JP3650531B2 - GaN-based crystal substrate and method for producing the same - Google Patents

GaN-based crystal substrate and method for producing the same Download PDF

Info

Publication number
JP3650531B2
JP3650531B2 JP23684598A JP23684598A JP3650531B2 JP 3650531 B2 JP3650531 B2 JP 3650531B2 JP 23684598 A JP23684598 A JP 23684598A JP 23684598 A JP23684598 A JP 23684598A JP 3650531 B2 JP3650531 B2 JP 3650531B2
Authority
JP
Japan
Prior art keywords
gan
layer
based crystal
mask
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23684598A
Other languages
Japanese (ja)
Other versions
JP2000068559A (en
Inventor
広明 岡川
一行 只友
洋一郎 大内
雅弘 湖東
和政 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP23684598A priority Critical patent/JP3650531B2/en
Publication of JP2000068559A publication Critical patent/JP2000068559A/en
Application granted granted Critical
Publication of JP3650531B2 publication Critical patent/JP3650531B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Led Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、GaN系結晶を用いた半導体発光素子(GaN系発光素子)などに用いられるGaN系結晶基材を得るための技術分野に属し、特に、Al組成を有するGaN系結晶に関する。
【0002】
【従来の技術】
GaN系発光素子は、近年、高輝度の発光ダイオード(LED)が実現されたのを機会に研究が活発に行われており、半導体レーザーの室温連続発振の報告も聞かれる様になっている。例えば、高輝度LEDでは緑色・青色が、半導体レーザー(LD)では紫色が実現されている。
【0003】
従来、GaN系発光素子の発光部の材料としては、InGaNが多く用いられている。発光部とは、例えば、LEDではpn接合の空乏層部分やダブルヘテロ接合構造の活性層などであり、LDではストライプ構造のストライプ部分などである。InGaNは、緑色〜青色の短い波長の発光が得られ、しかも高い発光効率が得られる材料である。
【0004】
しかし、情報信号の伝達・記録の高密度化などに伴い、GaN系発光素子には、青色光から紫外線へと、より短い波長光を発することが求められている。そのためには、発光部の材料として、InGaNからIn組成を減らしてGaNに近づけて行く必要がある。それに伴い、クラッド層など周囲の層は、キャリアの閉じこめ、光の透過(LEDの場合)、光の閉じこめ(LDの場合)、などの役割を果たすことが必要となる。従って、該周囲の層は、発光部よりもバンドギャップの大きな材料、即ち、AlGaNなどAl組成を増やした材料(AlGaN系材料と呼ぶ)によって形成されねばならない。
【0005】
一方、GaN系発光素子を作製する一般的な方法は、結晶基板にサファイアの単結晶を用い、その上にバッファ層を介して種々のGaN系結晶層を成長させ、所望のGaN系結晶層を発光部として用いるというものである。しかし、このような方法によって成長させたGaN系結晶層内には、結晶基板との格子不整合などに起因する転位が高密度に存在する。転位は、GaN系結晶が成長して厚みが増しても上方に継承され、転位線(貫通転位)と呼ばれる連続した欠陥部分となって素子の特性を損なう。
【0006】
これに対して、マスク層を用いて低転位なGaN系結晶を得る方法が報告されている。以下、この方法を、「マスク法」と呼んで説明する。
マスク法は、図2(a)に示すように、先ず、ベース基板(結晶基板)10上に、GaN系結晶が成長し得ない材料(SiO2 など)からなるマスク層20を、特定のパターンを描いて形成する。そして、ベース基板上においてマスク層20が形成されていない領域(非マスク領域)10aを出発面としてGaN系結晶を成長させる。結晶がマスク層20の高さまで成長した後も結晶成長を継続すると、GaN系結晶は厚さ方向に成長するだけでなく、マスク層20の上面に沿って横方向にも成長し、図2(b)に示すように、マスク層20を埋め込んで覆うGaN系結晶層30となる。このとき、GaN系結晶層30中には、例えばマスク層の上方の部分30aなど特定の部分に、転位線の伝搬の少ない低転位な部分が形成されているのである。
【0007】
【発明が解決しようとする課題】
ところが、マスク法によって、AlGaN系材料を結晶成長させようとすると、本来GaN系結晶が成長し得ないことを前提としているマスク層上面から、AlGaN系材料が多結晶的に成長し、マスク法のプロセスが達成されず、結晶品質が低下するという問題がある。
【0008】
これはAlが非常に活性であって、Al反応種のマスク層上での拡散長が短いために、マスク材料のSiO2 と反応しやすく、また、マスク層上で他の反応種と反応し堆積し易く、マスク層上に結晶成長の核となる部分が発生し易いことが原因と考えられる。
【0009】
また従来のマスク法では、AlGaN系結晶を成長させる場合、結晶性向上のために、サファイア基板上にバッファ層を介して先ずGaNの表層を数μm成長させてベース基板とし、そのベース基板上にAlGaN系結晶層を成長させるのが通常である。しかし、このような方法では、結晶性は向上しても、GaN結晶とAlGaN系結晶との互いの熱膨張係数の差、および素子全体を完成させるまでに繰り返される温度の上昇と降下によって、これらの層のいずれかまたは両方にクラックが発生するという問題がある。
【0010】
本発明の目的は、上記問題を解決し、低転位でクラックの少ない状態として形成された、AlGaN系結晶層を有するGaN系結晶基材を提供し、その製造方法を提供することである。
【0011】
【課題を解決するための手段】
本発明のGaN系結晶基材とその製造方法は次の特徴を有するものである。
(1)GaN系結晶が成長可能なベース基板面に、マスク領域と非マスク領域とを形成するようにマスク層が設けられ、マスク層はそれ自身の表面からは実質的にGaN系結晶が成長し得ない材料からなり、非マスク領域を結晶成長の出発点としてマスク層上を覆うまで成長した第一のGaN系結晶層と、その上に成長した第二のGaN系結晶層とを有し、第一のGaN系結晶層は、Al組成が実質的に0であり、該第一のGaN系結晶層がマスク層を覆った瞬間においてAl組成の増加が開始しており、それによって第一のGaN系結晶層は第二のGaN系結晶層へと切り換わっており、第二のGaN系結晶層には、第一のGaN系結晶層との境界から層の厚さが増すにつれてAl組成が増加するAlGaN結晶層部分が含まれていることを特徴とするGaN系結晶基材。
(2)第二のGaN系結晶層のAl組成が増加する部分における、Al組成の初期値が0.01以下である上記(1)記載のGaN系結晶基材。
(3)マスク層の形成パターンが、帯状のマスク層を縞状に配置してなるストライプ状のマスクパターンであって、前記帯状のマスク層の長手方向が第一のGaN系結晶層に対して〈1−100〉方向に伸びるものである上記(1)記載のGaN系結晶基材。
(4)第一のGaN系結晶層がGaN結晶層であり、第二のGaN系結晶層がAlGaN結晶層である上記(1)記載のGaN系結晶基材。
(5)ベース基板の上面を基準とする、非マスク領域での第一のGaN系結晶層の厚さが、0.1μm〜3μm以下である上記(1)記載のGaN系結晶基材。
(6)上記(1)〜(5)のいずれかに記載のGaN系結晶基材を製造するための方法であって、GaN系結晶が成長可能なベース基板面に、マスク領域と非マスク領域とを形成するようにマスク層を設け、マスク層の材料をそれ自身の表面からは実質的にGaN系結晶が成長し得ない材料とし、非マスク領域を結晶成長の出発点として、第一のGaN系結晶層としてのGaN系結晶を成長させ、第一のGaN系結晶層がマスク層上を覆うまではGaN系結晶のAl組成を実質的に0とし、第一のGaN系結晶層がマスク層上を覆った瞬間においてAl組成の増加を開始することによって第二のGaN系結晶層へと切り換え、該第二のGaN系結晶層の厚さが増すにつれてAl組成が増加する部分を形成する工程を含むことを特徴とするGaN系結晶基材の製造方法。
(7)Al組成が増加する部分を形成するに際し、Al組成の初期値を0.01以下としてAl組成を増加させるものである上記(6)記載の製造方法。
(8)ベース基板の上面を基準とする、非マスク領域での第一のGaN系結晶層の厚さが、0.1μm〜3μm以下である上記(6)記載のGaN系結晶基材。
【0017】
本発明でいう「GaN系」とは、InX GaY AlZ N(0≦X≦1、0≦Y≦1、0≦Z≦1、X+Y+Z=1)で示される化合物半導体のグループに属することを意味する。従って、「AlGaN系」とは、前記式において、0<Z≦1である。
【0018】
本明細書では、GaN系結晶やサファイア基板などの六方格子結晶の格子面を4つのミラー指数(hkil)によって指定する場合があれば、記載の便宜上、指数が負のときには、その指数の前にマイナス記号を付けて表記するものとし、この負の指数に関する表記方法以外は、一般的なミラー指数の表記方法に準じる。従って、GaN系結晶の場合では、C軸に平行なプリズム面(特異面)は6面あるが、例えば、その1つの面は(1−100)と表記し、6面を等価な面としてまとめる場合には{1−100}と表記する。また、前記{1−100}面に垂直でかつC軸に平行な面を等価的にまとめて{11−20}と表記する。また、(1−100)面に垂直な方向は〔1−100〕、それと等価な方向の集合を〈1−100〉とし、(11−20)面に垂直な方向は〔11−20〕、それと等価な方向の集合を〈11−20〉と表記する。但し、図面にミラー指数を記入する場合があれば、指数が負のときには、その指数の上にマイナス記号を付けて表記し、ミラー指数の一般的な表記方法に全て準じる。本発明でいう結晶方位は、全て、ベース基板上に成長したGaN系結晶を基準とする方位である。
【0019】
「マスク領域」(即ち、マスクされた領域)と「非マスク領域」(即ち、マスクされていない領域)は、ともにベース基板面内の領域である。マスク層の上面の領域は、マスク領域に等しいものとみなし、同義として説明に用いる。
【0020】
【作用】
マスク法を用いてGaN系結晶を成長させるに際し、第一のGaN系結晶層がマスク層を覆うまではAl組成を実質的に0とすることによって、マスク層上における該結晶のポリクリスタル成長が抑制され、マスク法の良好なプロセスが達成され、低転位な結晶部分が得られる。
また、該結晶がマスク層を覆った後は、層の厚さが増すにつれて、Al組成を0.01以下の小さい値、好ましくは実質的に0から増加させる部分を設けることによって、クラックの発生が抑えられた、好ましい品質のAlGaN系結晶層が得られる。以下、Al組成が実質的に0の材料をGaNとし、Al組成を増加させた材料をAlGaNとして説明するが、それらの説明の材料に、適当なIn組成を加えてもよい。
【0021】
また、クラックの発生を軽減するためには、マスク層を覆うGaN結晶の厚さをできる限り薄くするのが好ましい。従って、本発明ではGaN結晶がマスク層を覆った時点で、Al組成の増加を開始するのが好ましい態様となる。
【0022】
【発明の実施の形態】
以下に、本発明によるGaN系結晶基材を示すと同時にその製造方法を説明する。
本発明によるGaN系結晶基材は、図1に示すように、ベース基板B、マスク層3、第一のGaN系結晶層(以下「第一層」)1、第二のGaN系結晶層(以下「第二層」)2とを有する。マスク層3は、ベース基板Bの基板面上に、マスク領域と非マスク領域4とを形成するよう設けられる。第一層1は、非マスク領域4を結晶成長の出発点としてマスク層上を覆うまで成長した層であり、Al組成は実質的に0である。第二層2は、第一層1の上に成長した層である。第二層2には、第一層1との境界から所定の厚さとなる部分まで、層の厚さが増すにつれてAl組成が増加する部分が形成された構造となっている。
【0023】
ベース基板は、GaN系結晶がC軸を厚み方向として成長可能なものであればよく、例えば、サファイア、水晶、SiCなどが挙げられる。なかでも、サファイアのC面、A面、6H−SiC基板、特にC面サファイア基板が好ましい。
【0024】
また、上記基板を基礎の結晶基板として、その表面に、バッファ層を設けた状態のものをベース基板としても良い。バッファ層の材料は、公知の材料を用いてよいが、第一層、第二層との熱膨張係数差をより小さくしてクラック発生を抑制し、また、発光素子を構成したとき光吸収を抑制する意図から、AlX Ga1-X N(0<x≦1)が好ましい。
【0025】
さらに、ベース基板の少なくとも表層をGaN系結晶層としてもよい。例えば、図1に示すように、サファイアなどの基礎の結晶基板B1の表面に、バッファ層B2を介して、GaN系結晶層B3を表層として成長させ、これをベース基板Bとして用いる態様である。
【0026】
マスク層には、それ自身の表面からは実質的にGaN系結晶が成長し得ない材料を用いる。このような材料としては、SiO2 、SiNx、TiO2 、ZrO2 などが例示される。またこれら材料の積層構造とすることも可能である。
【0027】
マスク層の形成パターンは、丸・楕円・星・六角形などの開口部があるものや、帯状になったものなど任意の形状でよいが、GaN系結晶の成長のしかたや、転位線の伝搬のしかたに大きな影響を与える重要なものである。特に、マスク領域と非マスク領域との境界線の方向が重要である。この境界線の方向について次に説明する。
【0028】
(a)マスク領域と非マスク領域との境界線を〈1−100〉方向の直線とする場合、この境界線を越えてマスク層の上面に沿って横方向に成長するGaN系結晶の面は{11−20}面となる。{11−20}面はオフファセットであるため、ファセットな{1−100}面に比べて、GaN系結晶は横方向に高速に成長する。横方向成長速度が速くなると、{1−101}面などの斜めファセットは形成され難い。その結果、マスク層を平坦に埋め込んだときのGaN系結晶層の厚さは、下記(b)の場合に比べ薄くて済む。
この場合、貫通転位はC軸方向にそのまま伝播し、マスク層の上方が低転位となる。
【0029】
(b)マスク領域と非マスク領域との境界線を〈11−20〉方向の直線とする場合、ファセットな{1−100}面がこの境界線を越えて横方向に成長する面となり、横方向への成長速度は遅くなる。横方向成長速度に対しC軸方向の成長速度が速いため、{1−101}面などの斜めファセットが形成され易く、ピラミッド状の形状が先ず形成されてから平坦化する。その結果、マスク層を平坦に埋め込むには、GaN系結晶層はある程度の厚さが必要となる。
この場合、貫通転位はマスク層の上方側に向かって伝播し、非マスク領域の上方が低転位となる。
【0030】
マスク層の形成パターンの効果を顕著に現すパターンの一例として、ストライプ状のパターンが挙げられる。ストライプ状のパターンは、帯状のマスク層を縞状に配置したパターンであって、帯状のマスク領域と帯状の非マスク領域とが交互に並ぶ。この帯の長手方向が、上記したマスク領域と非マスク領域との境界線の方向である。以下、マスク層の形成パターンをストライプ状のパターンとする場合について説明する。
【0031】
マスク層の厚さは、通常50nm〜500nm程度が好ましい。マスク層の形成パターンをストライプ状のパターンとする場合、個々の帯状のマスク層の幅は、0.1μm〜10μm程度が好ましく、帯状のマスク層の幅と、帯状の非マスク領域の幅との比などは、従来のマスク法を参考としてもよい。
【0032】
マスク法を適用し、第一層(Al組成≒0)、第二層を成長させる場合の結晶成長法は、HVPE、MOCVD、MBE法などがよい。厚膜を作製する場合はHVPE法が好ましいが、薄膜を形成する場合はMOCVD法が好ましい。
【0033】
また、マスク法を適用する時の成長雰囲気ガスは水素・窒素・アルゴン・ヘリウム等が上げられるが、下記のように、成長速度の方向性や成長時に現れる結晶の形状などを顕著に制御する上で水素・窒素が望ましい。
【0034】
水素雰囲気で成長を行った場合、C軸方向の成長速度が速くなる。ストライプ状のパターンとの組み合わせにおいて、マスク層の長手方向を〈11−20〉方向とした場合、平坦に埋め込むには、より顕著に厚みが必要となる。一方、マスクの長手方向を〈11−20〉方向とした場合、平坦に埋め込むには、前記〈11−20〉方向の場合に比べれば薄くて済む。
【0035】
窒素雰囲気で成長を行った場合、水素雰囲気の場合に比べC軸方向の成長速度が遅くなるため、相対的に横方向成長速度が速くなり、第一層はマスク層上をより薄い段階で覆うことになる。マスク層の長手方向を〈1−100〉方向とした場合、この効果は顕著になる。
【0036】
この様に成長条件を変化させる事で埋め込み厚さ・低転位領域形成部を制御できるためにデバイス設計の自由度が上がる。
本発明においては第一層と第二層との熱膨張係数差を小さくし、クラックの発生を抑制する方がよいので、第一層はできるだけ薄い方が好ましい。従って、マスク法を適用する場合の条件としては、▲1▼マスクの長手方向を〈1−100〉方向とし、▲2▼MOCVD法を用い、▲3▼結晶成長時の雰囲気として窒素リッチなガスとする条件が最適である。
【0037】
第一層は、マスク層の上面に沿って横方向に成長する間に、厚さ方向にも成長を続けているから、マスク層の上面を覆った瞬間における第一層の厚さT(ベース基板Bの上面を基準とする、非マスク領域での厚さ)は、第一層の横方向の成長速度、および、マスク層の幅Wによって左右される。従って、マスク層の幅Wを小さくすることで、厚さTの数値自体は小さくなるが、上記▲1▼〜▲3▼の条件によって、マスク層の幅Wに対する第一層の厚さTの比を、より小さくすることも可能となるのである。
【0038】
第一層の材料は、GaN系材料InX GaY AlZ Nのうち、Al組成が実質的に0のものであればよい。後述のとおり第二層はAlGaNとするのが好ましく、その場合、第二層の最下部はGaNになっている。従って、第二層との熱膨張係数差を小さくする点からは、第一層の材料もGaNとするのが好ましい。
【0039】
第一層はできる限り薄い層であることが好ましいことから、第一層がマスク層を覆った瞬間から第二層とするのがよい。第一層の厚さ(図1において、ベース基板の上面を基準とする、非マスク領域での厚さT)は、マスク層の幅や上記▲1▼〜▲3▼の結晶成長条件を選択して決定すればよく、クラックが入らず光吸収が無いなどの点から、0.1μm〜3μm以下とするのが好ましい。
【0040】
第二層は、AlGaN系材料であればよいが、光吸収の抑制や熱膨張係数差を小さくする点から、AlX Ga1-X N(0<x≦1)が最も好ましい。
第二層におけるAl組成が増加する部分は、第二層において、少なくとも第一層との境界面側に確保されていればよい。例えば、▲1▼第一層との境界面から、所定の厚さまではAl組成が増加し、その部分から上はAl組成が一定あるいは減少・変動するような態様、▲2▼第二層の厚さ全体にわたってAl組成が増加するような態様、などであってもよい。
【0041】
第二層におけるAl組成の増加は、目的の組成比となるまで連続的かつ無段階的な増加や、また、第二層をさらに任意の層数に分けた層毎の段階的なAl組成の増加などであってよい。いずれの場合であっても、Al組成の増加の程度は、直線的、曲線的など任意に選択してよい。
第二層のAl組成を連続的かつ無段階的に増加させながら結晶成長させる方法としては、MOCVD、MBEなどが挙げられる。
【0042】
第二層のAl組成が増加する部分におけるAl組成の初期値、即ち、第二層が第一層上に成長を開始した時点における最初のAl組成は、第一層との熱膨張係数差をより小さくする点から、組成比0.01以下、特に実質的に0とするのが好ましい。従って、第一層としてGaN結晶を成長させ、第二層はGaN結晶から成長を開始して、層厚の増加と共に、所望のAlGaN組成となるまでAl組成を増加させる組み合わせが最も好ましい。
【0043】
第一層と第二層とは、同じ結晶成長装置内で、その場で原料供給を切り換えて行き、明確な界面を設けない態様としてもよい。また、第一層と第二層の結晶成長方法を目的に応じて変えてもよい。
【0044】
【実施例】
実施例1
本実施例では、第一層をGaN、第二層をAlGaNとするGaN系結晶基材を製作した。
〔ベース基板の形成〕
図1に示すように、サファイアC面基板B1上に、AlGaN低温バッファ層B2を成長させ、次にn型Al0.1 Ga0.9 N層B3を2μm成長させて、ベース基板Bとした。
【0045】
〔マスク層の形成〕
スパッタリング装置にてベース基板Bの基板面にSiO2 マスク層mを形成した。SiO2 マスク層の形成パターンは、ストライプ状であって、個々の帯状のマスク層の長手方向を、ベース基板表層B3の結晶における〈1−100〉方向になるように形成した。マスク層の厚さは0.1μm、マスク層の幅は4μm、非マスク領域の幅は4μmである。
【0046】
〔第一層の形成〕
この試料をMOCVD装置内に配置し、窒素雰囲気下で、1000℃まで昇温しTMG、アンモニア、シランを30分間流し、非マスク領域を結晶成長の出発点として、n−GaN層を第一層1として成長させた。マスク層がGaNで覆われる時点まで成長を続けたところ、非マスク領域におけるベース基板上面からの第一層の厚さは1.8μmであった。
【0047】
〔第二層の形成〕
次に、TMG、アンモニア、シランに加え、TMAの流量を初期値を0とし、全層厚にわたってAl組成が0から0.2まで変化するように、従って第二層の表層付近がAl0.2 Ga0.8 Nとなるように、TMAの流量を増加させて流し、全層厚3μmとなるまで成長させて第二層とし、本発明のGaN系結晶基材を得た。
【0048】
第二層のAlGaN結晶は、マスク層の上方に低転位な領域を有するものであった。また、2インチウエハー面内でクラックの発生は観られなかった。
【0049】
実施例2
本実施例では、上記実施例1で得られたGaN系結晶基材上に、さらに発光部を形成し、紫外線(370nm)発光素子を製作した。
〔DH構造の形成〕
上記実施例1で得られたGaN系結晶基材の第二層をn型クラッド層として用い、その表面に、活性層としてInGaN層を50nm形成した。
続いてp型クラッド層としてAl0.2 Ga0.8 N層を0.1μm形成した。
【0050】
〔電極等の形成〕
p型クラッド層上に、コンタクト層として、p型Al0.05Ga0.95N層を0.2μm成長させた。コンタクト層上にp型電極を形成し、また、ドライエッチングによりn型クラッド層(GaN系結晶基材の第二層)を部分的に露出させてn型電極を形成し、LEDを完成させた。
【0051】
〔評価〕
このLEDをTo−18ステム台にマウントし、出力の測定を行ったところ、波長370nm、20mAで1mWのものが得られた。
【0052】
【発明の効果】
本発明によって、低転位でクラックの少ないAlGaN系結晶層(第二層)が得られる。従って、当該基材を用いて紫外域の波長光を発する発光素子を構成すれば、第二層は、光の透過(LEDの場合)、光の閉じこめ(LDの場合)、などの役割を果たすクラッド層として好ましく用いることができる。
【図面の簡単な説明】
【図1】図1は、本発明によるGaN系結晶基材を模式的に示す断面図である。同図は、当該結晶基材を部分的に拡大したものであり、マスク層だけにハッチングを施している。
【図2】マスク法によってGaN系結晶が成長するようすを模式的に示す図である。
【符号の説明】
1 第一層
2 第二層
3 マスク層
4 非マスク領域
B ベース基板
[0001]
BACKGROUND OF THE INVENTION
The present invention belongs to a technical field for obtaining a GaN-based crystal substrate used for a semiconductor light-emitting device (GaN-based light-emitting device) using a GaN-based crystal, and particularly relates to a GaN-based crystal having an Al composition.
[0002]
[Prior art]
In recent years, research on GaN-based light-emitting elements has been actively conducted on the occasion that high-intensity light-emitting diodes (LEDs) have been realized, and reports on continuous oscillation of a semiconductor laser at room temperature have been heard. For example, green and blue are realized with a high-intensity LED, and purple is realized with a semiconductor laser (LD).
[0003]
Conventionally, InGaN has often been used as a material for the light emitting part of a GaN-based light emitting device. The light emitting portion is, for example, a depletion layer portion having a pn junction or an active layer having a double heterojunction structure in an LED, and a stripe portion having a stripe structure in an LD. InGaN is a material that can emit light having a short wavelength from green to blue and that has high luminous efficiency.
[0004]
However, as information signals are transmitted and recording density is increased, GaN-based light emitting elements are required to emit light having a shorter wavelength from blue light to ultraviolet light. For this purpose, it is necessary to reduce the In composition from InGaN and bring it closer to GaN as the material of the light emitting part. Accordingly, surrounding layers such as a clad layer need to play a role of carrier confinement, light transmission (in the case of LED), light confinement (in the case of LD), and the like. Therefore, the surrounding layer must be formed of a material having a larger band gap than the light emitting portion, that is, a material having an increased Al composition such as AlGaN (referred to as an AlGaN-based material).
[0005]
On the other hand, a general method for fabricating a GaN-based light emitting device is to use a single crystal of sapphire as a crystal substrate, grow various GaN-based crystal layers on the buffer layer, and form a desired GaN-based crystal layer. It is used as a light emitting part. However, in the GaN-based crystal layer grown by such a method, dislocations due to lattice mismatch with the crystal substrate exist at high density. Dislocations are inherited upwards even when the GaN-based crystal grows and increases in thickness, and become discontinuous defect portions called dislocation lines (threading dislocations), thereby deteriorating device characteristics.
[0006]
On the other hand, a method for obtaining a low dislocation GaN-based crystal using a mask layer has been reported. Hereinafter, this method is referred to as “mask method” and will be described.
In the mask method, as shown in FIG. 2A, a mask layer 20 made of a material (such as SiO 2 ) on which a GaN-based crystal cannot grow is first formed on a base substrate (crystal substrate) 10 with a specific pattern. Draw and form. Then, a GaN-based crystal is grown from a region (non-mask region) 10a where the mask layer 20 is not formed on the base substrate. If the crystal growth is continued even after the crystal has grown to the height of the mask layer 20, the GaN-based crystal not only grows in the thickness direction but also grows laterally along the upper surface of the mask layer 20, as shown in FIG. As shown in b), the GaN-based crystal layer 30 is embedded and covered with the mask layer 20. At this time, in the GaN-based crystal layer 30, a low dislocation portion with less propagation of dislocation lines is formed in a specific portion such as a portion 30 a above the mask layer.
[0007]
[Problems to be solved by the invention]
However, when an AlGaN-based material is grown by the mask method, the AlGaN-based material grows in a polycrystalline manner from the upper surface of the mask layer on the premise that the GaN-based crystal cannot grow. There is a problem that the process is not achieved and the crystal quality is deteriorated.
[0008]
This is because Al is very active, and the diffusion length of Al reactive species on the mask layer is short, so it reacts easily with SiO 2 of the mask material, and reacts with other reactive species on the mask layer. This is considered to be caused by the fact that it is easy to deposit and a portion that becomes the nucleus of crystal growth is likely to occur on the mask layer.
[0009]
In the conventional mask method, when an AlGaN-based crystal is grown, in order to improve crystallinity, a surface layer of GaN is first grown on a sapphire substrate through a buffer layer by a few μm to form a base substrate, and the base substrate is then grown. Usually, an AlGaN-based crystal layer is grown. However, in such a method, although the crystallinity is improved, the difference between the thermal expansion coefficients of the GaN crystal and the AlGaN-based crystal, and the temperature rise and fall repeated until the entire device is completed, There is a problem that cracks occur in either or both of the layers.
[0010]
An object of the present invention is to provide a GaN-based crystal base material having an AlGaN-based crystal layer, which is formed as a state of low dislocations and few cracks, and to provide a method for manufacturing the same.
[0011]
[Means for Solving the Problems]
The GaN-based crystal substrate of the present invention and the manufacturing method thereof have the following characteristics.
(1) A mask layer is provided on the base substrate surface on which a GaN-based crystal can be grown so as to form a mask region and a non-mask region, and the GaN-based crystal grows substantially from its own surface. A first GaN-based crystal layer that is made of a material that cannot be grown and that has grown up to cover the mask layer using the non-mask region as a starting point for crystal growth, and a second GaN-based crystal layer that has grown on the first GaN-based crystal layer The first GaN-based crystal layer has an Al composition substantially zero, and at the moment when the first GaN-based crystal layer covers the mask layer, the Al composition starts to increase. The GaN-based crystal layer is switched to the second GaN-based crystal layer, and the second GaN-based crystal layer has an Al composition as the layer thickness increases from the boundary with the first GaN-based crystal layer. it There contain AlGaN crystal layer portion to increase GaN group crystal base member, wherein.
(2) The GaN-based crystal substrate according to the above (1), wherein the initial value of the Al composition in the portion where the Al composition of the second GaN-based crystal layer increases is 0.01 or less.
(3) The formation pattern of the mask layer is a striped mask pattern in which strip-shaped mask layers are arranged in a striped pattern, and the longitudinal direction of the strip-shaped mask layer is relative to the first GaN-based crystal layer The GaN-based crystal substrate according to the above (1), which extends in the <1-100> direction.
(4) The GaN-based crystal substrate according to (1), wherein the first GaN-based crystal layer is a GaN crystal layer, and the second GaN-based crystal layer is an AlGaN crystal layer.
(5) The GaN-based crystal base material according to (1), wherein the thickness of the first GaN-based crystal layer in the non-mask region is 0.1 μm to 3 μm or less with reference to the upper surface of the base substrate.
(6) A method for manufacturing the GaN-based crystal substrate according to any one of (1) to (5) above, wherein a mask region and a non-mask region are formed on a base substrate surface on which a GaN-based crystal can be grown. The mask layer is formed so that the material of the mask layer is a material from which a GaN-based crystal cannot substantially grow from its own surface, and the non-mask region is used as a starting point for crystal growth. A GaN crystal is grown as a GaN crystal layer, and the Al composition of the GaN crystal is substantially zero until the first GaN crystal layer covers the mask layer, and the first GaN crystal layer is the mask. By switching to the second GaN-based crystal layer by starting to increase the Al composition at the moment of covering the layer, a portion where the Al composition increases as the thickness of the second GaN-based crystal layer increases is formed. Ga characterized by including a process Method for producing a system crystal substrate.
(7) The method according to (6), wherein the Al composition is increased by setting the initial value of the Al composition to 0.01 or less when forming a portion where the Al composition increases.
(8) The GaN-based crystal base material according to (6), wherein the thickness of the first GaN-based crystal layer in the non-mask region is 0.1 μm to 3 μm or less with reference to the upper surface of the base substrate.
[0017]
The “GaN-based” in the present invention belongs to a group of compound semiconductors represented by In X Ga Y Al Z N (0 ≦ X ≦ 1, 0 ≦ Y ≦ 1, 0 ≦ Z ≦ 1, X + Y + Z = 1). Means that. Therefore, “AlGaN-based” is 0 <Z ≦ 1 in the above formula.
[0018]
In this specification, if a lattice plane of a hexagonal lattice crystal such as a GaN-based crystal or a sapphire substrate is designated by four Miller indices (hkil), when the index is negative for convenience of description, It shall be expressed with a minus sign, and other than the notation related to the negative index, it follows the general Miller index notation. Therefore, in the case of a GaN-based crystal, there are six prism surfaces (singular surfaces) parallel to the C axis. For example, one surface is represented as (1-100), and the six surfaces are grouped as equivalent surfaces. In this case, {1-100} is used. A plane perpendicular to the {1-100} plane and parallel to the C-axis is collectively expressed as {11-20}. The direction perpendicular to the (1-100) plane is [1-100], the set of equivalent directions is <1-100>, and the direction perpendicular to the (11-20) plane is [11-20]. A set in the equivalent direction is denoted as <11-20>. However, if there is a case where the Miller index is written in the drawing, when the index is negative, a minus sign is added on the index and expressed in accordance with the general notation method of the Miller index. The crystal orientations referred to in the present invention are all orientations based on GaN-based crystals grown on the base substrate.
[0019]
A “mask region” (ie, a masked region) and a “non-mask region” (ie, an unmasked region) are both regions in the base substrate surface. The region on the upper surface of the mask layer is regarded as being equal to the mask region, and is used as an explanation in the description.
[0020]
[Action]
When growing a GaN-based crystal using the mask method, the Al composition is made substantially zero until the first GaN-based crystal layer covers the mask layer, so that the polycrystal growth of the crystal on the mask layer is increased. It is suppressed, a good process of the mask method is achieved, and a low dislocation crystal part is obtained.
Further, after the crystal covers the mask layer, as the thickness of the layer increases, a crack is generated by providing a portion where the Al composition is increased to a small value of 0.01 or less, preferably substantially from 0. Thus, an AlGaN-based crystal layer having a preferable quality can be obtained. Hereinafter, the material having substantially zero Al composition will be described as GaN, and the material having an increased Al composition will be described as AlGaN. However, an appropriate In composition may be added to these materials.
[0021]
In order to reduce the occurrence of cracks, it is preferable to reduce the thickness of the GaN crystal covering the mask layer as much as possible. Therefore, in the present invention, it is preferable that the increase of the Al composition starts when the GaN crystal covers the mask layer.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Below, the GaN-based crystal substrate according to the present invention is shown and the manufacturing method thereof is described.
As shown in FIG. 1, a GaN-based crystal substrate according to the present invention includes a base substrate B, a mask layer 3, a first GaN-based crystal layer (hereinafter referred to as “first layer”) 1, a second GaN-based crystal layer ( Hereinafter “second layer”) 2. The mask layer 3 is provided on the substrate surface of the base substrate B so as to form a mask region and a non-mask region 4. The first layer 1 is a layer grown up to cover the mask layer using the non-mask region 4 as a starting point for crystal growth, and the Al composition is substantially zero. The second layer 2 is a layer grown on the first layer 1. The second layer 2 has a structure in which a portion where the Al composition increases as the layer thickness increases from the boundary with the first layer 1 to a portion having a predetermined thickness.
[0023]
The base substrate may be any substrate as long as the GaN-based crystal can be grown with the C axis as the thickness direction, and examples thereof include sapphire, crystal, and SiC. Among them, sapphire C-plane, A-plane, 6H—SiC substrate, particularly C-plane sapphire substrate are preferable.
[0024]
Further, the above substrate may be a basic crystal substrate, and a substrate having a buffer layer on the surface may be used as a base substrate. A known material may be used as the material of the buffer layer, but the difference in thermal expansion coefficient between the first layer and the second layer is made smaller to suppress the generation of cracks, and light absorption is achieved when a light emitting device is configured. Al x Ga 1-x N (0 <x ≦ 1) is preferable from the intention of suppressing.
[0025]
Furthermore, at least the surface layer of the base substrate may be a GaN-based crystal layer. For example, as shown in FIG. 1, a GaN-based crystal layer B3 is grown as a surface layer on a surface of a basic crystal substrate B1 such as sapphire via a buffer layer B2, and this is used as a base substrate B.
[0026]
The mask layer is made of a material that cannot substantially grow a GaN-based crystal from its own surface. Examples of such a material include SiO 2 , SiNx, TiO 2 , ZrO 2 and the like. A stacked structure of these materials can also be used.
[0027]
The formation pattern of the mask layer may be any shape such as a circle, ellipse, star, hexagon, or other openings, or a band shape. However, the growth method of GaN crystals and the propagation of dislocation lines It is an important thing that has a big influence on how it is done. In particular, the direction of the boundary line between the mask area and the non-mask area is important. Next, the direction of the boundary line will be described.
[0028]
(A) When the boundary line between the mask region and the non-mask region is a straight line in the <1-100> direction, the plane of the GaN-based crystal that grows laterally along the upper surface of the mask layer beyond the boundary line is The {11-20} plane. Since the {11-20} plane is off-faceted, the GaN-based crystal grows faster in the lateral direction than the faceted {1-100} plane. When the lateral growth rate is increased, oblique facets such as {1-101} planes are difficult to form. As a result, the thickness of the GaN-based crystal layer when the mask layer is embedded flat may be thinner than in the case of (b) below.
In this case, threading dislocations propagate as they are in the C-axis direction, and low dislocations above the mask layer.
[0029]
(B) When the boundary line between the mask area and the non-mask area is a straight line in the <11-20> direction, the faceted {1-100} plane becomes a plane that grows in the lateral direction beyond the boundary line. The growth rate in the direction is slow. Since the growth rate in the C-axis direction is higher than the lateral growth rate, oblique facets such as {1-101} planes are easily formed, and the pyramid shape is first formed and then flattened. As a result, in order to embed the mask layer flatly, the GaN-based crystal layer needs to have a certain thickness.
In this case, threading dislocations propagate toward the upper side of the mask layer, and low dislocations above the non-mask region.
[0030]
As an example of a pattern that remarkably shows the effect of the formation pattern of the mask layer, a stripe pattern can be cited. The striped pattern is a pattern in which strip-shaped mask layers are arranged in a striped pattern, and strip-shaped mask regions and strip-shaped non-mask regions are alternately arranged. The longitudinal direction of the band is the direction of the boundary line between the mask area and the non-mask area. Hereinafter, a case where the formation pattern of the mask layer is a stripe pattern will be described.
[0031]
The thickness of the mask layer is usually preferably about 50 nm to 500 nm. When the formation pattern of the mask layer is a stripe pattern, the width of each band-shaped mask layer is preferably about 0.1 μm to 10 μm. The width of the band-shaped mask layer and the width of the band-shaped non-mask region For the ratio and the like, a conventional mask method may be referred to.
[0032]
As a crystal growth method in the case of growing the first layer (Al composition≈0) and the second layer by applying the mask method, HVPE, MOCVD, MBE method or the like is preferable. The HVPE method is preferable when forming a thick film, but the MOCVD method is preferable when forming a thin film.
[0033]
In addition, hydrogen, nitrogen, argon, helium, etc. can be used as the growth atmosphere gas when the mask method is applied. However, as described below, the direction of the growth rate and the shape of the crystal appearing during growth are significantly controlled. Hydrogen and nitrogen are desirable.
[0034]
When growth is performed in a hydrogen atmosphere, the growth rate in the C-axis direction is increased. In combination with the stripe pattern, when the longitudinal direction of the mask layer is the <11-20> direction, a more remarkable thickness is required to bury the mask layer flat. On the other hand, in the case where the longitudinal direction of the mask is the <11-20> direction, it is thinner than the case of the <11-20> direction in order to embed it flatly.
[0035]
When growing in a nitrogen atmosphere, the growth rate in the C-axis direction is slower than in a hydrogen atmosphere, so the lateral growth rate is relatively high, and the first layer covers the mask layer in a thinner stage. It will be. This effect becomes remarkable when the longitudinal direction of the mask layer is the <1-100> direction.
[0036]
By changing the growth conditions in this way, the buried thickness / low dislocation region forming portion can be controlled, so that the degree of freedom in device design increases.
In the present invention, it is better to reduce the difference in thermal expansion coefficient between the first layer and the second layer and suppress the occurrence of cracks, so the first layer is preferably as thin as possible. Therefore, the conditions for applying the mask method are as follows: (1) The longitudinal direction of the mask is the <1-100> direction, (2) MOCVD method is used, and (3) Nitrogen-rich gas is used as the atmosphere during crystal growth. The conditions are optimal.
[0037]
Since the first layer continues to grow in the thickness direction while growing laterally along the upper surface of the mask layer, the thickness T (base of the first layer at the moment when the upper surface of the mask layer is covered) (The thickness in the non-mask region with respect to the upper surface of the substrate B) depends on the lateral growth rate of the first layer and the width W of the mask layer. Accordingly, the numerical value of the thickness T itself is reduced by reducing the width W of the mask layer. However, the thickness T of the first layer with respect to the width W of the mask layer depends on the above conditions (1) to (3). It is also possible to make the ratio smaller.
[0038]
The material of the first layer may be any material of which the Al composition is substantially 0 out of the GaN-based material In X Ga Y Al Z N. As will be described later, the second layer is preferably AlGaN, and in this case, the lowermost layer of the second layer is GaN. Therefore, from the viewpoint of reducing the difference in thermal expansion coefficient from the second layer, the material of the first layer is preferably GaN.
[0039]
Since it is preferable that the first layer is as thin as possible, it is preferable that the first layer be the second layer from the moment when the first layer covers the mask layer. The thickness of the first layer (in FIG. 1, the thickness T in the non-mask region with respect to the upper surface of the base substrate) is selected from the width of the mask layer and the crystal growth conditions (1) to (3) above. It is preferable that the thickness be 0.1 μm to 3 μm or less from the viewpoint of no cracks and no light absorption.
[0040]
The second layer may be any AlGaN-based material, but Al x Ga 1-x N (0 <x ≦ 1) is most preferable from the viewpoint of suppressing light absorption and reducing the difference in thermal expansion coefficient.
The portion where the Al composition in the second layer increases may be ensured at least on the boundary surface side with the first layer in the second layer. For example, (1) an aspect in which the Al composition increases at a predetermined thickness from the interface with the first layer, and the Al composition is constant or decreases / fluctuates from that portion, (2) the second layer For example, the Al composition may increase over the entire thickness.
[0041]
The increase in the Al composition in the second layer is a continuous and stepless increase until the desired composition ratio is reached, or the stepwise Al composition for each layer obtained by dividing the second layer into an arbitrary number of layers. It may be an increase. In any case, the degree of increase in the Al composition may be arbitrarily selected such as linear or curved.
Examples of a method for crystal growth while continuously increasing the Al composition of the second layer steplessly include MOCVD and MBE.
[0042]
The initial value of the Al composition in the portion where the Al composition of the second layer increases, i.e., the first Al composition at the time when the second layer starts growing on the first layer is the difference in thermal expansion coefficient from the first layer. From the viewpoint of making it smaller, it is preferable that the composition ratio is 0.01 or less, particularly substantially 0. Therefore, the combination of growing a GaN crystal as the first layer and starting the growth of the second layer from the GaN crystal, and increasing the Al composition until the desired AlGaN composition is achieved as the layer thickness increases is most preferable.
[0043]
The first layer and the second layer may be configured so that the raw material supply is switched on the spot in the same crystal growth apparatus and no clear interface is provided. Further, the crystal growth method of the first layer and the second layer may be changed according to the purpose.
[0044]
【Example】
Example 1
In this example, a GaN-based crystal base material in which the first layer is GaN and the second layer is AlGaN was manufactured.
[Formation of base substrate]
As shown in FIG. 1, an AlGaN low-temperature buffer layer B2 is grown on a sapphire C-plane substrate B1, and then an n-type Al 0.1 Ga 0.9 N layer B3 is grown by 2 μm to form a base substrate B.
[0045]
(Formation of mask layer)
A SiO 2 mask layer m was formed on the substrate surface of the base substrate B with a sputtering apparatus. The formation pattern of the SiO 2 mask layer was striped, and the longitudinal direction of each band-shaped mask layer was formed so as to be the <1-100> direction in the crystal of the base substrate surface layer B3. The thickness of the mask layer is 0.1 μm, the width of the mask layer is 4 μm, and the width of the non-mask region is 4 μm.
[0046]
[Formation of the first layer]
This sample was placed in an MOCVD apparatus, heated to 1000 ° C. in a nitrogen atmosphere, TMG, ammonia, and silane were allowed to flow for 30 minutes, and the n-GaN layer was the first layer using the non-masked region as the starting point for crystal growth. Grown as 1. When the growth was continued until the mask layer was covered with GaN, the thickness of the first layer from the upper surface of the base substrate in the non-mask region was 1.8 μm.
[0047]
(Formation of second layer)
Next, in addition to TMG, ammonia and silane, the initial flow rate of TMA is set to 0, and the Al composition changes from 0 to 0.2 over the entire thickness, so that the surface layer of the second layer is Al 0.2 Ga. The flow rate of TMA was increased to 0.8 N, and the film was grown to a total layer thickness of 3 μm to form a second layer, thereby obtaining a GaN-based crystal substrate of the present invention.
[0048]
The AlGaN crystal of the second layer had a low dislocation region above the mask layer. Also, no cracks were observed in the 2 inch wafer plane.
[0049]
Example 2
In this example, a light emitting part was further formed on the GaN-based crystal substrate obtained in Example 1 to produce an ultraviolet (370 nm) light emitting device.
[Formation of DH structure]
The second layer of the GaN-based crystal substrate obtained in Example 1 was used as an n-type cladding layer, and an InGaN layer was formed as an active layer on the surface thereof at a thickness of 50 nm.
Subsequently, an Al 0.2 Ga 0.8 N layer having a thickness of 0.1 μm was formed as a p-type cladding layer.
[0050]
[Formation of electrodes, etc.]
A p-type Al 0.05 Ga 0.95 N layer was grown as a contact layer on the p-type cladding layer by 0.2 μm. A p-type electrode was formed on the contact layer, and the n-type electrode was formed by partially exposing the n-type cladding layer (second layer of the GaN-based crystal base material) by dry etching, thereby completing the LED. .
[0051]
[Evaluation]
When this LED was mounted on a To-18 stem stand and the output was measured, a 1 mW one was obtained at a wavelength of 370 nm and 20 mA.
[0052]
【The invention's effect】
According to the present invention, an AlGaN-based crystal layer (second layer) with low dislocations and few cracks can be obtained. Therefore, if a light-emitting element that emits light in the ultraviolet region is configured using the base material, the second layer plays a role of light transmission (in the case of LED), light confinement (in the case of LD), and the like. It can be preferably used as a cladding layer.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically showing a GaN-based crystal substrate according to the present invention. In the figure, the crystal base material is partially enlarged, and only the mask layer is hatched.
FIG. 2 is a diagram schematically showing how a GaN-based crystal grows by a mask method.
[Explanation of symbols]
1 First layer 2 Second layer 3 Mask layer 4 Non-mask region B Base substrate

Claims (8)

GaN系結晶が成長可能なベース基板面に、マスク領域と非マスク領域とを形成するようにマスク層が設けられ、マスク層はそれ自身の表面からは実質的にGaN系結晶が成長し得ない材料からなり、
非マスク領域を結晶成長の出発点としてマスク層上を覆うまで成長した第一のGaN系結晶層と、その上に成長した第二のGaN系結晶層とを有し、
第一のGaN系結晶層は、Al組成が実質的に0であり、該第一のGaN系結晶層がマスク層を覆った瞬間においてAl組成の増加が開始しており、それによって第一のGaN系結晶層は第二のGaN系結晶層へと切り換わっており、
第二のGaN系結晶層には、第一のGaN系結晶層との境界から層の厚さが増すにつれてAl組成が増加するAlGaN結晶層部分が含まれていることを特徴とするGaN系結晶基材。
A mask layer is provided on the base substrate surface on which the GaN-based crystal can be grown so as to form a mask region and a non-mask region, and the GaN-based crystal cannot substantially grow from its own surface. Made of materials,
Having a first GaN-based crystal layer grown to cover the mask layer using the non-mask region as a starting point for crystal growth, and a second GaN-based crystal layer grown thereon,
The first GaN-based crystal layer has an Al composition substantially zero, and the Al composition starts increasing at the moment when the first GaN-based crystal layer covers the mask layer. The GaN-based crystal layer has been switched to the second GaN-based crystal layer,
The GaN-based crystal is characterized in that the second GaN-based crystal layer includes an AlGaN crystal layer portion in which the Al composition increases as the thickness of the layer increases from the boundary with the first GaN-based crystal layer. Base material.
第二のGaN系結晶層のAl組成が増加する部分における、Al組成の初期値が0.01以下である請求項1記載のGaN系結晶基材。  The GaN-based crystal substrate according to claim 1, wherein an initial value of the Al composition in a portion where the Al composition of the second GaN-based crystal layer increases is 0.01 or less. マスク層の形成パターンが、帯状のマスク層を縞状に配置してなるストライプ状のマスクパターンであって、前記帯状のマスク層の長手方向が第一のGaN系結晶層に対して〈1−100〉方向に伸びるものである請求項1記載のGaN系結晶基材。  The formation pattern of the mask layer is a striped mask pattern in which strip-shaped mask layers are arranged in a striped pattern, and the longitudinal direction of the strip-shaped mask layer is <1- 2. The GaN-based crystal substrate according to claim 1, which extends in a 100> direction. 第一のGaN系結晶層がGaN結晶層であり、第二のGaN系結晶層がAlGaN結晶層である請求項1記載のGaN系結晶基材。  The GaN-based crystal substrate according to claim 1, wherein the first GaN-based crystal layer is a GaN crystal layer, and the second GaN-based crystal layer is an AlGaN crystal layer. ベース基板の上面を基準とする、非マスク領域での第一のGaN系結晶層の厚さが、0.1μm〜3μm以下である請求項1記載のGaN系結晶基材。2. The GaN-based crystal substrate according to claim 1, wherein the thickness of the first GaN-based crystal layer in the non-mask region with respect to the upper surface of the base substrate is 0.1 μm to 3 μm or less. 上記請求項1〜のいずれかに記載のGaN系結晶基材を製造するための方法であって、
GaN系結晶が成長可能なベース基板面に、マスク領域と非マスク領域とを形成するようにマスク層を設け、マスク層の材料をそれ自身の表面からは実質的にGaN系結晶が成長し得ない材料とし、非マスク領域を結晶成長の出発点として、第一のGaN系結晶層としてのGaN系結晶を成長させ、
第一のGaN系結晶層がマスク層上を覆うまではGaN系結晶のAl組成を実質的に0とし、第一のGaN系結晶層がマスク層上を覆った瞬間においてAl組成の増加を開始することによって第二のGaN系結晶層へと切り換え、該第二のGaN系結晶層の厚さが増すにつれてAl組成が増加する部分を形成する工程を含むことを特徴とするGaN系結晶基材の製造方法。
A method for producing the GaN-based crystal substrate according to any one of claims 1 to 5 ,
A mask layer is provided on the base substrate surface on which a GaN-based crystal can be grown so as to form a mask region and a non-mask region, and the material of the mask layer can grow substantially from its own surface. A non-masked region as a starting point for crystal growth, and grow a GaN-based crystal as the first GaN-based crystal layer ,
Until the first GaN-based crystal layer covers the mask layer, the Al composition of the GaN-based crystal is substantially zero, and at the moment when the first GaN-based crystal layer covers the mask layer , the Al composition starts to increase. second switched to GaN-based crystal layer, the GaN crystal substrate which comprises a step of forming a portion where the Al composition is increased as the thickness of the second GaN-based crystal layer is increased by Manufacturing method.
Al組成が増加する部分を形成するに際し、Al組成の初期値を0.01以下としてAl組成を増加させるものである請求項記載の製造方法。7. The manufacturing method according to claim 6 , wherein when forming the portion where the Al composition increases, the Al composition is increased by setting the initial value of the Al composition to 0.01 or less. ベース基板の上面を基準とする、非マスク領域での第一のGaN系結晶層の厚さが、0.1μm〜3μm以下である請求項6記載のGaN系結晶基材。The GaN-based crystal base material according to claim 6, wherein the thickness of the first GaN-based crystal layer in the non-mask region with respect to the upper surface of the base substrate is 0.1 μm to 3 μm or less.
JP23684598A 1998-08-24 1998-08-24 GaN-based crystal substrate and method for producing the same Expired - Fee Related JP3650531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23684598A JP3650531B2 (en) 1998-08-24 1998-08-24 GaN-based crystal substrate and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23684598A JP3650531B2 (en) 1998-08-24 1998-08-24 GaN-based crystal substrate and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000068559A JP2000068559A (en) 2000-03-03
JP3650531B2 true JP3650531B2 (en) 2005-05-18

Family

ID=17006656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23684598A Expired - Fee Related JP3650531B2 (en) 1998-08-24 1998-08-24 GaN-based crystal substrate and method for producing the same

Country Status (1)

Country Link
JP (1) JP3650531B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6852161B2 (en) 2000-08-18 2005-02-08 Showa Denko K.K. Method of fabricating group-iii nitride semiconductor crystal, method of fabricating gallium nitride-based compound semiconductor, gallium nitride-based compound semiconductor, gallium nitride-based compound semiconductor light-emitting device, and light source using the semiconductor light-emitting device
GB2372635B (en) * 2000-08-18 2005-01-19 Showa Denko Kk Method of fabricating group-III nitride semiconductor crystals.
TW546850B (en) * 2000-08-18 2003-08-11 Showa Denko Kk Manufacturing method for crystallization of group III nitride semiconductor, manufacturing method for gallium nitride compound semiconductor, gallium nitride compound semiconductor, gallium nitride compound semiconductor light emitting elements and light
US6673149B1 (en) * 2000-09-06 2004-01-06 Matsushita Electric Industrial Co., Ltd Production of low defect, crack-free epitaxial films on a thermally and/or lattice mismatched substrate
US20070184671A1 (en) * 2003-05-30 2007-08-09 Showa Denko K.K. Method for production of group lll nitride semiconductor device
KR100906164B1 (en) * 2004-11-18 2009-07-03 쇼와 덴코 가부시키가이샤 Gallium nitride-based semiconductor stacked structure, method for fabrication thereof, gallium nitride-based semiconductor device and lamp using the device
JP2006351640A (en) * 2005-06-13 2006-12-28 Furukawa Co Ltd Group iii nitride semiconductor substrate
JP4638958B1 (en) * 2009-08-20 2011-02-23 株式会社パウデック Manufacturing method of semiconductor device
KR101180176B1 (en) * 2010-10-26 2012-09-05 주식회사 엘지실트론 Compound semiconductor devices and methods of fabricating the same
KR102187480B1 (en) * 2014-01-21 2020-12-08 엘지이노텍 주식회사 A Light emitting device and A Fabrication method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06152072A (en) * 1992-11-16 1994-05-31 Asahi Chem Ind Co Ltd Semiconductor laser
DE69622277T2 (en) * 1995-09-18 2003-03-27 Hitachi, Ltd. SEMICONDUCTOR MATERIAL, METHOD FOR PRODUCING SEMICONDUCTOR MATERIAL AND SEMICONDUCTOR DEVICE
JPH09106965A (en) * 1995-10-09 1997-04-22 Yamaha Corp Cleavage of hexagonal gallium nitride semiconductor layer
JP3314620B2 (en) * 1996-04-11 2002-08-12 日亜化学工業株式会社 Nitride semiconductor light emitting device
JP3366188B2 (en) * 1996-05-21 2003-01-14 日亜化学工業株式会社 Nitride semiconductor device
JPH10212199A (en) * 1997-01-30 1998-08-11 Kyocera Corp Substrate for crystal growth and light-emitting device using the same
JP3139445B2 (en) * 1997-03-13 2001-02-26 日本電気株式会社 GaN-based semiconductor growth method and GaN-based semiconductor film
JP3744155B2 (en) * 1997-11-07 2006-02-08 豊田合成株式会社 Method for manufacturing gallium nitride compound semiconductor substrate
JP3620269B2 (en) * 1998-02-27 2005-02-16 豊田合成株式会社 GaN-based semiconductor device manufacturing method

Also Published As

Publication number Publication date
JP2000068559A (en) 2000-03-03

Similar Documents

Publication Publication Date Title
JP3911699B2 (en) Semiconductor light emitting device and manufacturing method thereof
US6380051B1 (en) Layered structure including a nitride compound semiconductor film and method for making the same
JP4666295B2 (en) Semiconductor laser and semiconductor device manufacturing method
JP3471685B2 (en) Semiconductor substrate and manufacturing method thereof
JP3898445B2 (en) Light emitting element
JP3620269B2 (en) GaN-based semiconductor device manufacturing method
US6821805B1 (en) Semiconductor device, semiconductor substrate, and manufacture method
JP3650531B2 (en) GaN-based crystal substrate and method for producing the same
JP2000223417A (en) Growing method of semiconductor, manufacture of semiconductor substrate, and manufacture of semiconductor device
JPH11130597A (en) Control of dislocation line in transmission direction and its use
JP3756831B2 (en) GaN-based semiconductor light emitting device
JP3645994B2 (en) GaN-based semiconductor light emitting device
JPH11145515A (en) Gan semiconductor light-emitting element and manufacture thereof
JP3819398B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP3416042B2 (en) GaN substrate and method of manufacturing the same
US6855571B1 (en) Method of producing GaN-based semiconductor laser device and semiconductor substrate used therefor
JP2000173929A (en) Substrate to grow gallium nitride crystal and its use
JP2005252086A (en) Manufacturing method for semiconductor light emitting device, semiconductor light emitting device, integrated semiconductor light emitting device, manufacturing process thereof, graphic display device, manufacturing process thereof, illuminating device and manufacturing process thereof
JP2000174343A (en) Manufacture of nitride semiconductor and light-emitting element
JP2002270970A (en) Nitride semiconductor light emitting element
JP3555657B2 (en) Low defect nitride semiconductor substrate and method of manufacturing the same
JP2004119964A (en) Method of manufacturing semiconductor light-emitting device, semiconductor light-emitting device, method of manufacturing integrated type semiconductor light-emitter, integrated type semiconductor light-emitting apparatus, method of manufacturing image display device, image display device, method of manufacturing illuminator, and illuminator.
JP3471687B2 (en) Semiconductor substrate and manufacturing method thereof
JP2003218468A (en) Semiconductor laser element and manufacturing method therefor
JP3645995B2 (en) GaN-based semiconductor light emitting device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050218

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080225

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees