a quantum well layer and a light confinement layer by forming the light confinement layer of a compound semiconductor material containing phosphorus and having larger band gap than that of GaAs such as (AlyGa1-y)zIn1-zP (0<=y<1). CONSTITUTION:An optical waveguide layer is formed of an active layer having GaInAs quantum well layers 6a, 6b, 6c, 6d, and light confinement layers 4, 7 vertically holding the active layers from above and below. Here, as the material of the layers 4, 7, compound semiconductor containing phosphorus and having larger band gap than that of GaAs such as (AlyGa1-y)zIn1-zP (0<=y<1), is used, and a band gap difference between the layers 6a, 6b, 6c, 6d and the layers 4, 7, is increased as compared with that of prior art. Thus, a threshold value current is reduced, operating characteristics at a high temperature are improved, and an increase in an efficiency of a semiconductor laser and an increase in an output can be realized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体レーザに関するも
のであり、特に0.9〜1.1μm帯半導体レーザに関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser, and more particularly to a 0.9 to 1.1 μm band semiconductor laser.

【0002】[0002]

【従来の技術】0.9〜1.1μm帯半導体レーザは、
GaAs系短波長レーザおよびInP系長波長レーザの
間の波長域を補うレーザとして期待されている。特に、
発振波長0.98μmの半導体レーザは将来の光通信を
担うキーテクノロジーとして期待の高まっているEr3+
添加ファイバ光増幅器の励起用光源として実用化が待た
れている。このような0.9〜1.1μm帯半導体レー
ザとして、光閉込め層でGaAs、量子井戸層でGaI
nAsを使用するGaAs/GaInAsヘテロ接合に
より構成される歪量子井戸活性層を有するものが従来か
ら考えられている。
2. Description of the Related Art A semiconductor laser of 0.9 to 1.1 μm band is
It is expected as a laser that supplements the wavelength range between the GaAs short wavelength laser and the InP long wavelength laser. In particular,
A semiconductor laser with an oscillation wavelength of 0.98 μm is expected to be a key technology for future optical communication. Er 3+
Practical use is awaited as a pumping light source for a doped fiber optical amplifier. As such a 0.9 to 1.1 μm band semiconductor laser, GaAs is used as the light confinement layer and GaI is used as the quantum well layer.
A device having a strained quantum well active layer composed of a GaAs / GaInAs heterojunction using nAs has been conventionally considered.

【0003】[0003]

【発明が解決しようとする課題】この材料系の場合、量
子井戸層と光閉込め層間の実効的なバンドギャップ差
が、例えば0.98μmレーザにおいては150meV
程度しかなく、活性層での正孔と電子の再結合を行わせ
るのに十分なほど大きくはない。
In the case of this material system, the effective band gap difference between the quantum well layer and the light confining layer is, for example, 150 meV for a 0.98 μm laser.
It is only small and not large enough to cause recombination of holes and electrons in the active layer.

【0004】[0004]

【課題を解決するための手段】本発明の半導体レーザ
は、このような問題点に鑑みて為されたものであり、G
aAsを基板材料とし、光導波層がGaInAs量子井
戸層を有する活性層と、この活性層を上下から挟む光閉
込め層とからなり、光閉込め層が燐を含みバンドギャッ
プがGaAsよりも大きい化合物半導体材料、例えば
(Aly Ga1-y Z In1-Z P(0≦y<1)で形成
されているものである。
The semiconductor laser of the present invention has been made in view of these problems.
The optical confining layer is composed of an active layer having a GaInAs quantum well layer and a light confining layer sandwiching the active layer from above and below. The optical confining layer contains phosphorus and has a bandgap larger than that of GaAs. compound semiconductor material, in which is formed, for example, (Al y Ga 1-y) Z in 1-Z P (0 ≦ y <1).

【0005】[0005]

【作用】量子井戸層にGa1-X InX As、光閉込め層
に(Aly Ga1-y Z In1-Z P(0≦y<1)を材
料に用いた場合、光閉込め層と量子井戸層間の実効的な
バンドギャップ差は、0.98μmレーザを例にとると
最低でもy=0、z=0.51のときの材料であるGa
0.51In0.49P(1.85eV)とGa1-x Inx As
(1.265eV)の差585meVとなり、従来のG
aAs/GaInAs材料系のバンドギャップ差(〜1
50meV)と比較し、非常に大きくなる。
[Action] When used in the quantum well layer Ga 1-X In X As, the light confinement layer (Al y Ga 1-y) Z In 1-Z P (0 ≦ y <1) to the material, the light closed The effective bandgap difference between the confinement layer and the quantum well layer is Ga, which is the material when y = 0 and z = 0.51 at least in the case of a 0.98 μm laser.
0.51 In 0.49 P (1.85 eV) and Ga 1-x In x As
The difference of (1.265 eV) is 585 meV, which is the conventional G
Band gap difference of aAs / GaInAs material system (~ 1
It is much larger than that of 50 meV).

【0006】[0006]

【実施例】図1は本発明の実施例に関するものであり、
いわゆる単一量子井戸構造の半導体レーザを説明するた
めの図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT FIG. 1 relates to an embodiment of the present invention.
It is a figure for demonstrating the semiconductor laser of what is called a single quantum well structure.

【0007】同図(a)は、レーザの出射面断面構造を
示し、同図(b)は、エネルギーバンド差を示す。同図
(a)に示される様に、SiドープGaAs基板1上に
SiドープGaAsバッファ層2、Seドープ(Al
0.5 Ga0.5 )In0.5 P n型クラッド層3、ノンド
ープGa0.5 In0.5 P光閉込め層4、ノンドープGa
0.75In0.25As量子井戸層6、ノンドープGa0.5
0.5 P光閉込め層7、Znドープ(Al0.5
0.5 0.5 In0.5 P P型クラッド層8、Znドー
プGaAsコンタクト層9がエピタキシャル成長により
順次形成されている。さらに、GaAs基板1下および
ZnドープGaAsコンタクト層9上にそれぞれ電極1
0,11が形成された構造となっている。この実施例に
おいては光閉込め層4,7の材料としてGaAsではな
く、(AlyGa1-y Z In1-Z P(0≦y<1)で
y=0、z=0.5のときの材料Ga0.5 In0.5 Pが
使用されている。この場合、前述のようにGaAs/G
aInAs材料系を使用したときはバンドギャップ差が
最高でも約150meVであるのに対し、Ga0.5 In
0.5 Pを使用するときは量子井戸層と光閉込め層のバン
ドギャップ差は約585meVと非常に大きくでき、キ
ャリアの効果的な再結合ができる。
FIG. 1A shows the cross-sectional structure of the emission surface of the laser, and FIG. 1B shows the energy band difference. As shown in FIG. 1A, a Si-doped GaAs buffer layer 2 and a Se-doped (Al
0.5 Ga 0.5 ) In 0.5 P n-type cladding layer 3, non-doped Ga 0.5 In 0.5 P optical confinement layer 4, non-doped Ga
0.75 In 0.25 As quantum well layer 6, undoped Ga 0.5 I
n 0.5 P optical confinement layer 7, Zn-doped (Al 0.5 G
The a 0.5 ) 0.5 In 0.5 P P type cladding layer 8 and the Zn-doped GaAs contact layer 9 are sequentially formed by epitaxial growth. Furthermore, the electrode 1 is formed under the GaAs substrate 1 and on the Zn-doped GaAs contact layer 9, respectively.
It has a structure in which 0 and 11 are formed. Rather than GaAs as a material of the light confinement layer 4 and 7 in this embodiment, (Al y Ga 1-y ) Z In 1-Z P (0 ≦ y <1) at y = 0, z = 0.5 In this case, the material Ga 0.5 In 0.5 P is used. In this case, as described above, GaAs / G
The band gap difference is about 150 meV at the maximum when the aInAs material system is used, while the Ga 0.5 In
When 0.5 P is used, the band gap difference between the quantum well layer and the optical confinement layer can be made very large to about 585 meV, and effective recombination of carriers can be performed.

【0008】なお、このときのGaInAsとGaAs
の格子不整は約1.5%であるが、GaInAs量子井
戸層の厚さが60オングストロームと弾性限界内で歪む
よう十分に薄くしてあるため、GaAs/GaInAs
界面では転位等による結晶欠陥は生じずに良好な結晶性
が保たれている。
[0008] At this time, GaInAs and GaAs
Has a lattice mismatch of about 1.5%, but the thickness of the GaInAs quantum well layer is 60 angstroms, which is sufficiently thin so as to be strained within the elastic limit. Therefore, GaAs / GaInAs
Good crystallinity is maintained at the interface without crystal defects due to dislocations or the like.

【0009】図2は、本実施例に係る、いわゆる多重量
子井戸構造の半導体レーザを説明するための図である。
同図(a)は、レーザの出射面断面構造を示し、同図
(b)は光導波層のバンドギャップ差を示し、同図
(c)は量子井戸層と障壁層の格子定数を示す図であ
る。この半導体レーザは、例えば、SiドープGaAs
基板1上にSiドープGaAsバッファ層2、Seドー
プ(Al0.7Ga0.3 0.5 In0.5 P n型クラッド
層3、ノンドープ(Al0.2 Ga0.8 0.5 In0.5
光閉込め層4、ノンドープGa0.75In0.25As量子井
戸層6a、ノンドープGa0.61In0.39P障壁層5a、
ノンドープGa0.75In0.25As量子井戸層6b、ノン
ドープGa0.61In0.39P障壁層5b、ノンドープGa
0.75In0.25As量子井戸層6c、ノンドープGa0.61
In0.39P障壁層5c、ノンドープGa0.75In0.25
s量子井戸層6d、ノンドープ(Al0.2 Ga0.8
0.5 In0.5 P光閉込め層7、Znドープ(Al
0.7 Ga0.3 0.5 In0.5 P P型クラッド層
8、ZnドープGaAsコンタクト層9がエピタキシャ
ル成長により順次形成され、さらに、SiドープGaA
s基板1下およびZnドープGaAS コンタクト層9上
にそれぞれ電極10,11が形成されている。
FIG. 2 is a diagram for explaining a semiconductor laser having a so-called multiple quantum well structure according to this embodiment.
FIG. 1A shows the cross-sectional structure of the laser emission surface, FIG. 2B shows the band gap difference of the optical waveguide layer, and FIG. 1C shows the lattice constants of the quantum well layer and the barrier layer. Is. This semiconductor laser is, for example, Si-doped GaAs.
On the substrate 1, Si-doped GaAs buffer layer 2, Se-doped (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P n-type clad layer 3, non-doped (Al 0.2 Ga 0.8 ) 0.5 In 0.5 P
Light confinement layer 4, non-doped Ga 0.75 In 0.25 As quantum well layer 6 a, non-doped Ga 0.61 In 0.39 P barrier layer 5 a,
Non-doped Ga 0.75 In 0.25 As quantum well layer 6b, non-doped Ga 0.61 In 0.39 P barrier layer 5b, non-doped Ga
0.75 In 0.25 As quantum well layer 6c, undoped Ga 0.61
In 0.39 P barrier layer 5c, undoped Ga 0.75 In 0.25 A
s quantum well layer 6d, non-doped (Al 0.2 Ga 0.8 ).
0.5 In 0.5 P light confinement layer 7, Zn-doped (Al
0.7 Ga 0.3 ) 0.5 In 0.5 P P-type cladding layer 8 and Zn-doped GaAs contact layer 9 are sequentially formed by epitaxial growth, and further Si-doped GaA is formed.
s substrate 1 below and Zn-doped GaA S contact layer 9 on each of the electrodes 10 and 11 are formed.

