JP2723924B2 - Semiconductor laser device - Google Patents
Semiconductor laser deviceInfo
- Publication number
- JP2723924B2 JP2723924B2 JP63228670A JP22867088A JP2723924B2 JP 2723924 B2 JP2723924 B2 JP 2723924B2 JP 63228670 A JP63228670 A JP 63228670A JP 22867088 A JP22867088 A JP 22867088A JP 2723924 B2 JP2723924 B2 JP 2723924B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- semiconductor laser
- self
- quantum well
- active layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/06—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
- H01S5/065—Mode locking; Mode suppression; Mode selection ; Self pulsating
- H01S5/0658—Self-pulsating
Landscapes
- Semiconductor Lasers (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体レーザ素子に係り、特に光デイスクの
光源に好適な高出力低雑音半導体レーザ素子に関する。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser device, and more particularly to a high-output low-noise semiconductor laser device suitable for an optical disk light source.
従来、光ビデオデイスク等の光源に要求される低雑音
半導体レーザとして、自励発振型半導体レーザが適して
いる。自励発振型半導体レーザの特性については、例え
ば電子通信学会技術研究報告OEQ84−30 pp65−72に論じ
られているが、従来自励発振型半導体レーザのキンク発
生光出力及び自励発振の得られる光出力は低く、高くと
も7〜9mWが限度であった。また、自励発振周波数の制
御について検討されておらず、約1GHz程度と高い周波数
であつた。2. Description of the Related Art Conventionally, a self-pulsation type semiconductor laser is suitable as a low-noise semiconductor laser required for a light source such as an optical video disk. The characteristics of the self-pulsation type semiconductor laser are discussed in, for example, the IEICE technical report OEQ84-30 pp65-72, but the kink generation light output and the self-pulsation of the conventional self-pulsation type semiconductor laser can be obtained. Light output was low, at most 7-9 mW. In addition, the control of the self-excited oscillation frequency was not studied, and the frequency was as high as about 1 GHz.
上記従来技術は、自励発振型半導体レーザに対して戻
り光が生じた場合の戻り光雑音を抑制することについて
は何も配慮がされておらず、戻り光量が大きい場合には
相対雑音強度10-13Hz-1以下のレベルである低雑音特性
を得ることができないという問題があつた。In the above prior art, no consideration is given to suppressing return light noise when return light is generated in the self-pulsation type semiconductor laser. There was a problem that it was not possible to obtain low noise characteristics at a level of -13 Hz -1 or less.
本発明の目的は、戻り光量が大きい場合でもより高出
力まで低雑音特性を維持して光デイスク光源として適切
な高出力低雑音特性を有した半導体レーザ素子を提供す
ることにある。An object of the present invention is to provide a semiconductor laser device having high output and low noise characteristics suitable as an optical disc light source while maintaining low noise characteristics up to higher output even when the amount of return light is large.
上記目的は自励発振型半導体レーザ素子において、多
重量子井戸活性層にn型不純物をドーピングすることに
より達成できる。より具体的には次のとおりである。The above object can be achieved by doping the multiple quantum well active layer with an n-type impurity in a self-pulsation type semiconductor laser device. More specifically, it is as follows.
(1).半導体活性層とこの層の上下に設けた半導体光
導波層からなる異種接合半導体層における該半導体活性
層の上部光導波層に対して、加工することによりリツジ
段差を形成し、リツジの両側に電流狭窄兼光吸収層を設
けて活性層横方向の実効的な屈折率差を制御して作製し
た自励発振型半導体レーザにおいて、設定された多重量
子井戸活性層の量子障壁層のみにn型の不純物を変調ド
ーピングしたことを特徴とする半導体レーザ素子。(1). In a heterojunction semiconductor layer composed of a semiconductor active layer and semiconductor optical waveguide layers provided above and below this layer, a ridge step is formed by processing the upper optical waveguide layer of the semiconductor active layer, and current is applied to both sides of the ridge. In a self-pulsation type semiconductor laser fabricated by providing a confinement and light absorption layer and controlling the effective refractive index difference in the lateral direction of the active layer, an n-type impurity is contained only in the quantum barrier layer of the set multiple quantum well active layer. A semiconductor laser device obtained by modulation doping.
(2).(1)項記載の半導体レーザ素子において、n
型不純物ドーピングする層の幅を量子障壁層の幅より小
さくし、且つ該量子障壁層の該ドーピング領域の外側は
不純物をドーピングしない半導体レーザ素子。(2). In the semiconductor laser device according to the above mode (1), n
A semiconductor laser device wherein the width of a layer to be doped with a type impurity is smaller than the width of a quantum barrier layer, and the outside of the doping region of the quantum barrier layer is not doped with an impurity.
(3).(1)項記載の半導体レーザ素子において、n
型不純物種はSe又はSiである半導体レーザ素子。(3). In the semiconductor laser device according to the above mode (1), n
A semiconductor laser device in which the type impurity species is Se or Si.
(4).(1)項記載の半導体レーザ素子において、上
記多重量子井戸活性層の量子障壁層の幅は3〜7nmであ
り、上記量子井戸層の幅は5〜20nmである半導体レーザ
素子。(4). The semiconductor laser device according to (1), wherein the width of the quantum barrier layer of the multiple quantum well active layer is 3 to 7 nm, and the width of the quantum well layer is 5 to 20 nm.
(5).(4)項記載の半導体レーザ素子において、上
記多重量子井戸活性層膜厚は0.05〜0.09μmである半導
体レーザ素子。(5). (4) The semiconductor laser device according to item (4), wherein the thickness of the multiple quantum well active layer is 0.05 to 0.09 μm.
(6).(1)項記載の半導体レーザ素子において、上
記多重量子井戸活性層はGRIN−SCH(Granded Index Sep
arate Confinement Heterostructure)構造である半導
体レーザ素子。(6). In the semiconductor laser device described in (1), the multiple quantum well active layer is a GRIN-SCH (Granded Index Sep.).
A semiconductor laser device with a rate confinement heterostructure.
(7).(1)項記載の半導体レーザ素子において、結
晶成長する半導体基板の面方位は(111)である半導体
レーザ素子。(7). (1) The semiconductor laser device according to (1), wherein the plane of the semiconductor substrate on which the crystal grows is (111).
低雑音特性に優れた自励発振型半導体レーザでも戻り
光量が大きい場合には、例えば第35回応用物理学関係連
合講演会予稿集3p192に示されているように、戻り光雑
音を生じて相対雑音強度が10-13Hz-1より高くなつてし
まう。この場合の戻り光雑音は素子の戻り光のタイミン
グに関わり、素子の自励発振周波数と光ピツクアツプ系
光路長によつて決まるものである。光ビデオデイスクに
みる光路長60mmの場合、戻り光雑音を誘起しないために
は素子の自励発振周波数を1.3GHz以下にする必要があ
る。すなわち、低雑音特性を得るためには自励発振周波
数の制御が重要である。If the amount of return light is large even with a self-pulsation type semiconductor laser with excellent low noise characteristics, return light noise is generated as shown in 3p192 The noise intensity is higher than 10 -13 Hz -1 . The return light noise in this case is related to the timing of the return light of the element and is determined by the self-excited oscillation frequency of the element and the optical path length of the optical pickup system. In the case of an optical video disk having an optical path length of 60 mm, the self-excited oscillation frequency of the element needs to be 1.3 GHz or less in order not to induce return optical noise. That is, control of the self-excited oscillation frequency is important to obtain low noise characteristics.
本発明は、自励発振型半導体レーザにおいてバルク活
性層或は多重量子井戸活性層にn型不純物をドーピング
することにより、素子の自励発振周波数を低減すること
ができる。以下その理由を説明する。According to the present invention, the self-excited oscillation frequency of the device can be reduced by doping the bulk active layer or the multiple quantum well active layer with an n-type impurity in the self-excited oscillation type semiconductor laser. The reason will be described below.
自励発振周波数に関しては、半導体レーザの自励発振
が緩和振動と同様な周波数において共振しやすい性質を
もつことを考えると、緩和振動周波数を表わす式と同様
に記述することができる。すなわち、自励発振周波数
Pは ここで、Kは定数、dg/dnは微分利得、ξPは光子寿
命、Iは駆動電流、Ithは閾値電流、Cは光速、nrは有
効屈折率、αiは内部損失、Lは共振器長、R1,R2は端
面反射率である。The self-sustained pulsation frequency can be described in the same way as the expression representing the relaxation oscillating frequency, considering that the self-sustained pulsation of the semiconductor laser tends to resonate at the same frequency as the relaxation oscillation. That is, the self-excited oscillation frequency
P is Here, K is a constant, dg / dn is a differential gain, xi] P is the photon lifetime, I is the drive current, I th is the threshold current, C is the speed of light, n r is the effective refractive index, alpha i is the internal loss, L is Resonator lengths, R 1 and R 2, are end face reflectivities.
活性層を多重量子井戸構造とすると、例えば電子通信
学会技術研究報告OQE86−63 pp17−24に示されているよ
うに、微分利得が増大するために緩和振動周波数が高く
なるように自励発振周波数が通常のバルク活性層に比べ
て高くなつてしまう。自励発振周波数を低減するために
は、上記(1)(2)式における共振器長を長くするこ
とや端面反射率を高くすることによつて光子寿命を大き
くすることの他に、微分利得を小さくすることが有効と
考えられる。微分利得を小さくすることは活性層にn型
不純物をドーピングすることにより達成される。つま
り、多重量子井戸活性層にn型不純物をドーピングする
ことによりキヤリアを注入しない状態においても再結合
発光に寄与する電子を供給するとができ、通常より広い
エネルギー領域において利得を得ることが可能である。
このため、利得スペクトルが広くなり、キヤリア注入に
対する利得の立ち上がり即ち微分利得が活性層アンドー
プの場合より小さくなる。When the active layer has a multiple quantum well structure, for example, as shown in IEICE Technical Report OQE86-63 pp17-24, the self-excited oscillation frequency is increased so that the relaxation oscillation frequency becomes higher because the differential gain increases. Is higher than that of a normal bulk active layer. In order to reduce the self-excited oscillation frequency, in addition to extending the photon lifetime by increasing the resonator length and increasing the end face reflectivity in the above equations (1) and (2), the differential gain Is considered to be effective. Reducing the differential gain can be achieved by doping the active layer with an n-type impurity. In other words, by doping the multiple quantum well active layer with an n-type impurity, electrons that contribute to recombination light emission can be supplied even in a state where no carrier is injected, and a gain can be obtained in a wider energy region than usual. .
For this reason, the gain spectrum is widened, and the rise of the gain with respect to the carrier injection, that is, the differential gain is smaller than that in the case of undoping the active layer.
多重量子井戸層に対して一様にドーピングを行うと、
不純物イオンの空間電荷により量子井戸層内に形成され
た量子準位が変形したり利得スペクトルの分布が乱れた
りして発振波長が安定しなくなる等の悪影響が生じる可
能性がある。そこで、実際には量子井戸層にはドーピン
グしないで量子障壁層にのみ変調ドープするか或は量子
障壁層の中央部にのみδドープすることが有効である。Doping the multiple quantum well layer uniformly,
There is a possibility that the quantum level formed in the quantum well layer is deformed due to the space charge of the impurity ions, or the distribution of the gain spectrum is disturbed, thereby causing an adverse effect such as an unstable oscillation wavelength. Therefore, it is effective to modulate doping only the quantum barrier layer without doping the quantum well layer or to do δ doping only at the center of the quantum barrier layer.
また、多重量子井戸層全体の膜厚が薄くなると縦多モ
ード自励発振が得られず、縦単一モード発振となる傾向
があるので、全体の膜厚は0.05〜0.09μmが適当であつ
た。量子井戸層を薄くすると縦単一モード発振となる傾
向がありかつ自励発振が得られたとしてもその周波数は
高くなつてしまうので、量子井戸幅は5〜20nmが適当で
あり特に8〜12nmが望ましい。Also, when the thickness of the entire multiple quantum well layer is reduced, longitudinal multi-mode self-oscillation cannot be obtained, and there is a tendency for longitudinal single mode oscillation. Therefore, the entire film thickness is suitably 0.05 to 0.09 μm. . If the quantum well layer is thinned, longitudinal single mode oscillation tends to occur, and even if self-excited oscillation is obtained, the frequency will increase. Therefore, the quantum well width is appropriately 5 to 20 nm, and especially 8 to 12 nm. Is desirable.
本発明によつて、自励発振周波数を低減できるので、
戻り光が3〜6%生じても相対雑音強度10-14〜10-13Hz
-1レベルの低雑音特性を従来より高い光出力時において
も実現できた。According to the present invention, since the self-excited oscillation frequency can be reduced,
Relative noise intensity 10 -14 to 10 -13 Hz even if 3-6% of return light occurs
A low noise level of -1 level was realized even at higher light output than before.
検討例 まず、多重量子井戸活性層へのn型不純物のドープの
効果を検討例を第1図に示すMQW自励発振半導体レーザ
により説明する。n−GaAs基板1上にn−GaAsバツフア
層2(厚さ0.5μm)、n−AlxGa1-xAsクラツド層3
(厚さ1.5μm,x=0.45)、AlGaAs多重量子井戸構造活性
層4′(AlyGa1-yAs量子障壁層y=0.2〜0.27,厚さ3〜
5nm5層くり返し、AlzGa1-zAs量子井戸層z=0.04〜0.07
4層くり返しで量子障壁層及び量子井戸層に一様にn型
不純物Seを9×10-17〜2×1018cm-3ドーピングす
る)、p−AlxGa1-xAsクラツド層5(厚さ1.3〜1.6μm,
x=0.45)、p−GaAs層(厚さ0.2μm)をまず有機金属
気相成長法(MOCVD)法あるいは分子線エピタキシー(M
BE)法によつて順次結晶成長する。この後、結晶上部に
絶縁膜を形成し、ホトリソグラフイとエツチングによつ
てストライプ状の絶縁膜マスクを作製する。この絶縁膜
マスクを利用して、第1図におけるストライプ状リツジ
導波路13をリン酸系溶液でエツチング加工する。エツチ
ングにより形成したリツジ両側の層5の厚さdは0.3〜
0.6μmとした。次に、絶縁膜マスクを残したまま、n
−GaAs電流狭窄層7(厚さ0.7〜1.1μm)を選択成長す
る。そのあと、絶縁膜マスクをフツ酸系溶液を用いてエ
ツチング除去した後、p−GaAs埋込み層8(厚さ1.0〜
1.5μm)を再度結晶成長する。この後、p側電極9、
n側電極10を蒸着し、劈開スクライブ工程により素子の
形に切り出した。Example of Study First, an example of studying the effect of doping an n-type impurity into the multiple quantum well active layer will be described with reference to the MQW self-excited oscillation semiconductor laser shown in FIG. An n-GaAs buffer layer 2 (0.5 μm thick) and an n-Al x Ga 1 -x As clad layer 3 on an n-GaAs substrate 1
(Thickness 1.5 μm, x = 0.45), AlGaAs multiple quantum well structure active layer 4 ′ (Al y Ga 1-y As quantum barrier layer y = 0.2 to 0.27, thickness 3 to
5 nm 5 layers repeated, Al z Ga 1-z As quantum well layer z = 0.04 to 0.07
The quantum barrier layer and the quantum well layer are uniformly doped with an n-type impurity Se at 9 × 10 −17 to 2 × 10 18 cm −3 by repeating four layers), and the p-Al x Ga 1 -x As clad layer 5 ( 1.3-1.6μm thickness,
x = 0.45), p-GaAs layer (thickness 0.2 μm) is first formed by metal organic chemical vapor deposition (MOCVD) or molecular beam epitaxy (M
The crystal grows sequentially according to the BE) method. Thereafter, an insulating film is formed on the crystal, and a striped insulating film mask is formed by photolithography and etching. Using this insulating film mask, the striped ridge waveguide 13 in FIG. 1 is etched with a phosphoric acid-based solution. The thickness d of the layer 5 on both sides of the ridge formed by etching is 0.3 to 0.3.
0.6 μm. Next, while leaving the insulating film mask, n
-Selectively grow a GaAs current confinement layer 7 (0.7 to 1.1 μm in thickness). Then, after the insulating film mask is removed by etching using a hydrofluoric acid solution, the p-GaAs buried layer 8 (having a thickness of 1.0 to 1.0 μm) is formed.
(1.5 μm) is grown again. Thereafter, the p-side electrode 9,
An n-side electrode 10 was vapor-deposited and cut into a device by a cleavage scribe process.
基本横モードで安定に発振するレーザを得るためには
リツジ底部のストライプ幅Sが4〜7μmであることが
適切であつた。比較のために、活性層をアンドープAlGa
As多重量子井戸層4としてのその他のパラメータを同じ
とした素子を作製した。 活性層にn型不純物をドーピ
ングした素子及びアンドープとした素子の両方において
キンクレベルまで自励発振が持続した。第3図に本検討
例の活性層一様nドープ素子の光出力−電流特性を活性
層アンドープ素子のそれと比較して示す。MQW活性層に
一様n型ドープした素子では、アンドープの素子よりも
低い注入キヤリア密度でより高い利得が得られるため、
閾キヤリア密度及び閾電流密度が下がり低閾値電流が得
られる。第3図に示したように、一様n型ドープした素
子では閾値電流は25〜30mAであり、アンドープ素子の35
〜40mAに比べ20〜30%の低閾値電流を図ることができ
た。さらに、キンクレベルにおいてもアンドープ素子に
比べ向上させることができ、25〜30mWに高くすることが
できた。このキンクレベルに到るまで、相対雑音強度は
10-13Hz-1レベル以下を得ることができた。また、n型
ドーピングすることによつてMQW活性層の微分利得を減
少させることができるので、自励発振周波数を低減する
ことが可能である。第4図に示したように、一様n型ド
ープした素子(図中△印)では自励発振周波数をアンド
ープ素子(図中□印)に比べて1/2〜1/3に低減すること
が可能であつた。本検討例で、素子の出射面と反対側の
裏面に高反射膜コーテイングすることにより、さらに自
励発振周波数を低減することができた。このことによ
り、キンクレベル25〜30mWまで自励発振周波数を1.0GHz
以下に維持することが可能となり、戻り光3〜6%生じ
ても相対雑音強度を10-13Hz-1レベル以下に抑えること
ができた。また、非対称コーテイングした素子ではキン
クレベルを60〜70mWに向上させることが可能であつた。In order to obtain a laser which oscillates stably in the fundamental transverse mode, it is appropriate that the stripe width S at the bottom of the ridge is 4 to 7 μm. For comparison, the active layer was undoped AlGa
An element having the same other parameters as the As multiple quantum well layer 4 was manufactured. In both the device in which the active layer was doped with the n-type impurity and the device in which the active layer was undoped, self-sustained pulsation was maintained up to the kink level. FIG. 3 shows the optical output-current characteristics of the active layer uniform n-doped device of this study example in comparison with that of the active layer undoped device. In a device in which the MQW active layer is uniformly n-type doped, higher gain can be obtained at a lower injection carrier density than in an undoped device.
The threshold carrier density and the threshold current density are reduced, and a low threshold current is obtained. As shown in FIG. 3, the threshold current of the uniformly n-type doped device is 25 to 30 mA, and the threshold current of the undoped device is 35 to 30 mA.
A low threshold current of 20 to 30% compared to 40 mA could be achieved. Furthermore, the kink level could be improved as compared with the undoped element, and could be increased to 25 to 30 mW. Up to this kink level, the relative noise intensity is
A level below 10 -13 Hz -1 could be obtained. Further, since the differential gain of the MQW active layer can be reduced by n-type doping, the self-excited oscillation frequency can be reduced. As shown in Fig. 4, the self-excited oscillation frequency must be reduced to 1/2 to 1/3 in the uniformly n-type doped device (△ in the figure) compared to the undoped device (□ in the diagram). Was possible. In this study example, the self-excited oscillation frequency could be further reduced by coating a high reflection film on the back surface opposite to the emission surface of the device. As a result, the self-excited oscillation frequency is increased to 1.0 GHz up to the kink level of 25 to 30 mW.
The relative noise intensity can be suppressed to a level of 10 -13 Hz -1 or less even when the return light is generated at 3 to 6%. In the case of an asymmetrically coated device, the kink level could be improved to 60 to 70 mW.
本検討例の素子は、非対称コーテイングした素子では
端面破壊レベルが80〜90mWであり、素子の寿命試験では
環境温度50℃,20mWの定光出力動作で2000時間以上動作
しても劣化することはなかつた。The element of this study example has an end face breakdown level of 80 to 90 mW in the element with asymmetric coating, and in the life test of the element, it does not deteriorate even if it is operated for 2000 hours or more under constant light output operation at an ambient temperature of 50 ° C and 20 mW. Was.
実施例1 本発明の実施例1について第1図を用いて説明する。
素子の作製プロセスは、検討例と同様に行うが結晶成長
においてMQW活性層における量子障壁層にのみ不純物と
してSeをドーピングして変調n型ドープした素子を作製
した。不純物Seのドーピング濃度は9×1017〜2×1018
cm-3とした。この素子においても安定に自励発振が得ら
れ、キンクレベルまで自励発振が持続した。本実施例の
素子では、閾値電流は20〜25mAであり、検討例の素子と
同程度かあるいはそれ以下に低減することができた。自
励発振周波数についても検討例と同程度かあるいはそれ
以下に抑制することができた。このことにより、キンク
レベルまで自励発振周波数を1.0GHz以下に維持すること
ができ、戻り光が3〜6%生じても相対雑音強度を10
-13Hz-1レベル以下に抑えることが可能であつた。Embodiment 1 Embodiment 1 of the present invention will be described with reference to FIG.
The fabrication process of the device was performed in the same manner as in the study example, except that in the crystal growth, only the quantum barrier layer in the MQW active layer was doped with Se as an impurity to produce a device having a modulation n-type doping. The doping concentration of the impurity Se is 9 × 10 17 to 2 × 10 18
cm -3 . In this device, self-sustained pulsation was obtained stably and continued to the kink level. In the device of this example, the threshold current was 20 to 25 mA, which could be reduced to about the same as or less than the device of the study example. The self-excited oscillation frequency could be suppressed to the same level as or less than that of the study example. As a result, the self-excited oscillation frequency can be maintained at 1.0 GHz or less up to the kink level, and the relative noise intensity can be reduced by 10% even when the return light is generated at 3 to 6%.
It was possible to keep it below -13 Hz -1 level.
実施例2 本発明の実施例2のMQW自励発振レーザを第2図を用
いて説明する。素子の作製プロセスは検討例と同様に行
うが、結晶成長においてMQW活性層の下方と上方にそれ
ぞれn型及びp型のAlGaAsグレーデツド層11,12を設け
た、いわゆるGRIN−SCH(Graded−Index Waveguide Sep
arate Confinement Heterostructare)構造とした素子
を作製した。Second Embodiment An MQW self-excited oscillation laser according to a second embodiment of the present invention will be described with reference to FIG. Preparation process of the device performed in the same manner as the considered examples, respectively lower and upper MQW active layer in the crystal growth is provided an n-type and p-type AlGaAs Guredetsudo layers 11 and 12, so-called GRIN-SCH (Gr aded- In dex Waveguide S ep
The arate C onfinement H eterostructare) structure and the device was fabricated.
MQW活性層については実施例1のように変調nドープと
することにより、閾値電流10〜20mAを得た。また、キン
クレベル30mWまで自励発振は持続し、光出力2〜30mWの
範囲で自励発振周波数0.2〜1.0GHzであつた。このこと
により、戻り光が3〜6%生じても相対雑音強度を10
-13Hz-1レベル以下に抑えることが可能であつた。As for the MQW active layer, a threshold current of 10 to 20 mA was obtained by performing modulation n doping as in Example 1. In addition, self-sustained pulsation continued until the kink level was 30 mW, and the self-sustained pulsation frequency was 0.2 to 1.0 GHz in the range of light output of 2 to 30 mW. This makes it possible to reduce the relative noise intensity by 10% even if the return light is generated by 3 to 6%.
It was possible to keep it below -13 Hz -1 level.
本発明によると、自励発振型半導体レーザの周波数を
従来の1/2〜1/3に低減できる効果が得られた。活性層を
多重量子井戸層とすると微分利得が増大し通常のバルク
活性層の場合より自励発振周波数が高くなつてしまう
が、本発明によつてバルク活性層と同程度か或はそれ以
下に低下することができた。光出力25〜30mWまで素子の
自励発振周波数を0.2〜1.0GHz程度に低く抑制すること
ができ、戻り光が3〜6%生じても相対雑音強度は10
-14〜10-13Hz-1レベルの低雑音特性を得ることができ
た。非対称コートした素子ではさらに50〜60mWまで自励
発振が生じ、光出5〜50mWの範囲において戻り光が生じ
ても相対雑音強度10-14〜10-13Hz-1レベルの低雑音特性
を得た。本発明により、半導体レーザの高出力低雑音特
性を従来よりも改善する効果があつた。According to the present invention, the effect that the frequency of the self-pulsation type semiconductor laser can be reduced to 1/2 to 1/3 of the conventional one is obtained. When the active layer is a multiple quantum well layer, the differential gain increases and the self-sustained pulsation frequency becomes higher than in the case of a normal bulk active layer. However, according to the present invention, the self-excited oscillation frequency is equal to or lower than that of the bulk active layer. Could be lowered. The self-excited oscillation frequency of the device can be suppressed as low as about 0.2 to 1.0 GHz up to an optical output of 25 to 30 mW, and the relative noise intensity is 10 even if 3 to 6% of return light is generated.
Low noise characteristics of -14 to 10 -13 Hz -1 level were obtained. The asymmetrically coated device generates self-excited oscillation up to 50 to 60 mW, and low noise characteristics with relative noise intensity of 10 -14 to 10 -13 Hz -1 level even if return light occurs in the light output range of 5 to 50 mW. Was. According to the present invention, there is an effect of improving the high-output low-noise characteristics of the semiconductor laser as compared with the related art.
また、非対称コートした素子では環境温度50℃,40mW
の定光出力動作において2000時間経過しても劣化は見ら
れなかつた。For an asymmetrically coated device, the ambient temperature is 50 ° C and 40mW.
No degradation was observed even after lapse of 2000 hours in the constant light output operation.
本発明では、結晶材料をAlGaAs系としたが、他の材料
AlGaInP/GaInP系及びInGaAsP/InP系等にも応用できるこ
とは言うまでもない。In the present invention, the crystal material is made of AlGaAs, but other materials are used.
It goes without saying that the present invention can be applied to AlGaInP / GaInP and InGaAsP / InP and the like.
第1図は、本発明に係る検討例及び本発明の実施例1の
MQW自励発振レーザの断面図、第2図は、本発明の実施
例2のMQW自励発振レーザの断面図、第3図は、素子の
光出力−電流特性を示す図、第4図は、素子の自励発振
周波数と駆動電流の関係を示す図である。 1…n−GaAs基板、2…n−GaAsバツフア層、3…n−
AlxGa1-xAsクラツド層、4…アンドープAlGaAs多重量子
井戸構造活性層、4′−一様n型ドープAlGaAs多重量子
井戸構造活性層、4″…変調n型ドープAlGaAs多重量子
井戸構造活性層、5…p−AlxGa1-xAsクラツド層、6…
p−GaAs層、7…n−GaAs電流狭窄層、8…p−GaAs埋
込層、9…p側電極、10…n側電極、11…n−AlGaAsグ
レーデツド層、12…p−AlGaAsグレーデツド層、13…ス
トライプ状リツジ導波路。FIG. 1 shows a study example according to the present invention and the first embodiment of the present invention.
FIG. 2 is a cross-sectional view of an MQW self-oscillation laser, FIG. 2 is a cross-sectional view of an MQW self-oscillation laser according to a second embodiment of the present invention, FIG. FIG. 4 is a diagram showing a relationship between a self-excited oscillation frequency of an element and a drive current. 1 ... n-GaAs substrate, 2 ... n-GaAs buffer layer, 3 ... n-
Al x Ga 1-x As clad layer, 4 ... undoped AlGaAs multiple quantum well structure active layer, 4'-uniform n-type doped AlGaAs multiple quantum well structure active layer, 4 "... modulated n-type doped AlGaAs multiple quantum well structure active Layer, 5 ... p-Al x Ga 1-x As clad layer, 6 ...
p-GaAs layer, 7 ... n-GaAs current confinement layer, 8 ... p-GaAs buried layer, 9 ... p-side electrode, 10 ... n-side electrode, 11 ... n-AlGaAs graded layer, 12 ... p-AlGaAs graded layer , 13 ... Striped ridge waveguide.
フロントページの続き (72)発明者 小野 佑一 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (56)参考文献 特開 昭62−123790(JP,A) 1988年(昭和63年)春季第35回応物学 会予稿集 第3分冊 31p−ZP−5 1988年(昭和63年)春季第35回応物学 会予稿集 第3分冊 31a−ZP−9 応用物理 57[5](1988)P.708 −713Continuation of front page (72) Inventor Yuichi Ono 1-280 Higashi Koikebo, Kokubunji-shi, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd. (56) References JP-A-62-123790 (JP, A) 1988 (Showa 63) Proceedings of the 35th Annual Meeting of the Japan Society of Natural Sciences, 3rd volume, 31p-ZP-5 1988 (Showa 63) P. 708 -713
Claims (3)
ップの大きい量子障壁層で挟むように積層してなる活性
領域と、 該活性領域上に形成され且つ活性領域の反対側に底部よ
り上部の幅が小さいストライプ状のリッジが形成され且
つ上記量子障壁層より大きいバンドギャップを有する光
導波層と、 該リッジの両側面に接し且つ該光導波層のリッジが形成
されない領域上に離間して形成され且つ上記量子井戸層
より小さいバンドギャップを有する光吸収層とを含み、 上記光導波層の厚さは上記リッジで1.3μm以上且つ1.6
μm以下の範囲に、該リッジの両側で0.3μm以上且つ
0.6μm以下の範囲に夫々に設定され、 上記活性領域は、5nm以上且つ20nm以下の範囲の厚さを
有する上記量子井戸層を複数層含めて0.05μm以上且つ
0.09μm以下の範囲の厚さに形成され、且つ上記量子障
壁層のみにn型の不純物を9×1017cm-3以上且つ2×10
18cm-3以下の範囲の濃度でドープして構成されることを
特徴とする半導体レーザ素子。1. An active region formed by stacking a quantum well layer so as to be sandwiched between quantum barrier layers having a band gap larger than that of the quantum well layer, and formed on the active region and on the opposite side of the active region from above the bottom. An optical waveguide layer in which a stripe-shaped ridge having a small width is formed and having a band gap larger than that of the quantum barrier layer; and an optical waveguide layer in contact with both side surfaces of the ridge and separated from the optical waveguide layer on a region where the ridge is not formed. And a light absorbing layer having a band gap smaller than that of the quantum well layer, wherein the thickness of the optical waveguide layer is 1.3 μm or more and 1.6
0.3 μm or less on both sides of the ridge,
The active region is set to 0.6 μm or less, and the active region is 0.05 μm or more including a plurality of quantum well layers having a thickness of 5 nm or more and 20 nm or less.
It is formed to a thickness of 0.09 μm or less, and an n-type impurity is added to only the above-mentioned quantum barrier layer in an amount of 9 × 10 17 cm −3 or more and 2 × 10 17
A semiconductor laser device characterized by being doped at a concentration of 18 cm -3 or less.
部にのみにドープされていることを特徴とする特許請求
の範囲第1項に記載の半導体レーザ素子。2. The semiconductor laser device according to claim 1, wherein said n-type impurity is doped only in a central portion of said quantum barrier layer.
特徴とする特許請求の範囲第1項又は第2項のいずれか
に記載の半導体レーザ素子。3. The semiconductor laser device according to claim 1, wherein said n-type impurity is Se or Si.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63228670A JP2723924B2 (en) | 1988-09-14 | 1988-09-14 | Semiconductor laser device |
US07/339,125 US4961197A (en) | 1988-09-07 | 1989-04-14 | Semiconductor laser device |
EP89106800A EP0358842B1 (en) | 1988-09-07 | 1989-04-17 | Semiconductor laser device and method of manufacturing same |
DE68926986T DE68926986T2 (en) | 1988-09-07 | 1989-04-17 | Semiconductor laser and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63228670A JP2723924B2 (en) | 1988-09-14 | 1988-09-14 | Semiconductor laser device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0278290A JPH0278290A (en) | 1990-03-19 |
JP2723924B2 true JP2723924B2 (en) | 1998-03-09 |
Family
ID=16879972
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63228670A Expired - Lifetime JP2723924B2 (en) | 1988-09-07 | 1988-09-14 | Semiconductor laser device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2723924B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2706316B2 (en) * | 1989-05-19 | 1998-01-28 | 松下電器産業株式会社 | Method of manufacturing semiconductor laser device |
JP2930031B2 (en) * | 1996-09-26 | 1999-08-03 | 日本電気株式会社 | Semiconductor laser |
JP2002111135A (en) | 2000-10-02 | 2002-04-12 | Furukawa Electric Co Ltd:The | Semiconductor laser device and optical fiber amplifier exciting light source using the same |
JP4914313B2 (en) * | 2007-08-28 | 2012-04-11 | 本田技研工業株式会社 | Sealer applicator |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62123790A (en) * | 1985-11-22 | 1987-06-05 | Nec Corp | Semiconductor laser |
-
1988
- 1988-09-14 JP JP63228670A patent/JP2723924B2/en not_active Expired - Lifetime
Non-Patent Citations (3)
Title |
---|
1988年(昭和63年)春季第35回応物学会予稿集 第3分冊 31a−ZP−9 |
1988年(昭和63年)春季第35回応物学会予稿集 第3分冊 31p−ZP−5 |
応用物理 57[5](1988)P.708−713 |
Also Published As
Publication number | Publication date |
---|---|
JPH0278290A (en) | 1990-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4961197A (en) | Semiconductor laser device | |
US8093581B2 (en) | Optical semiconductor device and method for manufacturing the same | |
JP3129779B2 (en) | Semiconductor laser device | |
JPH10126010A (en) | Manufacturing method of semiconductor laser device | |
JPH11274635A (en) | Semiconductor light emitting device | |
JPH07235732A (en) | Semiconductor laser | |
US5556804A (en) | Method of manufacturing semiconductor laser | |
US7539230B2 (en) | Semiconductor laser device and method for fabricating the same | |
JP2002076514A (en) | Laser diode and production method therefor | |
JP2997573B2 (en) | Semiconductor laser device | |
JPH06302908A (en) | Semiconductor laser | |
JP2723924B2 (en) | Semiconductor laser device | |
JP4028158B2 (en) | Semiconductor optical device equipment | |
JP2882335B2 (en) | Optical semiconductor device and method for manufacturing the same | |
JPH04350988A (en) | Light-emitting element of quantum well structure | |
JPH0697592A (en) | Semiconductor laser and manufacture thereof | |
JP2000277856A (en) | Self oscillation semiconductor laser system | |
JP2723921B2 (en) | Semiconductor laser device | |
JP2001057458A (en) | Semiconductor light-emitting device | |
JPH08316563A (en) | Semiconductor laser device | |
JP2723944B2 (en) | Semiconductor laser device and semiconductor laser array | |
JP3115006B2 (en) | Semiconductor laser device | |
JPH09214058A (en) | Semiconductor laser device | |
JP2757578B2 (en) | Semiconductor laser and method of manufacturing the same | |
JPH0766992B2 (en) | AlGaInP semiconductor laser and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071128 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081128 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term |