JPH1084170A - Quantum well semiconductor laser element - Google Patents

Quantum well semiconductor laser element

Info

Publication number
JPH1084170A
JPH1084170A JP9216693A JP21669397A JPH1084170A JP H1084170 A JPH1084170 A JP H1084170A JP 9216693 A JP9216693 A JP 9216693A JP 21669397 A JP21669397 A JP 21669397A JP H1084170 A JPH1084170 A JP H1084170A
Authority
JP
Japan
Prior art keywords
layer
quantum well
layers
composition
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9216693A
Other languages
Japanese (ja)
Other versions
JP3041381B2 (en
Inventor
John Margatloyd Ian
イアン・ジョン・マーガットロイド
Toshihiko Makino
俊彦 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP21669397A priority Critical patent/JP3041381B2/en
Publication of JPH1084170A publication Critical patent/JPH1084170A/en
Application granted granted Critical
Publication of JP3041381B2 publication Critical patent/JP3041381B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To emit light of a wavelength band required for optical communication by a method wherein at least either of quantum well layers and barrier layers are respectively constituted of a GaAlInAs layer and the composition of the quantum well layers is set into a composition of a grating constant larger than that of an InP substrate. SOLUTION: An N-type buffer layer 12, an optical confinement layer 18, an active layer 17, an optical confinement layer 19, a P-type InP clad layer 13, a P-type GaInAsP cap layer 14, an N-type electrode 15 and a P-type electrode 16 are formed on an N-type InP substrate 11 to constitute the main part of a quantum well semiconductor laser element. Quantum well layers 20 and barrier layers 21 are alternately laminated as the layer 17 to constitute the layer 17. At least either of the layers 20 and the layers 21 are respectively constituted of an AlGaInAs layer, the layers 20 are respectively constituted of a GaAlInAs layer and. the layers 21 are respectively constituted of a GaInAsP layer. Moreover, it is also possible that the layers 20 and the layers 21 are respectively constituted of a GaInAsP layer and a GaAlInAs layer. The composition of the layers 20 are set so as to become a composition of a grating constant larger than that of the InP substarte.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光通信および光情報
処理用の光源として使われる量子井戸構造を用いた半導
体レーザに関する
The present invention relates to a semiconductor laser using a quantum well structure used as a light source for optical communication and optical information processing.

【0002】[0002]

【従来の技術】半導体レーザ素子の特性として望ましい
ことは、閾値電流密度が低いこと、閾値電流密度の温度
依存性が小さいこと、変調周波数が高いこと、および波
長チャーピングが小さいことなどである。これらの特性
は、通常30nmよりも薄い層からなる活性層を有する
量子井戸半導体レーザ素子によって向上する。
2. Description of the Related Art Desirable characteristics of a semiconductor laser device include a low threshold current density, a small temperature dependence of the threshold current density, a high modulation frequency, and a small wavelength chirping. These characteristics are improved by a quantum well semiconductor laser device having an active layer usually made of a layer thinner than 30 nm.

【0003】量子井戸半導体レーザ素子の活性層は、量
子井戸と称す小さいエネルギーバンドギャップをもつ層
と、バリア層と称す大きいエネルギーバンドギャップを
もつ層から構成されている。かかる量子井戸活性層にお
いては、電子と正孔は量子井戸に閉じ込められ、量子力
学に従った挙動をする。
An active layer of a quantum well semiconductor laser device is composed of a layer having a small energy band gap called a quantum well and a layer having a large energy band gap called a barrier layer. In such a quantum well active layer, electrons and holes are confined in the quantum well and behave according to quantum mechanics.

【0004】量子井戸半導体レーザ素子の特性は、量子
井戸の格子定数をバリア層の格子定数より大きくし、量
子井戸に歪を導入することにより向上する。その理由
は、価電子帯の重い正孔は有効質量が薄膜層に垂直な方
向で軽くなり価電子帯の基底量子準位を形成することに
なるからである。その結果、量子井戸層内では電子と重
い正孔との間の光学遷移が促進される。電子と重い正孔
とはほぼ等しい有効質量をもつためにレーザ発振に必要
な反転分布の形成が容易となるからである。なお、量子
井戸層の歪の大きさと層の厚さは、歪により転移が誘起
されないように、ある臨界膜厚値以内になければならな
い。
The characteristics of a quantum well semiconductor laser device are improved by making the lattice constant of the quantum well larger than the lattice constant of the barrier layer and introducing strain into the quantum well. The reason for this is that the heavy holes in the valence band have their effective mass lightened in the direction perpendicular to the thin film layer and form a ground quantum level in the valence band. As a result, an optical transition between electrons and heavy holes is promoted in the quantum well layer. This is because electrons and heavy holes have substantially the same effective mass, so that it is easy to form a population inversion necessary for laser oscillation. It should be noted that the magnitude of the strain and the thickness of the quantum well layer must be within a certain critical film thickness value so that no dislocation is induced by the strain.

【0005】従来の歪量子井戸半導体レーザ素子は、例
えば図4(a)に示すように、n型GaAs基板1上
に、n型GaAsバッファ層2およびn型Ga0.6 Al
0.4 Asクラッド層3が順次積層され、次いで0.2μ
m厚さでAl成分が40%から0%まで連続的に変化す
る傾斜領域5と6を両側に持ち、これを挟んで歪を有す
る4nm厚さのGa0.63In0.37As量子井戸層4から
なる活性層が積層され、さらに傾斜領域6の上にp型G
0.6 Al0.4 Asクラッド層7およびp型GaAsP
キャップ層が順次積層され、最後に、n型電極9および
p型電極10が蒸着された構造となっている。
As shown in FIG. 4A, for example, a conventional strained quantum well semiconductor laser device has an n-type GaAs buffer layer 2 and an n-type Ga 0.6 Al
0.4 As clad layer 3 is sequentially laminated, then 0.2 μm
It is composed of a Ga 0.63 In 0.37 As quantum well layer 4 having a thickness of 4 nm and having strains 5 and 6 on both sides, which have inclined regions 5 and 6 in which the Al component continuously changes from 40% to 0% with a thickness of m. An active layer is stacked, and a p-type G
a 0.6 Al 0.4 As clad layer 7 and p-type GaAsP
Cap layers are sequentially stacked, and finally, an n-type electrode 9 and a p-type electrode 10 are deposited.

【0006】この量子井戸半導体レーザ素子は発振波長
が0.99μmであり、閾値電流密度は195Acm-2
であった。第4図(b)は第4図(a)に対応するバン
ドギャップの伝導帯側を示している。
This quantum well semiconductor laser device has an oscillation wavelength of 0.99 μm and a threshold current density of 195 Acm −2.
Met. FIG. 4 (b) shows the conduction band side of the band gap corresponding to FIG. 4 (a).

【0007】[0007]

【発明が解決しようとする課題】しかしながら従来の歪
量子井戸半導体レーザ素子では、光ファイバ通信におい
て重要な波長である1.3μm乃至1.55μmの発振
を得ることができない。1.3μmまたはこれより長い
波長の発振をGa1-X InX Asの活性層より得るため
には、エネルギーバンドギャップの大きさから、X≧
0.5のIn組成でなければならない。しかしながらこ
のような高いXのGa1-X InX Asでは格子定数が大
きくなり、第4図に示した従来の歪量子井戸レーザの量
子井戸(4)に適用せんとすると量子井戸層に臨界値以
上の大きな歪が生じ、それに伴う転位の発生によりレー
ザ特性が劣化するという問題がある。
However, the conventional strained quantum well semiconductor laser device cannot obtain an oscillation of 1.3 to 1.55 μm which is an important wavelength in optical fiber communication. In order to obtain an oscillation having a wavelength of 1.3 μm or longer from the active layer of Ga 1-x In x As, from the magnitude of the energy band gap, X ≧
It must have an In composition of 0.5. However, in such a high X Ga 1-x In x As, the lattice constant becomes large, and if it is not applied to the quantum well (4) of the conventional strained quantum well laser shown in FIG. There is a problem that the above-mentioned large strain is generated and the laser characteristics are degraded due to the generation of dislocations.

【0008】[0008]

【課題を解決するための手段】本発明は以上のような点
に鑑みてなされたもので、その目的とするところは、光
通信において重要な波長帯である1.3μm〜1.55
μmの長波長帯で発信する高性能な歪量子井戸半導体レ
ーザ素子を提供することにあり、その要旨は、InP基
板上に1以上の量子井戸層と1以上のバリア層よりなる
量子井戸構造を有する量子井戸半導体レーザ素子であっ
て、量子井戸層、バリア層の少なくとも一方がGaAl
InAsで構成され、かつ、量子井戸層の組成が、In
Pよりも格子定数が大きい組成であることを特徴とする
量子井戸半導体レーザ素子である。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and it is an object of the present invention to provide a wavelength band of 1.3 μm to 1.55 which is an important wavelength band in optical communication.
An object of the present invention is to provide a high-performance strained quantum well semiconductor laser device that emits light in a long wavelength band of μm. A quantum well semiconductor laser device, wherein at least one of the quantum well layer and the barrier layer is GaAl.
InAs, and the composition of the quantum well layer is In
A quantum well semiconductor laser device having a composition having a lattice constant larger than that of P.

【0009】[0009]

【作用】3−5族化合物半導体のバンドギャップおよび
格子定数はその組成によって変化する。本発明では、バ
ンドギャップがレーザ発振の条件を満足することに加え
て、格子定数を適切に選択して、量子井戸半導体レーザ
素子の性能を向上させようとする。
The bandgap and lattice constant of a group III-V compound semiconductor vary depending on its composition. In the present invention, the band gap satisfies the condition of laser oscillation, and the lattice constant is appropriately selected to improve the performance of the quantum well semiconductor laser device.

【0010】即ち、量子井戸層の組成を、量子井戸層の
格子定数がInP基板の格子定数よりも大きくなるよう
に選択して量子井戸層に圧縮歪が加わるように設計する
ことにより、量子井戸層の価電子帯の重い正孔の膜面に
垂直方向の有効質量が小さくなり、低注入キャリアにて
反転分布が起こり、レーザ発振が低注入電流にて可能と
なる。
That is, the composition of the quantum well layer is selected so that the lattice constant of the quantum well layer is larger than the lattice constant of the InP substrate, and the quantum well layer is designed so that a compressive strain is applied to the quantum well layer. The effective mass in the direction perpendicular to the film surface of the heavy holes in the valence band of the layer becomes small, the population inversion occurs at low injection carriers, and laser oscillation becomes possible at low injection current.

【0011】なお、本発明において、バリア層の格子定
数はInP基板の格子定数よりも小さくなるように構成
することがより好ましい。量子井戸層とバリア層に逆方
向の歪が加わるよう構成することで、量子井戸活性層全
体としての歪を小さくすることができ、レーザ特性に悪
影響を及ぼす転位の発生を防ぐことができるからであ
る。
In the present invention, it is more preferable that the barrier layer has a lattice constant smaller than that of the InP substrate. By configuring the quantum well layer and the barrier layer so that strains are applied in opposite directions, the strain of the quantum well active layer as a whole can be reduced, and dislocations that adversely affect laser characteristics can be prevented. is there.

【0012】また更に、本発明においては、量子井戸層
とバリア層の厚さを調整して活性層全体としての平均的
な格子定数をInP基板の格子定数と等しくすることも
可能である。
Further, in the present invention, the average lattice constant of the entire active layer can be made equal to the lattice constant of the InP substrate by adjusting the thicknesses of the quantum well layer and the barrier layer.

【0013】また、本発明においては、量子井戸層とバ
リア層の少なくとも一方はAlGaInAsにより構成
する。これにより、量子井戸層に圧縮歪を加えるという
条件の下において、光通信において重要である1.3〜
1.55μmの波長で発振する高性能レーザの実現が可
能となるからであり、本発明には、量子井戸層、バリア
層ともにAlGaInAsとする場合、量子井戸層をI
nGaAsPとし、バリア層をAlGaInAsとする
場合、量子井戸層をAlGaInAsとし、バリア層を
InGaAsPとする場合の3つの態様が含まれる。
In the present invention, at least one of the quantum well layer and the barrier layer is made of AlGaInAs. Thereby, under the condition that a compressive strain is applied to the quantum well layer, it is important in optical communication to be 1.3 to 1.3.
This is because a high-performance laser that oscillates at a wavelength of 1.55 μm can be realized. In the present invention, when both the quantum well layer and the barrier layer are made of AlGaInAs, the quantum well layer is made of IGaInAs.
When nGaAsP is used and the barrier layer is made of AlGaInAs, three modes in which the quantum well layer is made of AlGaInAs and the barrier layer is made of InGaAsP are included.

【0014】[0014]

【発明の実施の形態】以下、図面に基づいて本発明の実
施例を説明する。第1図(a)は本発明にかかる量子井
戸半導体レーザの要部断面図であり、その構造は、n型
InP基板11上にn型InPバッファ層12が0.1
〜0.2μmの厚さにエピタキシャル成長されている。
n型InP基板11とn型InPバッファ層12にはS
iまたはSeが2×1017〜5×1018cm-3ドープさ
れている。次に光閉じ込め層18、活性層17および光
閉じ込め層19が順次積層される。さらに、厚さ0.1
〜0.2μm、2×1017〜5×1018cm-3ドープさ
れたp型InPクラッド13および厚さ0.1〜2.0
μm、〜5×1018cm-3に高ドープされたp型GaI
nAsPキャップ層14が順次積層され、最後にn型電
極15、p型電極16が形成される。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1A is a cross-sectional view of a main part of a quantum well semiconductor laser according to the present invention. The structure is such that an n-type InP buffer layer 12 is
It is epitaxially grown to a thickness of about 0.2 μm.
The n-type InP substrate 11 and the n-type InP buffer layer 12
i or Se is doped at 2 × 10 17 to 5 × 10 18 cm −3 . Next, the light confinement layer 18, the active layer 17, and the light confinement layer 19 are sequentially stacked. In addition, thickness 0.1
0.2 μm, 2 × 10 17 to 5 × 10 18 cm −3 doped p-type InP cladding 13 and thickness 0.1 to 2.0
μm, p-type GaI highly doped to 55 × 10 18 cm -3
An nAsP cap layer 14 is sequentially stacked, and finally an n-type electrode 15 and a p-type electrode 16 are formed.

【0015】光閉じ込め層18はInPと同じ格子定数
を有するInGaAsPであり、その組成はn型InP
バッファ層から活性層17に近づくにつれて徐々にバン
ドギャップが小さくなるよう選択されている。即ち、光
閉じ込め層18の組成は、第2図のInGaAsPのダ
イヤグラムにおいて、0.585nmの等格子定数線
(実線)L上に常にあり、最終組成、即ち活性層17に
接する部分の組成は、発振波長1.3μmより大きなエ
ネルギーバンドギャップを有し、第2図においては1.
3μmのバンドギャップに相当する等バンドギャップ線
(点線)C線と実線Lとの交点Pよりも左側のL線上の
組成となっている。なお、LはInPとGa0.53In
0.47Asを結んでいる。また、光閉じ込め層18はノン
ドープであってもよいし、バッファ層12から活性層1
7にかけて徐々にドープ量が減少するようにドープされ
ていてもよい。
The optical confinement layer 18 is made of InGaAsP having the same lattice constant as InP, and has a composition of n-type InP.
The band gap is selected so as to gradually decrease as the buffer layer approaches the active layer 17. That is, the composition of the optical confinement layer 18 is always on the 0.585 nm isolattice constant line (solid line) L in the InGaAsP diagram of FIG. 2, and the final composition, that is, the composition of the portion in contact with the active layer 17 is: It has an energy band gap larger than the oscillation wavelength of 1.3 μm.
The composition is on the L line on the left side of the intersection P between the equiband gap line (dotted line) C line corresponding to a band gap of 3 μm and the solid line L. Note that L is InP and Ga 0.53 In.
0.47 As is tied. In addition, the light confinement layer 18 may be non-doped, or the buffer layer 12 may
It may be doped so that the doping amount gradually decreases toward 7.

【0016】光閉じ込め層19はp型にドープされるこ
とを除いては光閉じ込め層18と鏡像ともいえる関係に
あり、活性層17からp型InPクラッド層13へかけ
てバンドギャップとドーピングレベルが徐々に変化す
る。活性層17は各層の厚さ2.5〜30nmである
(n−1)層のバリア層21で交互に隔てられた各層の
厚さ2.5〜30nmのn層の量子井戸層20から構成
されている。この場合には活性層17の両側面は量子井
戸層20になるが、(n+1)層のバリア層21を配し
て、活性層17の両側面をバリア層21にしてもよい。
The light confinement layer 19 has a relationship that can be said to be a mirror image with the light confinement layer 18 except that the light confinement layer 19 is doped to the p-type. Changes gradually. The active layer 17 is composed of n-thick quantum well layers 20 each having a thickness of 2.5 to 30 nm and alternately separated by (n-1) barrier layers 21 each having a thickness of 2.5 to 30 nm. Have been. In this case, both side surfaces of the active layer 17 become the quantum well layers 20, but (n + 1) barrier layers 21 may be provided, and both side surfaces of the active layer 17 may be the barrier layers 21.

【0017】量子井戸層20は、発振波長1.3μmの
GaAlInAsを用いる。図3は、GaAlInAs
のダイヤグラムであり、図中の実線L’は、InPと同
じ格子定数を有する等格子定数線であり、Ga0.5 In
0.5 AsとAl0.5In0.5 Asを結んでいる。
The quantum well layer 20 uses GaAlInAs having an oscillation wavelength of 1.3 μm. FIG. 3 shows GaAlInAs
The solid line L ′ in the figure is an isolattice constant line having the same lattice constant as InP, and Ga 0.5 In
0.5 As and Al 0.5 In 0.5 As are connected.

【0018】量子井戸層20のGaAlInAsの組成
は、InPよりも格子定数が大きい組成(図3の斜線部
内の組成)であって、発振波長が1.3μmとなる組成
を選択する。またバリア層21は、光閉じ込め層18、
19の活性層17に接する部分のバンドギャップと同じ
バンドギャップを有するGaAlInAsである。
The composition of GaAlInAs in the quantum well layer 20 is selected to be a composition having a lattice constant larger than that of InP (composition in the hatched portion in FIG. 3) and an oscillation wavelength of 1.3 μm. Further, the barrier layer 21 includes the light confinement layer 18,
GaAlInAs having the same band gap as the band gap of the portion in contact with the active layer 17 of 19.

【0019】バリア層21の組成は、InPの格子定数
と同じ格子定数となるように第3図の実線L’上の組成
を選択する。
The composition of the barrier layer 21 is selected on the solid line L 'in FIG. 3 so as to have the same lattice constant as that of InP.

【0020】量子井戸の数nは、小さい整数、例えばn
=3に定める。各量子井戸の厚みには上限値があり、そ
の値は歪により誘起される転位の発生により定まる。本
実施例において、n=3に対応する発振波長は1.3μ
mから若干ずれた値となる。その原因は歪によりバンド
ギャップが狭くなることによる長波長化と、電子の量子
閉じ込めによる短波長化の影響を受けるからである。
The number n of quantum wells is a small integer, for example, n
= 3. There is an upper limit for the thickness of each quantum well, and the value is determined by the occurrence of dislocation induced by strain. In this embodiment, the oscillation wavelength corresponding to n = 3 is 1.3 μm.
The value slightly deviates from m. The reason for this is that the band gap is narrowed due to the strain, and the wavelength is increased, and the wavelength is shortened by the quantum confinement of electrons.

【0021】発振波長を1.3μmに厳密に一致させる
には、上記の歪によるバンドギャップ縮小の効果と量子
閉じ込め効果によるバンドギャップ拡大の効果とを勘案
して組成を調整すればよい。
In order to make the oscillation wavelength exactly coincide with 1.3 μm, the composition may be adjusted in consideration of the effect of band gap reduction due to the above-described strain and the effect of band gap expansion due to the quantum confinement effect.

【0022】なお、バリア層の格子定数をInPよりも
小さい格子定数となるように、第3図の空白の部分(斜
線部分以外の部分)の組成を選択しても良い。このよう
することにより、活性層17の平均格子定数をInPの
格子定数に近づけることが可能であり、膜厚と組成を調
整することにより、活性層17の格子定数とInPの格
子定数を等しくすることもできる。
The composition of the blank portion (the portion other than the hatched portion) in FIG. 3 may be selected so that the barrier layer has a lattice constant smaller than that of InP. This makes it possible to make the average lattice constant of the active layer 17 close to the lattice constant of InP. By adjusting the film thickness and the composition, the lattice constant of the active layer 17 and the lattice constant of InP are made equal. You can also.

【0023】この場合は、nが数百の量子井戸層および
バリア層数まで歪の誘起する転位を生じることなく成長
させることが可能である。このような量子井戸半導体レ
ーザ素子は、垂直キャビティーを持つ面発光レーザを実
現するのに適している。
In this case, it is possible to grow up to the number of quantum well layers and barrier layers where n is several hundreds without generating strain-induced dislocations. Such a quantum well semiconductor laser device is suitable for realizing a surface emitting laser having a vertical cavity.

【0024】なお、上記の実施例では、量子井戸層、バ
リア層ともにGaAlInAsで構成したが、量子井戸
層をGaAlInAs、バリア層をGaInAsPとし
てもよいし、量子井戸層をGaInAsP、バリア層を
GaAlInAsとしてもよい。
In the above embodiment, both the quantum well layer and the barrier layer are made of GaAlInAs. However, the quantum well layer may be made of GaAlInAs, the barrier layer may be made of GaInAsP, the quantum well layer may be made of GaInAsP, and the barrier layer may be made of GaAlInAs. Is also good.

【0025】ここで、量子井戸層をGaInAsPとす
る場合、その組成は、第2図における発振波長1.3μ
mに相当する等バンドギャップ線C上にあり、かつ、格
子定数がInP基板よりも大きいPT間のTに近い組成
とするとよく、バリア層をGaInAsPとする場合、
その組成は、第2図におけるP点よりも左側のL線上の
組成とする。
Here, when the quantum well layer is made of GaInAsP, the composition thereof is 1.3 μm in the oscillation wavelength shown in FIG.
It is preferable that the composition be on the equiband gap line C corresponding to m and have a composition close to T between PTs whose lattice constant is larger than that of the InP substrate, and when the barrier layer is GaInAsP,
The composition is a composition on the L line on the left side of the point P in FIG.

【0026】また、上記実施例では、光閉じ込め層1
8、19を具備する量子井戸半導体レーザを例に説明し
たが、光閉じ込め層は本発明に必須の構成ではなく、光
閉じ込め層を具備しない量子井戸半導体レーザも本発明
の範囲に含まれる。
In the above embodiment, the light confinement layer 1
Although the quantum well semiconductor laser having 8 and 19 has been described as an example, the optical confinement layer is not an essential component of the present invention, and a quantum well semiconductor laser without an optical confinement layer is also included in the scope of the present invention.

【0027】更に、上記実施例ではバッファ層12、ク
ラッド層12、13をInP、光閉じ込め層をInGa
AsPとしたが、これらはGaAlInAsにより構成
しても良い。
In the above embodiment, the buffer layer 12, the cladding layers 12 and 13 are made of InP, and the optical confinement layer is made of InGa.
Although AsP was used, they may be made of GaAlInAs.

【0028】[0028]

【発明の効果】以上説明したように、本発明によれば、
1.3〜1.55μm帯の発振波長を有し、高性能であ
る量子井戸半導体レーザが得られるという優れた効果が
ある。
As described above, according to the present invention,
There is an excellent effect that a high performance quantum well semiconductor laser having an oscillation wavelength in the 1.3 to 1.55 μm band can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる一実施例の要部断面図(a)お
よびそのバンドギャップの伝導帯側を示す図(b)
FIG. 1A is a sectional view of a main part of an embodiment according to the present invention, and FIG. 1B is a view showing a conduction band side of a band gap thereof.

【図2】GaInAsPのダイヤグラムFIG. 2 is a diagram of GaInAsP.

【図3】AlGaInAsのダイヤグラムFIG. 3 is a diagram of AlGaInAs.

【図4】従来例の要部断面図(a)およびそのバンドギ
ャップの伝導帯側を示す図(b)
FIG. 4 is a sectional view of a main part of a conventional example (a) and a view showing a conduction band side of a band gap thereof (b).

【符号の説明】[Explanation of symbols]

1はn型GaAs基板 2はn型GaAsバッファ層 3はn型GaAlAsクラッド層 4はGaInAs量子井戸層 5、6は傾斜領域 7はp型GaAlAsクラッド層 8はp型GaAsキャップ層 9、15はn型電極 10、16はp型電極 11はn型InP基板 12はバッファ層 13はp型クラッド層 14はp型キャップ層 17は活性層 18、19は光閉じ込め層 20は量子井戸層 21はバリア層 1 is an n-type GaAs substrate 2 is an n-type GaAs buffer layer 3 is an n-type GaAlAs cladding layer 4 is a GaInAs quantum well layer 5, 6 is an inclined region 7 is a p-type GaAlAs cladding layer 8 is a p-type GaAs cap layer 9, 15 is n-type electrodes 10 and 16 are p-type electrodes 11 are n-type InP substrates 12 are buffer layers 13 are p-type cladding layers 14 are p-type cap layers 17 are active layers 18 and 19 are optical confinement layers 20 are quantum well layers 21 Barrier layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】InP基板上に1以上の量子井戸層と1以
上のバリア層よりなる量子井戸構造を有する量子井戸半
導体レーザ素子であって、量子井戸層、バリア層の少な
くとも一方がGaAlInAsで構成され、かつ、量子
井戸層の組成が、InPよりも格子定数が大きい組成で
あることを特徴とする量子井戸半導体レーザ素子。
1. A quantum well semiconductor laser device having a quantum well structure comprising at least one quantum well layer and at least one barrier layer on an InP substrate, wherein at least one of the quantum well layer and the barrier layer is made of GaAlInAs. And a composition of the quantum well layer having a lattice constant larger than that of InP.
JP21669397A 1997-08-11 1997-08-11 Quantum well semiconductor laser device Expired - Lifetime JP3041381B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21669397A JP3041381B2 (en) 1997-08-11 1997-08-11 Quantum well semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21669397A JP3041381B2 (en) 1997-08-11 1997-08-11 Quantum well semiconductor laser device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP63285549A Division JP2898643B2 (en) 1988-11-11 1988-11-11 Quantum well semiconductor laser device

Publications (2)

Publication Number Publication Date
JPH1084170A true JPH1084170A (en) 1998-03-31
JP3041381B2 JP3041381B2 (en) 2000-05-15

Family

ID=16692450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21669397A Expired - Lifetime JP3041381B2 (en) 1997-08-11 1997-08-11 Quantum well semiconductor laser device

Country Status (1)

Country Link
JP (1) JP3041381B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000042685A1 (en) * 1999-01-11 2000-07-20 The Furukawa Electric Co., Ltd. n-TYPE MODULATION DOPE MULTIPLE QUANTUM WELL SEMICONDUCTOR LASER
US6396861B1 (en) 1999-01-11 2002-05-28 The Furukawa Electric Co., Ltd. N-type modulation-doped multi quantum well semiconductor laser device
US7038233B2 (en) 2003-12-12 2006-05-02 Hitachi, Ltd. Semiconductor optical devices and optical modules
JP2010165708A (en) * 2009-01-13 2010-07-29 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser
JP7038913B1 (en) * 2020-12-23 2022-03-18 三菱電機株式会社 Semiconductor laser device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000042685A1 (en) * 1999-01-11 2000-07-20 The Furukawa Electric Co., Ltd. n-TYPE MODULATION DOPE MULTIPLE QUANTUM WELL SEMICONDUCTOR LASER
US6396861B1 (en) 1999-01-11 2002-05-28 The Furukawa Electric Co., Ltd. N-type modulation-doped multi quantum well semiconductor laser device
US7038233B2 (en) 2003-12-12 2006-05-02 Hitachi, Ltd. Semiconductor optical devices and optical modules
JP2010165708A (en) * 2009-01-13 2010-07-29 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser
JP7038913B1 (en) * 2020-12-23 2022-03-18 三菱電機株式会社 Semiconductor laser device

Also Published As

Publication number Publication date
JP3041381B2 (en) 2000-05-15

Similar Documents

Publication Publication Date Title
JP2724827B2 (en) Infrared light emitting device
JP3461893B2 (en) Optical semiconductor device
EP0486128B1 (en) A semiconductor optical device and a fabricating method therefor
JP2898643B2 (en) Quantum well semiconductor laser device
JP2705409B2 (en) Semiconductor distributed feedback laser device
JPH0856045A (en) Semiconductor laser device
JP3145718B2 (en) Semiconductor laser
JPH1084170A (en) Quantum well semiconductor laser element
JPH08307003A (en) Semiconductor laser device
JP3128788B2 (en) Semiconductor laser
JP2812273B2 (en) Semiconductor laser
US6411637B1 (en) Semiconductor laser and method of manufacturing the same
JP2706411B2 (en) Strained quantum well semiconductor laser
JPH04350988A (en) Light-emitting element of quantum well structure
JPS60145687A (en) Semiconductor laser
JPH08288586A (en) 2mum band semiconductor laser
JPH09237933A (en) Semiconductor laser and manufacturing method thereof
JP3033717B2 (en) Surface emitting semiconductor laser device
JPH1012960A (en) Semiconductor laser device
JPH1197790A (en) Semiconductor laser
JP3223969B2 (en) Semiconductor laser
JPH0278290A (en) Semiconductor laser device
JP2001332816A (en) Semiconductor laser element
JPH0728093B2 (en) Semiconductor laser device
JPH05175601A (en) Multiple quantum well semiconductor laser

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080310

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 9

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 9