【0010】このように光閉込め層4,7は(Aly
1-yZ In1-Z P(0≦y<1)でy=0.2、z
=0.5のときの材料である(Al0.2 Ga0.8 0.5
In0.5 Pが使用され、量子井戸層はGaInAsで形
成されている。本実施例のAlGaInP/GaInA
sの材料系の場合も、図1に示された実施例のGaIn
P/GaInAsとほぼ同様のエネルギーギャップ差を
有し、従来のGaAs/GaInAsの材料系を用いた
場合と比較すると、光閉込め層と量子井戸層間のエネル
ギーギャップ差は非常に大きい。
[0010] Thus the light confinement layer 4 and 7 (Al y G
a 1-y ) Z In 1-Z P (0 ≦ y <1), y = 0.2, z
= 0.5, the material is (Al 0.2 Ga 0.8 ) 0.5.
In 0.5 P is used, and the quantum well layer is made of GaInAs. AlGaInP / GaInA of this embodiment
Also in the case of the material system of s, GaIn of the embodiment shown in FIG.
The energy gap difference is almost the same as that of P / GaInAs, and the energy gap difference between the optical confinement layer and the quantum well layer is very large as compared with the case of using the conventional GaAs / GaInAs material system.

【0011】光閉込め層と量子井戸層の組み合わせは、
本実施例の(AlyGa1-y z In1-z P/Ga1-x
Inx Asだけでなく、Aly Ga1-yz As1-z
Ga1-x Inx As、Aly In1-y z As1-z /G
1-x Inx As、Gay In1-y z As1-z /Ga
1-x Inx As等のように、光閉込め層に燐を含む他の
化合物半導体材料を用いたものでも実現できる。
The combination of the optical confinement layer and the quantum well layer is
(Al y Ga 1-y ) z In 1-z P / Ga 1-x of this example
Not only In x As, but also Al y Ga 1-y P z As 1-z /
Ga 1-x In x As, Al y In 1-y P z As 1-z / G
a 1-x In x As, Gay y In 1-y P z As 1-z / Ga
It can be also realized by using another compound semiconductor material containing phosphorus for the light confining layer, such as 1-x In x As.

【0012】また、本実施例の活性層は、図2(c)に
示される通り、障壁層5a〜5cを形成するGaInP
の格子定数が基板材料であるGaAsの格子定数よりも
小さく、量子井戸層6a〜6dを形成するGaInAs
の格子定数がGaAsの格子定数より大きい。この格子
定数の関係により、GaInAs量子井戸層には圧縮応
力、GaInP障壁層には引張応力が加わる。本実施例
に係る半導体レーザは、このように構成されているの
で、活性層全体としては量子井戸層の圧縮応力と障壁層
の引張応力が相殺し、活性層の平均格子定数はGaAs
の格子定数に10-3以下の格子不整となるだけである。
したがって、単一量子井戸構造の活性層の場合に比較し
て実効的な活性層厚を厚くすることができ、利得の増大
化を図ることができる。
In addition, the active layer of this embodiment, as shown in FIG. 2 (c), is a GaInP forming barrier layers 5a-5c.
Has a lattice constant smaller than that of GaAs, which is a substrate material, and forms GaInAs forming the quantum well layers 6a to 6d.
Is larger than that of GaAs. Due to this lattice constant relationship, compressive stress is applied to the GaInAs quantum well layer and tensile stress is applied to the GaInP barrier layer. Since the semiconductor laser according to the present embodiment is configured in this way, the compressive stress of the quantum well layer and the tensile stress of the barrier layer cancel each other out in the entire active layer, and the average lattice constant of the active layer is GaAs.
However, the lattice constant of is less than 10 -3 .
Therefore, it is possible to increase the effective active layer thickness and increase the gain as compared with the case of the active layer having the single quantum well structure.

【0013】[0013]

【発明の効果】以上、詳細に説明した通り、多重量子井
戸構造および単一量子井戸構造の半導体レーザの光閉込
め層の材料に、例えば(Aly Ga1-y Z In1-Z
(0≦y<1)のような燐を含みバンドギャップがGa
Asよりも大きい化合物半導体、量子井戸層の材料とし
てGaInAsを使用することにより、量子井戸層と光
閉込め層間のバンドギャップ差を従来よりも非常に大き
くすることができる。したがって、閾値電流の低減、高
温での動作特性の改善がはかれるので、半導体レーザの
高効率化および高出力化が実現できる。また、多重量子
井戸層の半導体レーザでは、障壁層の材料に格子定数が
小さいものを使用しているので、量子井戸層の圧縮応力
を障壁層の引張応力で相殺でき、活性層全体の厚さは転
位を生じる臨界膜厚の制約を受けることなく自由に設計
できる。
Effect of the Invention] above, as described in detail, the material of the multiple quantum well structure and the semiconductor laser in the optical confinement layer of a single quantum well structure, for example, (Al y Ga 1-y) Z In 1-Z P
(0 ≦ y <1) and phosphorus is included, and the band gap is Ga
By using GaInAs as the material of the compound semiconductor and quantum well layer larger than As, the band gap difference between the quantum well layer and the light confining layer can be made much larger than before. Therefore, since the threshold current can be reduced and the operating characteristics at high temperature can be improved, higher efficiency and higher output of the semiconductor laser can be realized. Also, in the semiconductor laser with multiple quantum well layers, since the material of the barrier layer has a small lattice constant, the compressive stress of the quantum well layer can be canceled by the tensile stress of the barrier layer, and the thickness of the entire active layer Can be freely designed without being restricted by the critical film thickness that causes dislocations.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例の多重量子井戸構造の半導体レーザを
説明するための図。
FIG. 1 is a view for explaining a semiconductor laser having a multiple quantum well structure of this embodiment.

【図2】本実施例の単一量子井戸構造の半導体レーザを
説明するための図。
FIG. 2 is a diagram for explaining a semiconductor laser having a single quantum well structure according to the present embodiment.

【符号の説明】[Explanation of symbols]

1…GaAs基板 4,7…光閉込め層 5a,5b,5c…障壁層 6,6a,6b,6c,6d…量子井戸層 1 ... GaAs substrate 4, 7 ... Light confinement layer 5a, 5b, 5c ... Barrier layer 6, 6a, 6b, 6c, 6d ... Quantum well layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 GaAs基板上に形成される半導体レー
ザにおいて、 光導波層がGaInAs量子井戸層を有する活性層と、
この活性層を上下から挟む光閉込め層とからなり、 前記光閉込め層が燐を含みバンドギャップがGaAsよ
りも大きい化合物半導体材料で形成されていることを特
徴とする半導体レーザ。
1. A semiconductor laser formed on a GaAs substrate, wherein the optical waveguide layer comprises an active layer having a GaInAs quantum well layer.
A semiconductor laser comprising a light confining layer sandwiching the active layer from above and below, wherein the light confining layer is made of a compound semiconductor material containing phosphorus and having a bandgap larger than GaAs.
【請求項2】 光閉込め層の化合物半導体材料が(Al
y Ga1-y Z In1-Z P(0≦y<1)であることを
特徴とする請求項1に記載の半導体レーザ。
2. The compound semiconductor material of the light confinement layer is (Al
The semiconductor laser according to claim 1, wherein y Ga 1-y ) Z In 1-Z P (0 ≦ y <1).
【請求項3】 活性層が複数のGaInAs量子井戸層
と、これを隔てる障壁層とからなり、この障壁層を形成
する材料の格子定数がGaAsの格子定数よりも小さい
ことを特徴とする請求項1に記載の半導体レーザ。
3. The active layer comprises a plurality of GaInAs quantum well layers and barrier layers separating the well layers, and the material forming the barrier layers has a lattice constant smaller than that of GaAs. 1. The semiconductor laser described in 1.
JP16179491A 1991-07-02 1991-07-02 Semiconductor laser Expired - Fee Related JP3128788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16179491A JP3128788B2 (en) 1991-07-02 1991-07-02 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16179491A JP3128788B2 (en) 1991-07-02 1991-07-02 Semiconductor laser

Publications (2)

Publication Number Publication Date
JPH0513884A true JPH0513884A (en) 1993-01-22
JP3128788B2 JP3128788B2 (en) 2001-01-29

Family

ID=15742041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16179491A Expired - Fee Related JP3128788B2 (en) 1991-07-02 1991-07-02 Semiconductor laser

Country Status (1)

Country Link
JP (1) JP3128788B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001068790A (en) * 1999-08-27 2001-03-16 Canon Inc Semiconductor laser structure
JP2002533941A (en) * 1998-12-21 2002-10-08 ハネウエル・インコーポレーテッド Mechanical stability of lattice-mismatched quantum sources
JP2007129270A (en) * 2007-02-09 2007-05-24 Sharp Corp Semiconductor laser element and method of manufacturing the same
US7684456B2 (en) 1999-08-04 2010-03-23 Ricoh Company, Ltd. Laser diode and semiconductor light-emitting device producing visible-wavelength radiation
CN102468387A (en) * 2010-11-18 2012-05-23 昭和电工株式会社 Light emitting diode
WO2012073993A1 (en) * 2010-12-02 2012-06-07 昭和電工株式会社 Light-emitting diode, light-emitting diode lamp, and illumination device
JP2015167245A (en) * 2015-04-30 2015-09-24 昭和電工株式会社 Light-emitting diode, light-emitting diode lamp and luminaire

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002533941A (en) * 1998-12-21 2002-10-08 ハネウエル・インコーポレーテッド Mechanical stability of lattice-mismatched quantum sources
US7684456B2 (en) 1999-08-04 2010-03-23 Ricoh Company, Ltd. Laser diode and semiconductor light-emitting device producing visible-wavelength radiation
US8009714B2 (en) 1999-08-04 2011-08-30 Ricoh Company, Ltd. Laser diode and semiconductor light-emitting device producing visible-wavelength radiation
US8537870B2 (en) 1999-08-04 2013-09-17 Ricoh Company, Limited Laser diode and semiconductor light-emitting device producing visible-wavelength radiation
JP2001068790A (en) * 1999-08-27 2001-03-16 Canon Inc Semiconductor laser structure
JP2007129270A (en) * 2007-02-09 2007-05-24 Sharp Corp Semiconductor laser element and method of manufacturing the same
CN102468387A (en) * 2010-11-18 2012-05-23 昭和电工株式会社 Light emitting diode
JP2012109436A (en) * 2010-11-18 2012-06-07 Showa Denko Kk Light-emitting diode
WO2012073993A1 (en) * 2010-12-02 2012-06-07 昭和電工株式会社 Light-emitting diode, light-emitting diode lamp, and illumination device
JP2012119585A (en) * 2010-12-02 2012-06-21 Showa Denko Kk Light-emitting diode, light-emitting diode lamp and luminaire
US9299885B2 (en) 2010-12-02 2016-03-29 Showa Denko K.K. Light-emitting diode, light-emitting diode lamp, and illumination device
JP2015167245A (en) * 2015-04-30 2015-09-24 昭和電工株式会社 Light-emitting diode, light-emitting diode lamp and luminaire

Also Published As

Publication number Publication date
JP3128788B2 (en) 2001-01-29

Similar Documents

Publication Publication Date Title
JP2724827B2 (en) Infrared light emitting device
JPH11274635A (en) Semiconductor light emitting device
JPH05243676A (en) Semiconductor laser device
EP0545262B1 (en) Strained quantum well laser diode
JP2814931B2 (en) Semiconductor laser and method of manufacturing the same
JP3128788B2 (en) Semiconductor laser
JPH0856045A (en) Semiconductor laser device
EP0701309B1 (en) Semiconductor laser diode
JP2007066930A (en) Optical semiconductor device
JPH0677592A (en) Semiconductor laser element
JPH09129969A (en) Semiconductor laser
JPH1084158A (en) Semiconductor laser
JP2723924B2 (en) Semiconductor laser device
JP3033333B2 (en) Semiconductor laser device
JPH05211372A (en) Manufacture of semiconductor laser
JPH1084170A (en) Quantum well semiconductor laser element
JPH06104534A (en) Semiconductor laser element
JPH07111367A (en) Semiconductor laser device
JPH09148682A (en) Semiconductor optical device
JP3046454B2 (en) Quantum well semiconductor light emitting device
JP2001345518A (en) Semiconductor laser element
JPH10290049A (en) Semiconductor laser element
JPH08307005A (en) Semiconductor laser element
JPH05175601A (en) Multiple quantum well semiconductor laser
JP2001251021A (en) GaInNAs SEMICONDUCTOR ELEMENT AND ITS MANUFACTURING METHOD

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071117

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081117

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees