JPH104239A - Semiconductor light emitting diode - Google Patents

Semiconductor light emitting diode

Info

Publication number
JPH104239A
JPH104239A JP17702196A JP17702196A JPH104239A JP H104239 A JPH104239 A JP H104239A JP 17702196 A JP17702196 A JP 17702196A JP 17702196 A JP17702196 A JP 17702196A JP H104239 A JPH104239 A JP H104239A
Authority
JP
Japan
Prior art keywords
layer
ridge
width
semiconductor
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17702196A
Other languages
Japanese (ja)
Inventor
Akihiko Kasukawa
秋彦 粕川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP17702196A priority Critical patent/JPH104239A/en
Publication of JPH104239A publication Critical patent/JPH104239A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light emitting diode having a ridge structure which can be manufactured in simple steps. SOLUTION: Within a semiconductor laser, a selectively oxidizable p-AlAs semiconductor layer 18 is provided between a ridge structure 19-21 and an active layer 16 so that a selective oxide layer 18b may be formed by oxidizing the semiconductor layer part corresponding to the side edge part of the ridge width in the manufacturing step so as to leave the part corresponding to the center of the ridge width intact as the semiconductor layer part 18A. The transverse mode control and the current constriction are made possible by assembling the selective oxidazed part 18B together with the ridge structure. In such a constitution, the ridge structured semiconductor layer can be manufactured by only a single growing step for simplifying the manufacturing step. Furthermore, the width of the ridge structure is made narrow on the end of the resonator and wide on the central part, so that the effective ridge width in the central part may be narrowed and a current blocking structure is formed near the end. Through these procedures, the laser threshold can be reduced while enabling a circular beam of small diameter to be emitted as well as the laser COD to be avoided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体発光素子に
関し、更に詳しくは、二重ヘテロ構造の端面発光型の半
導体発光素子の構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor light emitting device, and more particularly, to a structure of an edge emitting semiconductor light emitting device having a double hetero structure.

【0002】[0002]

【従来の技術】二重ヘテロ構造の半導体発光素子は、バ
ンドギャップが小さな活性層の上下を、バンドギャップ
がより大きな結晶層で挟んだ構造を有する。この構造で
は、上下の結晶層が活性層よりも大きな屈折率を有する
ため、レーザ光が活性層内に好適に閉じ込められる。
2. Description of the Related Art A semiconductor light emitting device having a double hetero structure has a structure in which an active layer having a small band gap is sandwiched above and below a crystal layer having a larger band gap. In this structure, since the upper and lower crystal layers have a higher refractive index than the active layer, the laser light is preferably confined in the active layer.

【0003】図4は、埋込みリッジ導波路型半導体レー
ザと呼ばれる形式の従来の短波長レーザの構造を示し、
同図(a)は全体断面を、同図(b)は同図(a)の一
部詳細断面を示している。n−GaAs基板51上には、
下層から順次に、n−(Al0.3Ga0.7)0.5In0.5Pク
ラッド層52、n−(Al0.1Ga0.90.5In0.5P光閉
込め層53、複数のGa0.5In0.5P井戸層54及び該
井戸層を挟む(Al0.1Ga0.9)0.5In0.5P障壁層55
から成る量子井戸活性層56、及び、p−(Al0.1Ga
0.90.5In0.5P光閉じ込め層57が形成され、更にそ
の上には、リッジ構造のp−(Al0.3Ga0.70.5In
0.5Pクラッド層58、p−Ga0.5In0.5P層59、及
び、p−GaAsコンタクト層60が形成されている。図
示しないp側及びn側電極が、これら全体を上下方向に
挟んで配置される。リッジ構造のp−(Al0.3Ga0.7
0.5In0.5Pクラッド層58のリッジ幅は、そのリッジ
底部で4μm程度であり、リッジの幅方向両側部には、
電流阻止及び横モード制御のためのn−GaAs埋込み層
61が形成されている。
FIG. 4 shows a structure of a conventional short wavelength laser of a type called a buried ridge waveguide type semiconductor laser.
FIG. 1A shows an entire cross section, and FIG. 1B shows a partially detailed cross section of FIG. 1A. On the n-GaAs substrate 51,
N- (Al 0.3 Ga 0.7 ) 0.5 In 0.5 P cladding layer 52, n- (Al 0.1 Ga 0.9 ) 0.5 In 0.5 P light confinement layer 53, a plurality of Ga 0.5 In 0.5 P well layers 54 and (Al 0.1 Ga 0.9 ) 0.5 In 0.5 P barrier layer 55 sandwiching the well layer
A quantum well active layer 56 of p- (Al 0.1 Ga
0.9 ) 0.5 In 0.5 P light confinement layer 57 is formed thereon, and further thereon, a ridge structure of p- (Al 0.3 Ga 0.7 ) 0.5 In
0.5 P cladding layer 58, p-Ga 0.5 In 0.5 P layer 59, and, p-GaAs contact layer 60 is formed. A p-side electrode and an n-side electrode (not shown) are arranged so as to sandwich the entirety in the vertical direction. R-structure p- (Al 0.3 Ga 0.7 )
The ridge width of the 0.5 In 0.5 P cladding layer 58 is about 4 μm at the bottom of the ridge, and on both sides in the width direction of the ridge,
An n-GaAs buried layer 61 for current blocking and transverse mode control is formed.

【0004】上記形式の従来の半導体レーザは、例えば
680nmで発振する半導体レーザの場合には、発振の
しきい値電流が30mA程度であり、50mW以上の光
出力が基本横モード動作で得られる。
A conventional semiconductor laser of the type described above, for example, in the case of a semiconductor laser oscillating at 680 nm, has an oscillation threshold current of about 30 mA, and an optical output of 50 mW or more can be obtained in the basic transverse mode operation.

【0005】[0005]

【発明が解決しようとする課題】従来の半導体レーザで
は、上記リッジ構造を形成するために、p−GaInP層
59迄の成長工程、フォトリソグラフィ法によりリッジ
導波路を形成した後のn−GaAs埋込み層61の成長工
程、及び、その後のp−GaAs層60の成長工程と、3
回の結晶成長工程を必要とする。このため、工程が複雑
で生産効率が低いという問題がある。
In the conventional semiconductor laser, in order to form the ridge structure, a growth process up to the p-GaInP layer 59 and n-GaAs burying after forming a ridge waveguide by a photolithography method. A step of growing the layer 61 and a subsequent step of growing the p-GaAs layer 60;
Requires two crystal growth steps. Therefore, there is a problem that the process is complicated and the production efficiency is low.

【0006】更に、従来の半導体レーザから得られる放
射ビームは、例えば7°×30°程度の拡がりを有する
楕円形状であり、楕円形のビームパターンは、光ディス
クの孔へビームを絞ることが困難という問題もある。
Further, a radiation beam obtained from a conventional semiconductor laser has an elliptical shape having a divergence of, for example, about 7 ° × 30 °, and the elliptical beam pattern makes it difficult to focus the beam on the hole of the optical disk. There are also problems.

【0007】本発明は、上記に鑑み、工程が簡素である
と共に、ビームサイズを絞ることが容易な円形に近い放
射ビームパターンを有する半導体発光素子を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION In view of the above, it is an object of the present invention to provide a semiconductor light emitting device having a nearly circular radiation beam pattern whose process is simple and whose beam size can be easily reduced.

【0008】[0008]

【課題を解決するための手段】本発明の半導体発光素子
は、活性層の上下を該活性層のバンドギャップよりも大
きなバンドギャップを有する結晶層で挟む光共振器を備
える半導体発光素子において、前記結晶層の少なくとも
一方が、0.8<x≦1として、組成がAlXGa1-XAs
で与えられる1の半導体層を含み、該半導体層の一部が
酸化膜層に形成されることを特徴とする。
According to the present invention, there is provided a semiconductor light emitting device comprising an optical resonator having upper and lower active layers sandwiched between crystal layers having a band gap larger than the band gap of the active layer. At least one of the crystal layers has a composition of Al X Ga 1 -X As with 0.8 <x ≦ 1.
Wherein one part of the semiconductor layer is formed on the oxide film layer.

【0009】本発明の半導体発光素子では、製造工程中
において、半導体層を選択的に酸化して選択酸化層を形
成する部分及び半導体層として残す部分の選択を、酸化
条件の選択により行なうことが出来る。選択酸化層は、
リッジ構造と組み合わせることにより、電流狭窄及びレ
ーザの横モード制御を行なうことが出来るので、リッジ
構造を埋め込むための埋込み層の成長工程を要しない。
In the semiconductor light emitting device of the present invention, during the manufacturing process, the portion for selectively oxidizing the semiconductor layer to form a selectively oxidized layer and the portion to be left as a semiconductor layer may be selected by selecting the oxidation conditions. I can do it. The selective oxidation layer is
By combining with the ridge structure, current confinement and transverse mode control of the laser can be performed, so that a step of growing a buried layer for burying the ridge structure is not required.

【0010】また、リッジ構造との位置関係を整合させ
ることで、半導体層部分として残す幅を実効的なリッジ
幅とし、このリッジ幅が酸化条件の選定により選択でき
ることにより、実効的なリッジ幅を小さくしてレーザ発
振のためのしきい値を低減し、更には、共振器端面に電
流阻止構造を同時に形成することも可能となる。
[0010] Further, by matching the positional relationship with the ridge structure, the width left as a semiconductor layer portion is made an effective ridge width, and this ridge width can be selected by selection of oxidation conditions, so that the effective ridge width is reduced. It is possible to reduce the threshold value for laser oscillation by making it smaller, and to form a current blocking structure at the end face of the resonator at the same time.

【0011】[0011]

【発明の実施の形態】本発明の半導体発光素子の特に好
ましい態様では、活性層上部の結晶層がリッジ構造を有
し、該リッジ構造の幅が、光共振器の共振器方向の端面
において光共振器の中央部分よりも小さく形成される。
ここで、AlXGa1-XAs(0.8<x≦1)から成る半
導体層を選択酸化する際に、リッジ幅及び酸化条件を適
当に選ぶことにより、光共振器の中央部分ではリッジ側
縁部のみでAlAsを酸化させ、端面ではリッジ幅の全体
でAlAsを酸化させる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In a particularly preferred embodiment of the semiconductor light emitting device of the present invention, the crystal layer above the active layer has a ridge structure, and the width of the ridge structure is equal to the light intensity at the end face of the optical resonator in the resonator direction. It is formed smaller than the central part of the resonator.
Here, when the semiconductor layer made of Al X Ga 1 -X As (0.8 <x ≦ 1) is selectively oxidized, the ridge width and the oxidation conditions are appropriately selected, so that the ridge is formed at the center of the optical resonator. AlAs is oxidized only at the side edges, and AlAs is oxidized over the entire ridge width at the end face.

【0012】選択酸化層が、電流狭窄および横モード制
御のための層として作用するので、実効的なリッジ幅を
小さくすることが出来る。一方、共振器端面近傍では、
リッジの幅方向全体でAlAsの酸化を発生させること
で、共振器端面に流れる電流を有効に阻止することが出
来る。更に、共振器端面では光の電界が大きく広がるた
め、円形に近い出射ビームパターンが得られ、ビーム径
の縮小が容易になる。
Since the selective oxide layer acts as a layer for current confinement and lateral mode control, the effective ridge width can be reduced. On the other hand, near the resonator end face,
Oxidation of AlAs in the entire width direction of the ridge can effectively prevent a current flowing through the cavity end face. Further, since the electric field of the light spreads greatly at the end face of the resonator, a nearly circular output beam pattern is obtained, and the beam diameter can be easily reduced.

【0013】また、一般に、従来の短波長系の半導体レ
ーザでは、共振器端面がレーザ光により熱的に溶融し、
レーザ発振が瞬時に停止していまうという現象「COD
(Catastrophic Optical Damage)」が頻繁に発生し、半
導体レーザの寿命を損っている。このCODは、従来、
共振器端面を発振光に対して透明とする窓構造、或い
は、端面に電流を注入させない端面非注入構造などを採
用することで防止している。
In general, in a conventional short-wavelength semiconductor laser, the cavity facet is thermally melted by laser light,
The phenomenon that laser oscillation stops instantaneously "COD
(Catastrophic Optical Damage) "frequently occurs, which shortens the life of the semiconductor laser. This COD is conventionally
This is prevented by adopting a window structure in which the resonator end face is transparent to oscillation light, or an end face non-injection structure in which current is not injected into the end face.

【0014】AlAs層の選択酸化については、面発光レ
ーザ装置における垂直キャビティーの形成に適用した報
告がある(Y.Hayashi et al., Electronics Letters, V
o.31,pp.560-562,1995)。この面発光レーザ装置では、
円柱メサの中心部分を残して周縁部分のAlAs層を酸化
させ、円柱メサの実効的な活性領域の直径を小さくし
て、しきい値の低減及びレーザ径の縮小を図っている。
しかし、本発明では、選択酸化層の形成をリッジ構造の
半導体レーザに適用することにより、埋込み層形成のた
めの成長工程が不要となる利点が得られるものである。
There is a report on selective oxidation of the AlAs layer applied to the formation of a vertical cavity in a surface emitting laser device (Y. Hayashi et al., Electronics Letters, V).
o.31, pp.560-562,1995). In this surface emitting laser device,
The AlAs layer in the peripheral portion is oxidized while leaving the center portion of the cylindrical mesa to reduce the diameter of the effective active region of the cylindrical mesa, thereby reducing the threshold value and the laser diameter.
However, in the present invention, by applying the formation of the selective oxidation layer to a semiconductor laser having a ridge structure, there is obtained an advantage that a growth step for forming a buried layer is not required.

【0015】また、本発明では、上記選択酸化層を二重
ヘテロ構造に適用して大きなCOD光出力を得ること、
更には、選択酸化の領域とリッジ領域との位置関係に基
づいた効果を得るものであることにおいても、上記報告
例とは異なる。更に、本発明の好ましい態様では、半導
体層の選択酸化を、端面附近で幅が小さなリッジ構造の
半導体発光素子に適用することで、従来の面発光レーザ
装置にはない利点が得られるものである。
In the present invention, a large COD light output can be obtained by applying the selective oxidation layer to a double hetero structure.
Further, this is also different from the above-mentioned report example in that an effect based on the positional relationship between the selective oxidation region and the ridge region is obtained. Further, in a preferred embodiment of the present invention, by applying selective oxidation of the semiconductor layer to a semiconductor light emitting element having a ridge structure having a small width near an end face, an advantage not obtained in the conventional surface emitting laser device can be obtained. .

【0016】図面を参照して本発明を更に詳細に説明す
る。図1(a)は、本発明の一実施形態例の半導体レー
ザの構造を示す断面図、図1(b)はその一部詳細断面
図である。
The present invention will be described in more detail with reference to the drawings. FIG. 1A is a cross-sectional view showing the structure of a semiconductor laser according to an embodiment of the present invention, and FIG. 1B is a partially detailed cross-sectional view thereof.

【0017】n−GaAs基板11上には、まず、下層か
ら順次に、1μm厚みのn−(Al0.3Ga0.7)0.5In0.5
Pクラッド層12、20nm厚みの(Al0.1Ga0.9
0.5In0.5P光閉込め層13、7nm厚みのGa0.5In
0.5P量子井戸層14及び10nm厚みの(Al0.1Ga
0.9)0.5In0.5P障壁層15からなる量子井戸活性層1
6、及び、20nm厚みの(Al0.1Ga0.9)0.5In0.5
光閉じ込め層17が成長形成されている。
On the n-GaAs substrate 11, first, a 1 μm thick n- (Al 0.3 Ga 0.7 ) 0.5 In 0.5
P clad layer 12, 20 nm thick (Al 0.1 Ga 0.9 )
0.5 In 0.5 P light confinement layer 13, Ga 0.5 In of 7 nm thickness
0.5 P quantum well layer 14 and 10 nm thick (Al 0.1 Ga
0.9 ) 0.5 In 0.5 P quantum well active layer 1 composed of P barrier layer 15
6, and 20 nm thick (Al 0.1 Ga 0.9 ) 0.5 In 0.5 P
The light confinement layer 17 is formed by growth.

【0018】更に、その上には、半導体層を構成する2
0nm厚みのp−AlAs層18が積層してあり、その光
共振器の幅方向中央部はそのままp−AlAs層18Aと
して残され、該中央部を除いた周縁部が製造工程中に酸
化されて選択酸化層18Bを形成している。半導体層1
8の上には、全体としてリッジ構造を有する1μm厚み
のp−(Al0.3Ga0.70.5In0.5Pクラッド層19、
20nm厚みのp−Ga0.5In0.5P層20、及び、1μ
m厚みのp−GaAsコンタクト層21から成る積層が形
成されている。このリッジ構造及び半導体層を含む全面
を覆ってSiN層22が形成され、更に、全体を挟んで
図示しない電極が形成されている。リッジ構造は、全体
として共振器方向に細長い棒形状を有し、その両端面の
近傍が幅方向にテーパー状となる先細に形成され、共振
器方向と直交方向の断面は台形を成している。
Further, a semiconductor layer 2 constituting the semiconductor layer is further formed thereon.
A p-AlAs layer 18 having a thickness of 0 nm is laminated, and the widthwise central portion of the optical resonator is left as it is as a p-AlAs layer 18A, and the peripheral portion excluding the central portion is oxidized during the manufacturing process. A selective oxidation layer 18B is formed. Semiconductor layer 1
8, a 1 μm thick p- (Al 0.3 Ga 0.7 ) 0.5 In 0.5 P cladding layer 19 having a ridge structure as a whole,
A 20 nm thick p-Ga 0.5 In 0.5 P layer 20 and 1 μm
A stack of p-GaAs contact layers 21 having a thickness of m is formed. An SiN layer 22 is formed to cover the entire surface including the ridge structure and the semiconductor layer, and further, an electrode (not shown) is formed across the entire surface. The ridge structure has a rod shape elongated in the resonator direction as a whole, and is formed in a tapered shape in which the vicinity of both end surfaces is tapered in the width direction, and a cross section in a direction orthogonal to the resonator direction is trapezoidal. .

【0019】上記実施形態例の半導体レーザを実際に作
製した。まず、n−GaAs基板11上に、n−(Al0.3
Ga0.7)0.5In0.5Pクラッド層12から、p−GaAs
コンタクト層21迄を順次に成膜した。この成膜には、
MOCVD法を用い、その原料には、III族材料として
TMIn及びTeGaを、V族材料としてPH3及びAsH3
を夫々用いた。また、ドーピングガスには、p導電型の
形成にDEZnを、n導電型の形成にSiH4を夫々用い
た。
The semiconductor laser of the above embodiment was actually manufactured. First, on the n-GaAs substrate 11, n- (Al 0.3
From Ga 0.7) 0.5 In 0.5 P cladding layer 12, p-GaAs
The layers up to the contact layer 21 were sequentially formed. In this film formation,
The MOCVD method was used, and its raw materials were TMIn and TeGa as Group III materials, and PH 3 and AsH 3 as Group V materials.
Was used respectively. As the doping gas, DEZn was used to form the p-type conductivity, and SiH 4 was used to form the n-type conductivity.

【0020】次いで、SiNx層を全面に形成し、通常の
ホトリソグラフィの手法を用いて、これをパターニング
した。このパターン形状は、図2に示すように、全体と
してストライプ形状を有し、ストライプの両端部で先細
のテーパー状としてある。引き続き、このストライプパ
ターンをマスクとした湿式エッチングにより、p−Al
As層18の上面迄を選択除去することで、図1のリッ
ジ構造を有するウエハを得た。図2に示したパターンに
より、共振器長は400μmで、リッジ底面におけるリ
ッジ幅は、共振器方向の中央部分で4μm、共振器方向
の両端面で1μmが得られた。
Next, a SiN x layer was formed on the entire surface, and this was patterned using a usual photolithography technique. As shown in FIG. 2, the pattern has a stripe shape as a whole, and is tapered at both ends of the stripe. Subsequently, p-Al is formed by wet etching using the stripe pattern as a mask.
The wafer having the ridge structure of FIG. 1 was obtained by selectively removing the upper surface of the As layer 18. According to the pattern shown in FIG. 2, the resonator length was 400 μm, the ridge width at the bottom of the ridge was 4 μm at the center in the resonator direction, and 1 μm at both end faces in the resonator direction.

【0021】引き続き、石英製のベルジャにウエハをセ
ットし、水蒸気を導入しながら加熱して、ウエハ温度を
450°に上げた。この状態で30分程度維持すること
により、リッジ構造の下部に配置されたp−AlAs層1
8を酸化した。適当な酸化条件を選定することにより、
リッジ下部のp−AlAs層18の共振器中央部には、リ
ッジの幅方向の中心位置に約3μm幅を有するAlAs半
導体層部分18Aをそのまま残し、リッジの幅方向周縁
部に選択酸化層18Bを形成した。また、リッジの共振
器方向の端面附近では、幅方向全体のAlAs層18の全
てを酸化して選択酸化層18Bとした。このような選択
酸化を採用することにより、共振器方向の中央部に3μ
m幅のレーザの電流経路が得られ、他方、共振器端面附
近では電流経路が形成されず、共振器端面部は、電流非
注入構造に形成された。
Subsequently, the wafer was set on a quartz bell jar and heated while introducing steam to raise the wafer temperature to 450 °. By maintaining this state for about 30 minutes, the p-AlAs layer 1 disposed below the ridge structure is formed.
8 was oxidized. By selecting appropriate oxidation conditions,
At the center of the cavity of the p-AlAs layer 18 under the ridge, an AlAs semiconductor layer portion 18A having a width of about 3 μm is left as it is at the center of the ridge in the width direction, and a selective oxide layer 18B is formed on the peripheral portion of the ridge in the width direction. Formed. In the vicinity of the end face of the ridge in the resonator direction, the entire AlAs layer 18 in the entire width direction is oxidized to form the selective oxidation layer 18B. By adopting such selective oxidation, 3 μm is formed at the center in the resonator direction.
A current path of the laser having the width of m was obtained. On the other hand, no current path was formed near the cavity facet, and the cavity facet was formed in a current non-injection structure.

【0022】その後に、絶縁及び保護膜を構成するSi
x層22を全面に形成し、リッジ上部に電流通路用の
窓を形成した。n−GaAs基板11を裏面から研磨し、
ウエハ全体の厚みを100μm程度にした後に、積層の
上面及び基板の裏面に夫々p側電極及びn側電極を形成
した。
Thereafter, the Si constituting the insulating and protective films is formed.
An Nx layer 22 was formed on the entire surface, and a window for a current path was formed above the ridge. Polishing the n-GaAs substrate 11 from the back surface,
After the thickness of the entire wafer was reduced to about 100 μm, a p-side electrode and an n-side electrode were formed on the upper surface of the stack and the back surface of the substrate, respectively.

【0023】上記で得られた半導体レーザの特性を測定
した。測定されたしきい値電流は20mAで、量子効率
は0.4W/Aであった。発振波長は680nmであ
る。この半導体レーザは、端面に電流阻止構造を形成し
たことにより、レーザ出力が100mWまでの範囲では
CODが観測されなかった。遠視野像の半値全幅は、接
合面に平行な方向で25゜、垂直な方向で30°であっ
た。遠視野像のアスペクト比は1.2(30/25)で
あり、ほぼ円形で良好なビーム形状が実現できた。
The characteristics of the semiconductor laser obtained above were measured. The measured threshold current was 20 mA, and the quantum efficiency was 0.4 W / A. The oscillation wavelength is 680 nm. In this semiconductor laser, COD was not observed in the range of laser output up to 100 mW due to the formation of the current blocking structure on the end face. The full width at half maximum of the far field image was 25 ° in a direction parallel to the bonding surface and 30 ° in a direction perpendicular to the bonding surface. The aspect ratio of the far-field image was 1.2 (30/25), and a nearly circular and favorable beam shape could be realized.

【0024】図3(a)及び(b)は、本発明の第2の
実施形態例の半導体レーザを図1(a)及び(b)と同
様に示している。本実施形態例の半導体レーザは0.9
8μm波長で発振する。
FIGS. 3A and 3B show a semiconductor laser according to a second embodiment of the present invention, similarly to FIGS. 1A and 1B. The semiconductor laser of this embodiment is 0.9
It oscillates at a wavelength of 8 μm.

【0025】本実施形態例の半導体レーザは、全体とし
て先に示した実施形態例の半導体レーザと同様な構造を
有すると共に、材料組成並びに活性層及びリッジ構造の
一部において先の実施形態例から相違する。n−GaAs
基板23上には、順次に、2μm厚みのn−Al0.3Ga
0.7Asクラッド層24、10nm厚みのAl0.1Ga0.9
s光閉じ込め層25、10nm厚みのGa0.8In0.2As量
子井戸層26及び10nm厚みのAl0.1Ga0.9As障壁
層27からなる量子井戸活性層28、20nm厚みのA
l0.1Ga0.9As光閉込め層29が形成され、更にその上
に、半導体層部分30A及び選択酸化層30Bを有する
10nm厚みのp−AlAs層30が形成されている。p
−AlAs層30の上には、リッジ構造を成す2μm厚み
のp−Ga0.7Al0.3Asクラッド層31及び1μm厚みの
p−GaAsコンタクト層32が形成され、リッジ構造を
含む全積層を覆ってSiN層33が形成されている。リ
ッジ構造等その他の構成は、先の実施形態例における構
成と同様である。
The semiconductor laser of the present embodiment has the same structure as the semiconductor laser of the above-described embodiment as a whole, and has a material composition and a part of the active layer and the ridge structure which are different from those of the previous embodiment. Different. n-GaAs
On the substrate 23, a 2 μm thick n-Al 0.3 Ga
0.7 As clad layer 24, 10 nm thick Al 0.1 Ga 0.9 A
s-light confinement layer 25, quantum well active layer 28 consisting of 10 nm thick Ga 0.8 In 0.2 As quantum well layer 26 and 10 nm thick Al 0.1 Ga 0.9 As barrier layer 27, 20 nm thick A
A 0.1 Ga 0.9 As light confinement layer 29 is formed, and a 10 nm-thick p-AlAs layer 30 having a semiconductor layer portion 30A and a selective oxidation layer 30B is further formed thereon. p
On the -AlAs layer 30, p-GaAs contact layer 32 of p-Ga 0. 7Al 0.3 As cladding layer 31 and 1μm thickness of 2μm thickness forming the ridge structure is formed, covering the entire stack including the ridge structure An SiN layer 33 is formed. Other configurations such as the ridge structure are the same as the configurations in the previous embodiment.

【0026】第2の実施形態例においても、先の実施形
態例と同様な特性が得られた。共振器長800μmの素
子で、共振器端面に夫々5%/95%の反射膜を施すこ
とにより、しきい値電流15mA、量子効率1W/A
で、1Aの駆動電流までCODのない特性が得られる。
上記各実施形態例では、選択酸化を行なう半導体層とし
てp−AlAsを用いた例を示したが、この半導体層は、
AlAsには限定されず、0.8<x≦1なる範囲のxで
与えられる組成のAlXGa1-XAsであればよい。また、
上記各実施形態例では、GaAs基板上に形成した半導体
レーザの例を挙げて説明したが、InP基板上に形成し
た半導体レーザであってもよい。この場合には、例えば
InPとAlAsとは格子定数が3.7%程度異なるた
め、AlAs半導体層の膜厚を10nm以下とすることが
好ましい。
In the second embodiment, the same characteristics as those in the previous embodiment were obtained. A device having a resonator length of 800 μm and a reflection film of 5% / 95% applied to the end faces of the resonator, respectively, to provide a threshold current of 15 mA and a quantum efficiency of 1 W / A
Thus, characteristics without COD can be obtained up to a drive current of 1 A.
In the above embodiments, p-AlAs is used as the semiconductor layer for performing selective oxidation.
The composition is not limited to AlAs, but may be any Al x Ga 1 -x As having a composition given by x in the range of 0.8 <x ≦ 1. Also,
In the above embodiments, the example of the semiconductor laser formed on the GaAs substrate has been described. However, the semiconductor laser may be formed on the InP substrate. In this case, for example, since the lattice constant of InP and AlAs is different by about 3.7%, the thickness of the AlAs semiconductor layer is preferably set to 10 nm or less.

【0027】また、本発明は、エピタキシャル成長で形
成するレーザ構造に限らず、異種基板上に形成したウエ
ハをボンディング技術を用いて形成したレーザ構造に適
用してもよい。
The present invention is not limited to a laser structure formed by epitaxial growth, but may be applied to a laser structure formed by bonding a wafer formed on a heterogeneous substrate using a bonding technique.

【0028】本発明のリッジ構造の半導体レーザでは、
円形ビーム形状が容易に得られ、また、COD光出力の
大きな半導体レーザを作製することが出来る。即ち、半
導体層の酸化条件の選定により、有効リッジ幅が共振器
方向で異なるリッジ構造を形成できる。任意の有効幅の
リッジを得ることで、埋込み層の成長工程を要すること
なく、必要な電流狭窄及び横モード制御を得ると共に、
レーザ発振のためのしきい値電流を低減し、共振器端面
には電流阻止構造を形成する。つまり、共振器端面でリ
ッジ幅を小さくしたことにより、端面非注入構造がいわ
ば自己整合的に形成される。また、光の電界も大きく広
がり、実質的に円形で狭い出射ビームパターンが得られ
るというメリットも同時に実現できる。
In the semiconductor laser having the ridge structure according to the present invention,
A circular beam shape can be easily obtained, and a semiconductor laser having a large COD light output can be manufactured. That is, a ridge structure in which the effective ridge width differs in the resonator direction can be formed by selecting the oxidation conditions of the semiconductor layer. By obtaining a ridge of any effective width, the necessary current confinement and lateral mode control can be obtained without the need for a step of growing a buried layer.
The threshold current for laser oscillation is reduced, and a current blocking structure is formed on the end face of the resonator. In other words, by reducing the ridge width at the resonator end face, the end face non-injection structure is formed in a so-called self-aligned manner. In addition, the merit that the electric field of the light greatly spreads and a substantially circular and narrow exit beam pattern can be obtained can be realized at the same time.

【0029】[0029]

【発明の効果】以上、説明したように、本発明の半導体
発光素子によると、半導体層を選択的に酸化して選択酸
化膜層を形成することにより、電流狭窄及び横モード制
御のための構造を得ることが出来るので、埋込み層の成
長形成を必要とすることなく、リッジ構造の半導体発光
素子が得られる。従って、本発明は、リッジ導波路型半
導体発光素子の製造工程を簡素化した顕著な効果を奏す
る。
As described above, according to the semiconductor light emitting device of the present invention, by selectively oxidizing the semiconductor layer to form the selective oxide film layer, the structure for controlling the current confinement and the transverse mode can be obtained. Can be obtained, and a semiconductor light emitting device having a ridge structure can be obtained without the need to grow and form a buried layer. Therefore, the present invention has a remarkable effect of simplifying the manufacturing process of the ridge waveguide type semiconductor light emitting device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)及び(b)は夫々、本発明の一実施形態
例の半導体レーザの構造を示す断面図、及び、その一部
詳細断面図。
FIGS. 1A and 1B are a cross-sectional view showing a structure of a semiconductor laser according to an embodiment of the present invention, and a partially detailed cross-sectional view thereof, respectively.

【図2】リッジ形成のためのマスクの形状を示す平面
図。
FIG. 2 is a plan view showing a shape of a mask for forming a ridge.

【図3】(a)及び(b)は夫々、本発明の別の実施形
態例の半導体レーザの構造を示す断面図、及び、その一
部詳細断面図。
3A and 3B are a cross-sectional view showing a structure of a semiconductor laser according to another embodiment of the present invention, and a partial detailed cross-sectional view thereof, respectively.

【図4】(a)及び(b)は、従来の半導体レーザの構
造を図1(a)及び(b)と同様に示す断面図。
FIGS. 4 (a) and (b) are cross-sectional views showing the structure of a conventional semiconductor laser, similarly to FIGS. 1 (a) and 1 (b).

【符号の説明】[Explanation of symbols]

11 n−GaAs基板 12 n−GaAsクラッド層 13 n−(AlGa)InP光閉込め層 14 GaInP井戸層 15 (AlGa)InP障壁層 16 量子井戸活性層 17 p−(AlGa)InP光閉込め層 18 p−AlAs層 18A 半導体層部分 18B 選択酸化層 19 p−(AlGa)InPクラッド層 20 p−GaInP層 21 p−GaAsコンタクト層 22 SiNx層 23 n−GaAs基板 24 n−AlGaAsクラッド層 25 n−AlGaAs光閉込め層 26 GaInAs井戸層 27 AlGaAs障壁層 28 量子井戸活性層 29 p−AlGaAs光閉込め層 30 p−AlAs層 30A 半導体層部分 30B 選択酸化層 31 p−GaAlAsクラッド層 32 p−GaAsコンタクト層 33 SiNx層 51 n−GaAs基板 52 n−(AlGa)InPクラッド層 53 n−(AlGa)InP光閉込め層 54 GaInP 井戸層 55 (AlGa)InP障壁層 56 量子井戸活性層 57 p−(AlGa)InP光閉込め層 58 p−(AlGa)InPクラッド層 59 p−GaInP層 60 p−GaAsコンタクト層 61 n−GaAs埋込み層 Reference Signs List 11 n-GaAs substrate 12 n-GaAs cladding layer 13 n- (AlGa) InP light confinement layer 14 GaInP well layer 15 (AlGa) InP barrier layer 16 quantum well active layer 17 p- (AlGa) InP light confinement layer 18 p-AlAs layer 18A semiconductor layer portion 18B selective oxidation layer 19 p- (AlGa) InP clad layer 20 p-GaInP layer 21 p-GaAs contact layer 22 SiNx layer 23 n-GaAs substrate 24 n-AlGaAs clad layer 25nAlG Light confinement layer 26 GaInAs well layer 27 AlGaAs barrier layer 28 Quantum well active layer 29 p-AlGaAs light confinement layer 30 p-AlAs layer 30 A semiconductor layer portion 30 B selective oxidation layer 31 p-GaAlAs cladding layer 32 p-GaAs contact layer 33 SiNx layer 51 n-GaAs substrate 52 n- (AlGa) InP cladding layer 53 n- (AlGa) InP light confinement layer 54 GaInP well layer 55 (AlGa) InP barrier layer 56 Quantum well active layer 57 p- (AlGa) InP light confinement layer 58 p- (AlGa) InP clad layer 59 p-GaInP layer 60 p-GaAs Contact layer 61 n-GaAs embedded layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 活性層の上下を該活性層のバンドギャッ
プよりも大きなバンドギャップを有する結晶層で挟む光
共振器を備えるリッジ導波路型半導体発光素子におい
て、 前記結晶層の少なくとも一方が、0.8<x≦1とし
て、組成がAlXGa1-XAsで与えられる1の半導体層を
含み、該半導体層の一部が酸化膜層に形成されることを
特徴とする半導体発光素子。
1. A ridge waveguide type semiconductor light emitting device comprising an optical resonator having upper and lower active layers sandwiched by a crystal layer having a band gap larger than the band gap of the active layer, wherein at least one of the crystal layers is .8. A semiconductor light-emitting device comprising: one semiconductor layer having a composition of Al x Ga 1-x As, wherein x <x ≦ 1, and a part of the semiconductor layer is formed on an oxide film layer.
【請求項2】 前記活性層上の結晶層がリッジ構造を有
し、該リッジ構造の幅は、光共振器の端面近傍において
光共振器の中央部分よりも小さく形成される、請求項1
に記載の半導体発光素子。
2. The optical device according to claim 1, wherein the crystal layer on the active layer has a ridge structure, and the width of the ridge structure is smaller in the vicinity of the end face of the optical resonator than in the central portion of the optical resonator.
3. The semiconductor light emitting device according to item 1.
【請求項3】 前記半導体層は、光共振器の端面の近傍
において、前記リッジ構造の幅に整合する部分の実質的
に全てが前記酸化膜層に形成され、光共振器の中央部分
において、リッジ構造の幅に整合する部分の側縁部のみ
が前記酸化膜層に形成されている、請求項2に記載の半
導体発光素子。
3. The semiconductor layer, wherein substantially all of a portion matching the width of the ridge structure is formed in the oxide film layer near an end face of the optical resonator, and at a central portion of the optical resonator, 3. The semiconductor light emitting device according to claim 2, wherein only a side edge portion of a portion corresponding to a width of the ridge structure is formed in the oxide film layer.
JP17702196A 1996-06-17 1996-06-17 Semiconductor light emitting diode Pending JPH104239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17702196A JPH104239A (en) 1996-06-17 1996-06-17 Semiconductor light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17702196A JPH104239A (en) 1996-06-17 1996-06-17 Semiconductor light emitting diode

Publications (1)

Publication Number Publication Date
JPH104239A true JPH104239A (en) 1998-01-06

Family

ID=16023776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17702196A Pending JPH104239A (en) 1996-06-17 1996-06-17 Semiconductor light emitting diode

Country Status (1)

Country Link
JP (1) JPH104239A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102687A (en) * 1999-09-30 2001-04-13 Furukawa Electric Co Ltd:The Semiconductor laser element
JP2003101139A (en) * 2001-09-21 2003-04-04 Nec Corp End surface emitting semiconductor laser and semiconductor laser module
WO2009141933A1 (en) * 2008-05-19 2009-11-26 パナソニック株式会社 Nitride semiconductor laser

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102687A (en) * 1999-09-30 2001-04-13 Furukawa Electric Co Ltd:The Semiconductor laser element
JP4550189B2 (en) * 1999-09-30 2010-09-22 古河電気工業株式会社 Semiconductor laser element
JP2003101139A (en) * 2001-09-21 2003-04-04 Nec Corp End surface emitting semiconductor laser and semiconductor laser module
WO2009141933A1 (en) * 2008-05-19 2009-11-26 パナソニック株式会社 Nitride semiconductor laser
JP2009283512A (en) * 2008-05-19 2009-12-03 Panasonic Corp Nitride semiconductor laser

Similar Documents

Publication Publication Date Title
JP4184769B2 (en) Surface emitting semiconductor laser and manufacturing method thereof
US7638792B2 (en) Tunnel junction light emitting device
JPH0669585A (en) Surface emitting semiconductor laser and its manufacture
JP4219010B2 (en) Semiconductor laser device
JP5323802B2 (en) Semiconductor laser element
US20070153856A1 (en) Semiconductor laser device
US20020015428A1 (en) High-power semiconductor laser device in which near-edge portions of active layer are removed
US7672347B2 (en) Semiconductor light emitting device
JP4168202B2 (en) Vertical cavity semiconductor surface emitting laser device and optical system using the laser device
JP2003046197A (en) Semiconductor laser and its manufacturing method
US7092422B2 (en) Self-pulsation type semiconductor laser
US4602371A (en) High output semiconductor laser device utilizing a mesa-stripe optical confinement region
JPH08307003A (en) Semiconductor laser device
JP2005354038A (en) Semiconductor light emitting element
JP4136272B2 (en) Semiconductor light emitting device
JP2002158406A (en) Surface light-emitting semiconductor laser
JP2001244560A (en) Semiconductor light emitting device and its manufacturing method
JP4345673B2 (en) Semiconductor laser
JPH104239A (en) Semiconductor light emitting diode
JP2679974B2 (en) Semiconductor laser device
JP2009076602A (en) Two-wavelength semiconductor laser device, and manufacturing method thereof
JP6120903B2 (en) Semiconductor laser element
JP2860217B2 (en) Semiconductor laser device and method of manufacturing the same
JP3387976B2 (en) Semiconductor laser
JP2001053386A (en) Semiconductor laser element

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20040825

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20050105

Free format text: JAPANESE INTERMEDIATE CODE: A02