JP3128788B2 - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JP3128788B2
JP3128788B2 JP16179491A JP16179491A JP3128788B2 JP 3128788 B2 JP3128788 B2 JP 3128788B2 JP 16179491 A JP16179491 A JP 16179491A JP 16179491 A JP16179491 A JP 16179491A JP 3128788 B2 JP3128788 B2 JP 3128788B2
Authority
JP
Japan
Prior art keywords
layer
quantum well
semiconductor laser
gaas
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16179491A
Other languages
Japanese (ja)
Other versions
JPH0513884A (en
Inventor
造 勝山
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP16179491A priority Critical patent/JP3128788B2/en
Publication of JPH0513884A publication Critical patent/JPH0513884A/en
Application granted granted Critical
Publication of JP3128788B2 publication Critical patent/JP3128788B2/en
Anticipated expiration legal-status Critical
Application status is Expired - Fee Related legal-status Critical

Links

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】本発明は半導体レーザに関するものであり、特に0.9〜1.1μm帯半導体レーザに関するものである。 The present invention relates to relates to a semiconductor laser, and more particularly to a 0.9~1.1μm band semiconductor laser.

【0002】 [0002]

【従来の技術】0.9〜1.1μm帯半導体レーザは、 BACKGROUND OF THE INVENTION 0.9~1.1μm band semiconductor laser,
GaAs系短波長レーザおよびInP系長波長レーザの間の波長域を補うレーザとして期待されている。 It is expected as a laser to compensate for the wavelength region between GaAs-based short-wavelength laser and an InP-based long wavelength laser. 特に、 In particular,
発振波長0.98μmの半導体レーザは将来の光通信を担うキーテクノロジーとして期待の高まっているEr 3+ Semiconductor laser with an oscillation wavelength of 0.98μm is Er there is a growing expectation as a key technology responsible for the optical communication of the future 3+
添加ファイバ光増幅器の励起用光源として実用化が待たれている。 Practical use has been awaited as an excitation light source for added fiber optical amplifier. このような0.9〜1.1μm帯半導体レーザとして、光閉込め層でGaAs、量子井戸層でGaI Such 0.9~1.1μm band semiconductor laser, GaAs at optical confinement layer, GaI quantum well layer
nAsを使用するGaAs/GaInAsヘテロ接合により構成される歪量子井戸活性層を有するものが従来から考えられている。 Having a strained quantum well active layer composed of GaAs / GaInAs heterojunction to use nAs is considered conventionally.

【0003】 [0003]

【発明が解決しようとする課題】この材料系の場合、量子井戸層と光閉込め層間の実効的なバンドギャップ差が、例えば0.98μmレーザにおいては150meV THE INVENTION Problems to be Solved] In this material system, the effective band gap difference interlayer confinement quantum well layer and the light, for example, in 0.98μm laser 150meV
程度しかなく、活性層での正孔と電子の再結合を行わせるのに十分なほど大きくはない。 Extent only rather not large enough to cause the recombination holes and electrons in the active layer.

【0004】 [0004]

【課題を解決するための手段】本発明の半導体レーザは、このような問題点に鑑みて為されたものであり、G The semiconductor laser of the present invention, in order to solve the problem] has been made in view of such problems, G
aAsを基板材料とし、光導波層がGaInAs量子井戸層を有する活性層と、この活性層を上下から挟む光閉込め層とからなり、光閉込め層が燐を含みバンドギャップがGaAsよりも大きい化合物半導体材料、例えば(Al y Ga 1-yZ In 1-Z P(0≦y<1)で形成されているものである。 The aAs the substrate material, an active layer optical waveguide layer has a GaInAs quantum well layer, and the active layer and a light confining layers sandwiching from above and below the band gap light confining layer comprises phosphorus is larger than GaAs compound semiconductor material, in which is formed, for example, (Al y Ga 1-y) Z in 1-Z P (0 ≦ y <1).

【0005】 [0005]

【作用】量子井戸層にGa 1-X In X As、光閉込め層に(Al y Ga 1-yZ In 1-Z P(0≦y<1)を材料に用いた場合、光閉込め層と量子井戸層間の実効的なバンドギャップ差は、0.98μmレーザを例にとると最低でもy=0、z=0.51のときの材料であるGa [Action] When used in the quantum well layer Ga 1-X In X As, the light confinement layer (Al y Ga 1-y) Z In 1-Z P (0 ≦ y <1) to the material, the light closed effective band gap difference rice layer and the quantum well layers is a material in the case of y = 0, z = 0.51 at least take a 0.98μm laser as an example Ga
0.51 In 0.49 P(1.85eV)とGa 1-x In x As 0.51 In 0.49 P (1.85eV) and Ga 1-x In x As
(1.265eV)の差585meVとなり、従来のG Difference (1.265eV) 585meV, and the conventional G
aAs/GaInAs材料系のバンドギャップ差(〜1 aAs / GaInAs band gap difference of the material system (~ 1
50meV)と比較し、非常に大きくなる。 Compared to 50 meV), very large.

【0006】 [0006]

【実施例】図1は本発明の実施例に関するものであり、 DETAILED DESCRIPTION FIG. 1 is related embodiment of the present invention,
いわゆる単一量子井戸構造の半導体レーザを説明するための図である。 It is a diagram for explaining a semiconductor laser of a so-called single-quantum well structure.

【0007】同図(a)は、レーザの出射面断面構造を示し、同図(b)は、エネルギーバンド差を示す。 [0007] FIG. (A) shows an emission surface cross-sectional structure of a laser, Fig. (B) shows an energy band difference. 同図(a)に示される様に、SiドープGaAs基板1上にSiドープGaAsバッファ層2、Seドープ(Al As shown in the drawing (a), Si-doped Si-doped GaAs buffer layer 2 on the GaAs substrate 1, Se-doped (Al
0.5 Ga 0.5 )In 0.5 P n型クラッド層3、ノンドープGa 0.5 In 0.5 P光閉込め層4、ノンドープGa 0.5 Ga 0.5) In 0.5 P n-type cladding layer 3, an undoped Ga 0.5 an In 0.5 P light confining layer 4, an undoped Ga
0.75 In 0.25 As量子井戸層6、ノンドープGa 0.5 0.75 an In 0.25 As quantum well layer 6, an undoped Ga 0.5 I
0.5 P光閉込め層7、Znドープ(Al 0.5 n 0.5 P light confining layers 7, Zn-doped (Al 0.5 G
0.50.5 In 0.5 P P型クラッド層8、ZnドープGaAsコンタクト層9がエピタキシャル成長により順次形成されている。 a 0.5) 0.5 In 0.5 P P-type cladding layer 8, Zn-doped GaAs contact layer 9 are sequentially formed by epitaxial growth. さらに、GaAs基板1下およびZnドープGaAsコンタクト層9上にそれぞれ電極1 Further, on each of the GaAs substrate 1 below and Zn-doped GaAs contact layer 9 electrode 1
0,11が形成された構造となっている。 0,11 is a formed structure. この実施例においては光閉込め層4,7の材料としてGaAsではなく、(Al y Ga 1-yZ In 1-Z P(0≦y<1)でy=0、z=0.5のときの材料Ga 0.5 In 0.5 Pが使用されている。 Rather than GaAs as a material of the light confinement layer 4 and 7 in this embodiment, (Al y Ga 1-y ) Z In 1-Z P (0 ≦ y <1) at y = 0, z = 0.5 materials Ga 0.5 in 0.5 P is used when the. この場合、前述のようにGaAs/G In this case, GaAs as described above / G
aInAs材料系を使用したときはバンドギャップ差が最高でも約150meVであるのに対し、Ga 0.5 In When using aInAs material systems whereas band gap difference is up to about even 150meV is, Ga 0.5 an In
0.5 Pを使用するときは量子井戸層と光閉込め層のバンドギャップ差は約585meVと非常に大きくでき、キャリアの効果的な再結合ができる。 0.5 band gap difference of the quantum well layer and a light confining layer when using P can very large and about 585MeV, it is effective recombination of carriers.

【0008】なお、このときのGaInAsとGaAs [0008] It should be noted, GaInAs and GaAs at this time
の格子不整は約1.5%であるが、GaInAs量子井戸層の厚さが60オングストロームと弾性限界内で歪むよう十分に薄くしてあるため、GaAs/GaInAs Since the lattice mismatch is about 1.5%, which are sufficiently thin so that the thickness of the GaInAs quantum well layer is strained in 60 Angstroms and elastic limit, GaAs / GaInAs
界面では転位等による結晶欠陥は生じずに良好な結晶性が保たれている。 The interface crystal defects due to dislocation or the like excellent crystallinity without causing is maintained.

【0009】図2は、本実施例に係る、いわゆる多重量子井戸構造の半導体レーザを説明するための図である。 [0009] Figure 2 is according to the present embodiment, it is a diagram for explaining a semiconductor laser of a so-called multiple quantum well structure.
同図(a)は、レーザの出射面断面構造を示し、同図(b)は光導波層のバンドギャップ差を示し、同図(c)は量子井戸層と障壁層の格子定数を示す図である。 FIG FIG (a) shows an emission surface cross-sectional structure of a laser, Fig. (B) shows the band gap difference of the optical waveguide layer, FIG. (C) is showing the lattice constant of the quantum well layer and the barrier layer it is. この半導体レーザは、例えば、SiドープGaAs This semiconductor laser, for example, Si-doped GaAs
基板1上にSiドープGaAsバッファ層2、Seドープ(Al 0.7 Ga 0.30.5 In 0.5 P n型クラッド層3、ノンドープ(Al 0.2 Ga 0.80.5 In 0.5 Si-doped GaAs buffer layer 2 on the substrate 1, Se-doped (Al 0.7 Ga 0.3) 0.5 In 0.5 P n -type cladding layer 3, an undoped (Al 0.2 Ga 0.8) 0.5 In 0.5 P
光閉込め層4、ノンドープGa 0.75 In 0.25 As量子井戸層6a、ノンドープGa 0.61 In 0.39 P障壁層5a、 Light confinement layer 4, an undoped Ga 0.75 In 0.25 As quantum well layer 6a, the undoped Ga 0.61 In 0.39 P barrier layer 5a,
ノンドープGa 0.75 In 0.25 As量子井戸層6b、ノンドープGa 0.61 In 0.39 P障壁層5b、ノンドープGa Undoped Ga 0.75 an In 0.25 As quantum well layer 6b, a non-doped Ga 0.61 an In 0.39 P barrier layer 5b, a non-doped Ga
0.75 In 0.25 As量子井戸層6c、ノンドープGa 0.61 0.75 an In 0.25 As quantum well layer 6c, an undoped Ga 0.61
In 0.39 P障壁層5c、ノンドープGa 0.75 In 0.25 An In 0.39 P barrier layer 5c, an undoped Ga 0.75 In 0.25 A
s量子井戸層6d、ノンドープ(Al 0.2 Ga 0.8 s quantum well layer 6d, a non-doped (Al 0.2 Ga 0.8)
0.5 In 0.5 P光閉込め層7、Znドープ(Al 0.5 an In 0.5 P light confining layers 7, Zn-doped (Al
0.7 Ga 0.30.5 In 0.5 P P型クラッド層8、ZnドープGaAsコンタクト層9がエピタキシャル成長により順次形成され、さらに、SiドープGaA 0.7 Ga 0.3) 0.5 In 0.5 P P -type cladding layer 8, Zn-doped GaAs contact layer 9 are sequentially formed by epitaxial growth, further, Si-doped GaA
s基板1下およびZnドープGaA Sコンタクト層9上にそれぞれ電極10,11が形成されている。 s substrate 1 below and Zn-doped GaA S contact layer 9 on each of the electrodes 10 and 11 are formed.

【0010】このように光閉込め層4,7は(Al y [0010] Thus the light confinement layer 4 and 7 (Al y G
1-yZ In 1-Z P(0≦y<1)でy=0.2、z a 1-y) Z In 1 -Z P (0 ≦ y <1) with y = 0.2, z
=0.5のときの材料である(Al 0.2 Ga 0.80.5 = A material when the 0.5 (Al 0.2 Ga 0.8) 0.5
In 0.5 Pが使用され、量子井戸層はGaInAsで形成されている。 In 0.5 P is used, the quantum well layer is formed of GaInAs. 本実施例のAlGaInP/GaInA Of this embodiment AlGaInP / GaInA
sの材料系の場合も、図1に示された実施例のGaIn Even if s a material system, GaIn embodiment shown in FIG. 1
P/GaInAsとほぼ同様のエネルギーギャップ差を有し、従来のGaAs/GaInAsの材料系を用いた場合と比較すると、光閉込め層と量子井戸層間のエネルギーギャップ差は非常に大きい。 Has substantially the same energy gap difference between P / GaInAs, as compared with the case of using a conventional GaAs / GaInAs materials system, the energy gap difference of the optical confinement layer and the quantum well layers is very large.

【0011】光閉込め層と量子井戸層の組み合わせは、 [0011] The combination of the light confining layer and the quantum well layer,
本実施例の(Al y Ga 1-yz In 1-z P/Ga 1-x Of this example (Al y Ga 1-y) z In 1-z P / Ga 1-x
In x Asだけでなく、Al y Ga 1-yz As 1-z An In x As well, Al y Ga 1-y P z As 1-z /
Ga 1-x In x As、Al y In 1-yz As 1-z /G Ga 1-x In x As, Al y In 1-y P z As 1-z / G
1-x In x As、Ga y In 1-yz As 1-z /Ga a 1-x In x As, Ga y In 1-y P z As 1-z / Ga
1-x In x As等のように、光閉込め層に燐を含む他の化合物半導体材料を用いたものでも実現できる。 1-x In x As as As, other compound semiconductor material containing phosphorus on the light confinement layer can be realized which was used.

【0012】また、本実施例の活性層は、図2(c)に示される通り、障壁層5a〜5cを形成するGaInP [0012] The active layer of this embodiment, as shown in FIG. 2 (c), GaInP to form the barrier layer 5a~5c
の格子定数が基板材料であるGaAsの格子定数よりも小さく、量子井戸層6a〜6dを形成するGaInAs GaInAs lattice constant of less than the lattice constant of GaAs, which is a substrate material to form a quantum well layer 6a~6d
の格子定数がGaAsの格子定数より大きい。 Larger lattice constant lattice constant of the GaAs. この格子定数の関係により、GaInAs量子井戸層には圧縮応力、GaInP障壁層には引張応力が加わる。 The relationship between the lattice constant, a compressive stress in the GaInAs quantum well layer, a tensile stress is applied to the GaInP barrier layer. 本実施例に係る半導体レーザは、このように構成されているので、活性層全体としては量子井戸層の圧縮応力と障壁層の引張応力が相殺し、活性層の平均格子定数はGaAs The semiconductor laser according to the present embodiment, which is configured in this manner, as the entire active layer killed tensile stress of the compression stress and the barrier layer of the quantum well layer is a phase, the average lattice constant of the active layer is GaAs
の格子定数に10 -3以下の格子不整となるだけである。 The lattice constant is only a 10 -3 or less lattice mismatch.
したがって、単一量子井戸構造の活性層の場合に比較して実効的な活性層厚を厚くすることができ、利得の増大化を図ることができる。 Therefore, as compared with the case of an active layer of single quantum well structure can be made thicker the effective thickness of the active layer, it is possible to increase in the gain.

【0013】 [0013]

【発明の効果】以上、詳細に説明した通り、多重量子井戸構造および単一量子井戸構造の半導体レーザの光閉込め層の材料に、例えば(Al y Ga 1-yZ In 1-Z Effect of the Invention] above, as described in detail, the material of the multiple quantum well structure and the semiconductor laser in the optical confinement layer of a single quantum well structure, for example, (Al y Ga 1-y) Z In 1-Z P
(0≦y<1)のような燐を含みバンドギャップがGa (0 ≦ y <1) the band gap include phosphorus, such as is Ga
Asよりも大きい化合物半導体、量子井戸層の材料としてGaInAsを使用することにより、量子井戸層と光閉込め層間のバンドギャップ差を従来よりも非常に大きくすることができる。 Big compound semiconductor than As, by the use of GaInAs as a material of the quantum well layer can be much larger than the conventional band gap difference interlayer confinement quantum well layer and the light. したがって、閾値電流の低減、高温での動作特性の改善がはかれるので、半導体レーザの高効率化および高出力化が実現できる。 Therefore, reduction of the threshold current, the attained improvement of operating characteristics at high temperatures, higher efficiency and higher output of the semiconductor laser can be realized. また、多重量子井戸層の半導体レーザでは、障壁層の材料に格子定数が小さいものを使用しているので、量子井戸層の圧縮応力を障壁層の引張応力で相殺でき、活性層全体の厚さは転位を生じる臨界膜厚の制約を受けることなく自由に設計できる。 Further, in the semiconductor laser of multi-quantum well layer, because it uses those materials to the lattice constant of the barrier layer is small, the compressive stress of the quantum well layer can be offset by the tensile stress of the barrier layer, the entire active layer thickness It can be freely designed without being restricted by the critical thickness resulting in dislocations.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本実施例の多重量子井戸構造の半導体レーザを説明するための図。 Diagram for explaining a semiconductor laser of multi-quantum well structure disclosed exemplary embodiment.

【図2】本実施例の単一量子井戸構造の半導体レーザを説明するための図。 Diagram for explaining a semiconductor laser of a single quantum well structure of Figure 2 embodiment.

【符号の説明】 DESCRIPTION OF SYMBOLS

1…GaAs基板 4,7…光閉込め層 5a,5b,5c…障壁層 6,6a,6b,6c,6d…量子井戸層 1 ... GaAs substrate 4,7 ... light confining layer 5a, 5b, 5c ... barrier layers 6,6a, 6b, 6c, 6d ... quantum well layer

フロントページの続き (58)調査した分野(Int.Cl. 7 ,DB名) H01S 5/00 - 5/50 H01L 33/00 JICSTファイル(JOIS) Of the front page Continued (58) investigated the field (Int.Cl. 7, DB name) H01S 5/00 - 5/50 H01L 33/00 JICST file (JOIS)

Claims (3)

    (57)【特許請求の範囲】 (57) [the claims]
  1. 【請求項1】 GaAs基板上に形成される半導体レーザにおいて、 光導波層がクラッド層によって上下から挟まれており、 前記光導波層がGaInAs量子井戸層を有する活性層と、この活性層を上下から挟む光閉じ込め層とからなり、 前記光閉じ込め層が燐を含みバンドギャップが前記Ga 1. A semiconductor laser formed on a GaAs substrate, an optical waveguide layer is sandwiched from above and below by a cladding layer, an active layer the optical waveguide layer has a GaInAs quantum well layer, the active layer vertically made of a light confinement layer and sandwiching from, the optical confinement layer band gap comprises a phosphorus the Ga
    As基板および前記クラッド層よりも大きく、前記活性層よりも小さい化合物半導体材料で形成されており、 前記光閉込め層の化合物半導体材料が(Al y Ga 1-y Greater than As substrate and the cladding layer, wherein is formed a small compound semiconductor material than the active layer, a compound semiconductor material of the light confinement layer (Al y Ga 1-y)
    Z In 1-z P(0≦y<1)であることを特徴とする半導体レーザ。 A semiconductor laser which is a Z In 1-z P (0 ≦ y <1).
  2. 【請求項2】 活性層が複数のGaInAs量子井戸層と、これを隔てる障壁層とからなり、この障壁層を形成する材料の格子定数がGaAsの格子定数よりも小さいことを特徴とする請求項1に記載の半導体レーザ。 2. A active layer is multiple GaInAs quantum well layer made of a barrier layer that separates it, claims lattice constant of the material forming the barrier layer is equal to or smaller than the lattice constant of GaAs the semiconductor laser according to 1.
  3. 【請求項3】 GaAs基板上に形成される半導体レーザにおいて、 光導波層がクラッド層によって上下から挟まれており、 前記光導波層がGaInAs量子井戸層を有する活性層と、この活性層を上下から挟む光閉じ込め層とからなり、 前記光閉じ込め層が燐を含みバンドギャップが前記Ga 3. A semiconductor laser formed on a GaAs substrate, an optical waveguide layer is sandwiched from above and below by a cladding layer, an active layer the optical waveguide layer has a GaInAs quantum well layer, the active layer vertically made of a light confinement layer and sandwiching from, the optical confinement layer band gap comprises a phosphorus the Ga
    As基板および前記クラッド層よりも大きく、前記活性層よりも小さい化合物半導体材料で形成されており、 前記活性層が複数のGaInAs量子井戸層と、これを隔てる障壁層とからなり、この障壁層を形成する材料の格子定数がGaAsの格子定数よりも小さいことを特徴とする半導体レーザ。 Greater than As substrate and the cladding layer, wherein is formed a small compound semiconductor material than the active layer, said active layer and a plurality of GaInAs quantum well layer made of a barrier layer that separates this, the barrier layer semiconductor laser lattice constant of the formed material being less than the lattice constant of GaAs.
JP16179491A 1991-07-02 1991-07-02 Semiconductor laser Expired - Fee Related JP3128788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16179491A JP3128788B2 (en) 1991-07-02 1991-07-02 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16179491A JP3128788B2 (en) 1991-07-02 1991-07-02 Semiconductor laser

Publications (2)

Publication Number Publication Date
JPH0513884A JPH0513884A (en) 1993-01-22
JP3128788B2 true JP3128788B2 (en) 2001-01-29

Family

ID=15742041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16179491A Expired - Fee Related JP3128788B2 (en) 1991-07-02 1991-07-02 Semiconductor laser

Country Status (1)

Country Link
JP (1) JP3128788B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6603784B1 (en) * 1998-12-21 2003-08-05 Honeywell International Inc. Mechanical stabilization of lattice mismatched quantum wells
US6614821B1 (en) 1999-08-04 2003-09-02 Ricoh Company, Ltd. Laser diode and semiconductor light-emitting device producing visible-wavelength radiation
JP2001068790A (en) * 1999-08-27 2001-03-16 Canon Inc Semiconductor laser structure
JP2007129270A (en) * 2007-02-09 2007-05-24 Sharp Corp Semiconductor laser element and method of manufacturing the same
JP2012109436A (en) * 2010-11-18 2012-06-07 Showa Denko Kk Light-emitting diode
JP2012119585A (en) * 2010-12-02 2012-06-21 Showa Denko Kk Light-emitting diode, light-emitting diode lamp and luminaire
JP6101303B2 (en) * 2015-04-30 2017-03-22 昭和電工株式会社 Light emitting diodes, light-emitting diode lamp and a lighting device

Also Published As

Publication number Publication date
JPH0513884A (en) 1993-01-22

Similar Documents

Publication Publication Date Title
US5671242A (en) Strained quantum well structure
US7402843B2 (en) Group III-V compound semiconductor and group III-V compound semiconductor device using the same
US5939733A (en) Compound semiconductor device having a group III-V compound semiconductor layer containing therein T1 and As
JP3504742B2 (en) Laser diode
US5926493A (en) Optical semiconductor device with diffraction grating structure
EP0833395A2 (en) Method of fabricating a device including compound semiconductor crystal and method of fabricating a compound semiconductor layer structure
US5381434A (en) High-temperature, uncooled diode laser
JP2839077B2 (en) The gallium nitride-based compound semiconductor light-emitting device
US5828684A (en) Dual polarization quantum well laser in the 200 to 600 nanometers range
JP3338778B2 (en) Nitride-based compound semiconductor laser element
US5363392A (en) Strained quantum well type semiconductor laser device
JP3438648B2 (en) Nitride semiconductor device
JP3788831B2 (en) Semiconductor device and manufacturing method thereof
US5276698A (en) Semiconductor laser having an optical waveguide layer including an AlGaInP active layer
Höhnsdorf et al. Reduced threshold current densities of (GaIn)(NAs)/GaAs single quantum well lasers for emission wavelengths in the range 1.28–1.38 µm
JP2914210B2 (en) Multiple quantum well structure optical semiconductor device and a manufacturing method thereof
JPH11251685A (en) Semiconductor laser
Liau et al. Low‐threshold InGaAs strained‐layer quantum‐well lasers (λ= 0.98 μm) with GaInP cladding layers and mass‐transported buried heterostructure
JP3129779B2 (en) Semiconductor laser device
JPH10270798A (en) Semiconductor light emitting element
JP2003218454A (en) Semiconductor laser structure
Walther et al. InGaAs/GaAs strained quantum wire lasers grown by organometallic chemical vapor deposition on nonplanar substrates
US20050201439A1 (en) Semiconductor light emitting device and semiconductor light emitting device module
JPH09167880A (en) Device equipped with semiconductor laser and manufacture of laser
JP2000349393A (en) Semiconductor device, surface emitting semiconductor laser, and edge emitting semiconductor laser

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071117

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081117

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees