JPH08288586A - 2mum band semiconductor laser - Google Patents

2mum band semiconductor laser

Info

Publication number
JPH08288586A
JPH08288586A JP9077095A JP9077095A JPH08288586A JP H08288586 A JPH08288586 A JP H08288586A JP 9077095 A JP9077095 A JP 9077095A JP 9077095 A JP9077095 A JP 9077095A JP H08288586 A JPH08288586 A JP H08288586A
Authority
JP
Japan
Prior art keywords
layer
semiconductor laser
wavelength
type
quantum well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9077095A
Other languages
Japanese (ja)
Inventor
Masaaki Nidou
正明 仁道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP9077095A priority Critical patent/JPH08288586A/en
Publication of JPH08288586A publication Critical patent/JPH08288586A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To obtain a semiconductor laser of specified band having low oscillation threshold value and operating current and excellent in temperature characteristics and long term reliability by composing a quantum well layer of InAs and a barrier layer of InAlGaAs having band gap wavelength within a specified range. CONSTITUTION: The 2μm semiconductor laser comprises an n-type InAlAs clad layer 2 and an n-type InAlGaAs optical confinement layer 3 having composition of 200nm thick/1.4μm wavelength laminated on the upper surface of an n-type InP substrate 1. An In As strained quantum well layer 4 of 2nm thick and an InAlGaAs barrier layer 5 having composition of 10μm thick/1.4μm wavelength and band gap wavelength of 1.3-1.5μm are laminated alternately by two periods thus forming a multiple quantum well active layer. Subsequently, a p-type InAlGaAs optical confinement layer 6 having composition of 200nm thick/1.4μm wavelength, a p-type InAlAs clad layer 7, a p-type InGaAs cap layer 8 and a p-electrode 9 are laminated thereon. Finally, an n-electrode 10 is formed on the lower surface of the n-type InP substrate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は2μm帯半導体レーザに
関し、特に発振しきい値及び動作電流が低く、温度特性
に優れ、かつ高信頼の2μm帯半導体レーザに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a 2 μm band semiconductor laser, and more particularly to a highly reliable 2 μm band semiconductor laser having a low oscillation threshold and operating current, excellent temperature characteristics.

【0002】[0002]

【従来の技術】2μm帯(〜1.9μm)大出力半導体
レーザは、アイセーフな2.1μm帯レーザレーダ用固
体レーザの励起光源として、近年注目されている。2μ
m帯大出力半導体レーザの例としては、InP基板上の
InGaAs歪量子井戸活性層を用いたものがある(例
えば、J.S.Major他、アイ・イー・イー・イー
フォトニクス テクノロジー レターズ(IEEE P
hotonics Technology Lette
rs)No.5,594頁から596頁(1993
年))。
2. Description of the Related Art A high power semiconductor laser of 2 .mu.m band (.about.1.9 .mu.m) has recently been attracting attention as an excitation light source of an eye-safe solid laser for 2.1 .mu.m band laser radar. 2μ
An example of an m-band high-power semiconductor laser is one using an InGaAs strained quantum well active layer on an InP substrate (see, for example, JS Major et al., IE Photonics Technology Letters (IEEE P
photonics Technology Lette
rs) No. 5, 594 to 596 (1993
Year)).

【0003】図3に従来の2μm帯半導体レーザの断面
層構造を示す。この半導体レーザは、n型InP基板2
1上のn型InPクラッド層22と、波長1.3μm組
成のn型InGaAsP光閉じ込め層23と、層厚7n
mのIn0.75Ga0.25As歪量子井戸層(1.5%圧縮
歪)24と波長1.3μm組成のInGaAsPバリア
層25とを交互に2周期積層した多重量子井戸活性層
と、波長1.3μm組成のp型InGaAsP光閉じ込
め層26と、p型InPクラッド層27と、p型InG
aAsキャップ層28と、p電極29と、n電極30と
からなる。共振器長1000μm、活性層幅200μ
m、半導体レーザ前面/後面反射率がそれぞれ10%/
90%の半導体レーザにおいて、発振波長1.9μm、
10℃での発振しきい値500mA、500mW出力時
の動作電流2.3A、10〜30℃での発振しきい値の
特性温度55Kという特性が得られている。
FIG. 3 shows a cross-sectional layer structure of a conventional 2 μm band semiconductor laser. This semiconductor laser has an n-type InP substrate 2
1, an n-type InP clad layer 22, an n-type InGaAsP optical confinement layer 23 having a wavelength of 1.3 μm, and a layer thickness of 7 n
m In 0.75 Ga 0.25 As strained quantum well layer (1.5% compressive strain) 24 and an InGaAsP barrier layer 25 having a wavelength of 1.3 μm alternately stacked for two periods, and a wavelength of 1.3 μm. Composition p-type InGaAsP optical confinement layer 26, p-type InP clad layer 27, p-type InG
It is composed of an aAs cap layer 28, ap electrode 29, and an n electrode 30. Resonator length 1000 μm, active layer width 200 μ
m, semiconductor laser front / rear surface reflectance of 10% /
With a 90% semiconductor laser, the oscillation wavelength is 1.9 μm,
The characteristics of the oscillation threshold of 500 mA at 10 ° C., the operating current of 2.3 A at the time of output of 500 mW, and the characteristic temperature of 55 K of the oscillation threshold at 10 to 30 ° C. are obtained.

【0004】また、特開平4−49689号公報にはI
nP基板、InGaAsPバリヤ層を用いる歪量子井戸
半導体レーザでウェル層がInAsPからなる半導体レ
ーザの記載がある。
Further, Japanese Patent Laid-Open No. 4-49689 discloses I
There is a description of a strained quantum well semiconductor laser using an nP substrate and an InGaAsP barrier layer, in which the well layer is made of InAsP.

【0005】[0005]

【発明が解決しようとする課題】従来の2μm帯半導体
レーザは、特性温度が55K程度と小さいため、温度制
御が必要であった。
Since the conventional 2 μm band semiconductor laser has a small characteristic temperature of about 55 K, temperature control is required.

【0006】また、歪量子井戸を用いた半導体レーザで
は、歪量と層厚の積の値が臨界値を越えると結晶転位が
生じる。図3に示す従来の2μm帯半導体レーザの歪量
子井戸層24において、歪量1.5%で層厚7mm(歪
量と層厚の積=10.5%・nm)ではほぼ臨界値とな
っている。このため、半導体レーザの長期信頼性に問題
が生じていた。
In a semiconductor laser using a strained quantum well, crystal dislocation occurs when the product of strain amount and layer thickness exceeds a critical value. In the strain quantum well layer 24 of the conventional 2 μm band semiconductor laser shown in FIG. 3, when the strain amount is 1.5% and the layer thickness is 7 mm (the product of the strain amount and the layer thickness = 10.5% · nm), it becomes almost the critical value. ing. Therefore, there has been a problem in long-term reliability of the semiconductor laser.

【0007】また、特開平4−49689号公報に記載
されている半導体レーザでは1.5μm帯の半導体レー
ザであり、2μm帯を対象としたものではなかった。
Further, the semiconductor laser described in Japanese Patent Laid-Open No. 4-49689 is a semiconductor laser in the 1.5 μm band and is not intended for the 2 μm band.

【0008】本発明の目的は、発振しきい値及び動作電
流が低く、温度特性に優れ、長期信頼性に優れた2μm
帯の半導体レーザを提供することにある。
The object of the present invention is 2 μm, which has a low oscillation threshold and operating current, excellent temperature characteristics and long-term reliability.
It is to provide a band semiconductor laser.

【0009】[0009]

【課題を解決するための手段】本発明の2μm帯半導体
レーザはInP基板上に、活性層に歪量子井戸を用い発
振波長が1.8〜2.1μmとなる2μm帯半導体レー
ザにおいて、量子井戸層をInAs、バリア層をバンド
ギャップ波長が1.3〜1.5μmとなるInAlGa
Asを用いたことを特徴とする。
A 2 μm band semiconductor laser according to the present invention is a 2 μm band semiconductor laser in which a strained quantum well is used as an active layer on an InP substrate and an oscillation wavelength is 1.8 to 2.1 μm. The layer is InAs and the barrier layer is InAlGa having a bandgap wavelength of 1.3 to 1.5 μm.
It is characterized by using As.

【0010】またInP基板上に、活性層に歪量子井戸
を用い発振波長が1.8〜2.1μmとなる2μm帯半
導体レーザにおいて、量子井戸層をInAs、バリア層
をバンドギャップ波長が1.2〜1.4μmとなるIn
GaAsPを用いたことを特徴とする。
Further, in a 2 μm band semiconductor laser in which a strained quantum well is used for an active layer and an oscillation wavelength is 1.8 to 2.1 μm on an InP substrate, a quantum well layer has InAs and a barrier layer has a bandgap wavelength of 1. In of 2 to 1.4 μm
It is characterized by using GaAsP.

【0011】[0011]

【作用】本発明の第1の2μm帯半導体レーザでは、歪
量子井戸層にInAsを用いている。これにより、圧縮
歪量を大きくし、ホール状態密度を低減している。また
歪量と層厚の積が従来のInGaAs歪量子井戸層と比
較して半分にできるため、歪量子井戸層に結晶転位が生
じなくなる。したがって、長期信頼性に優れた2μm帯
半導体レーザを得ることができる。
In the first 2 μm band semiconductor laser of the present invention, InAs is used for the strained quantum well layer. As a result, the amount of compressive strain is increased and the hole state density is reduced. Further, since the product of the strain amount and the layer thickness can be halved as compared with the conventional InGaAs strain quantum well layer, crystal dislocation does not occur in the strain quantum well layer. Therefore, a 2 μm band semiconductor laser having excellent long-term reliability can be obtained.

【0012】加えてバリア層にInAlGaAsを用い
ることにより、量子井戸層とバリア層間の伝導帯不連続
を大きくして量子井戸層からバリア層への電子のオーバ
ーフローを抑制している。ここで、バリア層バンドギャ
ップ波長を小さくしていくと量子井戸層での光閉じ込め
層が小さくなっていくが、バンドギャップ波長が1.3
から1.5μmにおいて半導体レーザの特性は最適とな
る。
In addition, by using InAlGaAs for the barrier layer, the conduction band discontinuity between the quantum well layer and the barrier layer is increased to suppress the overflow of electrons from the quantum well layer to the barrier layer. Here, as the barrier layer bandgap wavelength is made smaller, the optical confinement layer in the quantum well layer becomes smaller, but the bandgap wavelength becomes 1.3.
The characteristic of the semiconductor laser becomes optimum in the range from 1.5 μm to 1.5 μm.

【0013】本発明の第2の2μm帯半導体レーザでは
歪量子井戸層にInAsを用いているので本発明の第1
の2μm帯半導体レーザと同様に、圧縮歪量を大きく
し、ホール状態密度を低減することができ、かつ、信頼
性に優れた2μm帯半導体レーザが得られる。
In the second 2 μm band semiconductor laser of the present invention, InAs is used for the strained quantum well layer.
As in the case of the 2 μm band semiconductor laser, the compressive strain amount can be increased, the hole state density can be reduced, and a highly reliable 2 μm band semiconductor laser can be obtained.

【0014】加えてバリア層にInGaAsPを用いる
ことにより、量子井戸層とバリア層間の価電子帯不連続
を大きくしてホールに対する量子閉じ込め効果を強め
て、ホール状態密度を更に低減している。ここで、バリ
ア層バンドギャップ波長を小さくしていくと量子井戸層
での光閉じ込め層が小さくなっていくが、バンドギャッ
プ波長が1.3から1.5μmにおいて半導体レーザの
特性は最適となる。
In addition, by using InGaAsP for the barrier layer, the valence band discontinuity between the quantum well layer and the barrier layer is increased to enhance the quantum confinement effect for holes and further reduce the hole state density. Here, as the barrier layer bandgap wavelength is made smaller, the optical confinement layer in the quantum well layer becomes smaller, but the characteristics of the semiconductor laser become optimum at the bandgap wavelength of 1.3 to 1.5 μm.

【0015】[0015]

【実施例】図1に、本発明の第1の実施例である2μm
帯半導体レーザの断面層構造を示す。図1において半導
体レーザは、n型InP基板1上のn型InAlAsク
ラッド層2と、層厚200nm/波長1.4μm組成の
n型InAlGaAs光閉じ込め層3と、層厚2nmの
InAs歪量子井戸層(2.5%圧縮歪)4と層厚10
nm/波長1.4μm組成のInAlGaAsバリア層
5とを交互に2周期積層した多重量子井戸活性層と、層
厚200nm/波長1.4μm組成のp型InAlGa
As光閉じ込め層6と、p型InAlAsクラッド層7
と、p型InGaAsキャップ層8と、p電極9と、n
電極10とからなる。
FIG. 1 shows the first embodiment of the present invention, 2 .mu.m.
2 shows a sectional layer structure of a band semiconductor laser. In FIG. 1, the semiconductor laser comprises an n-type InAlAs cladding layer 2 on an n-type InP substrate 1, an n-type InAlGaAs optical confinement layer 3 having a layer thickness of 200 nm / wavelength of 1.4 μm, and an InAs strained quantum well layer having a layer thickness of 2 nm. (2.5% compressive strain) 4 and layer thickness 10
a multiple quantum well active layer in which two cycles of InAlGaAs barrier layers 5 having a composition of nm / wavelength of 1.4 μm are alternately laminated, and a p-type InAlGa having a composition of 200 nm / wavelength of 1.4 μm.
As optical confinement layer 6 and p-type InAlAs clad layer 7
, P-type InGaAs cap layer 8, p-electrode 9, and n
And electrode 10.

【0016】図2に、本発明の第2の実施例である2μ
m帯半導体レーザの断面層構造を示す。図2において半
導体レーザは、n型InP基板11上のn型InPクラ
ッド層12と、層厚200nm/波長1.3μm組成の
n型InGaAs光閉じ込め層13と、層厚2nmのI
nAs歪量子井戸層(2.5%圧縮歪)14と層厚10
nm/波長1.3μm組成のInGaAsPバリア層1
5とを交互に2周期積層した多重量子井戸活性層と、層
厚200nm/波長1.3μm組成のp型InGaAs
P光閉じ込め層16と、p型InPクラッド層17と、
p型InGaAsキャップ層18と、p電極19と、n
電極20とからなる。
FIG. 2 shows the second embodiment of the present invention, 2 μm.
2 shows a cross-sectional layer structure of an m-band semiconductor laser. In FIG. 2, the semiconductor laser includes an n-type InP clad layer 12 on an n-type InP substrate 11, an n-type InGaAs optical confinement layer 13 having a layer thickness of 200 nm and a wavelength of 1.3 μm, and an I-layer having a layer thickness of 2 nm.
nAs strained quantum well layer (2.5% compressive strain) 14 and layer thickness 10
InGaAsP barrier layer 1 having a composition of nm / wavelength of 1.3 μm
A multi-quantum well active layer in which two periods of 5 are alternately laminated, and p-type InGaAs having a composition of layer thickness 200 nm / wavelength 1.3 μm
A P light confinement layer 16, a p-type InP clad layer 17,
p-type InGaAs cap layer 18, p-electrode 19, n
And electrodes 20.

【0017】図4,図5,図6は共振器長1000μ
m、活性層幅200μm、前面:後面反射率がそれぞれ
10%:90%で本発明の第1の実施例及び第2の実施
例を適用した2μm帯半導体レーザと従来の半導体レー
ザの特性を計算により求めたものであり、発振しきい値
(Ith)及び500mW出力動作電流(Iop)の温度依
存性を示している。それぞれの図から各半導体レーザの
バリア層バンドギャップ波長(光閉じ込め層バンドギャ
ップ波長と等しいとした)に対する半導体特性依存性が
わかる。
FIGS. 4, 5 and 6 show a resonator length of 1000 μm.
m, active layer width 200 μm, front surface: rear surface reflectance 10%: 90% respectively, and characteristics of 2 μm band semiconductor laser and conventional semiconductor laser to which the first and second embodiments of the present invention are applied are calculated. And shows the temperature dependence of the oscillation threshold (I th ) and the 500 mW output operating current (I op ). From the respective figures, the dependency of the semiconductor characteristics on the barrier layer bandgap wavelength (assumed to be equal to the optical confinement layer bandgap wavelength) of each semiconductor laser can be seen.

【0018】バリア層バンドギャップ波長1.3μmの
従来の半導体レーザでは図6に示すように10℃での発
振しきい値500mA、500mW出力時の動作電流
1.8A、10〜30℃での特性温度55Kとなり、従
来報告されている半導体特性の報告値とよく一致してい
る。
In a conventional semiconductor laser having a barrier layer bandgap wavelength of 1.3 μm, as shown in FIG. 6, an oscillation threshold of 500 mA at 10 ° C., an operating current of 1.8 A at 500 mW output, and characteristics at 10 to 30 ° C. The temperature was 55 K, which is in good agreement with the previously reported values of semiconductor characteristics.

【0019】また、それぞれの図において発振しきい値
に最適値があることがわかる。
Further, it can be seen that there is an optimum value for the oscillation threshold in each of the figures.

【0020】図4は第1の実施例を適用した計算結果を
示すものである。第1の実施例では(バリア層のバンド
ギャップ波長1.4μmで)10℃での発振しきい値4
00mA、500mW出力時の動作電流1.7A、10
〜30℃での特性温度100Kという特性が得られるこ
とがわかる。
FIG. 4 shows the calculation result when the first embodiment is applied. In the first embodiment, the oscillation threshold value 4 at 10 ° C. (with the bandgap wavelength of the barrier layer being 1.4 μm) is 4
Operating current at output of 00mA, 500mW 1.7A, 10
It can be seen that a characteristic temperature of 100K at -30 ° C is obtained.

【0021】また図5は第2の実施例を適用したもので
(バリア層のバンドギャップ波長1.3μmで)第1の
実施例と同様に10℃での発振しきい値400mA、5
00mW出力時の動作電流1.7A、10〜30℃での
特性温度100Kという特性が得られることがわかる。
Further, FIG. 5 shows the case where the second embodiment is applied (with the bandgap wavelength of the barrier layer being 1.3 μm), the oscillation threshold value at 10 ° C. is 400 mA, 5 as in the first embodiment.
It can be seen that a characteristic of an operating current of 1.7 A at an output of 00 mW and a characteristic temperature of 100 K at 10 to 30 ° C. can be obtained.

【0022】本発明の2μm帯半導体レーザでは特性温
度が100K程度と大きいため半導体の温度制御に対す
る条件を緩くすることができる。
Since the characteristic temperature of the 2 μm band semiconductor laser of the present invention is as large as about 100 K, the conditions for temperature control of the semiconductor can be relaxed.

【0023】さらに第1の実施例では図4に示すように
バリア層バンドギャップ波長変化による半導体特性が小
さいため、結晶成長上の制御条件が緩くなり、製造歩留
まりに優れた半導体レーザを提供できる。
Further, in the first embodiment, as shown in FIG. 4, the semiconductor characteristics due to the change in the bandgap wavelength of the barrier layer are small, so that the control conditions for crystal growth are relaxed, and a semiconductor laser excellent in manufacturing yield can be provided.

【0024】第1の実施例ではInAs歪量子井戸層/
InAlGaAsバリア層を用いているのでV族元素組
成が量子井戸/バリア界面で変化しないことを利用し
て、バリア層に歪量子井戸層と反対方向の歪をかけて多
層構造で平均歪量を0にすることによって、さらに半導
体レーザの信頼性を高めることができる。
In the first embodiment, the InAs strained quantum well layer /
Utilizing the fact that the group V element composition does not change at the quantum well / barrier interface because an InAlGaAs barrier layer is used, strain is applied to the barrier layer in the direction opposite to the strained quantum well layer, and the average strain amount is 0 in the multilayer structure. By so doing, the reliability of the semiconductor laser can be further improved.

【0025】第1の実施例においてクラッド層にInA
lAsを用いたがInPでもよく、また第2の実施例に
おいてクラッド層にInPを用いたがInAlAsであ
っても同様な効果が得られる。
InA was used as the cladding layer in the first embodiment.
Although 1As is used, InP may be used, and InP may be used for the cladding layer in the second embodiment, but the same effect can be obtained with InAlAs.

【0026】[0026]

【発明の効果】以上述べたように、本発明より、2μm
帯半導体レーザの発振しきい値及び動作電流が低く、温
度特性に優れ、かつ信頼性の高い半導体レーザが得られ
る。
As described above, according to the present invention, 2 μm
A semiconductor laser having a low oscillation threshold and operating current, excellent temperature characteristics, and high reliability can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例における半導体レーザの
断面層構造を示す図である。
FIG. 1 is a diagram showing a cross-sectional layer structure of a semiconductor laser according to a first embodiment of the present invention.

【図2】本発明の第2の実施例における半導体レーザの
断面層構造を示す図である。
FIG. 2 is a diagram showing a sectional layer structure of a semiconductor laser according to a second embodiment of the present invention.

【図3】従来の半導体レーザの断面層構造を示す図であ
る。
FIG. 3 is a diagram showing a cross-sectional layer structure of a conventional semiconductor laser.

【図4】第1の実施例の半導体レーザの発振しきい値
(Ith)及び500mW出力動作電流(Iop)の温度依
存性の計算結果を示す図である。
FIG. 4 is a diagram showing calculation results of temperature dependence of an oscillation threshold (I th ) and a 500 mW output operating current (I op ) of the semiconductor laser of the first embodiment.

【図5】第2の実施例の半導体レーザの発振しきい値
(Ith)及び500mW出力動作電流(Iop)の温度依
存性の計算結果を示す図である。
FIG. 5 is a diagram showing calculation results of temperature dependence of an oscillation threshold value (I th ) and a 500 mW output operating current (I op ) of the semiconductor laser of the second embodiment.

【図6】従来の半導体レーザの発振しきい値(Ith)及
び500mW出力動作電流(Iop)の温度依存性の計算
結果を示す図である。
FIG. 6 is a diagram showing calculation results of temperature dependence of an oscillation threshold (I th ) and a 500 mW output operating current (I op ) of a conventional semiconductor laser.

【符号の説明】 1,11,21 n型InP基板 2 n型InAlAsクラッド層 3 波長1.4μm組成のn型InAlGaAs光閉
じ込め層 4,14 InAs歪量子井戸層 5 波長1.4μm組成のInAlGaAsバリア層 6 波長1.4μm組成のp型InAlGaAs光閉
じ込め層 7 p型InAlAsクラッド層 8,18,28 p型InGaAsキャップ層 9,19,29 p電極 10,20,30 n電極 12,22 n型InPクラッド層 13 波長1.3μm組成のn型InGaAsP光閉
じ込め層 15 波長1.3μm組成のInGaAsPバリア層 16 波長1.3μm組成のp型InGaAsP光閉
じ込め層 17,27 p型InPクラッド層 23 波長1.3μm組成のn型InGaAsP光閉
じ込め層 24 In0.75Ga0.25As歪量子井戸層 25 波長1.3μm組成のInGaAsPバリア層 26 波長1.3μm組成のp型InGaAsP光閉
じ込め層
[Description of Reference Signs] 1,11,21 n-type InP substrate 2 n-type InAlAs clad layer 3 n-type InAlGaAs optical confinement layer with wavelength 1.4 μm composition 4,14 InAs strained quantum well layer 5 InAlGaAs barrier with wavelength 1.4 μm composition Layer 6 p-type InAlGaAs optical confinement layer having a wavelength of 1.4 μm 7 p-type InAlAs clad layer 8, 18, 28 p-type InGaAs cap layer 9, 19, 29 p-electrode 10, 20, 30 n-electrode 12, 22 n-type InP Cladding layer 13 n-type InGaAsP optical confinement layer having a wavelength of 1.3 μm 15 InGaAsP barrier layer having a wavelength of 1.3 μm 16 p-type InGaAsP optical confinement layer having a wavelength of 1.3 μm 17, 27 p-type InP clad layer 23 wavelength 1. 3 μm composition n-type InGaAsP optical confinement layer 24 In 0.75 Ga 0.2 5 As strained quantum well layer 25 InGaAsP barrier layer having a wavelength of 1.3 μm 26 P-type InGaAsP optical confinement layer having a wavelength of 1.3 μm

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 InP基板上に、活性層に歪量子井戸を
用い発振波長が1.8〜2.1μmとなる2μm帯半導
体レーザにおいて、量子井戸層をInAs、バリア層を
バンドギャップ波長が1.3〜1.5μmとなるInA
lGaAsを用いたことを特徴とする2μm帯半導体レ
ーザ。
1. In a 2 μm band semiconductor laser in which a strained quantum well is used as an active layer and an oscillation wavelength is 1.8 to 2.1 μm on an InP substrate, a quantum well layer has InAs and a barrier layer has a bandgap wavelength of 1. InA of 3 to 1.5 μm
A 2 μm band semiconductor laser using 1 GaAs.
【請求項2】 InP基板上に、活性層に歪量子井戸を
用い発振波長が1.8〜2.1μmとなる2μm帯半導
体レーザにおいて、量子井戸層をInAs、バリア層を
バンドギャップ波長が1.2〜1.4μmとなるInG
aAsPを用いたことを特徴とする2μm帯半導体レー
ザ。
2. In a 2 μm band semiconductor laser in which a strained quantum well is used as an active layer and an oscillation wavelength is 1.8 to 2.1 μm on an InP substrate, a quantum well layer has InAs and a barrier layer has a bandgap wavelength of 1. InG of 2 to 1.4 μm
A 2 μm band semiconductor laser using aAsP.
JP9077095A 1995-04-17 1995-04-17 2mum band semiconductor laser Pending JPH08288586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9077095A JPH08288586A (en) 1995-04-17 1995-04-17 2mum band semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9077095A JPH08288586A (en) 1995-04-17 1995-04-17 2mum band semiconductor laser

Publications (1)

Publication Number Publication Date
JPH08288586A true JPH08288586A (en) 1996-11-01

Family

ID=14007849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9077095A Pending JPH08288586A (en) 1995-04-17 1995-04-17 2mum band semiconductor laser

Country Status (1)

Country Link
JP (1) JPH08288586A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999014833A1 (en) * 1997-09-17 1999-03-25 Nippon Sanso Corporation Semiconductor laser
WO1999057790A3 (en) * 1998-05-06 1999-12-29 Sarnoff Corp Laser diode having separate-confinement, highly strained quantum wells
JP2001102686A (en) * 1999-09-29 2001-04-13 Denso Corp Semiconductor laser
JP2008227329A (en) * 2007-03-15 2008-09-25 Nippon Telegr & Teleph Corp <Ntt> Quantum well structure, semiconductor laser, spectral measuring instrument and method of manufacturing quantum well structure
JP2009059843A (en) * 2007-08-31 2009-03-19 Nippon Telegr & Teleph Corp <Ntt> Quantum well structure, optical confinement type quantum well structure, semiconductor laser, distributed feedback semiconductor laser, spectrograph, and manufacturing method of the quantum well structure
US7537950B2 (en) 2004-12-06 2009-05-26 Sensor Electronic Technology, Inc. Nitride-based light emitting heterostructure
JP2015118961A (en) * 2013-12-16 2015-06-25 日本電信電話株式会社 Semiconductor laser

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ELECTRON LETT=1993 *
SEMICOND SCI TECHNOL=1993 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999014833A1 (en) * 1997-09-17 1999-03-25 Nippon Sanso Corporation Semiconductor laser
KR100356103B1 (en) * 1997-09-17 2002-10-19 닛폰산소 가부시키가이샤 Semiconductor laser
CN1118120C (en) * 1997-09-17 2003-08-13 日本酸素株式会社 Semiconductor laser
WO1999057790A3 (en) * 1998-05-06 1999-12-29 Sarnoff Corp Laser diode having separate-confinement, highly strained quantum wells
US6330263B1 (en) 1998-05-06 2001-12-11 Sarnoff Corporation Laser diode having separated, highly-strained quantum wells
JP2001102686A (en) * 1999-09-29 2001-04-13 Denso Corp Semiconductor laser
US7537950B2 (en) 2004-12-06 2009-05-26 Sensor Electronic Technology, Inc. Nitride-based light emitting heterostructure
WO2006062880A3 (en) * 2004-12-06 2009-06-04 Sensor Electronic Tech Inc Nitride-based light emitting heterostructure
JP2008227329A (en) * 2007-03-15 2008-09-25 Nippon Telegr & Teleph Corp <Ntt> Quantum well structure, semiconductor laser, spectral measuring instrument and method of manufacturing quantum well structure
JP2009059843A (en) * 2007-08-31 2009-03-19 Nippon Telegr & Teleph Corp <Ntt> Quantum well structure, optical confinement type quantum well structure, semiconductor laser, distributed feedback semiconductor laser, spectrograph, and manufacturing method of the quantum well structure
JP2015118961A (en) * 2013-12-16 2015-06-25 日本電信電話株式会社 Semiconductor laser

Similar Documents

Publication Publication Date Title
JP3052552B2 (en) Surface emitting semiconductor laser
JPH1174607A (en) Semiconductor laser
JPH06112594A (en) Surface emission semiconductor light emission device and fabrication thereof
JP2000196189A (en) Surface-emission semiconductor laser
JP2898643B2 (en) Quantum well semiconductor laser device
JP2815769B2 (en) Manufacturing method of semiconductor laser
JPH08288586A (en) 2mum band semiconductor laser
JP4641230B2 (en) Optical semiconductor device
JP5381692B2 (en) Semiconductor light emitting device
JP3145718B2 (en) Semiconductor laser
JP2882335B2 (en) Optical semiconductor device and method for manufacturing the same
JP2812273B2 (en) Semiconductor laser
JPH07245447A (en) Semiconductor laser
JPH04350988A (en) Light-emitting element of quantum well structure
JPH1084170A (en) Quantum well semiconductor laser element
JP2001332816A (en) Semiconductor laser element
JPH05110186A (en) Monolithic optical element and manufacture of the same
JP3403915B2 (en) Semiconductor laser
JP3033717B2 (en) Surface emitting semiconductor laser device
JPS61176181A (en) Semiconductor light emitting device
JP3638305B2 (en) Quantum well crystal, semiconductor laser and manufacturing method thereof
JPH09307183A (en) Semiconductor laser
JPH104239A (en) Semiconductor light emitting diode
JPH0992925A (en) Strain multiple quantum well semiconductor laser and its manufacture
JPH0818156A (en) Light emitting semiconductor device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980224