JP3139445B2 - GaN-based semiconductor growth method and GaN-based semiconductor film - Google Patents

GaN-based semiconductor growth method and GaN-based semiconductor film

Info

Publication number
JP3139445B2
JP3139445B2 JP6276098A JP6276098A JP3139445B2 JP 3139445 B2 JP3139445 B2 JP 3139445B2 JP 6276098 A JP6276098 A JP 6276098A JP 6276098 A JP6276098 A JP 6276098A JP 3139445 B2 JP3139445 B2 JP 3139445B2
Authority
JP
Japan
Prior art keywords
gan
based semiconductor
substrate
growth
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6276098A
Other languages
Japanese (ja)
Other versions
JPH10312971A (en
Inventor
晴夫 砂川
彰 碓井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26400106&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3139445(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP6276098A priority Critical patent/JP3139445B2/en
Publication of JPH10312971A publication Critical patent/JPH10312971A/en
Application granted granted Critical
Publication of JP3139445B2 publication Critical patent/JP3139445B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02647Lateral overgrowth

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体結晶のエピ
タキシャル成長方法に関し、格子定数や、熱膨張係数の
異なる基板上にIII−V族化合物半導体結晶膜をエピ
タキシャル成長させる方法及びこの成長方法これによっ
て得られるIII−V族化合物半導体膜に関する。特に
結晶欠陥の少ない半導体膜の形成が困難なGaN系半導
体のエピタキシャル成長方法の適用に有効である。
The present invention relates to a method for epitaxially growing a semiconductor crystal, and more particularly to a method for epitaxially growing a group III-V compound semiconductor crystal film on a substrate having a different lattice constant and a different coefficient of thermal expansion. The present invention relates to a group III-V compound semiconductor film. In particular, it is effective in applying a method of epitaxially growing a GaN-based semiconductor in which formation of a semiconductor film with few crystal defects is difficult.

【0002】さらにGaN系半導体素子及びその製造方
法に関し、結晶欠陥の少ないGaN半導体膜上に形成さ
れたGaN系半導体素子及びその製造方法に関する。
[0002] Further, the present invention relates to a GaN-based semiconductor device and a method of manufacturing the same, and more particularly, to a GaN-based semiconductor device formed on a GaN semiconductor film having few crystal defects and a method of manufacturing the same.

【0003】[0003]

【従来の技術】III−V族化合物半導体で、例えば窒
化ガリウム(GaN)は、禁制帯幅が3.4eVと大き
く、かつ直接遷移型であることから青色発光素子材料と
して注目されている。
2. Description of the Related Art Gallium nitride (GaN), which is a group III-V compound semiconductor, has attracted attention as a blue light emitting device material because it has a large bandgap of 3.4 eV and is a direct transition type.

【0004】この材料を用いた発光デバイスを作製する
ための基板材料としては、成長させるエピタキシャル層
と同じ物質のバルク結晶を用いることが望ましい。しか
しながら、GaNのような結晶では、窒素の解離圧が高
いことによりバルク結晶の作製が非常に困難であった。
したがってバルク結晶の作製が非常に困難な材料を用い
てデバイスを作製する場合は、例えばサファイア(Al
23 )基板などのような格子定数、熱膨張係数など
の物理的性質や、化学的性質も全く異なる基板が用いら
れてきた。
[0004] As a substrate material for manufacturing a light emitting device using this material, it is desirable to use a bulk crystal of the same substance as the epitaxial layer to be grown. However, in a crystal such as GaN, it is very difficult to produce a bulk crystal due to a high dissociation pressure of nitrogen.
Therefore, when fabricating a device using a material for which fabrication of a bulk crystal is extremely difficult, for example, sapphire (Al
Substrates having completely different physical properties such as lattice constant and thermal expansion coefficient and chemical properties such as 2 O 3 ) substrates have been used.

【0005】[0005]

【発明が解決しようとする課題】このようなヘテロ基板
上にエピタキシャル成長を行うと、基板や、エピタキシ
ャル層に歪みや、欠陥が発生し、特に厚い膜を成長した
場合には、クラックが発生することが報告されている
「ジャパニーズ ジャーナル オブ アプライドフィジ
ックス第32巻(1993)第1528−1533頁」
(Jpn.J. Appl.Phys.Vol 32(1993) pp.1528-153
3)。このような場合には、デバイスとしての性能が極
端に悪くなるばかりではなく、成長層が粉々に破壊され
るという結果をしばしば招いた。
When epitaxial growth is performed on such a hetero-substrate, strain and defects are generated in the substrate and the epitaxial layer, and cracks are generated particularly when a thick film is grown. "Japanese Journal of Applied Physics, Vol. 32 (1993), pp. 1528-1533"
(Jpn.J. Appl.Phys.Vol 32 (1993) pp.1528-153
3). In such a case, not only the performance of the device becomes extremely poor, but also the result that the grown layer is broken into pieces is often caused.

【0006】また格子不整合系のエピタキシャル成長に
おいて、転位密度が少ない高品質のエピタキシャル成長
層を得るために、最初の結晶成長で1μmのSiO2
膜でストライプを形成したサファイア基板上にGaN膜
の選択成長を行い、格子欠陥や転位を特定の領域に集中
させることが特開平8−64791号公報に記載されて
いる。しかし特開平8−64791号公報の例ではSi
2 膜部分で成長が起こらないために全面に平坦な成
長層を得ることができず、素子形成箇所に制約が生じて
いた。
In order to obtain a high-quality epitaxially grown layer having a low dislocation density in the lattice-mismatched epitaxial growth, a 1 μm SiO 2 film is firstly grown.
Japanese Patent Application Laid-Open No. 8-64791 discloses that a GaN film is selectively grown on a sapphire substrate on which a stripe is formed by a film to concentrate lattice defects and dislocations in a specific region. However, in the example of JP-A-8-64791, Si
Since growth did not occur in the O 2 film portion, a flat growth layer could not be obtained on the entire surface, and restrictions were placed on element formation locations.

【0007】本発明の目的は、格子定数や熱膨張係数が
異なるヘテロ基板を用いてエピタキシャル成長を行って
も、基板やエピタキシャル成長層への歪みや欠陥の発生
が少なく、また厚い膜を成長してもクラックが入りにく
いエピタキシャル成長層を得るための成長方法を提供す
ることにある。
[0007] An object of the present invention is to provide a method for producing a thin film even when epitaxial growth is performed using a heterosubstrate having a different lattice constant or thermal expansion coefficient. An object of the present invention is to provide a growth method for obtaining an epitaxial growth layer in which cracks are less likely to occur.

【0008】さらに本発明の他の目的は、上記エピタキ
シャル成長をGaN系半導体の成長に利用し結晶欠陥の
少ないGaN系半導体膜を提供することにある。
Another object of the present invention is to provide a GaN-based semiconductor film having few crystal defects by utilizing the above-mentioned epitaxial growth for growing a GaN-based semiconductor.

【0009】また本発明の他の目的は、上記エピタキシ
ャル成長により形成されたGaN系半導体膜上にGaN
系半導体素子構造(例えばGaN系半導体発光素子構
造)を作製することにより、優れた素子特性の得られる
GaN系半導体素子(例えばGaN系半導体発光素子)
を提供することにある。
Another object of the present invention is to provide a GaN-based semiconductor film formed by the above-mentioned epitaxial growth.
GaN-based semiconductor device (for example, GaN-based semiconductor light-emitting device) that can obtain excellent device characteristics by producing a GaN-based semiconductor device structure (for example, GaN-based semiconductor light-emitting device structure)
Is to provide.

【0010】[0010]

【課題を解決するための手段】本発明のGaN系半導体
の成長方法は、GaN系半導体のエピタキシャル成長に
おいて、基板表面にパターニングされたマスク材料によ
り成長領域を形成する工程と、前記成長領域に前記基板
と格子定数や熱膨張係数が異なるGaN系半導体のファ
セット構造を形成しながら成長させ、隣接する成長領域
の前記GaN系半導体のファセット構造とともに前記マ
スク材料を覆い表面を平坦化する工程とを有することを
特徴する。また、平坦化された表面に前記各工程を繰り
返すことを特徴とする。
According to the present invention, there is provided a method for growing a GaN-based semiconductor, comprising the steps of: forming a growth region on a substrate surface using a patterned mask material; And growing while forming a facet structure of a GaN-based semiconductor having a different lattice constant and coefficient of thermal expansion, and covering the mask material together with the facet structure of the GaN-based semiconductor in an adjacent growth region to planarize the surface. It is characterized. Further, each of the above steps is repeated on the flattened surface.

【0011】また、本発明のGaN系半導体の成長方法
は、前記基板表面に、前記成長領域に成長するGaN系
半導体と同じ材料か、あるいは格子定数や熱膨張係数の
似た性質を有するGaN系半導体を形成した後に、前記
パターニングされたマスク材料により形成された成長領
域を形成することを特徴とする。
Further, according to the method of growing a GaN-based semiconductor of the present invention, the GaN-based semiconductor having the same material as the GaN-based semiconductor grown in the growth region or having a similar lattice constant or thermal expansion coefficient is formed on the substrate surface. After forming the semiconductor, a growth region formed by the patterned mask material is formed.

【0012】さらに、マスク材料を用いて形成する成長
領域がストライプ形状、矩形状、丸状、又は三角形状で
あることを特徴とする。また、前記基板は、MgAl2
4基板、Si基板、ZnO基板、SiC基板、LiG
aO2基板、Al23基板のいずれか1つから選択さ
れ、前記GaN系半導体は、GaN、InGaN、Al
GaNのいずれか1つから選択されることを特徴とす
る。
Further, the growth region formed by using the mask material has a stripe shape, a rectangular shape, a round shape, or a triangular shape. Further, the substrate is made of MgAl 2
O 4 substrate, Si substrate, ZnO substrate, SiC substrate, LiG
aO 2 substrate or Al 2 O 3 substrate, wherein the GaN-based semiconductor is GaN, InGaN, Al
It is characterized by being selected from any one of GaN.

【0013】さらに、前記GaN系半導体は、GaN、
InGaN、AlGaNのいずれか1つから選択され、
かつ、前記マスクの形状がストライプ形状であって、前
記ファセット構造の側壁が{1−101}面であること
を特徴とする。あるいは、前記GaN系半導体は、Ga
N、InGaN、AlGaNのいずれか1つから選択さ
れ、かつ、前記マスクの形状がストライプ形状であっ
て、ストライプ方向が<11−20>方向または<1−
100>方向であることを特徴とする。
Further, the GaN-based semiconductor is GaN,
Selected from one of InGaN and AlGaN,
Further, the mask has a stripe shape, and a side wall of the facet structure is a {1-101} plane. Alternatively, the GaN-based semiconductor is Ga
N, InGaN, or AlGaN, and the mask has a stripe shape, and the stripe direction is a <11-20> direction or a <1--20> direction.
100> direction.

【0014】また、GaN系半導体の形成の後、前記G
aN系半導体から少なくとも前記基板、マスク材料を除
去する工程と有することを特徴とする。
After the formation of the GaN-based semiconductor,
removing at least the substrate and the mask material from the aN-based semiconductor.

【0015】本発明のGaN系半導体の成長方法は、上
記のGaN系半導体の形成の後、デバイス構造を成長す
る工程を有することを特徴とする。また、前記デバイス
構造がレーザ、FET、HBTのいずれかであることを
特徴とする。
The method of growing a GaN-based semiconductor according to the present invention is characterized in that the method further includes a step of growing a device structure after the formation of the GaN-based semiconductor. Further, the device structure is one of a laser, an FET, and an HBT.

【0016】本発明のGaN系半導体膜は、GaN系半
導体と格子定数や熱膨張係数が異なる基板と、前記基板
表面に成長領域を形成するパターニングされたマスク材
料と、前記成長領域でファセット構造を形成しながら成
長しGaN系半導体が隣接する成長領域のGaN系半導
体の成長とともに前記マスク材料を覆い、前記GaN系
半導体の成長により前記ファセット構造が埋め込まれて
形成されたGaN系半導体とを有することを特徴とす
る。
The GaN-based semiconductor film of the present invention comprises a substrate having a different lattice constant or thermal expansion coefficient from a GaN-based semiconductor, a patterned mask material for forming a growth region on the substrate surface, and a facet structure formed by the growth region. A GaN-based semiconductor that grows while being formed and covers the mask material together with the growth of the GaN-based semiconductor in the adjacent growth region, and that the facet structure is embedded and formed by the growth of the GaN-based semiconductor. It is characterized by.

【0017】さらに、GaN系半導体膜から少なくとも
前記基板、マスク材料が除去されていることを特徴とす
る。
Furthermore, at least the substrate and the mask material are removed from the GaN-based semiconductor film.

【0018】また、前記基板表面に、前記成長領域に成
長するGaN系半導体と同じ材料か、あるいは格子定数
や熱膨張係数の似た性質を有するGaN系半導体が形成
され、前記GaN系半導体表面上にマスク材料による成
長領域が形成されていることを特徴とする。
In addition, a GaN-based semiconductor having the same material as the GaN-based semiconductor grown in the growth region or a GaN-based semiconductor having similar properties such as a lattice constant and a thermal expansion coefficient is formed on the surface of the substrate. In which a growth region made of a mask material is formed.

【0019】さらに、マスク材料を用いて形成する成長
領域がストライプ形状、矩形状、丸状、又は三角形状で
あることを特徴とする。また、基板は、MgAl24
板、Si基板、ZnO基板、SiC基板、LiGaO2
基板、Al23基板のいずれか1つから選択され、Ga
N系半導体は、GaN、InGaN、AlGaNのいず
れか1つから選択されることを特徴とする。
Furthermore, the present invention is characterized in that the growth region formed using the mask material has a stripe shape, a rectangular shape, a round shape, or a triangular shape. The substrate is a MgAl 2 O 4 substrate, Si substrate, ZnO substrate, SiC substrate, LiGaO 2
Substrate or an Al 2 O 3 substrate.
The N-based semiconductor is characterized by being selected from any one of GaN, InGaN, and AlGaN.

【0020】さらに、GaN系半導体は、GaN、In
GaN、AlGaNのいずれか1つから選択され、か
つ、前記マスクの形状がストライプ形状であって、前記
ファセット構造の側壁が{1−101}面であることを
特徴とする。あるいは、GaN系半導体は、GaN、I
nGaN、AlGaNのいずれか1つから選択され、か
つ、前記マスクの形状がストライプ形状であって、スト
ライプ方向が<11−20>方向または<1−100>
方向であることを特徴とする。
Further, GaN-based semiconductors include GaN, In
The mask is selected from one of GaN and AlGaN, and the shape of the mask is a stripe shape, and a side wall of the facet structure is a {1-101} plane. Alternatively, GaN-based semiconductors include GaN, I
The mask is selected from one of nGaN and AlGaN, and the shape of the mask is a stripe shape, and the stripe direction is a <11-20> direction or a <1-100> direction.
Direction.

【0021】本発明のGaN系半導体素子は、上記のG
aN系半導体膜上にデバイス構造が形成されていること
を特徴とする。また、前記デバイス構造がレーザ、FE
T、HBTのいずれかであることを特徴とする。
The GaN-based semiconductor device of the present invention is characterized in that
A device structure is formed on the aN-based semiconductor film. Further, the device structure is laser, FE
T or HBT.

【0022】[0022]

【発明の実施の形態】本発明の実施の形態について、図
面を用いて以下に説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0023】(第1の実施の形態)本発明の第1の実施
の形態について、III−V族化合物半導体のエピタキ
シャル成長を例に図1を参照して説明する。
(First Embodiment) A first embodiment of the present invention will be described with reference to FIG. 1 taking as an example the epitaxial growth of a group III-V compound semiconductor.

【0024】初めに、基板材料とは性質を異にし、その
次の工程で成長する材料と同じか、あるいはその材料と
格子定数や熱膨張係数の似た性質を有するIII−V族
化合物半導体12を基板上に成長し、その表面上にフォ
トリソグラフィー法とウエットエッチング法を用いて基
板上の成長領域を制限するマスク14を形成する。マス
クの形状はストライプとし、このときマスク14の厚さ
は10nmから2μm程度であり、成長領域13および
マスク14のストライプ幅は、通常0.1μmから10
μm程度とした。(図1(a))。
First, a group III-V compound semiconductor 12 having a property different from that of the substrate material and having the same property as the material to be grown in the next step or having a property similar to the material in the lattice constant and the coefficient of thermal expansion. Is grown on a substrate, and a mask 14 for limiting a growth region on the substrate is formed on the surface by using photolithography and wet etching. The shape of the mask is a stripe. At this time, the thickness of the mask 14 is about 10 nm to 2 μm, and the stripe width of the growth region 13 and the mask 14 is usually 0.1 μm to 10 μm.
It was about μm. (FIG. 1 (a)).

【0025】次に、成長領域に対しIII−V族化合物
半導体膜のエピタキシャル成長を行う。マスク14の付
いた基板をエピタキシャル装置の反応管に挿入して、水
素ガス、窒素ガス、または、水素と窒素の混合ガスとV
族原料ガスを供給しながら基板11を所定の成長温度ま
で昇温する。温度が安定してからIII族原料を供給し
て、成長領域13にIII−V族化合物半導体15を成
長する。結晶成長方法は、好ましくはIII族原料に塩
化物を用いる塩化物輸送法による気相成長(VPE:Va
por Phase Epitaxy )で行うが、III族原料に有
機金属を用いる有機金属化合物気相成長(MOCVD:
Metal Organic Vapor Phase Epitaxy)を用いても
よい。
Next, a group III-V compound semiconductor film is epitaxially grown on the growth region. The substrate with the mask 14 is inserted into a reaction tube of an epitaxial apparatus, and hydrogen gas, nitrogen gas, or a mixed gas of hydrogen and nitrogen and V
The substrate 11 is heated to a predetermined growth temperature while supplying a group source gas. After the temperature is stabilized, a group III raw material is supplied to grow the group III-V compound semiconductor 15 in the growth region 13. The crystal growth method is preferably a vapor phase growth (VPE: Va) by a chloride transport method using a chloride as a group III raw material.
por Phase Epitaxy), but metalorganic compound vapor phase growth (MOCVD:
Metal Organic Vapor Phase Epitaxy) may be used.

【0026】III−V族化合物半導体15は、初期段
階ではマスク14上に成長せず、成長領域13のみで結
晶成長が起こり、成長領域上のIII−V族化合物半導
体15にはファセット構造が形成される。このときのI
II−V族化合物半導体15の成長条件はファセット構
造が形成されるよう650℃から1100℃の成長温
度、III族原料の供給量に対し等倍から200000
倍を供給するV族原料の供給量の範囲で行う。(図1
(b))。
The III-V compound semiconductor 15 does not grow on the mask 14 in the initial stage, and crystal growth occurs only in the growth region 13, and a facet structure is formed in the III-V compound semiconductor 15 on the growth region. Is done. I at this time
The growth conditions for the II-V compound semiconductor 15 are as follows: a growth temperature of 650 ° C. to 1100 ° C. so that a facet structure is formed;
The operation is performed within the range of the supply amount of the group V raw material that supplies double the amount. (Figure 1
(B)).

【0027】さらにエピタキシャル成長を続けると、I
II−V族化合物半導体15はファセット構造の面に対
して垂直な方向に成長が進むため、成長領域だけでなく
マスク14を覆うようになる。そして隣接する成長領域
のIII−V族化合物半導体15のファセット構造と接
触する(図1(c))。
When epitaxial growth is further continued, I
Since the group II-V compound semiconductor 15 grows in a direction perpendicular to the facet structure, it covers not only the growth region but also the mask 14. Then, it comes into contact with the facet structure of the group III-V compound semiconductor 15 in the adjacent growth region (FIG. 1C).

【0028】さらにエピタキシャル成長を続けると、フ
ァセット構造が埋め込まれ(図1(d))、最終的に
は、平坦な表面を有するIII−V族化合物半導体膜1
5を得ることができる(図1(e))。
When the epitaxial growth is further continued, the facet structure is buried (FIG. 1D), and finally, the III-V compound semiconductor film 1 having a flat surface is formed.
5 can be obtained (FIG. 1 (e)).

【0029】通常、基板上に格子定数や熱膨張率の異な
るIII−V族化合物半導体の結晶成長を行うと、基板
との界面で発生した結晶欠陥にともなう転位は、界面と
垂直方向に伸びるために、たとえエピタキシャル膜を厚
くしても、転位の低減は見られない。
Normally, when a group III-V compound semiconductor having a different lattice constant and a different coefficient of thermal expansion is grown on a substrate, dislocations due to crystal defects generated at the interface with the substrate extend in a direction perpendicular to the interface. In addition, even if the thickness of the epitaxial film is increased, no reduction in dislocation is observed.

【0030】本実施の形態による方法では、選択成長に
より成長領域にファセット構造を形成している。このフ
ァセットは成長速度が他の面より遅いために現れる。フ
ァセットの出現により転位がファセットに向かって進
み、基板と垂直に伸びていた転位が垂直な方向へ伸びる
ことができなくなる。結晶欠陥はファセットの成長とと
もに横方向に曲げられ、エピタキシャル膜の膜厚増加に
伴い、成長領域では結晶欠陥が減少していき、結晶の端
に出てしまうか、閉ループを形成することがわかった。
これにより、エピタキシャル膜内の欠陥の低減が計られ
る。このようにファセット構造を形成して成長すること
で、結晶欠陥を大幅に減らせる。
In the method according to the present embodiment, a facet structure is formed in a growth region by selective growth. This facet appears because the growth rate is slower than other aspects. With the appearance of the facet, the dislocation proceeds toward the facet, and the dislocation extending perpendicular to the substrate cannot be extended in the vertical direction. It was found that the crystal defects were bent laterally with the growth of the facet, and as the thickness of the epitaxial film increased, the crystal defects decreased in the growth region and appeared at the edge of the crystal or formed a closed loop. .
As a result, defects in the epitaxial film can be reduced. By forming and growing the facet structure in this manner, crystal defects can be significantly reduced.

【0031】特にIII族原料に塩化物を用いる塩化物
輸送法による気相成長では、III−V族化合物半導体
15の成長が速いため、ファセット構造のうち基板面と
同じ面が消えるのがはやい。したがって基板と垂直に伸
びる転位は、はやくからファセット構造のうち基板面と
異なる面の方向に伸びることになりIII−V族化合物
半導体15における垂直に伸びる転位を大幅に減らすこ
とができる。
In particular, in the vapor phase growth by the chloride transport method using chloride as a group III raw material, the growth of the group III-V compound semiconductor 15 is rapid, so that the same facet structure as the substrate surface in the facet structure disappears quickly. Therefore, the dislocations extending perpendicular to the substrate will soon extend in a direction different from the substrate surface in the facet structure, and the dislocations extending vertically in the group III-V compound semiconductor 15 can be greatly reduced.

【0032】なお、III族原料に有機金属を用いる有
機金属化合物気相成長は塩化物輸送法による気相成長と
比べて成長速度が遅くなるが、上述のようにのIII−
V族化合物半導体15のファセット構造のうち基板面と
同じ面がはやく消えるようにすればよい。例えば成長領
域に対するマスクの面積を大きくすればマスク上からの
成長種の供給量が増えるため成長領域におけるIII−
V族化合物半導体15の成長をはやめることができる。
The organic metal compound vapor phase growth using an organic metal as the group III raw material has a lower growth rate than the vapor phase growth by the chloride transport method.
What is necessary is just to make the face which is the same as the substrate face in the facet structure of the group V compound semiconductor 15 disappear quickly. For example, if the area of the mask with respect to the growth region is increased, the supply amount of the growth species from above the mask is increased.
The growth of the group V compound semiconductor 15 can be stopped.

【0033】(第2の実施の形態)本発明の第2の実施
の形態について、III−V族化合物半導体のエピタキ
シャル成長を例に図5を参照して説明する。
(Second Embodiment) A second embodiment of the present invention will be described with reference to FIG. 5 taking the example of epitaxial growth of a group III-V compound semiconductor.

【0034】図5(a)〜(b)までは第1の実施の形
態の図1(a)から(e)と同様な工程で作製している
ため説明を省略する。第2の実施の形態では、III−
V族化合物半導体のエピタキシャル成長を行い成長層を
平坦化した後に、第2のマスクを設け(図5(c))、
第1の実施の形態と同様にファセット構造を形成し、平
坦化を行っている(図5(d))。
FIGS. 5A to 5B are manufactured by the same steps as those of FIGS. 1A to 1E of the first embodiment, and the description is omitted. In the second embodiment, III-
After epitaxially growing a group V compound semiconductor and flattening the growth layer, a second mask is provided (FIG. 5C).
A facet structure is formed and flattened as in the first embodiment (FIG. 5D).

【0035】第2の実施の形態では、図1(a)から
(e)の作製工程を繰り返すことにより形成したIII
−V族化合物半導体膜の欠陥密度をさらに低減すること
ができる。
In the second embodiment, III is formed by repeating the manufacturing steps shown in FIGS.
The defect density of the group-V compound semiconductor film can be further reduced.

【0036】第1の実施の形態あるいは第2の実施の形
態は、基板と格子定数や熱膨張係数の異なる材料を結晶
成長する場合に有効であり、Al23,Si,SiC,
MgAl24,LiGaO2,ZnO等の基板への、G
aN、GaAlN、InGaN、InN等のIII−V
族化合物半導体の成長に適用できる。
The first embodiment or the second embodiment is effective for crystal growth of a material having a different lattice constant or thermal expansion coefficient from that of the substrate, such as Al 2 O 3 , Si, SiC,
G to a substrate of MgAl 2 O 4 , LiGaO 2 , ZnO, etc.
III-V such as aN, GaAlN, InGaN, InN
It can be applied to the growth of group III compound semiconductors.

【0037】また図1あるいは図5では基板にその次の
工程で成長する物質と同じ、あるいはその物質と格子定
数や熱膨張係数の似た性質を有するIII−V族化合物
半導体膜表面にマスクを形成した例を示したが、基板1
1表面に直接マスクを形成して図1(b)〜(e)ある
いは図5(b)〜(d)のプロセスを行っても同様な効
果が得られる。
In FIG. 1 or FIG. 5, a mask is formed on the surface of a group III-V compound semiconductor film having the same property as the substance grown on the substrate in the next step, or having a property similar to the substance in lattice constant or thermal expansion coefficient. Although the example of the formation is shown, the substrate 1
Similar effects can be obtained by directly forming a mask on one surface and performing the processes of FIGS. 1B to 5E or FIGS. 5B to 5D.

【0038】さらに本実施の形態ではマスク14として
ストライプ状のパターンを用いた成長領域について説明
を行ったが、これに限られるものではなく、ファセット
構造が現れるものであれば、成長領域の形状が矩形状、
丸状、又は三角状となるマスクでもよい。
Further, in the present embodiment, the growth region using the stripe pattern as the mask 14 has been described. However, the present invention is not limited to this. Rectangular,
A round or triangular mask may be used.

【0039】(第3の実施の形態)次に、本発明の第3
の実施の形態について説明する。第3の実施の形態は、
第1の実施の形態あるいは第2の実施の形態で説明した
III−V族化合物半導体のエピタキシャル成長をGa
N系半導体の成長に利用しGaN系半導体膜を形成する
ものである。
(Third Embodiment) Next, a third embodiment of the present invention will be described.
An embodiment will be described. In the third embodiment,
The epitaxial growth of the group III-V compound semiconductor described in the first embodiment or the second embodiment is performed by Ga.
A GaN-based semiconductor film is formed for use in growing an N-based semiconductor.

【0040】第3の実施の形態は、第1の実施の形態あ
るいは第2の実施の形態で説明したエピタキシャル成長
をGaN系半導体に利用したものであり、共通する箇所
については説明を簡略化する。
In the third embodiment, the epitaxial growth described in the first embodiment or the second embodiment is applied to a GaN-based semiconductor, and the description of common parts will be simplified.

【0041】はじめに、GaN系半導体と熱膨張係数や
格子定数の異なる基板材料上に、フォトリソグラフィー
法とウエットエッチング法を用いて基板上の成長領域を
制限するマスクを形成する。
First, a mask for limiting a growth region on a substrate is formed on a substrate material having a different thermal expansion coefficient or lattice constant from that of a GaN-based semiconductor by using photolithography and wet etching.

【0042】次に成長領域に対しGaN系半導体のエピ
タキシャル成長を行う。成長領域に成長するGaN系半
導体の結晶成長方法は、III族原料にガリウム(G
a)と塩化水素(HCl)の反応生成物である塩化ガリ
ウム(GaCl)とV族原料にアンモニア(NH3 )ガ
スを用いる塩化物輸送法による気相成長(VPE:Vapo
r Phase Epitaxy )であるハイドライドVPE法
や、Ga原料に有機金属を用いる有機金属化合物気相成
長(MOCVD:Metal Organic Vapor PhaseEpitax
y)を用いる。成長温度は650℃から1100℃で行
い、V族原料の供給量はIII族原料の供給量に対し等
倍から200000倍を供給すればよい。
Next, the GaN-based semiconductor is epitaxially grown in the growth region. A crystal growth method for a GaN-based semiconductor grown in a growth region employs gallium (G
a) Vapor phase growth (VPE: Vapo) by chloride transport method using gallium chloride (GaCl) which is a reaction product of hydrogen chloride (HCl) and ammonia (NH 3 ) gas as a group V raw material.
r Phase Epitaxy), hydride VPE method, MOCVD (Metal Organic Vapor Phase Epitaxy)
Use y). The growth temperature is from 650 ° C. to 1100 ° C., and the supply amount of the group V raw material may be 1 to 200,000 times the supply amount of the group III raw material.

【0043】GaN系半導体層のエピタキシャル成長
は、第1の実施の形態と同様に、GaN系半導体が初期
段階ではマスク上に成長せず成長領域のみで結晶成長が
起こり、成長領域上のGaN系半導体膜には基板の面方
位とは異なる面方位のファセット構造が形成される。
In the epitaxial growth of the GaN-based semiconductor layer, as in the first embodiment, the GaN-based semiconductor does not grow on the mask in the initial stage, and crystal growth occurs only in the growth region. A facet structure having a plane orientation different from the plane orientation of the substrate is formed on the film.

【0044】エピタキシャル成長を続けると、GaN系
半導体はファセット構造の面に対して垂直な方向に成長
が進むため、成長領域だけでなくマスクを覆うようにな
る。そして隣接する成長領域のGaN系半導体のファセ
ット構造と接触する。さらにエピタキシャル成長を続け
ると、GaN系半導体によりファセット構造が埋め込ま
れ、最終的には、平坦な表面を有するGaN系半導体膜
を得ることができる。
When the epitaxial growth is continued, the GaN-based semiconductor grows in a direction perpendicular to the facet structure, so that it covers not only the growth region but also the mask. Then, it comes into contact with the facet structure of the GaN-based semiconductor in the adjacent growth region. When the epitaxial growth is further continued, the facet structure is buried with the GaN-based semiconductor, and finally, a GaN-based semiconductor film having a flat surface can be obtained.

【0045】GaNはバルク結晶の作製が困難なため、
従来のGaN系半導体の結晶成長では基板としてサファ
イア基板、SiC基板等を用いてきたが、これらの基板
はGaN系半導体とは格子定数や熱膨張率が異なってい
る。このためGaN系半導体のエピタキシャル成長を行
うと、基板との界面で発生した結晶欠陥にともなう転位
が界面と垂直方向に伸び、たとえエピタキシャル膜を厚
くしても転位の低減は見られなかった。
GaN is difficult to fabricate in bulk crystals,
In conventional crystal growth of GaN-based semiconductors, sapphire substrates, SiC substrates, and the like have been used as substrates, but these substrates have different lattice constants and thermal expansion coefficients from GaN-based semiconductors. For this reason, when epitaxial growth of a GaN-based semiconductor is performed, dislocations due to crystal defects generated at the interface with the substrate extend in the direction perpendicular to the interface, and even if the epitaxial film is thickened, no reduction in the dislocation was observed.

【0046】本実施の形態によるエピタキシャル成長方
法では、GaN系半導体と熱膨張係数や格子定数の異な
る基板材料上のマスク材料により選択的に形成された成
長領域に、基板面方位とは異なる面方位のファセット構
造を有するGaN系半導体をエピタキシャル成長してい
る。このファセットは成長速度が他の面より遅いために
現れ、ファセットの出現により、基板とGaN系半導体
の界面付近から発生した転位がファセットに向かって進
むようになり、基板と垂直に伸びていた転位が垂直な方
向へ伸びることができなくなる。
In the epitaxial growth method according to the present embodiment, a growth region selectively formed by a mask material on a substrate material having a different thermal expansion coefficient or lattice constant from a GaN-based semiconductor has a plane orientation different from the substrate plane orientation. A GaN-based semiconductor having a facet structure is epitaxially grown. This facet appears because the growth rate is slower than other planes, and the appearance of the facet causes dislocations generated near the interface between the substrate and the GaN-based semiconductor to proceed toward the facet, and dislocations extending perpendicular to the substrate. Cannot extend in the vertical direction.

【0047】したがってGaN系半導体の結晶欠陥はフ
ァセットの成長とともに横方向に曲げられ、GaN系半
導体のエピタキシャル成長による膜厚の増加に伴い、成
長領域では結晶欠陥が減少していき、結晶の端に出てし
まうか、閉ループを形成する。これにより、エピタキシ
ャル膜内の欠陥の低減が計られる。
Therefore, the crystal defects of the GaN-based semiconductor are bent laterally with the growth of the facet, and as the film thickness increases by epitaxial growth of the GaN-based semiconductor, the crystal defects decrease in the growth region and emerge at the edge of the crystal. Or form a closed loop. As a result, defects in the epitaxial film can be reduced.

【0048】このように基板上にマスクにより選択的に
形成された成長領域にファセット構造を有するGaN系
半導体膜を成長することで、GaN系半導体膜の結晶欠
陥を大幅に減らすことが可能となる。
As described above, by growing a GaN-based semiconductor film having a facet structure in a growth region selectively formed by a mask on a substrate, crystal defects of the GaN-based semiconductor film can be significantly reduced. .

【0049】さらに、第3の実施の形態で得られるGa
N系半導体膜は膜厚を所望の厚さに成長してから基板
(サファイア基板等)とマスクとGaN系半導体の一部
を除去することで、結晶欠陥の少ないGaN系半導体膜
の基板として用いることができる。このようなGaN系
半導体膜上にGaN系半導体素子を作製することで、G
aN系半導体素子の積層構造の結晶性を改善することが
できる。
Further, the Ga obtained in the third embodiment is
The N-based semiconductor film is used as a substrate of a GaN-based semiconductor film having few crystal defects by removing a substrate (a sapphire substrate or the like), a mask, and part of the GaN-based semiconductor after growing the film to a desired thickness. be able to. By manufacturing a GaN-based semiconductor element on such a GaN-based semiconductor film, G
The crystallinity of the stacked structure of the aN-based semiconductor element can be improved.

【0050】またGaN系半導体素子がGaN系半導体
発光素子の場合は、サファイア基板等で問題となってい
たGaN系半導体発光素子における基板裏面への電極形
成が可能になる。
When the GaN-based semiconductor device is a GaN-based semiconductor light-emitting device, an electrode can be formed on the back surface of the GaN-based semiconductor light-emitting device, which has been a problem with a sapphire substrate or the like.

【0051】さらにGaN系半導体発光素子がGaN系
半導体レーザの場合は、GaN系半導体とへき開面が異
なるヘテロ基板上にレーザ構造を形成しても、へき開に
よる共振器ミラーの作製が可能になる。
Further, when the GaN-based semiconductor light emitting device is a GaN-based semiconductor laser, even if a laser structure is formed on a heterosubstrate having a cleavage plane different from that of the GaN-based semiconductor, a cavity mirror can be manufactured by cleavage.

【0052】なお、第3の実施の形態におけるGaN系
半導体膜の形成は説明上第1の実施の形態のエピタキシ
ャル成長を用いた記載としたが、第2の実施の形態でも
適用可能である。
Although the formation of the GaN-based semiconductor film in the third embodiment has been described using the epitaxial growth of the first embodiment for explanation, it can be applied to the second embodiment.

【0053】第3の実施の形態の説明では、GaN系半
導体と格子定数や熱膨張係数の異なる基板表面に直接マ
スクを形成する例を示したが、基板上にGaN系半導体
を成長した後に、該GaN系半導体表面にマスクを形成
しても同様な効果が得られる。
In the description of the third embodiment, an example is shown in which a mask is formed directly on the substrate surface having a different lattice constant or thermal expansion coefficient from that of the GaN-based semiconductor, but after growing the GaN-based semiconductor on the substrate, Similar effects can be obtained by forming a mask on the GaN-based semiconductor surface.

【0054】さらに本実施の形態に用いるマスクとして
は第1の実施の形態あるいは第2の実施の形態と同様な
材料、寸法、形状を適用することができる。また本実施
の形態におけるGaN系半導体膜としてはGaN、Al
GaN、InGaN等があげられるがGaNが最も好ま
しい。
Further, as the mask used in this embodiment, the same materials, dimensions and shapes as those in the first embodiment or the second embodiment can be applied. In addition, as the GaN-based semiconductor film in the present embodiment, GaN, Al
GaN, InGaN and the like can be mentioned, but GaN is most preferable.

【0055】またGaN系半導体素子としては、GaN
系半導体レーザやGaN系LED等のGaN系半導体発
光素子の他にFETやHBTなどのデバイスにも適用可
能である。
As the GaN-based semiconductor device, GaN
In addition to GaN-based semiconductor light-emitting elements such as GaN-based LEDs and GaN-based semiconductor lasers, the present invention can be applied to devices such as FETs and HBTs.

【0056】(第4の実施の形態)本発明の第4の実施
の形態について、図6を参照して説明する。
(Fourth Embodiment) A fourth embodiment of the present invention will be described with reference to FIG.

【0057】第4の実施の形態は、GaN系半導体と熱
膨張係数や格子定数が異なる基板上に、第1の実施の形
態のエピタキシャル成長を利用してGaN系半導体厚膜
を成長し、さらにこのGaN系半導体厚膜上にGaN系
半導体素子を作製するものである。
In the fourth embodiment, a GaN-based semiconductor thick film is grown on a substrate having a different coefficient of thermal expansion and lattice constant from that of a GaN-based semiconductor by utilizing the epitaxial growth of the first embodiment. A GaN-based semiconductor device is manufactured on a GaN-based semiconductor thick film.

【0058】第4の実施の形態ではGaN系半導体膜上
のGaN系半導体素子としてGaN系半導体発光素子を
用いた場合について説明する。
In the fourth embodiment, a case where a GaN-based semiconductor light emitting device is used as a GaN-based semiconductor device on a GaN-based semiconductor film will be described.

【0059】はじめに、基板表面にマスクを形成し、フ
ォトリソグラフィー法とウエットエッチングでマスクと
成長領域に分離する。基板には、GaN系半導体と熱膨
張係数や格子定数の異なる基板材料上にGaN系半導体
が形成された基板を用いる。
First, a mask is formed on the surface of the substrate and separated into a mask and a growth region by photolithography and wet etching. As the substrate, a substrate in which a GaN-based semiconductor is formed on a substrate material having a different thermal expansion coefficient or lattice constant from that of the GaN-based semiconductor is used.

【0060】マスク及び成長領域の形状としては、第1
の実施の形態の説明のように成長領域のGaN系半導体
にファセットが出現する形状とする。
The shapes of the mask and the growth region are as follows.
As described in the first embodiment, the shape is such that facets appear in the GaN-based semiconductor in the growth region.

【0061】次に成長領域に対しGaN系半導体のエピ
タキシャル成長を行う。GaN系半導体の成長法は、I
II族原料にガリウム(Ga)と塩化水素(HCl)の
反応生成物である塩化ガリウム(GaCl)とV族原料
にアンモニア(NH3 )ガスを用いるハイドライドVP
E法が好ましいが、有機金属化学気相成長法(MOVP
E)を用いてもよい。
Next, epitaxial growth of a GaN-based semiconductor is performed on the growth region. The method of growing a GaN-based semiconductor is based on I
Hydride VP using gallium chloride (GaCl) which is a reaction product of gallium (Ga) and hydrogen chloride (HCl) as a group II raw material and ammonia (NH 3 ) gas as a group V raw material
The E method is preferred, but metalorganic chemical vapor deposition (MOVP)
E) may be used.

【0062】GaN系半導体のエピタキシャル成長は、
第1の実施の形態と同様に、GaN系半導体が初期段階
ではマスク上に成長せず成長領域のみで結晶成長が起こ
り、成長領域上のGaN系半導体には基板の面方位とは
異なる面方位のファセット構造が形成される。
The epitaxial growth of a GaN-based semiconductor
As in the first embodiment, in the initial stage, the GaN-based semiconductor does not grow on the mask and crystal growth occurs only in the growth region, and the GaN-based semiconductor in the growth region has a plane orientation different from the plane orientation of the substrate. Is formed.

【0063】エピタキシャル成長を続けると、GaN系
半導体はファセット構造の面に対して垂直な方向に成長
が進むため、成長領域だけでなくマスクを覆うようにな
る。そして隣接する成長領域のGaN系半導体膜のファ
セット構造と接触する。さらにエピタキシャル成長を続
けると、GaN系半導体によりファセット構造が埋め込
まれ、最終的には、平坦な表面を有するGaN系半導体
膜を得ることができる。
When the epitaxial growth is continued, the GaN-based semiconductor grows in a direction perpendicular to the facet structure, so that it covers not only the growth region but also the mask. Then, it comes into contact with the facet structure of the GaN-based semiconductor film in the adjacent growth region. When the epitaxial growth is further continued, the facet structure is buried with the GaN-based semiconductor, and finally, a GaN-based semiconductor film having a flat surface can be obtained.

【0064】次にGaN系半導体膜上にGaN系半導体
発光素子の素子構造を作製する。GaN系半導体膜を形
成した後、GaN系半導体膜が形成された基板をMOC
VD装置にセットし、所定の温度、ガス流量、V/II
I比で、n型GaN層、n型AlGaNクラット層、n
型GaN光ガイド層、アンドープInGaN量子井戸層
とアンドープInGaN障壁層からなる多重量子井戸構
造活性層、p型AlGaN層、p型GaN光ガイド層、
p型AlGaNクラッド層、p型GaNコンタクト層を
順次形成しレーザー構造を作製する。
Next, an element structure of a GaN-based semiconductor light emitting element is formed on the GaN-based semiconductor film. After forming the GaN-based semiconductor film, the substrate on which the GaN-based semiconductor film is
Set to the VD device, set the temperature, gas flow rate, V / II
I ratio, n-type GaN layer, n-type AlGaN clat layer, n
-Type GaN light guide layer, a multiple quantum well structure active layer comprising an undoped InGaN quantum well layer and an undoped InGaN barrier layer, a p-type AlGaN layer, a p-type GaN light guide layer,
A p-type AlGaN cladding layer and a p-type GaN contact layer are sequentially formed to produce a laser structure.

【0065】次に、レーザー構造を形成した基板を研磨
器にセットし、基板、SiO2 マスク、およびGaN系
半導体膜の一部を研磨してGaN系半導体膜を露出させ
る。露出したGaN系半導体膜の面、すなわちGaN系
半導体発光素子裏面側にn型電極を形成し表面側にp型
電極を形成する。
Next, the substrate on which the laser structure is formed is set on a polishing machine, and the substrate, the SiO 2 mask, and a part of the GaN-based semiconductor film are polished to expose the GaN-based semiconductor film. An n-type electrode is formed on the exposed surface of the GaN-based semiconductor film, that is, a back surface of the GaN-based semiconductor light emitting element, and a p-type electrode is formed on the front surface.

【0066】第4の実施の形態により以下の効果が得ら
れる。
The following effects can be obtained by the fourth embodiment.

【0067】第1の実施の形態のエピタキシャル成長で
得られたGaN系半導体膜上にGaN系半導体素子構造
を成長することにより、従来のサファイア基板を用いた
成長で問題となっていたGaN系半導体素子構造におけ
るエピタキシャル成長膜の結晶性が改善でき、GaN系
半導体素子特性を向上させることができる。
By growing the GaN-based semiconductor device structure on the GaN-based semiconductor film obtained by the epitaxial growth of the first embodiment, the GaN-based semiconductor device which has been a problem in the growth using the conventional sapphire substrate is used. The crystallinity of the epitaxially grown film in the structure can be improved, and the characteristics of the GaN-based semiconductor device can be improved.

【0068】さらにGaN系半導体素子がGaN系半導
体発光素子の場合においては、裏面に電極を形成するこ
とができるため、従来のようにドライエッチング等複雑
な作製工程で電極をGaN系半導体膜の表面に形成する
ことなく素子を作製でき電極作製工程が簡略化できる。
Further, when the GaN-based semiconductor device is a GaN-based semiconductor light-emitting device, an electrode can be formed on the back surface. The element can be manufactured without forming the electrode, and the electrode manufacturing process can be simplified.

【0069】またGaN系半導体発光素子がGaN系半
導体レーザの場合は、結晶欠陥が少ないGaN系半導体
厚膜を形成した後に基板、マスクを除去することで、へ
き開によりGaN系半導体レーザ構造の共振器ミラー面
を形成できる。このため従来のドライエッチング等によ
る複雑な工程で共振器ミラー面を形成したものに比べ大
幅に簡略化でき歩留まりも大幅に向上できる。
When the GaN-based semiconductor light emitting device is a GaN-based semiconductor laser, a GaN-based semiconductor laser structure is formed by cleaving by removing a substrate and a mask after forming a GaN-based semiconductor thick film having few crystal defects. A mirror surface can be formed. For this reason, compared with the conventional method in which the resonator mirror surface is formed by a complicated process such as dry etching, the simplification can be greatly simplified and the yield can be greatly improved.

【0070】なお、第4の実施の形態は上記の説明に限
定されるものではなく、必要に応じて他の構成、成長法
を採ることが可能である。
Note that the fourth embodiment is not limited to the above description, and other configurations and growth methods can be adopted as necessary.

【0071】例えば、GaN系半導体膜のエピタキシャ
ル成長は第1の実施の形態だけでなく、第2の実施の形
態の適用もできる。
For example, not only the first embodiment but also the second embodiment can be applied to epitaxial growth of a GaN-based semiconductor film.

【0072】さらにGaN系半導体膜上にGaN系半導
体素子の積層構造を作製した後に基板、マスクを除去し
たが、GaN系半導体膜形成後に基板、マスクとGaN
系半導体膜の一部を除去した後にGaN系半導体素子の
積層構造を作製してもよい。
Further, the substrate and the mask were removed after forming a stacked structure of the GaN-based semiconductor element on the GaN-based semiconductor film.
After removing a part of the system-based semiconductor film, a stacked structure of a GaN-based semiconductor element may be manufactured.

【0073】なお、GaN系半導体膜から基板、マスク
を除去した例を説明したが、GaN系半導体膜上に形成
されたGaN系半導体素子の結晶性の効果だけ得たいの
であれば、基板、マスクの除去を行わず、GaN系半導
体素子表面側に電極を形成する構成としてもよい。
Although the example in which the substrate and the mask are removed from the GaN-based semiconductor film has been described, if it is desired to obtain only the crystallinity effect of the GaN-based semiconductor element formed on the GaN-based semiconductor film, the substrate and the mask may be removed. The electrode may be formed on the surface side of the GaN-based semiconductor element without removing GaN.

【0074】さらに本実施の形態に用いるマスクとして
は第1の実施の形態あるいは第2の実施の形態と同様な
材料、寸法、形状を適用することができる。また本実施
の形態におけるGaN系半導体膜としてはGaN、Al
GaN、InGaN等があげられるがGaNが最も好ま
しい。
Further, as the mask used in this embodiment, the same material, size and shape as those of the first embodiment or the second embodiment can be applied. In addition, as the GaN-based semiconductor film in this embodiment, GaN, Al
GaN, InGaN and the like can be mentioned, but GaN is most preferable.

【0075】またGaN系半導体素子としては、GaN
系半導体レーザやGaN系LED等のGaN系半導体発
光素子の他にFETやHBTなどのデバイスにも適用可
能である。
As a GaN-based semiconductor device, GaN
In addition to GaN-based semiconductor light-emitting elements such as GaN-based LEDs and GaN-based semiconductor lasers, the present invention can be applied to devices such as FETs and HBTs.

【0076】[0076]

【実施例】次に本発明の実施例について図面を参照して
説明する。
Next, an embodiment of the present invention will be described with reference to the drawings.

【0077】(第1の実施例)本発明の実施例につい
て、図1を参照して説明する。本実施例では、基板とし
て、(0001)面サファイア(Al23 )基板1
1上に1μm程度の膜厚のGaN膜12をあらかじめ形
成した基板を用いた。このGaN膜12表面にSiO2
膜を形成し、フォトリソグラフィー法とウエットエッ
チングでマスク14と成長領域13に分離した。成長領
域13およびマスク14は、それぞれ5μmおよび2μ
mの幅のストライプ状である。ストライプ方向は<11
−20>方向とした((図1(a))。
(First Embodiment) An embodiment of the present invention will be described with reference to FIG. In this embodiment, a (0001) plane sapphire (Al 2 O 3 ) substrate 1 is used as the substrate.
A substrate on which a GaN film 12 having a thickness of about 1 μm was formed in advance was used. On the surface of the GaN film 12, SiO 2
A film was formed, and separated into a mask 14 and a growth region 13 by photolithography and wet etching. The growth region 13 and the mask 14 are 5 μm and 2 μm, respectively.
It has a stripe shape with a width of m. Stripe direction <11
−20> direction (FIG. 1A).

【0078】成長領域13に成長するGaN膜15は、
III族原料にガリウム(Ga)と塩化水素(HCl)
の反応生成物である塩化ガリウム(GaCl)とV族原
料にアンモニア(NH3 )ガスを用いるハイドライド
VPE法を用いた。基板11をハイドライドの成長装置
にセットし、水素雰囲気で成長温度1000℃に昇温す
る。成長温度が安定してから、HCl流量を20cc/
毎分で供給し、NH3流量1000cc/毎分で5分程
度供給することで、成長領域13にGaN膜15の{1
−101}面からなるファセット構造を成長させた(図
1(b))。さらに、20分間程度エピタキシャル成長
を続け、マスク14を覆うまでファセット構造16を発
達させた(図1(c))。
The GaN film 15 grown in the growth region 13
Gallium (Ga) and hydrogen chloride (HCl) as group III raw materials
The hydride VPE method using gallium chloride (GaCl), which is a reaction product of the above, and ammonia (NH 3 ) gas as a group V raw material was used. The substrate 11 is set in a hydride growth apparatus, and the temperature is increased to 1000 ° C. in a hydrogen atmosphere. After the growth temperature is stabilized, the HCl flow rate is increased to 20 cc /
Supplied per minute, NH 3 flow 1000 cc / min in by supplying about 5 minutes, the GaN layer 15 in the growth region 13 {1
A facet structure composed of a -101} plane was grown (FIG. 1B). Further, the epitaxial growth was continued for about 20 minutes, and the facet structure 16 was developed until the mask 14 was covered (FIG. 1C).

【0079】エピタキシャル成長を続けることによりフ
ァセット構造を埋め込み(図1(d))、最終的には、
5時間の成長で200μm程度の平坦な表面を有するG
aN膜を形成させた(図1(e))。GaN膜15を形
成後、アンモニアガスを供給しながら、常温まで冷却し
成長装置より取り出した。
The facet structure is buried by continuing the epitaxial growth (FIG. 1D).
G having a flat surface of about 200 μm by growth for 5 hours
An aN film was formed (FIG. 1E). After the GaN film 15 was formed, it was cooled to room temperature while supplying ammonia gas, and was taken out of the growth apparatus.

【0080】第1の実施例では成長領域を制限する選択
成長により、側壁が{1−101}面からなるファセッ
トを形成して結晶成長を行っている。このファセットは
成長速度が他の面より遅いために現れてくる。ファセッ
トが現れる前は、基板と垂直に伸びていた転位が、ファ
セットの出現でこの方向へ伸びることができなくなる。
In the first embodiment, crystal growth is performed by forming facets having side walls of {1-101} by selective growth for limiting the growth region. This facet appears because the growth rate is slower than other aspects. Before the appearance of the facets, dislocations extending perpendicular to the substrate can no longer extend in this direction with the appearance of the facets.

【0081】本発明により成長した結晶を詳細に調べる
と、ファセットの出現で、横方向に曲げられ、エピタキ
シャル膜の膜厚増加に伴い、結晶の端に出ることがわか
った。これにより、エピタキシャル膜内の欠陥の低減が
計られる。
When the crystal grown according to the present invention was examined in detail, it was found that with the appearance of the facet, the crystal was bent in the lateral direction and emerged at the edge of the crystal as the thickness of the epitaxial film increased. As a result, defects in the epitaxial film can be reduced.

【0082】第1の実施例によって形成されたGaN膜
15には、サファイア基板11と格子定数や熱膨張係数
が違うにもかかわらずクラックが入っていないことが確
認された。しかも、厚膜成長を行ったGaN膜には、欠
陥が非常に少なく、欠陥密度は106 cm2 程度であ
った。
It was confirmed that the GaN film 15 formed according to the first embodiment had no cracks despite the difference in lattice constant and coefficient of thermal expansion from the sapphire substrate 11. Moreover, the GaN film grown by the thick film had very few defects, and the defect density was about 10 6 cm 2 .

【0083】本実施例で成長したGaN膜は欠陥が非常
に少なく、この上にレーザ、FET、およびHBTなど
の高品質なデバイス構造を成長することで、デバイス特
性を向上させることが可能となる。
The GaN film grown in this embodiment has very few defects. By growing a high-quality device structure such as a laser, FET, and HBT on the GaN film, it is possible to improve device characteristics. .

【0084】さらにサファイア基板11を研磨等によっ
て除去することで、GaN膜15を基板材料として用い
ることもできる。
Further, by removing the sapphire substrate 11 by polishing or the like, the GaN film 15 can be used as a substrate material.

【0085】第1の実施例では、GaN膜のエピタキシ
ャル成長にハイドライドVPE法を用いて形成したが、
有機金属化合物気相成長法(MOCVD)を用いても同
様な効果が得られる。またAl2 3 基板11を用いた
が、Si基板、ZnO基板、SiC基板、LiGaO2
基板、MgAl24 基板等を用いても同様な効果
が得られる。さらにAl23 基板11上にGaN膜
12をあらかじめ形成したが、基板11上に直接マスク
を形成してもよい。
In the first embodiment, the GaN film is formed by using the hydride VPE method for the epitaxial growth.
A similar effect can be obtained by using an organometallic compound vapor deposition method (MOCVD). Although the Al 2 O 3 substrate 11 was used, a Si substrate, a ZnO substrate, a SiC substrate, a LiGaO 2
Similar effects can be obtained by using a substrate, a MgAl 2 O 4 substrate, or the like. Further, although the GaN film 12 is formed on the Al 2 O 3 substrate 11 in advance, a mask may be formed directly on the substrate 11.

【0086】またマスク14としてSiO2 を用いた
がこれに限られるものではなく、SiNx 等の絶縁体
膜でもよい。この実施例ではマスク14の幅を2μmと
したが、マスクを埋め込むことのできる幅であれば同様
な効果が得られる。さらにストライプを<11−20>
方向に形成したが、ファセットが形成されれば、これと
垂直の方向<1−100>でもよく、これらの方向から
傾けた角度であっても結晶成長の条件により、成長領域
にファセット構造を形成することができる。なおファセ
ット構造が形成される結晶成長の条件は材料によってそ
れぞれ異なる。
Although the mask 14 is made of SiO 2 , the present invention is not limited to this, and an insulator film such as SiN x may be used. In this embodiment, the width of the mask 14 is 2 μm. However, the same effect can be obtained as long as the width of the mask 14 can be embedded. Further stripes <11-20>
However, if a facet is formed, the facet may be formed in a direction <1-100> perpendicular to the facet. Even if the facet is inclined at an angle from these directions, a facet structure is formed in the growth region depending on the conditions of crystal growth. can do. Note that the conditions for crystal growth for forming the facet structure differ depending on the material.

【0087】またGaNのエピタキシャル成長について
述べたが、InGaN膜、AlGaN膜、InN膜をエ
ピタキシャル成長しても同様な効果が得られる。さらに
成長するIII−V族化合物に不純物の添加しても同様
な効果が得られる。
Although the epitaxial growth of GaN has been described, the same effect can be obtained by epitaxially growing an InGaN film, an AlGaN film, and an InN film. Similar effects can be obtained by adding impurities to the growing group III-V compound.

【0088】(第2の実施例)本発明の第2の実施例に
ついて、第1の実施例と同じく図1を参照して説明す
る。
(Second Embodiment) A second embodiment of the present invention will be described with reference to FIG. 1 as in the first embodiment.

【0089】第2の実施例では、基板として、(000
1)面SiC基板11上に1μm程度の膜厚のAl0.1
Ga0.9 N膜12をあらかじめ形成した結晶を用い
た。このAl0.1 Ga0.9 N膜12表面にSiO2
膜を形成し、フォトリソグラフィー法とウエットエッチ
ングでマスク14と成長領域13に分離した。成長領域
13、およびマスク14は、それぞれ2μm、および1
0μmの幅のストライプ状である。ストライプ方向は<
1−100>方向とした((図1(a))。
In the second embodiment, (000
1) Al 0.1 having a thickness of about 1 μm on the surface SiC substrate 11
A crystal on which a Ga 0.9 N film 12 was formed in advance was used. The surface of the Al 0.1 Ga 0.9 N film 12 is SiO 2
A film was formed, and separated into a mask 14 and a growth region 13 by photolithography and wet etching. The growth region 13 and the mask 14 are 2 μm and 1 μm, respectively.
It has a stripe shape with a width of 0 μm. The stripe direction is <
1-100> direction ((FIG. 1A)).

【0090】成長領域13に成長するGaN膜15は、
III族原料にガリウム(Ga)と塩化水素(HCl)
の反応生成物である塩化ガリウム(GaCl)とV族原
料にアンモニア(NH3 )ガスを用いるハイドライド
VPE法を用いた。基板11をハイドライドの成長装置
にセットし、水素雰囲気で成長温度1000℃に昇温す
る。成長温度が安定してから、HCl流量を20cc/
毎分で供給し、NH3流量2000cc/毎分で5分程
度供給することで、成長領域13にGaN膜15の{1
−101}面からなるファセット構造を成長させた(図
1(b))。
The GaN film 15 grown in the growth region 13 is
Gallium (Ga) and hydrogen chloride (HCl) as group III raw materials
The hydride VPE method using gallium chloride (GaCl), which is a reaction product of the above, and ammonia (NH 3 ) gas as a group V raw material was used. The substrate 11 is set in a hydride growth apparatus, and the temperature is increased to 1000 ° C. in a hydrogen atmosphere. After the growth temperature is stabilized, the HCl flow rate is increased to 20 cc /
Supplied per minute, NH 3 flow rate 2000cc / min in by supplying about 5 minutes, the GaN layer 15 in the growth region 13 {1
A facet structure composed of a -101} plane was grown (FIG. 1B).

【0091】さらに、20分間程度エピタキシャル成長
を続け、マスク14を覆うまでGaNのファセット構造
15を発達させた(図1(c))。
Further, the epitaxial growth was continued for about 20 minutes, and the facet structure 15 of GaN was developed until the mask 14 was covered (FIG. 1C).

【0092】エピタキシャル成長を続けることによりフ
ァセット構造を埋め込み(図1(d))、最終的には、
5時間の成長で200μm程度の平坦な表面を有するG
aN膜を形成させた(図1(e))。GaN膜15の形
成後、NH3 ガスを供給しながら常温なで冷却し、成
長装置より取り出す。
The facet structure is buried by continuing the epitaxial growth (FIG. 1 (d)).
G having a flat surface of about 200 μm by growth for 5 hours
An aN film was formed (FIG. 1E). After the GaN film 15 is formed, it is cooled at room temperature while supplying NH 3 gas, and taken out from the growth apparatus.

【0093】第2の実施例によって形成されたGaN膜
15には、SiC基板11との格子定数や熱膨張係数が
違うにもかかわらずクラックが入っていないことが確認
された。しかも、厚膜成長を行ったGaN膜には、欠陥
が非常に少なく欠陥密度は106 cm2 程度であっ
た。
It was confirmed that the GaN film 15 formed by the second embodiment had no cracks despite the difference in the lattice constant and the coefficient of thermal expansion from the SiC substrate 11. Moreover, the GaN film grown by the thick film had very few defects and a defect density of about 10 6 cm 2 .

【0094】本実施例で成長したGaN膜は欠陥が非常
に少なく、この上にレーザ、FET、およびHBTなど
の高品質なデバイス構造を成長することで、デバイス特
性を向上させることが可能となる。
The GaN film grown in this example has very few defects. By growing a high-quality device structure such as a laser, FET, and HBT thereon, it is possible to improve device characteristics. .

【0095】また、SiC基板11を研磨等によって除
去することで、GaN膜15を基板材料として用いるこ
ともできる。
Further, the GaN film 15 can be used as a substrate material by removing the SiC substrate 11 by polishing or the like.

【0096】第2の実施例では、GaN膜のエピタキシ
ャル成長にハイドライドVPE法を用いて形成したが、
有機金属化合物気相成長法(MOCVD)を用いても同
様な効果が得られる。また本実施例では、SiC基板1
1を用いたが、Si基板、ZnO基板、Al23
板基板、LiGaO2 基板、MgAl24 基板等
を用いても同様な効果が得られる。さらにSiC基板1
1上に膜厚のGaN膜12をあらかじめ形成したが、基
板11上に直接マスクを形成してもよい。
In the second embodiment, the GaN film is formed by using the hydride VPE method for the epitaxial growth.
A similar effect can be obtained by using an organometallic compound vapor deposition method (MOCVD). In this embodiment, the SiC substrate 1
However, similar effects can be obtained by using a Si substrate, a ZnO substrate, an Al 2 O 3 substrate substrate, a LiGaO 2 substrate, a MgAl 2 O 4 substrate, or the like. Furthermore, SiC substrate 1
Although the GaN film 12 having a thickness is formed on the substrate 1 in advance, a mask may be formed directly on the substrate 11.

【0097】またマスク14としてSiO2 を用いた
がこれに限られるものではなく、SiNx 等の絶縁体
膜でもよい。この実施例ではマスク14の幅を10μm
としたが、マスクを埋め込むことのできる幅であれば同
様な効果が得られる。さらにストライプを<1−100
>方向に形成したが、ファセットが形成されれば、これ
と垂直の方向<1−120>でもよく、これらの方向か
ら傾けた角度であっても結晶成長の条件により、成長領
域にファセット構造を形成することができる。なおファ
セット構造が形成される結晶成長の条件は材料によって
それぞれ異なる。
Although SiO 2 is used as the mask 14, the present invention is not limited to this, and an insulator film such as SiN x may be used. In this embodiment, the width of the mask 14 is 10 μm.
However, the same effect can be obtained as long as the mask can be embedded. Further stripes <1-100
However, if a facet is formed, the facet may be formed in a direction <1-120> perpendicular to the facet. Even if the facet is inclined at an angle from these directions, the facet structure is formed in the growth region depending on the conditions of crystal growth. Can be formed. Note that the conditions for crystal growth for forming the facet structure differ depending on the material.

【0098】またさらに基板11上の膜としてAl組成
0.1のAlGaNを用いたが、この組成は任意のもの
でよく、この膜としてその他にAlN、InGaNなど
を用いても同様な効果が得られる。さらにGaNのエピ
タキシャル成長について述べたが、InGaN膜、Al
GaN膜、InN膜をエピタキシャル成長しても同様な
効果が得られる。また成長するIII−V族化合物に不
純物の添加しても同様な効果が得られる。
Further, although AlGaN having an Al composition of 0.1 was used as the film on the substrate 11, the composition may be arbitrary, and similar effects can be obtained by using AlN, InGaN or the like as this film. Can be Furthermore, the epitaxial growth of GaN was described.
Similar effects can be obtained by epitaxially growing a GaN film or an InN film. Similar effects can be obtained by adding an impurity to the growing group III-V compound.

【0099】(第3の実施例)本発明の第3の実施例に
ついて、図2を参照して説明する。
(Third Embodiment) A third embodiment of the present invention will be described with reference to FIG.

【0100】第3の実施例では、基板として、(11
1)面のMgAl24 基板21を用いた。この基板
21表面にSiO2 膜23を形成し、フォトリソグラ
フィー法とウエットエッチングでマスク23と成長領域
22に分離した。成長領域22、およびマスク23は、
それぞれ4μm、および3μmの幅のストライプ状であ
る。ストライプ方向は<11−20>方向とした((図
2(a))。
In the third embodiment, (11)
The MgAl 2 O 4 substrate 21 having the 1) surface was used. An SiO 2 film 23 was formed on the surface of the substrate 21 and separated into a mask 23 and a growth region 22 by photolithography and wet etching. The growth region 22 and the mask 23
Each has a stripe shape with a width of 4 μm and 3 μm. The stripe direction was the <11-20> direction (FIG. 2A).

【0101】GaN膜の成長は、マスク23上に多結晶
のGaNが付着を抑制するのに適したハイドライドVP
E法を用いた。この手法では、III族原料にガリウム
(Ga)と塩化水素(HCl)の反応生成物である塩化
ガリウム(GaCl)と、V族原料にアンモニア(NH
3 )ガスを用いる。
The GaN film is grown by using a hydride VP suitable for suppressing the adhesion of polycrystalline GaN on the mask 23.
Method E was used. In this method, gallium chloride (GaCl) which is a reaction product of gallium (Ga) and hydrogen chloride (HCl) is used as a group III raw material, and ammonia (NH) is used as a group V raw material.
3 ) Use gas.

【0102】まず、基板21を成長装置にセットし、水
素ガスを供給しながら1000℃程度の高温で熱処理し
た後、500℃に降温させ、HCl流量を0.5cc/
毎分で供給し、NH3 流量1000cc/毎分で5分
程度供給することで、結晶成長領域23に約20nmの
膜厚のGaNバッファ層24を形成する(図2
(b))。
First, the substrate 21 was set in a growth apparatus, heat-treated at a high temperature of about 1000 ° C. while supplying hydrogen gas, and then cooled to 500 ° C., and the HCl flow rate was set to 0.5 cc / cc.
The GaN buffer layer 24 having a thickness of about 20 nm is formed in the crystal growth region 23 by supplying the GaN buffer layer 24 at a rate of 1000 cc / min for about 5 minutes at a flow rate of NH 3 of FIG.
(B)).

【0103】この状態で、NH3 ガスを供給しながら1
000℃に昇温する。成長温度が安定してから、HCl
流量を20cc/毎分で供給し、NH3 流量1500
cc/毎分で5分程度供給することで、成長領域22の
GaNバッファー層24上にGaNの{1−101}面
からなるファセット構造25を成長させた(図2
(c))。
In this state, while supplying NH 3 gas, 1
Raise the temperature to 000 ° C. After the growth temperature is stabilized, HCl
The flow rate is supplied at 20 cc / min, and the NH 3 flow rate is 1500
By supplying cc / min for about 5 minutes, a facet structure 25 made of GaN {1-101} plane was grown on the GaN buffer layer 24 in the growth region 22 (FIG. 2).
(C)).

【0104】さらに、エピタキシャル成長を続け、マス
ク23を覆うまでGaN膜25のファセット構造を発達
させた後、ファセット構造を埋め込みながら成長を続
け、最終的には、5時間の成長で200μm程度の平坦
な表面を有するGaN膜25を形成させた(図2
(d))。GaN膜25の形成後、NH3 ガスを供給
しながら常温まで冷却し成長装置より取り出す。
Further, after the epitaxial growth is continued and the facet structure of the GaN film 25 is developed until the mask 23 is covered, the growth is continued while the facet structure is buried, and finally a flat surface of about 200 μm is grown by 5 hours. A GaN film 25 having a surface was formed (FIG. 2).
(D)). After the formation of the GaN film 25, it is cooled to room temperature while supplying NH 3 gas and taken out from the growth apparatus.

【0105】第3の実施例によって形成されたGaN膜
25には、MgAl24 基板21との格子定数や熱
膨張係数が違うにもかかわらずクラックが入っていない
ことが確認された。しかも、厚膜成長を行ったGaN膜
には、欠陥が非常に少なく、106 cm2 程度であっ
た。
It was confirmed that the GaN film 25 formed by the third embodiment had no cracks despite the difference in lattice constant and coefficient of thermal expansion from the MgAl 2 O 4 substrate 21. Moreover, the GaN film grown by the thick film had very few defects and was about 10 6 cm 2 .

【0106】本実施例で成長したGaN膜は欠陥が非常
に少なく、この上にレーザ、FET、およびHBTなど
の高品質なデバイス構造を成長することで、デバイス特
性を向上させることが可能となる。またMgAl24
基板21を研磨等によって除去することで、GaN膜
25を基板材料として用いることもできる。
The GaN film grown in this example has very few defects, and by growing a high-quality device structure such as a laser, FET, and HBT thereon, device characteristics can be improved. . MgAl 2 O 4
By removing the substrate 21 by polishing or the like, the GaN film 25 can be used as a substrate material.

【0107】第3の実施例では、GaN膜のエピタキシ
ャル成長にハイドライドVPE法を用いて形成したが、
有機金属化合物気相成長法(MOCVD)を用いても同
様な効果が得られる。また実施例では、MgAl24
基板21を用いたが、Si基板、ZnO基板、SiC
基板、LiGaO2 基板、Al23 基板等を用いて
も同様な効果が得られる。さらにMgAl24 21
上に直接マスクを形成したが、基板21上にGaN膜を
あらかじめ形成してもよい。
In the third embodiment, the GaN film is formed by using the hydride VPE method for epitaxial growth.
A similar effect can be obtained by using an organometallic compound vapor deposition method (MOCVD). Further, in the embodiment, MgAl 2 O 4
The substrate 21 was used, but the Si substrate, the ZnO substrate, the SiC
Similar effects can be obtained by using a substrate, a LiGaO 2 substrate, an Al 2 O 3 substrate, or the like. Further, MgAl 2 O 4 21
Although the mask is formed directly on the substrate, a GaN film may be formed on the substrate 21 in advance.

【0108】またマスク14としてSiO2 を用いた
がこれに限られるものではなく、SiNx 等の絶縁体
膜でもよい。さらにマスク24の幅を10μmとした
が、マスクを埋め込むことのできる幅であれば同様な効
果が得られる。本実施例では、ストライプを<11−2
0>方向に形成したが、ファセットが形成されれば、こ
れと垂直の方向<1−100>でもよく、これらの方向
から傾けた角度でも結晶成長の条件により、成長領域に
ファセット構造を形成することができる。なお、ファセ
ット構造が形成される結晶成長の条件は材料によってそ
れぞれ異なる。
Although SiO 2 is used as the mask 14, the present invention is not limited to this, and an insulator film such as SiN x may be used. Further, although the width of the mask 24 is set to 10 μm, the same effect can be obtained as long as the mask can be embedded. In this embodiment, the stripe is set to <11-2.
0> direction, but if a facet is formed, it may be a direction <1-100> perpendicular to the facet, or a facet structure is formed in the growth region even at an angle inclined from these directions according to crystal growth conditions. be able to. The crystal growth conditions for forming the facet structure differ depending on the material.

【0109】また本実施例では基板上に低温バッファ層
を設けた後にGaN膜の成長を行っているため、結晶欠
陥をより少なくすることが可能となる。
In this embodiment, since the GaN film is grown after the low-temperature buffer layer is provided on the substrate, it is possible to further reduce crystal defects.

【0110】さらに、実施例では、GaNのエピタキシ
ャル成長について述べたが、InGaN膜、AlGaN
膜、InN膜をエピタキシャル成長しても同様な効果が
得られる。さらに成長するIII−V族化合物に不純物
の添加しても同様な効果が得られる。
Further, in the examples, the epitaxial growth of GaN has been described.
Similar effects can be obtained by epitaxially growing a film or InN film. Similar effects can be obtained by adding impurities to the growing group III-V compound.

【0111】(第4の実施例)本発明の第4の実施例に
ついて、図3、図4を参照して説明する。図3は選択的
にエピタキシャル成長する成長領域の形状を丸形状、三
角形状及び矩形状とした概略図である。
(Fourth Embodiment) A fourth embodiment of the present invention will be described with reference to FIGS. FIG. 3 is a schematic view showing a growth region for selectively epitaxially growing a circular, triangular, and rectangular shape.

【0112】本実施例では、基板として(0001)面
のAl23 基板41上に1μm程度の膜厚のGaN
膜42をあらかじめ形成した結晶基板を用いた。
In this embodiment, a GaN film having a thickness of about 1 μm is formed on a (0001) plane Al 2 O 3 substrate 41 as a substrate.
A crystal substrate on which the film 42 was formed in advance was used.

【0113】このGaN膜42表面にSiO2 膜を形
成し、フォトリソグラフィー法とウエットエッチングで
マスク43と成長領域44に分離した。成長領域44
は、4μmの直径の丸状(図3(a))、一辺が3μm
の三角形状(図3(b))、および5μm角の矩形状
(図3(c))の3種類となるマスクをそれぞれ用い
た。
An SiO 2 film was formed on the surface of the GaN film 42 and separated into a mask 43 and a growth region 44 by photolithography and wet etching. Growth area 44
Is a circle having a diameter of 4 μm (FIG. 3A), and a side of 3 μm
3 (FIG. 3 (b)) and three types of masks (5 μm square (FIG. 3 (c))).

【0114】形成した成長領域44に成長するGaN膜
45は、III族原料にトリメチルガリウム(TMG
a)及びトリメチルアルミニウム(TMAl)とV族原
料にアンモニア(NH3 )ガスを用いる有機金属化合
物気相成長法を用いた。
The GaN film 45 grown in the formed growth region 44 is made of trimethylgallium (TMG
a) and an organometallic compound vapor deposition method using ammonia (NH 3 ) gas as a trimethyl aluminum (TMAl) and a group V raw material.

【0115】図4は図3の成長領域を形成した基板上に
気相成長法を用いてIII−V族化合物半導体膜を形成
する工程の概略図である。基板41を有機金属化合物気
相成長装置にセットし、水素ガスとNH3 ガスを供給
しながら1050℃の成長温度に昇温する。成長温度が
安定してから、トリメチルガリウム流量を5cc/毎分
で供給し、NH3 流量5000cc/毎分で10分程
度供給することで、成長領域44にGaN膜45の{1
−101}面からなるファセット構造を成長させた(図
4(a))。
FIG. 4 is a schematic diagram showing a process of forming a group III-V compound semiconductor film by vapor phase growth on the substrate on which the growth region of FIG. 3 is formed. The substrate 41 is set in the organometallic compound vapor phase epitaxy apparatus, and the temperature is increased to 1050 ° C. while supplying hydrogen gas and NH 3 gas. After the growth temperature is stabilized, trimethylgallium is supplied at a flow rate of 5 cc / min and NH 3 flow is supplied at a rate of 5000 cc / min for about 10 minutes.
A facet structure composed of a -101} plane was grown (FIG. 4A).

【0116】さらに、30分間程度エピタキシャル成長
を続け、マスク43を覆うまでGaN層45のファセッ
ト構造を発達させた(図4(b))。
Further, the epitaxial growth was continued for about 30 minutes, and the facet structure of the GaN layer 45 was developed until the mask 43 was covered (FIG. 4B).

【0117】エピタキシャル成長を続けることによりG
aN層45のファセット構造を埋め込み(図4
(c))、最終的には、12時間の成長で100μm程
度の平坦な表面を有するGaN膜45を形成させた(図
4(d))。
By continuing epitaxial growth, G
The facet structure of the aN layer 45 is embedded (FIG.
(C)) Finally, a GaN film 45 having a flat surface of about 100 μm was formed by growth for 12 hours (FIG. 4D).

【0118】3種類の形状の成長領域に形成したGaN
膜45は、成長領域の形状によらず平坦な表面が得ら
れ、サファイア基板41にクラックが入っていないこと
が確認された。また、本実施例では成長領域の形状を丸
状、三角形状、および矩形状の3種類としたが、マスク
領域を埋め込むことのできる形状であれは多角形の形
状、大きさによらず同様の効果がある。
GaN formed in growth regions of three different shapes
The film 45 had a flat surface regardless of the shape of the growth region, and it was confirmed that the sapphire substrate 41 had no crack. Further, in the present embodiment, the growth region has three shapes, that is, a round shape, a triangular shape, and a rectangular shape. However, any shape that can embed the mask region has the same shape regardless of the polygonal shape and size. effective.

【0119】本実施例で成長したGaN膜は欠陥が非常
に少なく、この上にレーザ、FET、およびHBTなど
の高品質なデバイス構造を成長することで、デバイス特
性を向上させることが可能となる。
The GaN film grown in this example has very few defects. By growing a high-quality device structure such as a laser, an FET, and an HBT on the GaN film, the device characteristics can be improved. .

【0120】さらにサファイア基板41を研磨等によっ
て除去することで、GaN膜45を基板材料として用い
ることもできる。
Further, by removing the sapphire substrate 41 by polishing or the like, the GaN film 45 can be used as a substrate material.

【0121】第4の実施例では、GaN膜のエピタキシ
ャル成長にハイドライドVPE法を用いて形成したが、
有機金属化合物気相成長法(MOCVD)を用いても同
様な効果が得られる。またAl23 基板41を用い
たが、Si基板、ZnO基板、SiC基板、LiGaO
2 基板、MgAl24 基板等を用いても同様な効
果が得られる。さらにAl23 基板41上に膜厚の
GaN膜42をあらかじめ形成したが、基板41上に直
接マスクを形成してもよい。
In the fourth embodiment, the GaN film is formed by using the hydride VPE method for epitaxial growth.
A similar effect can be obtained by using an organometallic compound vapor deposition method (MOCVD). Although the Al 2 O 3 substrate 41 was used, a Si substrate, a ZnO substrate, a SiC substrate, and a LiGaO substrate were used.
A similar effect can be obtained by using a two- substrate, a MgAl 2 O 4 substrate, or the like. Further, although the GaN film 42 having a thickness is formed in advance on the Al 2 O 3 substrate 41, a mask may be formed directly on the substrate 41.

【0122】またマスク43としてSiO2 を用いた
がこれに限られるものではなく、SiNx 等の絶縁体
膜でもよい。
Although SiO 2 is used as the mask 43, the present invention is not limited to this, and an insulator film such as SiN x may be used.

【0123】またGaNのエピタキシャル成長について
述べたが、InGaN膜、AlGaN膜、InN膜をエ
ピタキシャル成長しても同様な効果が得られる。さらに
成長するIII−V族化合物に不純物の添加しても同様
な効果が得られる。
Although the GaN epitaxial growth has been described, the same effect can be obtained by epitaxially growing an InGaN film, an AlGaN film, or an InN film. Similar effects can be obtained by adding impurities to the growing group III-V compound.

【0124】(第5の実施例)本発明の第5の実施例に
ついて、図5を参照して説明する。
(Fifth Embodiment) A fifth embodiment of the present invention will be described with reference to FIG.

【0125】基板51には、1μmの膜厚のGaN膜5
2が形成された(0001)面のサファイア基板51を
用いた。
A GaN film 5 having a thickness of 1 μm is formed on the substrate 51.
The sapphire substrate 51 of (0001) plane on which No. 2 was formed was used.

【0126】この基板51表面にSiO2 膜を形成
し、フォトリソグラフィー法とウエットエッチングで第
1のマスク53と第1の成長領域54に分離した。第1
の成長領域54、および第1のマスク53は、それぞれ
2μm、および5μmのストライプ状とした。ストライ
プ方向は、<11−20>とした(図5(a))。
An SiO 2 film was formed on the surface of the substrate 51, and separated into a first mask 53 and a first growth region by photolithography and wet etching. First
The growth region 54 and the first mask 53 were formed in a stripe shape of 2 μm and 5 μm, respectively. The stripe direction was <11-20> (FIG. 5A).

【0127】第1の成長領域54に成長する第1のGa
N膜55は、上記の実施例1と同様にIII族原料にガ
リウム(Ga)と塩化水素(HCl)の反応生成物であ
る塩化ガリウム(GaCl)とV族原料にアンモニア
(NH3 )ガスを用いるハイドライドVPE法を用い
た。基板51をハイドライドの成長装置にセットし、水
素雰囲気で成長温度1000℃に昇温する。650℃の
温度から基板51をNH3 ガス雰囲気にする。成長温
度が安定してから、HCl流量を10cc/毎分で供給
し、NH3 流量4000cc/毎分で60分間の成長
で、第1の実施例で説明した図1の(a)から(e)の
成長工程を経て、第1のマスク53を埋め込んだ第1の
GaN膜55を形成する(図5(b))。第1のGaN
膜55を形成後、NH3 ガス雰囲気で常温まで冷却し、
成長装置より取り出す。
First Ga grown in first growth region 54
The N film 55 is formed by adding gallium chloride (GaCl) which is a reaction product of gallium (Ga) and hydrogen chloride (HCl) to the group III raw material and ammonia (NH 3 ) gas to the group V raw material as in the first embodiment. The hydride VPE method used was used. The substrate 51 is set in a hydride growth apparatus, and the temperature is increased to 1000 ° C. in a hydrogen atmosphere. The substrate 51 is set in an NH 3 gas atmosphere at a temperature of 650 ° C. After the growth temperature was stabilized, HCl was supplied at a flow rate of 10 cc / minute, and NH 3 flow was grown at 4000 cc / minute for 60 minutes. After the growth step of (1), a first GaN film 55 in which the first mask 53 is embedded is formed (FIG. 5B). First GaN
After forming the film 55, the film 55 is cooled to room temperature in an NH 3 gas atmosphere,
Remove from growth device.

【0128】次に、GaN膜55上に再びSiO2
を形成し、第2の成長領域56と第2のマスク57を形
成する。それぞれのストライプ幅は、2μm、および5
μmであり、ストライプ方向は<11−20>とした
(図5(c))。この基板51上に、再び、第1の実施
例で説明した図1の(a)から(e)の成長工程を経
て、第2のマスク57を埋め込み、およそ150μmの
第2のGaN層58を成長させ平坦化した表面を得た
(図5(d))。
Next, an SiO 2 film is formed again on the GaN film 55, and a second growth region 56 and a second mask 57 are formed. Each stripe width is 2 μm, and 5
μm, and the stripe direction was <11-20> (FIG. 5C). A second mask 57 is buried on this substrate 51 again through the growth steps of FIGS. 1A to 1E described in the first embodiment, and a second GaN layer 58 of about 150 μm is formed. The grown and flattened surface was obtained (FIG. 5D).

【0129】成長した第2のGaN膜58の欠陥を断面
透過電子顕微鏡で調べた結果、欠陥が105 cm2
下と極めて少ないものであった。ここでは、2段階の選
択成長について述べたが、上記工程を繰り返すことでさ
らに欠陥密度を減少させることができる。
As a result of examining a defect of the grown second GaN film 58 by a cross-sectional transmission electron microscope, it was found that the defect was as extremely small as 10 5 cm 2 or less. Here, the two-stage selective growth has been described, but the defect density can be further reduced by repeating the above steps.

【0130】第5の実施例では、GaN膜のエピタキシ
ャル成長にハイドライドVPE法を用いて形成したが、
有機金属化合物気相成長法(MOCVD)を用いても同
様な効果が得られる。またAl23 基板51を用い
たが、Si基板、ZnO基板、SiC基板、LiGaO
2 基板、MgAl24 基板等を用いても同様な効
果が得られる。さらにAl23 基板51上にGaN
膜52を成長した後にマスクを形成したが、これに限ら
ず、基板上にGaN膜52を成長せず、直接第1のマス
ク53を成長してもよい。
In the fifth embodiment, the GaN film is formed by using the hydride VPE method for epitaxial growth.
A similar effect can be obtained by using an organometallic compound vapor deposition method (MOCVD). Although the Al 2 O 3 substrate 51 was used, a Si substrate, a ZnO substrate, a SiC substrate, and a LiGaO substrate were used.
A similar effect can be obtained by using a two- substrate, a MgAl 2 O 4 substrate, or the like. Further, GaN is formed on the Al 2 O 3 substrate 51.
Although the mask is formed after growing the film 52, the invention is not limited to this, and the first mask 53 may be directly grown without growing the GaN film 52 on the substrate.

【0131】またマスク53としてSiO2を用いたが
これに限られるものではなく、SiNx等の絶縁体膜で
もよい。さらに成長領域がストライプとなるようにパタ
ーニングされたマスクを用いたが、これに限らず、丸形
状、矩形状、三角形状でもよい。またGaNのエピタキ
シャル成長について述べたが、InGaN膜、AlGa
N膜、InN膜をエピタキシャル成長しても同様な効果
が得られる。さらに成長するIII−V族化合物に不純
物の添加しても同様な効果が得られる。
Although SiO 2 is used as the mask 53, the present invention is not limited to this, and an insulator film such as SiN x may be used. Furthermore, although a mask patterned so that the growth region becomes a stripe is used, the present invention is not limited to this and may be a round shape, a rectangular shape, or a triangular shape. Also, the epitaxial growth of GaN was described.
Similar effects can be obtained by epitaxially growing an N film or an InN film. Similar effects can be obtained by adding impurities to the growing group III-V compound.

【0132】本発明の各実施例ではGaN系のIII−
V族化合物半導体を用いた例について述べたが、これに
限られるものではなく、基板と格子定数あるいは熱膨張
係数が異なるIII−V族化合物半導体の成長に適用可
能であることはいうまでもない。
In each embodiment of the present invention, a GaN-based III-
Although an example using a group V compound semiconductor has been described, the present invention is not limited to this, and it is needless to say that the present invention can be applied to the growth of a group III-V compound semiconductor having a different lattice constant or thermal expansion coefficient from the substrate. .

【0133】(第6の実施例)本発明の第6の実施例に
ついて、図6を参照して説明する。図6は本発明のエピ
タキシャル成長をGaN膜の成長に用い、さらにこのG
aN膜上にGaN系半導体レーザを製造する工程を説明
するための概略図である。
(Sixth Embodiment) A sixth embodiment of the present invention will be described with reference to FIG. FIG. 6 shows that the epitaxial growth of the present invention is used for the growth of a GaN film.
FIG. 4 is a schematic diagram for explaining a step of manufacturing a GaN-based semiconductor laser on an aN film.

【0134】図6に示す基板61には、1μmの膜厚の
GaN膜62が形成された(0001)面のサファイア
基板61を用いた。この基板61表面にSiO2 膜を形
成し、第1から第4の実施例と同様にフォトリソグラフ
ィー法とウエットエッチングで第1のマスク63と第1
の成長領域64に分離した。第1の成長領域64、およ
び第1のマスク63は、それぞれ5μm、および2μm
のストライプ状とした。ストライプ方向は、<11−2
0>方向から10度傾けて形成した(図6(a))。
As the substrate 61 shown in FIG. 6, a (0001) plane sapphire substrate 61 on which a GaN film 62 having a thickness of 1 μm was formed was used. An SiO 2 film is formed on the surface of the substrate 61, and the first mask 63 and the first mask 63 are formed by photolithography and wet etching as in the first to fourth embodiments.
In the growth region 64. The first growth region 64 and the first mask 63 are 5 μm and 2 μm, respectively.
Stripes. The stripe direction is <11-2.
It was formed at an angle of 10 degrees from the 0> direction (FIG. 6A).

【0135】第1の成長領域64に成長する第1のGa
N膜65は、上記の実施例1と同様にIII族原料にガ
リウム(Ga)と塩化水素(HCl)の反応生成物であ
る塩化ガリウム(GaCl)とV族原料にアンモニア
(NH3 )ガスを用いるハイドライドVPE法を用い
た。基板61をハイドライドの成長装置にセットし、水
素雰囲気で成長温度1000℃に昇温する。650℃の
温度から基板51をNH3ガス雰囲気にする。成長温度
が安定してから、HCl流量を40cc/毎分で供給
し、NH3 流量1000cc/毎分、およびシラン
(SiH4 )流量0.01cc/毎分で150分間の
成長で、第1の実施例で説明した図1の(a)から
(e)の成長工程を経て、第1のマスク63を埋め込ん
だ膜厚200μmの第1のGaN膜65を形成する(図
5(b))。第1のGaN膜65を形成後、NH3
ス雰囲気で常温まで冷却し、成長装置より取り出す。G
aN膜65は、n型で、1×1018cm-3以上のキャリ
ア濃度であった。
First Ga grown in first growth region 64
In the same manner as in the first embodiment, gallium chloride (GaCl), which is a reaction product of gallium (Ga) and hydrogen chloride (HCl), and ammonia (NH 3 ) gas as a group V material are used for the N film 65. The hydride VPE method used was used. The substrate 61 is set in a hydride growth apparatus, and heated to a growth temperature of 1000 ° C. in a hydrogen atmosphere. The substrate 51 is set in an NH 3 gas atmosphere at a temperature of 650 ° C. After the growth temperature was stabilized, HCl was supplied at a flow rate of 40 cc / min, and growth was performed at an NH 3 flow rate of 1000 cc / min and a silane (SiH 4 ) flow rate of 0.01 cc / min for 150 minutes. Through the growth steps of FIGS. 1A to 1E described in the embodiment, a 200 μm-thick first GaN film 65 embedded with a first mask 63 is formed (FIG. 5B). After forming the first GaN film 65, it is cooled to room temperature in an NH 3 gas atmosphere and taken out from the growth apparatus. G
The aN film 65 was n-type and had a carrier concentration of 1 × 10 18 cm −3 or more.

【0136】次に、GaN系半導体レーザ構造の作製に
は、有機金属化学気相成長法(MOVPE)を用いて作
製した。GaN膜65を形成後、MOCVD装置にセッ
トし、水素雰囲気で成長温度1050℃に昇温する。6
50℃の温度からNH3 ガス雰囲気にする。Siを添
加した1μmの厚さのn型GaN層66、Siを添加し
た0.4μmの厚さのn型Al0.15Ga0.85Nクラット
層67、Siを添加した0.1μmの厚さのn型GaN
光ガイド層68、2.5nmの厚さのアンドープIn
0.2Ga0.8N量子井戸層と5nmの厚さのアンドープI
0.05Ga0.95N障壁層からなる10周期の多重量子井
戸構造活性層69、マグネシウム(Mg)を添加した2
0nmの厚さのp型Al0.2Ga0.8N層70、Mgを添
加した0.1μmの厚さのp型GaN光ガイド層71、
Mgを添加した0.4μmの厚さのp型Al0.15Ga
0.85Nクラッド層72、Mgを添加した0.5μmの厚
さのp型GaNコンタクト層73を順次形成しレーザー
構造を作製した。p型のGaNコンタクト層73を形成
した後は、HN3 ガス雰囲気で常温まで冷却し、成長
装置より取り出す(図6(c))。2.5nmの厚さの
アンドープIn0.2Ga0.8N量子井戸層と5nmの厚さ
のアンドープIn0.05Ga0.95N障壁層からなる多重量
子井戸構造活性層69は、780℃の温度で形成した。
Next, a GaN-based semiconductor laser structure was manufactured by using metal organic chemical vapor deposition (MOVPE). After forming the GaN film 65, it is set in a MOCVD apparatus, and the temperature is increased to 1050 ° C. in a hydrogen atmosphere. 6
The temperature is changed from 50 ° C. to an NH 3 gas atmosphere. 1 μm thick n-type GaN layer 66 to which Si is added, 0.4 μm thick n-type Al 0.15 Ga 0.85 N clat layer 67 to which Si is added, 0.1 μm thick n-type layer to which Si is added GaN
Light guide layer 68, undoped In with a thickness of 2.5 nm
0.2 Ga 0.8 N quantum well layer and 5 nm thick undoped I
An active layer 69 having a multi-quantum well structure having 10 periods composed of an n 0.05 Ga 0.95 N barrier layer and magnesium (Mg) added 2
A p-type Al 0.2 Ga 0.8 N layer 70 having a thickness of 0 nm, a p-type GaN optical guide layer 71 having a thickness of 0.1 μm to which Mg is added,
0.4 μm thick p-type Al 0.15 Ga doped with Mg
A 0.85 N cladding layer 72 and a 0.5 μm-thick p-type GaN contact layer 73 to which Mg was added were sequentially formed to form a laser structure. After the formation of the p-type GaN contact layer 73, it is cooled to room temperature in an HN 3 gas atmosphere and taken out from the growth apparatus (FIG. 6C). The multiple quantum well structure active layer 69 composed of an undoped In 0.2 Ga 0.8 N quantum well layer having a thickness of 2.5 nm and an undoped In 0.05 Ga 0.95 N barrier layer having a thickness of 5 nm was formed at a temperature of 780 ° C.

【0137】次に、レーザー構造を形成したサファイア
基板61を研磨器にセットし、サファイア基板61、G
aN層62、SiO2 マスク63、およびGaN膜6
5の50μm研磨してGaN膜65を露出させる。露出
したGaN層65面には、チタン(Ti)−アルミ(A
l)のn型電極74を形成し、p型のGaN層73上に
はニッケル(Ni)−金(Au)のp型電極75を形成
する(図6(d))。
Next, the sapphire substrate 61 on which the laser structure was formed was set in a polishing machine, and the sapphire substrate 61, G
aN layer 62, SiO 2 mask 63, and GaN film 6
5 is polished to 50 μm to expose the GaN film 65. On the surface of the exposed GaN layer 65, titanium (Ti) -aluminum (A
1) An n-type electrode 74 is formed, and a nickel (Ni) -gold (Au) p-type electrode 75 is formed on the p-type GaN layer 73 (FIG. 6D).

【0138】図6に示すレーザ構造では、裏面にn型電
極が形成されており、従来のようにドライエッチング等
複雑な作製工程でn型の電極を窒化物表面に形成するこ
となく素子を形成できるため電極作製工程が簡略化でき
る。
In the laser structure shown in FIG. 6, an n-type electrode is formed on the back surface, and an element can be formed without forming an n-type electrode on the nitride surface by a complicated manufacturing process such as dry etching. Therefore, the electrode manufacturing process can be simplified.

【0139】また、サファイアとGaN系半導体とは結
晶のへき開面が異なるため、従来サファイア基板上に作
製したレーザ構造の共振器ミラーはへき開により形成す
ることが困難であった。
In addition, since sapphire and GaN-based semiconductors have different cleavage planes of crystals, it has been difficult to form a resonator mirror having a laser structure conventionally formed on a sapphire substrate by cleavage.

【0140】これに対し、本実施例では結晶欠陥が少な
いGaN層65を厚く成長することができるため、サフ
ァイア基板やマスク材料を除去してもGaN65上に形
成したGaN系半導体のレーザ構造には影響はなく、ま
たGaN層65上のレーザ構造はへき開により共振器ミ
ラー面を形成できる利点を持っているため、従来のドラ
イエッチング等による複雑な工程で共振器ミラー面を形
成したものに比べ大幅に簡略化でき歩留まりも大幅に向
上した。
On the other hand, in the present embodiment, since the GaN layer 65 having few crystal defects can be grown thick, the GaN-based semiconductor laser structure formed on the GaN 65 can be formed even if the sapphire substrate or the mask material is removed. There is no effect, and the laser structure on the GaN layer 65 has the advantage that the cavity mirror surface can be formed by cleavage, and is significantly larger than the cavity mirror surface formed by a complicated process such as conventional dry etching. The yield was greatly improved.

【0141】本実施例では、GaN層65上にレーザー
構造形成してから、サファイア基板51、GaN膜6
2、SiO2 マスク63を研磨したが、レーザー構造を
作製する前にサファイア基板61、GaN膜62、Si
2 マスク63を研磨しても同様な効果が得られる。
In this embodiment, after forming a laser structure on the GaN layer 65, the sapphire substrate 51, the GaN film 6
2. Although the SiO 2 mask 63 was polished, the sapphire substrate 61, GaN film 62, Si
The same effect can be obtained by polishing the O 2 mask 63.

【0142】また、本実施例では、サファイア基板6
1、GaN層62、SiO2 マスク63の研磨、およ
びGaN膜65の一部を研磨して、n型の電極を形成し
たが、研磨を行わずにドライエッチングによりn型のG
aN層66または65まで除去しn型電極を形成し、共
振器ミラー面を形成することで従来の構造を作製するこ
ともできる。
In this embodiment, the sapphire substrate 6
1. Polishing of the GaN layer 62 and the SiO 2 mask 63 and polishing of a part of the GaN film 65 to form an n-type electrode.
By removing the aN layer 66 or 65 to form an n-type electrode and forming a resonator mirror surface, a conventional structure can be manufactured.

【0143】[0143]

【発明の効果】以上説明したように、本発明によるII
I−V族化合物半導体の成長方法は、初期成長段階で、
マスクにより基板上の成長領域を制限し、ファセット成
長を促すことで、成長するIII−V族化合物半導体層
と基板結晶の熱膨張係数差、および格子定数差によって
生じるクラックを抑え、欠陥の導入を抑制して、高品質
のIII−V族化合物半導体層を形成することができ
る。従って、本発明による結晶を用いれば、この上に高
品質の半導体素子、例えばレーザ構造や、トランジスタ
構造を作製することができ、その特性が飛躍的に向上す
ることが期待される。
As described above, according to the present invention, II
A method for growing an IV group compound semiconductor includes an initial growth stage,
By limiting the growth region on the substrate by the mask and promoting facet growth, cracks caused by a difference in thermal expansion coefficient and a difference in lattice constant between the growing III-V compound semiconductor layer and the substrate crystal are suppressed, and the introduction of defects is suppressed. Suppression can form a high-quality III-V compound semiconductor layer. Therefore, when the crystal according to the present invention is used, a high-quality semiconductor element, for example, a laser structure or a transistor structure can be manufactured thereon, and its characteristics are expected to be dramatically improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のIII−V族化合物半導体の形成方法
を説明する工程概略図である。
FIG. 1 is a schematic process diagram illustrating a method for forming a group III-V compound semiconductor of the present invention.

【図2】AlGaN膜が形成されたMgAl24
板上にハイドライドVPE法を用いて、GaN膜を形成
する工程の概略図である。
FIG. 2 is a schematic view of a step of forming a GaN film on a MgAl 2 O 4 substrate on which an AlGaN film is formed by using a hydride VPE method.

【図3】選択的にエピタキシャル成長する成長領域の形
状を丸形状、三角形状、及び矩形状に形成した概略図で
ある。
FIG. 3 is a schematic diagram in which a growth region selectively epitaxially grown is formed into a round shape, a triangular shape, and a rectangular shape.

【図4】図3の丸形状、三角形状、及び矩形状の成長領
域を形成した基板上に気相成長法を用いてIII−V族
化合物半導体膜を形成する工程の概略図である。
FIG. 4 is a schematic diagram of a step of forming a group III-V compound semiconductor film by using a vapor phase growth method on a substrate on which the round, triangular, and rectangular growth regions of FIG. 3 are formed.

【図5】本発明の成長方法を2回繰り返して形成したG
aN膜の概略図である。
FIG. 5 shows a G formed by repeating the growth method of the present invention twice.
FIG. 3 is a schematic view of an aN film.

【図6】本発明の成長方法を用いて形成したGaN膜上
にGaN系半導体レーザー構造を形成する工程の概略図
である。
FIG. 6 is a schematic view of a step of forming a GaN-based semiconductor laser structure on a GaN film formed by using the growth method of the present invention.

【符号の説明】[Explanation of symbols]

11 基板 12 基板に形成されたIII−V族化合物半導体膜 13 III−V族化合物半導体を成長させる成長領域 14 マスク 15 エピタキシャル成長したIII−V族化合物半導
体膜 16 III−V族化合物半導体のファセット構造 21 (0001)面のサファイア基板 22 GaN膜 23 マスク 25 エピタキシャル成長したGaN膜 31 (111)面のMgAl24 基板 32 1μmのGaN膜、またはAlGaN膜 32 基板上に形成された成長領域 33 基板上に形成したSiO2 膜のマスク 34 エピタキシャル成長したGaNバッファ層 35 ハイドライドVPE法で成長したGaN膜 43 マスク 44 成長領域 51 (0001)面のサファイア基板 53 第1のマスク 54 第1の成長領域 55 第1のGaN層 56 第2の成長領域 57 第2のマスク 58 第2のGaN層 65 n型GaN膜 66 n型GaN層 67 n型Al0.15Ga0.85Nクラット層 68 n型GaN光ガイド層 69 10周期の多重量子井戸構造活性層 70 p型Al0.2Ga0.8N層 71 p型GaN光ガイド層 72 p型Al0.15Ga0.85Nクラット層 73 p型GaNコンタクト層 74 Ti-Alのn型電極 75 Ni-Auのp型電極
Reference Signs List 11 substrate 12 III-V compound semiconductor film formed on substrate 13 growth region for growing III-V compound semiconductor 14 mask 15 epitaxially grown III-V compound semiconductor film 16 facet structure of III-V compound semiconductor 21 (0001) plane sapphire substrate 22 GaN film 23 mask 25 epitaxially grown GaN film 31 (111) MgAl 2 O 4 substrate 32 1 μm GaN film or AlGaN film 32 growth region formed on substrate 33 substrate Mask of formed SiO 2 film 34 Epitaxially grown GaN buffer layer 35 GaN film grown by hydride VPE method 43 Mask 44 Growth region 51 Sapphire substrate of (0001) plane 53 First mask 54 First growth region 55 First GaN layer 56 2 growth areas 57 a second mask 58 second GaN layer 65 n-type GaN layer 66 n-type GaN layer 67 n-type Al 0.15 Ga 0.85 N Klatt layer 68 n-type GaN optical guide layer 69 10 cycles of multi-quantum well structure Active layer 70 p-type Al 0.2 Ga 0.8 N layer 71 p-type GaN optical guide layer 72 p-type Al 0.15 Ga 0.85 N clat layer 73 p-type GaN contact layer 74 Ti-Al n-type electrode 75 Ni-Au p-type electrode

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平11−135770(JP,A) 特開 平6−163930(JP,A) 特開 平12−12976(JP,A) 特開 平11−31864(JP,A) 特開 昭56−59699(JP,A) 特開 平4−127521(JP,A) 国際公開97/11518(WO,A1) 電気学会研究会資料(1991.12.11) OQD−91−56,光・量子研究会 Jpn.J.Appl.Phys P art.2 36[7B](1997)p.L 899−902 (58)調査した分野(Int.Cl.7,DB名) H01L 21/205 H01S 5/00 C30B 25/00 C30B 29/00 C23C 16/00 H01L 33/00 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-11-135770 (JP, A) JP-A-6-163930 (JP, A) JP-A-12-12976 (JP, A) JP-A-11-135 31864 (JP, A) JP-A-56-59699 (JP, A) JP-A-4-127521 (JP, A) International publication 97/11518 (WO, A1) IEEJ Technical Report (1991.11.11) OQD-91-56, Optical and Quantum Workshop, Jpn. J. Appl. Phys Part. 236 [7B] (1997) p. L 899-902 (58) Field surveyed (Int.Cl. 7 , DB name) H01L 21/205 H01S 5/00 C30B 25/00 C30B 29/00 C23C 16/00 H01L 33/00

Claims (19)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 GaN系半導体のエピタキシャル成長に
おいて、 基板表面にパターニングされたマスク材料により成長領
域を形成する工程と、 前記成長領域に前記基板と格子定数や熱膨張係数が異な
るGaN系半導体のファセット構造を形成しながら成長
させ、隣接する成長領域の前記GaN系半導体のファセ
ット構造とともに前記マスク材料を覆い表面を平坦化す
る工程とを有することを特徴するGaN系半導体の成長
方法。
In the epitaxial growth of a GaN-based semiconductor, a step of forming a growth region using a mask material patterned on a substrate surface, and a facet structure of a GaN-based semiconductor having a lattice constant and a thermal expansion coefficient different from those of the substrate in the growth region And growing the GaN-based semiconductor in a facet structure of the GaN-based semiconductor in an adjacent growth region and flattening the surface by covering the mask material.
【請求項2】前記平坦化された表面に前記各工程を繰り
返すことを特徴とする請求項1記載のGaN系半導体の
成長方法。
2. The method for growing a GaN-based semiconductor according to claim 1, wherein the steps are repeated on the flattened surface.
【請求項3】 前記基板表面に、前記成長領域に成長す
るGaN系半導体と同じ材料か、あるいは格子定数や熱
膨張係数の似た性質を有するGaN系半導体を形成した
後に、前記パターニングされたマスク材料により形成さ
れた成長領域を形成することを特徴とする請求項1又は
2記載のGaN系半導体の成長方法。
3. The patterned mask after forming a GaN-based semiconductor having the same material as the GaN-based semiconductor grown in the growth region or having a similar lattice constant or thermal expansion coefficient on the substrate surface. 3. The method for growing a GaN-based semiconductor according to claim 1, wherein a growth region formed of a material is formed.
【請求項4】 前記マスク材料を用いて形成する成長領
域がストライプ形状、矩形状、丸状、又は三角形状であ
ることを特徴とする請求項1乃至3のいずれかに記載の
GaN系半導体の成長方法。
4. The GaN-based semiconductor according to claim 1, wherein a growth region formed using the mask material has a stripe shape, a rectangular shape, a round shape, or a triangular shape. Growth method.
【請求項5】 前記基板は、MgAl24基板、Si基
板、ZnO基板、SiC基板、LiGaO2基板、Al2
3基板のいずれか1つから選択され、前記GaN系半
導体は、GaN、InGaN、AlGaNのいずれか1
つから選択されることを特徴とする請求項1乃至4のい
ずれかに記載のGaN系半導体の成長方法。
5. The method according to claim 1, wherein the substrate is a MgAl 2 O 4 substrate, a Si substrate, a ZnO substrate, a SiC substrate, a LiGaO 2 substrate, or an Al 2 O 3 substrate.
Selected from any one of O 3 substrates, wherein the GaN-based semiconductor is any one of GaN, InGaN, and AlGaN.
5. The method of growing a GaN-based semiconductor according to claim 1, wherein the method is selected from the group consisting of:
【請求項6】 前記GaN系半導体は、GaN、InG
aN、AlGaNのいずれか1つから選択され、かつ、
前記マスクの形状がストライプ形状であって、前記ファ
セット構造の側壁が{1−101}面であることを特徴
とする請求項1乃至3のいずれかに記載のGaN系半導
体の成長方法。
6. The GaN-based semiconductor includes GaN, InG
aN, selected from any one of AlGaN, and
4. The method of growing a GaN-based semiconductor according to claim 1, wherein a shape of the mask is a stripe shape, and a side wall of the facet structure is a {1-101} plane. 5.
【請求項7】 前記GaN系半導体は、GaN、InG
aN、AlGaNのいずれか1つから選択され、かつ、
前記マスクの形状がストライプ形状であって、ストライ
プ方向が<11−20>方向または<1−100>方向
であることを特徴とする請求項1乃至3のいずれかに記
載のGaN系半導体の成長方法。
7. The GaN-based semiconductor may be GaN, InG
aN, selected from any one of AlGaN, and
4. The growth of the GaN-based semiconductor according to claim 1, wherein the mask has a stripe shape, and a stripe direction is a <11-20> direction or a <1-100> direction. Method.
【請求項8】 請求項1乃至7のいずれかに記載された
GaN系半導体の形成の後、前記GaN系半導体から少
なくとも前記基板、マスク材料を除去する工程と有する
ことを特徴とするGaN系半導体の成長方法。
8. A GaN-based semiconductor, comprising: after forming the GaN-based semiconductor according to claim 1, removing at least the substrate and a mask material from the GaN-based semiconductor. Growth method.
【請求項9】 請求項1乃至8のいずれかに記載された
GaN系半導体の形成の後、デバイス構造を成長する工
程を有することを特徴とするGaN系半導体の成長方
法。
9. A method for growing a GaN-based semiconductor, comprising a step of growing a device structure after forming the GaN-based semiconductor according to claim 1.
【請求項10】 前記デバイス構造がレーザ、FET、
HBTのいずれかであることを特徴とする請求項9記載
のGaN系半導体の成長方法。
10. The method according to claim 1, wherein the device structure is a laser, a FET,
10. The method for growing a GaN-based semiconductor according to claim 9, wherein the method is any one of HBT.
【請求項11】 GaN系半導体と格子定数や熱膨張係
数が異なる基板と、前記基板表面に成長領域を形成する
パターニングされたマスク材料と、前記成長領域でファ
セット構造を形成しながら成長しGaN系半導体が隣接
する成長領域のGaN系半導体の成長とともに前記マス
ク材料を覆い、前記GaN系半導体の成長により前記フ
ァセット構造が埋め込まれて形成されたGaN系半導体
とを有することを特徴とするGaN系半導体膜。
11. A substrate having a lattice constant and a thermal expansion coefficient different from those of a GaN-based semiconductor, a mask material patterned to form a growth region on the surface of the substrate, and a GaN-based material grown while forming a facet structure in the growth region. A GaN-based semiconductor, comprising a GaN-based semiconductor formed by embedding the facet structure by growing the GaN-based semiconductor and covering the mask material with the growth of the GaN-based semiconductor in an adjacent growth region. film.
【請求項12】 前記GaN系半導体膜から少なくとも
前記基板、マスク材料が除去されていることを特徴とす
る特徴とする請求項11記載のGaN系半導体膜。
12. The GaN-based semiconductor film according to claim 11, wherein at least the substrate and the mask material are removed from the GaN-based semiconductor film.
【請求項13】 前記基板表面に、前記成長領域に成長
するGaN系半導体と同じ材料か、あるいは格子定数や
熱膨張係数の似た性質を有するGaN系半導体が形成さ
れ、前記GaN系半導体表面上にマスク材料による成長
領域が形成されていることを特徴とする請求項11又は
12に記載のGaN系半導体膜。
13. A GaN-based semiconductor having the same material as the GaN-based semiconductor grown in the growth region or having a property similar to a lattice constant or a thermal expansion coefficient is formed on the substrate surface. 13. The GaN-based semiconductor film according to claim 11, wherein a growth region is formed by using a mask material.
【請求項14】 前記マスク材料を用いて形成する成長
領域がストライプ形状、矩形状、丸状、又は三角形状で
あることを特徴とする請求項11乃至13のいずれかに
記載のGaN系半導体膜。
14. The GaN-based semiconductor film according to claim 11, wherein a growth region formed by using said mask material has a stripe shape, a rectangular shape, a round shape, or a triangular shape. .
【請求項15】 前記基板は、MgAl24基板、Si
基板、ZnO基板、SiC基板、LiGaO2基板、A
23基板のいずれか1つから選択され、前記GaN系
半導体は、GaN、InGaN、AlGaNのいずれか
1つから選択されることを特徴とする請求項11乃至1
4のいずれかに記載のGaN系半導体膜。
15. The substrate is a MgAl 2 O 4 substrate, Si
Substrate, ZnO substrate, SiC substrate, LiGaO 2 substrate, A
The GaN-based semiconductor is selected from any one of l 2 O 3 substrates, and the GaN-based semiconductor is selected from any one of GaN, InGaN, and AlGaN.
5. The GaN-based semiconductor film according to any one of 4.
【請求項16】 前記GaN系半導体は、GaN、In
GaN、AlGaNのいずれか1つから選択され、か
つ、前記マスクの形状がストライプ形状であって、前記
ファセット構造の側壁が{1−101}面であることを
特徴とする請求項11乃至13のいずれかに記載のGa
N系半導体膜。
16. The GaN-based semiconductor comprises GaN, In
14. The semiconductor device according to claim 11, wherein the mask is selected from one of GaN and AlGaN, and the shape of the mask is a stripe shape, and a side wall of the facet structure is a {1-101} plane. Ga described in any of
N-based semiconductor film.
【請求項17】 前記GaN系半導体は、GaN、In
GaN、AlGaNのいずれか1つから選択され、か
つ、前記マスクの形状がストライプ形状であって、スト
ライプ方向が<11−20>方向または<1−100>
方向であることを特徴とする請求項11乃至13のいず
れかに記載のGaN系半導体膜。
17. The GaN-based semiconductor may be GaN, In
The mask is selected from one of GaN and AlGaN, and the mask has a stripe shape, and the stripe direction is a <11-20> direction or a <1-100> direction.
14. The GaN-based semiconductor film according to claim 11, wherein the direction is a direction.
【請求項18】 請求項11乃至17のいずれかに記載
されたGaN系半導体膜上にデバイス構造が形成されて
いることを特徴とするGaN系半導体素子。
18. A GaN-based semiconductor device, wherein a device structure is formed on the GaN-based semiconductor film according to claim 11.
【請求項19】 前記デバイス構造がレーザ、FET、
HBTのいずれかであることを特徴とする請求項18に
記載のGaN系半導体素子。
19. The device according to claim 19, wherein the device structure is a laser, a FET,
The GaN-based semiconductor device according to claim 18, wherein the GaN-based semiconductor device is any one of HBT.
JP6276098A 1997-03-13 1998-03-13 GaN-based semiconductor growth method and GaN-based semiconductor film Expired - Lifetime JP3139445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6276098A JP3139445B2 (en) 1997-03-13 1998-03-13 GaN-based semiconductor growth method and GaN-based semiconductor film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-59076 1997-03-13
JP5907697 1997-03-13
JP6276098A JP3139445B2 (en) 1997-03-13 1998-03-13 GaN-based semiconductor growth method and GaN-based semiconductor film

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2000274555A Division JP3934320B2 (en) 1997-03-13 2000-09-11 GaN-based semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH10312971A JPH10312971A (en) 1998-11-24
JP3139445B2 true JP3139445B2 (en) 2001-02-26

Family

ID=26400106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6276098A Expired - Lifetime JP3139445B2 (en) 1997-03-13 1998-03-13 GaN-based semiconductor growth method and GaN-based semiconductor film

Country Status (1)

Country Link
JP (1) JP3139445B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6812051B2 (en) 2001-05-21 2004-11-02 Nec Corporation Method of forming an epitaxially grown nitride-based compound semiconductor crystal substrate structure and the same substrate structure
US8038794B2 (en) 2004-06-09 2011-10-18 Sumitomo Electric Industries, Ltd. Group III-nitride crystal, manufacturing method thereof, group III-nitride crystal substrate and semiconductor device

Families Citing this family (120)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008034862A (en) * 1997-04-11 2008-02-14 Nichia Chem Ind Ltd Growing method for nitride semiconductor
CN1175473C (en) 1997-10-30 2004-11-10 住友电气工业株式会社 GaN signale crystalline substrate and method of producing the same
JPH11163404A (en) * 1997-11-25 1999-06-18 Toyoda Gosei Co Ltd Gan-based semiconductor
JP4314887B2 (en) * 1997-11-26 2009-08-19 日亜化学工業株式会社 Nitride semiconductor device
JP3301601B2 (en) * 1998-01-27 2002-07-15 日亜化学工業株式会社 Nitride semiconductor light emitting device
JP2002505519A (en) * 1998-02-27 2002-02-19 ノース・キャロライナ・ステイト・ユニヴァーシティ Method for producing gallium nitride semiconductor layer by lateral overgrowth through mask and gallium nitride semiconductor structure produced thereby
JPH11340576A (en) * 1998-05-28 1999-12-10 Sumitomo Electric Ind Ltd Gallium nitride based semiconductor device
US6335546B1 (en) * 1998-07-31 2002-01-01 Sharp Kabushiki Kaisha Nitride semiconductor structure, method for producing a nitride semiconductor structure, and light emitting device
JP3650531B2 (en) * 1998-08-24 2005-05-18 三菱電線工業株式会社 GaN-based crystal substrate and method for producing the same
JP3201475B2 (en) 1998-09-14 2001-08-20 松下電器産業株式会社 Semiconductor device and method of manufacturing the same
KR100455277B1 (en) * 1999-02-12 2004-11-06 삼성전자주식회사 Method for growing GaN crystalline using lateral epitaxy growth
JP3702700B2 (en) * 1999-03-31 2005-10-05 豊田合成株式会社 Group III nitride compound semiconductor device and method for manufacturing the same
JP3587081B2 (en) 1999-05-10 2004-11-10 豊田合成株式会社 Method of manufacturing group III nitride semiconductor and group III nitride semiconductor light emitting device
JP3555500B2 (en) * 1999-05-21 2004-08-18 豊田合成株式会社 Group III nitride semiconductor and method of manufacturing the same
US6580098B1 (en) 1999-07-27 2003-06-17 Toyoda Gosei Co., Ltd. Method for manufacturing gallium nitride compound semiconductor
JP4145437B2 (en) * 1999-09-28 2008-09-03 住友電気工業株式会社 Single crystal GaN crystal growth method, single crystal GaN substrate manufacturing method, and single crystal GaN substrate
US6821805B1 (en) 1999-10-06 2004-11-23 Matsushita Electric Industrial Co., Ltd. Semiconductor device, semiconductor substrate, and manufacture method
US6812053B1 (en) 1999-10-14 2004-11-02 Cree, Inc. Single step pendeo- and lateral epitaxial overgrowth of Group III-nitride epitaxial layers with Group III-nitride buffer layer and resulting structures
MXPA02003749A (en) * 1999-10-14 2002-08-30 Cree Inc Single step pendeo and lateral epitaxial overgrowth of group iii nitride layers.
JP4547746B2 (en) * 1999-12-01 2010-09-22 ソニー株式会社 Method for producing crystal of nitride III-V compound
JP2001168028A (en) 1999-12-03 2001-06-22 Sony Corp Method of manufacturing nitride-based iii-v compound crystal, nitride-based iii-v compound crystalline substrate, nitride-based iii-v compound crystalline film, and method of manufacturing device
US6475882B1 (en) 1999-12-20 2002-11-05 Nitride Semiconductors Co., Ltd. Method for producing GaN-based compound semiconductor and GaN-based compound semiconductor device
JP4432180B2 (en) 1999-12-24 2010-03-17 豊田合成株式会社 Group III nitride compound semiconductor manufacturing method, group III nitride compound semiconductor device, and group III nitride compound semiconductor
JP2001185493A (en) 1999-12-24 2001-07-06 Toyoda Gosei Co Ltd Method of manufacturing group iii nitride-based compound semiconductor, and group iii nitride based compound semiconductor device
JP3568112B2 (en) 1999-12-27 2004-09-22 豊田合成株式会社 Semiconductor substrate manufacturing method
JP2001196697A (en) 2000-01-13 2001-07-19 Fuji Photo Film Co Ltd Substrate for semiconductor element and its manufacturing method, and semiconductor element using the same
JP4667556B2 (en) * 2000-02-18 2011-04-13 古河電気工業株式会社 Vertical GaN-based field effect transistor, bipolar transistor and vertical GaN-based field effect transistor manufacturing method
US6596079B1 (en) * 2000-03-13 2003-07-22 Advanced Technology Materials, Inc. III-V nitride substrate boule and method of making and using the same
JP2001267242A (en) 2000-03-14 2001-09-28 Toyoda Gosei Co Ltd Group iii nitride-based compound semiconductor and method of manufacturing the same
KR20020084194A (en) 2000-03-14 2002-11-04 도요다 고세이 가부시키가이샤 Production method of iii nitride compound semiconductor and iii nitride compound semiconductor element
TW504754B (en) 2000-03-24 2002-10-01 Sumitomo Chemical Co Group III-V compound semiconductor and method of producing the same
TW518767B (en) * 2000-03-31 2003-01-21 Toyoda Gosei Kk Production method of III nitride compound semiconductor and III nitride compound semiconductor element
JP2001313259A (en) 2000-04-28 2001-11-09 Toyoda Gosei Co Ltd Method for producing iii nitride based compound semiconductor substrate and semiconductor element
JP3285341B2 (en) 2000-06-01 2002-05-27 士郎 酒井 Method of manufacturing gallium nitride based compound semiconductor
US6841808B2 (en) * 2000-06-23 2005-01-11 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor device and method for producing the same
JP3968968B2 (en) * 2000-07-10 2007-08-29 住友電気工業株式会社 Manufacturing method of single crystal GaN substrate
JP3882539B2 (en) 2000-07-18 2007-02-21 ソニー株式会社 Semiconductor light emitting device, method for manufacturing the same, and image display device
US7619261B2 (en) 2000-08-07 2009-11-17 Toyoda Gosei Co., Ltd. Method for manufacturing gallium nitride compound semiconductor
US6673149B1 (en) * 2000-09-06 2004-01-06 Matsushita Electric Industrial Co., Ltd Production of low defect, crack-free epitaxial films on a thermally and/or lattice mismatched substrate
JP3556916B2 (en) 2000-09-18 2004-08-25 三菱電線工業株式会社 Manufacturing method of semiconductor substrate
JP3466144B2 (en) 2000-09-22 2003-11-10 士郎 酒井 How to roughen the surface of a semiconductor
US6635901B2 (en) 2000-12-15 2003-10-21 Nobuhiko Sawaki Semiconductor device including an InGaAIN layer
JP4595198B2 (en) 2000-12-15 2010-12-08 ソニー株式会社 Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
JP4649745B2 (en) 2001-02-01 2011-03-16 ソニー株式会社 Light-emitting element transfer method
WO2002064864A1 (en) 2001-02-14 2002-08-22 Toyoda Gosei Co., Ltd. Production method for semiconductor crystal and semiconductor luminous element
JP5283293B2 (en) 2001-02-21 2013-09-04 ソニー株式会社 Semiconductor light emitting device
JP3679720B2 (en) * 2001-02-27 2005-08-03 三洋電機株式会社 Nitride semiconductor device and method for forming nitride semiconductor
JP2002261392A (en) 2001-02-27 2002-09-13 Sanyo Electric Co Ltd Nitride-based semiconductor device and its formation method
JP3454791B2 (en) 2001-03-01 2003-10-06 三洋電機株式会社 Nitride-based semiconductor device and method of forming nitride-based semiconductor
JP3690340B2 (en) 2001-03-06 2005-08-31 ソニー株式会社 Semiconductor light emitting device and manufacturing method thereof
JP2002261327A (en) 2001-03-06 2002-09-13 Sony Corp Semiconductor light-emitting element and manufacturing method therefor
JP2002270893A (en) 2001-03-06 2002-09-20 Sony Corp Semiconductor light-emitting element, display unit, method for manufacturing the semiconductor light- emitting element and method for manufacturing semiconductor laser
JP2002270516A (en) 2001-03-07 2002-09-20 Nec Corp Growing method of iii group nitride semiconductor, film thereof and semiconductor element using the same
JP2002280314A (en) 2001-03-22 2002-09-27 Toyoda Gosei Co Ltd Manufacturing method of iii nitride compound semiconductor group, and the iii nitride compound semiconductor element based thereon
JP2002284600A (en) 2001-03-26 2002-10-03 Hitachi Cable Ltd Method for manufacturing gallium nitride crystal substrate and the same
JP3520919B2 (en) 2001-03-27 2004-04-19 士郎 酒井 Method for manufacturing nitride semiconductor device
JP3631724B2 (en) 2001-03-27 2005-03-23 日本電気株式会社 Group III nitride semiconductor substrate and manufacturing method thereof
JP3956637B2 (en) 2001-04-12 2007-08-08 ソニー株式会社 Nitride semiconductor crystal growth method and semiconductor element formation method
JP3714188B2 (en) 2001-04-19 2005-11-09 ソニー株式会社 Nitride semiconductor vapor phase growth method and nitride semiconductor device
JP3812368B2 (en) 2001-06-06 2006-08-23 豊田合成株式会社 Group III nitride compound semiconductor device and method for manufacturing the same
JP3548735B2 (en) 2001-06-29 2004-07-28 士郎 酒井 Method of manufacturing gallium nitride based compound semiconductor
WO2003015143A1 (en) * 2001-08-01 2003-02-20 Nagoya Industrial Science Research Institute Group iii nitride semiconductor film and its production method
WO2003019678A1 (en) 2001-08-22 2003-03-06 Sony Corporation Nitride semiconductor element and production method for nitride semiconductor element
JP3801125B2 (en) * 2001-10-09 2006-07-26 住友電気工業株式会社 Single crystal gallium nitride substrate, method for crystal growth of single crystal gallium nitride, and method for manufacturing single crystal gallium nitride substrate
JP3864870B2 (en) * 2001-09-19 2007-01-10 住友電気工業株式会社 Single crystal gallium nitride substrate, growth method thereof, and manufacturing method thereof
US6963086B2 (en) 2001-10-10 2005-11-08 Sony Corporation Semiconductor light-emitting device image display illuminator and its manufacturing method
JP3690326B2 (en) 2001-10-12 2005-08-31 豊田合成株式会社 Method for producing group III nitride compound semiconductor
JP3899936B2 (en) 2002-01-18 2007-03-28 ソニー株式会社 Semiconductor light emitting device and manufacturing method thereof
US7005685B2 (en) 2002-02-28 2006-02-28 Shiro Sakai Gallium-nitride-based compound semiconductor device
US20030198837A1 (en) 2002-04-15 2003-10-23 Craven Michael D. Non-polar a-plane gallium nitride thin films grown by metalorganic chemical vapor deposition
JP3997827B2 (en) * 2002-04-30 2007-10-24 住友電気工業株式会社 Gallium nitride growth substrate, gallium nitride growth substrate manufacturing method, and gallium nitride substrate manufacturing method
JP4117156B2 (en) 2002-07-02 2008-07-16 日本電気株式会社 Method for manufacturing group III nitride semiconductor substrate
JP2004153089A (en) 2002-10-31 2004-05-27 Toyoda Gosei Co Ltd Group iii nitride-based compound semiconductor light emitting element and its manufacturing method
JP2004288799A (en) 2003-03-20 2004-10-14 Sony Corp Semiconductor light-emitting element, integrated semiconductor light-emitting device, image display device, lighting apparatus, and manufacturing methods of all
JP2004311986A (en) * 2003-03-25 2004-11-04 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacturing method
JP3821232B2 (en) 2003-04-15 2006-09-13 日立電線株式会社 Porous substrate for epitaxial growth, method for producing the same, and method for producing group III nitride semiconductor substrate
JP2004349509A (en) * 2003-05-22 2004-12-09 Toyota Central Res & Dev Lab Inc Semiconductor device utilizing iii-v group compound crystals, and method for manufacturing the same
JP3913194B2 (en) 2003-05-30 2007-05-09 シャープ株式会社 Nitride semiconductor light emitting device
JP4824920B2 (en) * 2003-10-20 2011-11-30 パナソニック株式会社 Group III element nitride crystal semiconductor device
JP4380294B2 (en) 2003-10-29 2009-12-09 日立電線株式会社 Group III-V nitride semiconductor substrate
US7276779B2 (en) 2003-11-04 2007-10-02 Hitachi Cable, Ltd. III-V group nitride system semiconductor substrate
JP4332720B2 (en) 2003-11-28 2009-09-16 サンケン電気株式会社 Method for manufacturing plate-like substrate for forming semiconductor element
JP2005209803A (en) 2004-01-21 2005-08-04 Sumitomo Electric Ind Ltd METHOD FOR MANUFACTURING GaN CRYSTAL SUBSTRATE
JP4747319B2 (en) * 2004-03-23 2011-08-17 学校法人 名城大学 Heteroepitaxial growth method
JP4289203B2 (en) * 2004-04-15 2009-07-01 豊田合成株式会社 GaN-based semiconductor
US7956360B2 (en) 2004-06-03 2011-06-07 The Regents Of The University Of California Growth of planar reduced dislocation density M-plane gallium nitride by hydride vapor phase epitaxy
KR101332391B1 (en) * 2004-06-03 2013-11-22 재팬 사이언스 앤드 테크놀로지 에이젼시 Growth of planar reduced dislocation density m-plane gallium nitride by hydride vapor phase epitaxy
JPWO2006088261A1 (en) * 2005-02-21 2008-07-17 財団法人神奈川科学技術アカデミー InGaN layer generation method and semiconductor device
JP2006324331A (en) * 2005-05-17 2006-11-30 Sony Corp Light emitting diode and its manufacturing method, integrated light emitting diode and its manufacturing method, growing method of nitride- based group iii-v compound semiconductor, nitride-based group iii-v compound semiconductor growing substrate, light emitting diode backlight, light emitting diode lighting apparatus, light emitting diode display, and electronic equipment
WO2006125040A2 (en) * 2005-05-17 2006-11-23 Amberwave Systems Corporation Lattice-mismatched semiconductor structures with reduced dislocation defect densities related methods for device fabrication
TW200703463A (en) 2005-05-31 2007-01-16 Univ California Defect reduction of non-polar and semi-polar III-nitrides with sidewall lateral epitaxial overgrowth (SLEO)
US8168000B2 (en) * 2005-06-15 2012-05-01 International Rectifier Corporation III-nitride semiconductor device fabrication
JP4954534B2 (en) * 2005-11-22 2012-06-20 ローム株式会社 Nitride semiconductor device and manufacturing method thereof
US7977703B2 (en) * 2005-11-22 2011-07-12 Rohm Co., Ltd. Nitride semiconductor device having a zinc-based substrate
JP4631681B2 (en) 2005-12-05 2011-02-16 日立電線株式会社 Nitride-based semiconductor substrate and semiconductor device
WO2008048303A2 (en) 2005-12-12 2008-04-24 Kyma Technologies, Inc. Group iii nitride articles and methods for making same
JP4978009B2 (en) * 2006-01-16 2012-07-18 ソニー株式会社 GaN-based semiconductor light-emitting device and manufacturing method thereof
JP4862442B2 (en) 2006-03-15 2012-01-25 日立電線株式会社 Method for manufacturing group III-V nitride semiconductor substrate and method for manufacturing group III-V nitride device
KR100755598B1 (en) 2006-06-30 2007-09-06 삼성전기주식회사 Nitride semiconductor light emitting diode array
JP4838766B2 (en) * 2006-10-20 2011-12-14 古河機械金属株式会社 Group III nitride semiconductor substrate manufacturing method and group III nitride semiconductor substrate
US8193020B2 (en) 2006-11-15 2012-06-05 The Regents Of The University Of California Method for heteroepitaxial growth of high-quality N-face GaN, InN, and AlN and their alloys by metal organic chemical vapor deposition
JP4259591B2 (en) 2007-01-16 2009-04-30 住友電気工業株式会社 Group III nitride crystal manufacturing method, group III nitride crystal substrate, and group III nitride semiconductor device
DE112008000410T5 (en) 2007-02-16 2009-12-24 Sumitomo Chemical Company, Limited Epitaxial gallium nitride crystal, process for its preparation and field effect transistor
JP4811376B2 (en) * 2007-09-25 2011-11-09 ソニー株式会社 Nitride III-V compound layer and substrate using the same
JP5031674B2 (en) * 2008-06-09 2012-09-19 シャープ株式会社 Nitride semiconductor laser device and method for manufacturing nitride semiconductor laser device
JP5342182B2 (en) * 2008-07-01 2013-11-13 古河電気工業株式会社 Schottky barrier diode and manufacturing method thereof
US8203153B2 (en) * 2010-01-15 2012-06-19 Koninklijke Philips Electronics N.V. III-V light emitting device including a light extracting structure
JP5542040B2 (en) * 2010-12-15 2014-07-09 日本碍子株式会社 Group III nitride single crystal manufacturing method and seed crystal substrate used therefor
JPWO2012093601A1 (en) * 2011-01-07 2014-06-09 三菱化学株式会社 Epitaxial growth substrate and GaN-based LED device
CN102719888B (en) * 2011-03-29 2015-11-25 清华大学 There is the preparation method of nano-micro structure substrate
CN103243389B (en) 2012-02-08 2016-06-08 丰田合成株式会社 Manufacture the method for group III nitride semiconductor monocrystalline and manufacture the method for GaN substrate
JP2014076928A (en) * 2012-10-12 2014-05-01 Waseda Univ Template substrate
JP2014078653A (en) * 2012-10-12 2014-05-01 Waseda Univ Group iii nitride semiconductor layer manufacturing method
JP5999443B2 (en) 2013-06-07 2016-09-28 豊田合成株式会社 Group III nitride semiconductor crystal manufacturing method and GaN substrate manufacturing method
WO2016136547A1 (en) 2015-02-23 2016-09-01 三菱化学株式会社 C-plane gan substrate
JP2017017265A (en) * 2015-07-06 2017-01-19 ナイトライド・セミコンダクター株式会社 Light-emitting device
JP7094558B2 (en) 2016-01-05 2022-07-04 スージョウ レキン セミコンダクター カンパニー リミテッド Semiconductor element
JP2019515860A (en) * 2016-04-01 2019-06-13 ヘキサジェム アーベー Flat surface formation of III-nitride materials
CN112470260A (en) 2018-05-23 2021-03-09 胜高股份有限公司 Group III nitride semiconductor substrate and method for producing same
TW202147455A (en) * 2020-01-27 2021-12-16 日商Flosfia股份有限公司 Semiconductor device and method for producing semiconductor device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Jpn.J.Appl.Phys Part.2 36[7B](1997)p.L899−902
電気学会研究会資料(1991.12.11)OQD−91−56,光・量子研究会

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6812051B2 (en) 2001-05-21 2004-11-02 Nec Corporation Method of forming an epitaxially grown nitride-based compound semiconductor crystal substrate structure and the same substrate structure
US7196399B2 (en) 2001-05-21 2007-03-27 Nec Corporation Epitaxially grown nitride-based compound semiconductor crystal substrate structure with low dislocation density
US8038794B2 (en) 2004-06-09 2011-10-18 Sumitomo Electric Industries, Ltd. Group III-nitride crystal, manufacturing method thereof, group III-nitride crystal substrate and semiconductor device

Also Published As

Publication number Publication date
JPH10312971A (en) 1998-11-24

Similar Documents

Publication Publication Date Title
JP3139445B2 (en) GaN-based semiconductor growth method and GaN-based semiconductor film
JP4743214B2 (en) Semiconductor device and manufacturing method thereof
JP4092927B2 (en) Group III nitride compound semiconductor, group III nitride compound semiconductor element, and method for manufacturing group III nitride compound semiconductor substrate
KR100401898B1 (en) Base substrate for crystal growth and manufacturing method of substrate by using the same
JP3036495B2 (en) Method for manufacturing gallium nitride-based compound semiconductor
JP4371202B2 (en) Nitride semiconductor manufacturing method, semiconductor wafer, and semiconductor device
JP5638198B2 (en) Laser diode orientation on miscut substrates
JP3153153B2 (en) Gallium nitride based semiconductor laser and method of manufacturing the same
JP2002270516A (en) Growing method of iii group nitride semiconductor, film thereof and semiconductor element using the same
JP2011084469A (en) METHOD AND INGOT FOR MANUFACTURING GaN SINGLE CRYSTAL SUBSTRATE
JP4644942B2 (en) Crystal film, crystal substrate, and method of manufacturing semiconductor device
JP2002335051A (en) Nitride semiconductor element and forming method thereof
JP3196833B2 (en) Method of growing III-V compound semiconductor and method of manufacturing semiconductor light emitting device using this method
JP3279528B2 (en) Method for producing nitride III-V compound semiconductor
JPH11251632A (en) Manufacture of gallium nitride semiconductor element
JP4734786B2 (en) Gallium nitride compound semiconductor substrate and manufacturing method thereof
JP4356208B2 (en) Vapor phase growth method of nitride semiconductor
JP2000223417A (en) Growing method of semiconductor, manufacture of semiconductor substrate, and manufacture of semiconductor device
JP2002145700A (en) Sapphire substrate, semiconductor device, electronic part and crystal growing method
JP5065625B2 (en) Manufacturing method of GaN single crystal substrate
JP3934320B2 (en) GaN-based semiconductor device and manufacturing method thereof
JP4743989B2 (en) Semiconductor device, method for manufacturing the same, and method for manufacturing a semiconductor substrate
KR100506739B1 (en) Growth method of aluminum-containing nitride semiconductor single crystal
JP5015480B2 (en) Manufacturing method of semiconductor single crystal substrate
TWI255052B (en) Method to produce a number of semiconductor-bodies and electronic semiconductor-bodies

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071215

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081215

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 13

EXPY Cancellation because of completion of term