JP3314620B2 - Nitride semiconductor light emitting device - Google Patents

Nitride semiconductor light emitting device

Info

Publication number
JP3314620B2
JP3314620B2 JP18157396A JP18157396A JP3314620B2 JP 3314620 B2 JP3314620 B2 JP 3314620B2 JP 18157396 A JP18157396 A JP 18157396A JP 18157396 A JP18157396 A JP 18157396A JP 3314620 B2 JP3314620 B2 JP 3314620B2
Authority
JP
Japan
Prior art keywords
layer
nitride semiconductor
active layer
type
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18157396A
Other languages
Japanese (ja)
Other versions
JPH09331116A (en
Inventor
修二 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP18157396A priority Critical patent/JP3314620B2/en
Publication of JPH09331116A publication Critical patent/JPH09331116A/en
Application granted granted Critical
Publication of JP3314620B2 publication Critical patent/JP3314620B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する分野】本発明は窒化物半導体(InX
YGa1-X-YN、0≦X、0≦Y、X+Y≦1)よりなる発
光ダイオード(LED)、レーザダイオード(LD)等
の発光素子に係り、特に発光出力に優れた発光素子に関
する。
[0001] The present invention relates to a nitride semiconductor (In X A).
The present invention relates to a light emitting device such as a light emitting diode (LED) or a laser diode (LD) composed of 1 Y Ga 1 -XYN (0 ≦ X, 0 ≦ Y, X + Y ≦ 1), and particularly to a light emitting device excellent in light emission output.

【0002】[0002]

【従来の技術】紫外〜赤色の領域に発光する発光素子の
材料として窒化物半導体が知られており、現在この材料
で既に青色LED、緑色LEDが実用化されたばかりで
ある。現在、市販されている窒化物半導体よりなる青
色、青緑色LEDは、InGaNよりなる活性層が、n
型およびp型の窒化物で挟まれたダブルへテロ構造を有
しており、例えば、青色LEDで発光出力は、およそ4
mWとLEDとしては十分な出力が得られている。しか
しこのLEDは活性層の発光が、活性層に添加されたア
クセプター不純物とドナー不純物によるドナー−アクセ
プターのペア発光によって得られているため、発光スペ
クトルの半値幅が広い。半値幅が広いと、発光色が白っ
ぽく見えて、視感度がよいためLED自体の輝度は高い
が、色純度が悪い。
2. Description of the Related Art A nitride semiconductor is known as a material for a light-emitting device that emits light in the ultraviolet to red region, and blue LEDs and green LEDs have just been put to practical use with this material. Currently, commercially available blue and blue-green LEDs made of a nitride semiconductor have an active layer made of InGaN having n
It has a double heterostructure sandwiched between a p-type nitride and a p-type nitride.
The output is sufficient for mW and LED. However, in this LED, the light emission of the active layer is obtained by the donor-acceptor pair light emission by the acceptor impurity and the donor impurity added to the active layer, so that the half width of the emission spectrum is wide. If the half width is large, the emission color looks whitish and the visibility is good, so the brightness of the LED itself is high, but the color purity is poor.

【0003】また、本出願人は、活性層に不純物をドー
プせず、InGaNのバンド間発光で青色〜緑色に発光
するLEDを発表した(例えば、Jpn.J.Appl.Phys. Vol
34 1995 pp.L1332-L1335)。このLEDはノンドープの
InGaNよりなる単一量子井戸構造の活性層を有する
ダブルへテロ構造を有しており、発光出力はピーク波長
450nmの青色LEDで5mW、520nmの緑色L
EDで3mW、しかも発光スペクトルの半値幅は20〜
30nmしかないので、色純度がよく、非常に高出力の
LEDが実現された。
In addition, the present applicant has announced an LED that emits blue to green light by InGaN interband emission without doping the active layer with impurities (for example, Jpn. J. Appl. Phys. Vol.
34 1995 pp. L1332-L1335). This LED has a double heterostructure having an active layer of a single quantum well structure made of non-doped InGaN, and has a light emission output of 5 mW for a blue LED having a peak wavelength of 450 nm and a green LED of 520 nm.
The ED is 3 mW, and the half width of the emission spectrum is 20 to
Since there is only 30 nm, an LED with high color purity and very high output was realized.

【0004】[0004]

【発明が解決しようとする課題】このように青色〜緑色
のLEDに関しては、ほぼ実用域の素子が完成されてい
るが、LDのような発光素子を実現するためには、さら
に発光素子の出力を高める必要がある。従って本発明は
このような事情を鑑みて成されたものであって、その目
的とするところは、窒化物半導体を用いた発光素子の出
力をさらに高めることにある。
As described above, blue-green LEDs have been almost completed in a practical range, but in order to realize a light-emitting device such as an LD, the output of the light-emitting device must be further increased. Need to be increased. Therefore, the present invention has been made in view of such circumstances, and an object of the present invention is to further increase the output of a light emitting device using a nitride semiconductor.

【0005】[0005]

【課題を解決するための手段】我々は単一量子井戸構
造、多重量子井戸構造等の量子井戸構造を有する活性層
を用いた窒化物半導体積層構造について、数々の実験を
重ねた結果、特有の発光スペクトルを有する発光素子に
より発光出力が高くなることを新規に見出し、本発明を
成すに至った。即ち、本発明の窒化物半導体発光素子
は、基板上に、AlGa1-xN(0<x<1)から成
るn型コンタクト層と、AlGa1-yN(0<y<
1)を含むn型光閉じ込め層と、InGa1-zN(0
≦z≦1)から成るn型光ガイド層と、少なくともイン
ジウムを含む窒化物半導体よりなる膜厚100Å以下の
井戸層を有する量子井戸構造の活性層とを備え、p型層
リッジ形状を有する窒化物半導体レーザであって、前
記活性層の表面に5オングストローム以上の凹凸を有
し、その窒化物半導体レーザの発光スペクトル中には、
等間隔でない複数の発光ピークを有することを特徴とす
る。
As a result of repeated experiments on a nitride semiconductor multilayer structure using an active layer having a quantum well structure such as a single quantum well structure or a multiple quantum well structure, we have found that a unique structure has been obtained. The inventors have newly found that a light-emitting element having a light-emitting spectrum has higher light-emitting output, and have accomplished the present invention. That is, the nitride semiconductor light-emitting device of the present invention, on a substrate, Al x Ga 1-x N (0 <x <1) and the n-type contact layer made of, Al y Ga 1-y N (0 <y <
And n-type light confinement layer comprising 1), In z Ga 1- z N (0
≦ z ≦ 1), and an active layer having a quantum well structure having a well layer with a thickness of 100 ° or less made of a nitride semiconductor containing at least indium, and a p-type layer.
A ridge-shaped nitride semiconductor laser, the surface of the active layer has irregularities of 5 Å or more, the emission spectrum of the nitride semiconductor laser,
It is characterized by having a plurality of emission peaks that are not equally spaced.

【0006】さらに、前記複数の発光ピークの間隔は1
meV〜100meVの間隔であることを特徴とする。
なお本発明では、必ずしも隣り合った全ての発光ピーク
の間隔が前記範囲の間にあることを指すものではない。
Further, the interval between the plurality of emission peaks is 1
The interval is meV to 100 meV.
In the present invention, it does not necessarily mean that the interval between all adjacent light emission peaks is within the above range.

【0007】また本発明の発光素子は、少なくともイン
ジウムを含む量子井戸構造の窒化物半導体よりなる井戸
層を有する活性層の上に、活性層よりもバンドギャップ
が大きいクラッド層が成長されてなる窒化物半導体発光
素子であることを特徴とする。さらに、活性層と前記ク
ラッド層とは格子不整合で接していることが好ましい。
Further, the light emitting device of the present invention is characterized in that a cladding layer having a band gap larger than that of an active layer is grown on an active layer having a well layer made of a nitride semiconductor having a quantum well structure containing at least indium. A semiconductor light emitting device. Further, it is preferable that the active layer and the cladding layer are in contact with each other due to lattice mismatch.

【0008】[0008]

【発明の実施の形態】図1は本発明の一実施例に係る発
光素子の一構造を示す模式的な断面図であり、具体的に
はレーザ素子の構造を示している。このレーザ素子は、
スピネルよりなる基板101の上に、GaNよりなるバ
ッファ層102と、n型GaNよりなるn型コンタクト
層103と、n型AlGaNよりなるn型光閉じ込め層
104、n型GaN、またはn型InGaNよりなる光
ガイド層105、InGaNよりなる井戸層と、井戸層
よりもバンドギャップが大きい障壁層とが積層されてな
る多重量子井戸構造の活性層106と、p型GaN、ま
たはp型InGaNよりなる光ガイド層107、p型A
lGaNよりなるp型光閉じ込め層108、p型GaN
よりなるp型コンタクト層109とが順に積層された構
造を有しており、p型コンタクト層109のほぼ全面に
はストライプ状の正電極20が、n型コンタクト層10
3には、正電極と平行な負電極21が設けられている。
FIG. 1 is a schematic sectional view showing one structure of a light emitting device according to one embodiment of the present invention, and specifically shows the structure of a laser device. This laser element
On a substrate 101 made of spinel, a buffer layer 102 made of GaN, an n-type contact layer 103 made of n-type GaN, an n-type optical confinement layer 104 made of n-type AlGaN, an n-type GaN or an n-type InGaN A light guide layer 105, a well layer made of InGaN, an active layer 106 having a multiple quantum well structure in which a barrier layer having a larger band gap than the well layer is stacked, and light made of p-type GaN or p-type InGaN Guide layer 107, p-type A
p-type optical confinement layer 108 of lGaN, p-type GaN
And a p-type contact layer 109 composed of n-type contact layers 10 on almost the entire surface of the p-type contact layer 109.
3 is provided with a negative electrode 21 parallel to the positive electrode.

【0009】このレーザ素子に各パルス電流を流した際
のスペクトルを図2に示す。図2において(a)は28
0mA(閾値直後)、(b)は295mA、(c)は3
20mA、(d)は340mAでの発光スペクトルを示
している。(b)、(c)、(d)は発振時のスペクト
ルを示している。
FIG. 2 shows a spectrum when each pulse current is applied to this laser element. In FIG. 2, (a) is 28
0 mA (immediately after the threshold), (b) is 295 mA, (c) is 3
(D) shows the emission spectrum at 340 mA. (B), (c), and (d) show spectra during oscillation.

【0010】(a)は発振直後のスペクトルを示し、こ
の状態ではおよそ404.2nm付近にある主発光ピー
クの前後に小さな発光ピークが多数(ファブリペローモ
ード)出現してレーザ発振直後の状態であることが分か
る。これがいわゆる縦モードのスペクトルである。電流
値を上げると(b)に示すように、そのスペクトルがシ
ングルモードとなって404.2nm付近のレーザ発振
を示す。さらに電流を増加させると、(c)に示すよう
に、403.3nm(3.075eV)、403.6n
m(3.072eV)、403.9nm(3.070e
V)、404.2nm(3.068eV)、404.4
nm(3.066eV)というように、主発光ピークの
他に、強度の大きな発光ピークが1meV〜100me
Vの間隔で不規則に出現する。さらに(d)では前記ピ
ークの他に、また新たなピークがはっきりと出現してお
り。これらのスペクトル間隔は等間隔ではなく明らかに
縦モードのスペクトルと異なる。
(A) shows the spectrum immediately after the oscillation. In this state, a large number of small emission peaks (Fabry-Perot mode) appear before and after the main emission peak near about 404.2 nm, and the state is immediately after the laser oscillation. You can see that. This is the so-called longitudinal mode spectrum. When the current value is increased, as shown in (b), the spectrum becomes a single mode and shows laser oscillation around 404.2 nm. When the current is further increased, as shown in (c), 403.3 nm (3.075 eV), 403.6 n
m (3.072 eV), 403.9 nm (3.070 eV)
V), 404.2 nm (3.068 eV), 404.4
nm (3.066 eV), in addition to the main emission peak, an emission peak having a large intensity is 1 meV to 100 me.
Appear irregularly at V intervals. Further, in (d), a new peak clearly appears in addition to the above-mentioned peak. These spectral intervals are not equidistant but distinctly different from the longitudinal mode spectra.

【0011】一般に、半導体レーザの場合、レーザ発振
すると、レーザ光の縦モードによる小さな発光ピークが
主発光ピークの前後に出現する。この場合の発光スペク
トルは、ほぼ等間隔の発光ピークよりなっている。赤色
半導体レーザでは、その発光ピークの間隔はおよそ0.
2nmである。青色半導体レーザではおよそ0.05n
m(1meV)以下である(但し、青色半導体レーザの
縦モードは共振器長が600μmにおいて、本出願人に
より初めて計測された。)。つまり、図2(a)、
(b)の状態では通常のレーザ素子の挙動を示してい
る。しかし、(c)、(d)に示すように、明らかに従
来のレーザ素子の縦モードによる発光ピークとは異なっ
た等間隔でないピークが多数出現している。これは図2
の電流値による各スペクトルを比較しても分かる。本発
明の発光素子では、このような発光スペクトルが発生す
ることにより、出力が高くなる。
In general, in the case of a semiconductor laser, when laser oscillation occurs, a small emission peak due to the longitudinal mode of the laser light appears before and after the main emission peak. The emission spectrum in this case consists of emission peaks at substantially equal intervals. In a red semiconductor laser, the interval between the emission peaks is about 0.5.
2 nm. About 0.05n for blue semiconductor laser
m (1 meV) or less (however, the longitudinal mode of the blue semiconductor laser was first measured by the present applicant when the resonator length was 600 μm). That is, FIG.
In the state shown in (b), the behavior of a normal laser element is shown. However, as shown in (c) and (d), a number of non-equidistant peaks that clearly differ from the emission peak in the longitudinal mode of the conventional laser device appear. This is Figure 2
It can also be seen by comparing the spectra at different current values. In the light emitting device of the present invention, such an emission spectrum is generated, thereby increasing the output.

【0012】なぜ、このようなピークが発生すると発光
素子の出力が高くなるのかは定かではないが、例えば次
のようなことが推測される。なお、図3は図1の発光素
子において、n型光ガイド層105と、活性層106
と、p型光ガイド層107との界面を拡大して部分的に
示す模式断面図である。活性層が量子井戸構造の場合、
井戸層の膜厚は100オングストローム以下、好ましく
は70オングストローム以下、最も好ましくは50オン
グストローム以下に調整される。一方、障壁層も150
オングストローム以下、好ましくは100オングストロ
ーム以下に調整される。本発明の発光素子では、このよ
うな単一膜厚が数十オングストロームの薄膜を積層した
場合、井戸層、障壁層共、均一な膜厚で成長しておら
ず、凹凸のある層が幾重にも重なり合った状態となって
いる。図3に示すように、このような凹凸のある活性層
を、活性層よりもバンドギャップの大きいクラッド層で
挟むダブルヘテロ構造を実現すると、活性層に注入され
た電子とホールとが、凹部にも閉じ込められるようにな
って、クラッド層の縦方向と共に縦横の両方向に閉じ込
められる。このため、キャリアが約10〜70オングス
トローム凹凸差がある3次元のInGaNよりなる量子
箱、あるいは量子ディスクに閉じ込められたようになっ
て、従来の量子井戸構造とは違った量子効果が出現す
る。従って、多数の量子準位に基づく発光が室温でも観
測されるようになり、発光スペクトルの1meV〜10
0meVの間隔で等間隔でない多数の発光ピークが観測
される。また、他の理由としては、三次元のInGaN
よりなる小さな量子箱にキャリアが閉じ込められるの
で、エキシトン効果が顕著に現れてきて多数の発光ピー
クが観測される。
Although it is not clear why the output of the light emitting element increases when such a peak occurs, for example, the following is presumed. FIG. 3 shows an n-type light guide layer 105 and an active layer 106 in the light emitting device of FIG.
FIG. 4 is a schematic cross-sectional view showing an enlarged interface between the substrate and a p-type light guide layer 107. When the active layer has a quantum well structure,
The thickness of the well layer is adjusted to 100 angstrom or less, preferably 70 angstrom or less, and most preferably 50 angstrom or less. On the other hand, the barrier layer
It is adjusted to not more than Å, preferably not more than 100 Å. In the light-emitting element of the present invention, when a single thin film having a thickness of several tens of angstroms is stacked, both the well layer and the barrier layer are not grown in a uniform thickness, and the uneven layer is formed in multiple layers. Are also overlapped. As shown in FIG. 3, when a double hetero structure in which such an active layer having irregularities is sandwiched by a cladding layer having a band gap larger than that of the active layer is realized, electrons and holes injected into the active layer become Is also confined, and confined in both the vertical and horizontal directions along with the vertical direction of the cladding layer. Therefore, the carriers are confined in a three-dimensional InGaN quantum box or quantum disk having a difference of about 10 to 70 angstroms, and a quantum effect different from the conventional quantum well structure appears. Therefore, light emission based on a large number of quantum levels is observed even at room temperature, and the light emission spectrum is 1 meV to 10 meV.
A number of non-equally spaced emission peaks are observed at 0 meV intervals. Another reason is that three-dimensional InGaN
Since carriers are confined in a smaller quantum box, the exciton effect appears remarkably, and a large number of emission peaks are observed.

【0013】図4は、活性層成長直後の活性層の表面の
状態を部分的に示す斜視図であり、活性層の表面の結晶
の状態をAFM(Atomic Force Microscope)で測定し
たものである。図4に示すように活性層の表面には、1
0〜60オングストロームの高さで無数の凹凸が発生し
ており、活性層はこの状態でクラッド層と接している。
本発明の発光素子では、このように活性層の表面に凹凸
を設けることにより、前述したような小さな発光ピーク
が1meV〜100meVの間隔で現れやすくなる傾向
にあり、結果として、発光出力が向上する。量子井戸構
造の場合、好ましい凹凸差としては5オングストローム
以上、さらに好ましくは10オングストローム以上、最
も好ましくは15オングストローム以上あることが望ま
しい。下限は活性層の膜厚以下であれば特に限定しな
い。
FIG. 4 is a perspective view partially showing the state of the surface of the active layer immediately after the growth of the active layer. The state of the crystal on the surface of the active layer is measured by an AFM (Atomic Force Microscope). As shown in FIG. 4, 1
Innumerable irregularities are generated at a height of 0 to 60 angstroms, and the active layer is in contact with the cladding layer in this state.
In the light emitting device of the present invention, by providing irregularities on the surface of the active layer as described above, the small emission peak as described above tends to appear at intervals of 1 meV to 100 meV, and as a result, the emission output is improved. . In the case of a quantum well structure, it is desirable that the difference in unevenness be 5 Å or more, more preferably 10 Å or more, and most preferably 15 Å or more. The lower limit is not particularly limited as long as it is equal to or less than the thickness of the active layer.

【0014】このようにInGaNよりなる井戸層を有
する活性層に多数の凹凸が発生する理由の一つとして、
In組成の面内不均一が考えられる。即ち、単一井戸層
内において、In組成の大きい領域と、少ない領域とが
できるために、井戸層表面に多数の凹凸が発生するので
ある。InGaNは混晶を成長させにくい材料であり、
InNとGaNとが相分離する傾向にある。このためI
n組成の不均一な領域ができる。そして、このIn組成
の高い領域に電子と正孔とが局在して、エキシトン発
光、あるいはバイエキシトン発光して、LEDの出力が
向上し、多数のピークができる。また、レーザ素子で
は、このバイエキシトンレーザ発振することにより、多
数の量子ディスク、量子箱と同等になって多数のピーク
が出現し、この多数のピークによりレーザ素子の閾値が
下がり、出力が向上する。なお、エキシトンとは電子と
正孔とが弱いクーロン力でくっついてペアになったもの
である。
One of the reasons why a large number of irregularities occur in the active layer having the well layer made of InGaN is as follows.
In-plane non-uniformity of the In composition is considered. That is, since a region having a large In composition and a region having a small In composition are formed in a single well layer, many irregularities are generated on the surface of the well layer. InGaN is a material that makes it difficult for mixed crystals to grow,
InN and GaN tend to phase separate. Therefore I
A region having a non-uniform n composition is formed. Then, electrons and holes are localized in the region having a high In composition, and exciton light emission or biexciton light emission is performed, so that the output of the LED is improved and a number of peaks are generated. Also, in the laser element, by oscillating this biexciton laser, a number of peaks appear as many quantum disks and quantum boxes, and the threshold value of the laser element is lowered by the number of peaks, thereby improving the output. . The exciton is a pair in which electrons and holes are attached by weak Coulomb force.

【0015】また、図1の発光素子ではInGaNより
なる井戸層を有する活性層は、活性層よりもバンドギャ
ップの大きいクラッド層で挟まれている。このように三
元混晶のInGaNを二元混晶あるいは三元混晶のAl
XGa1-XN(0≦X≦1)で挟んだ構造では、活性層と
クラッド層との界面を格子整合させることは理論的に不
可能である。従来では半導体結晶は格子整合で成長させ
るのが常識であった。しかし、本発明の発光素子では、
あえて活性層の界面を格子不整合の状態とすることによ
り、活性層にクラッド層との格子定数不整、熱膨張係数
差による歪みを与え、この歪みにより前記した量子箱の
効果が顕著に出現するようになるので、発光素子の出力
が向上する。
In the light emitting device of FIG. 1, an active layer having a well layer made of InGaN is sandwiched between cladding layers having a larger band gap than the active layer. In this way, ternary mixed crystal InGaN is converted to binary mixed crystal or ternary mixed crystal Al
In X Ga 1-X N (0 ≦ X ≦ 1) interposed in a structure, it is theoretically impossible to interface the lattice matching between the active layer and the cladding layer. Conventionally, it has been common sense to grow semiconductor crystals by lattice matching. However, in the light emitting device of the present invention,
By intentionally bringing the interface of the active layer into a lattice mismatch state, the active layer is distorted due to a lattice constant mismatch with the cladding layer and a difference in thermal expansion coefficient, and the effect of the quantum box described above remarkably appears due to this distortion. As a result, the output of the light emitting element is improved.

【0016】本発明のレーザ素子の活性層について述べ
たことを、図5のエネルギーバンド図でわかりやすく示
す。図5Aは多重量子井戸構造の活性層のエネルギーバ
ンドを示しており、図5Bは、図5Aの円で囲まれた単
一井戸層のエネルギーバンドを拡大して示すものであ
る。前記したように、井戸層においてIn組成の面内不
均一があるということは、Bに示すように単一のInG
aN井戸層幅にバンドギャップの異なるInGaN領域
が存在する。従って、伝導帯にある電子は一度、In組
成の大きいInGaN領域に落ちて、そこから価電子帯
にある正孔と再結合することによりhνのエネルギーを
放出する。このことは、電子と正孔とが井戸層幅のIn
組成の多い領域に局在化して、局在エキシトンを形成
し、レーザの閾値の低下を助ける。閾値が下がり、出力
が高くなるのはこの局在エキシトンの効果によるもので
ある。多数のピークが出現するのは、この局在エキシト
ンに加えて、三次元的に閉じ込められた量子箱の効果に
より多数の量子準位間の発光が出てくるからである。
What has been described about the active layer of the laser device of the present invention is clearly shown in the energy band diagram of FIG. FIG. 5A shows an energy band of an active layer having a multiple quantum well structure, and FIG. 5B shows an enlarged energy band of a single well layer surrounded by a circle in FIG. 5A. As described above, the in-plane non-uniformity of the In composition in the well layer means that the single InG
InGaN regions having different band gaps exist in the width of the aN well layer. Therefore, electrons in the conduction band once fall into an InGaN region having a large In composition, and recombine therefrom with holes in the valence band, thereby emitting hν energy. This means that electrons and holes are formed in the well layer width In.
It is localized in the composition-rich region to form localized excitons, which helps to reduce the threshold of the laser. The lower threshold and the higher output are due to this localized exciton effect. A large number of peaks appear because, in addition to the localized excitons, light emission between a large number of quantum levels is produced by the effect of the three-dimensionally confined quantum box.

【0017】[0017]

【実施例】次に、具体的な実施例により本発明の発光素
子を詳説する。図6は本発明の発光素子を得るために使
用したMOVPE装置の反応容器内を示す模式的な断面
図であり、この装置を用いて図1に示す発光素子を得る
方法を述べる。図6において、30は例えばステンレス
よりなる反応容器、反応容器30内には基板50および
トレイ34を載置するサセプター32と、サセプター3
2を回転するシャフト31と、基板50を加熱するヒー
タ33とが設置されている。さらに基板に向かって平行
ないし傾斜して原料ガスを供給するノズル35がサセプ
ター32に接近して設けられ、基板の上方には例えば石
英よりなるコニカルチューブ36が設置されている。窒
化物半導体は、まずチャンバー30内を真空ポンプ37
で真空にした後、サセプター32の上にトレイ34を介
して載置した基板50をヒータ33で高温に加熱し、同
時にノズル35から原料ガスをキャリアガスと共に供給
して、基板上で原料ガスを分解することによって成長さ
れる。原料ガス供給中は常時、コニカルチューブ36内
に上から窒素、水素等の不活性ガスよりなる押圧ガスが
基板に向かって垂直に流され、原料ガスが基板の熱対流
によって拡散されるのを防止している。なお本明細書に
おいて示すInXGa1-XN、AlYGa1-YN等の一般式
は、単に窒化物半導体の組成式を示しているに過ぎず、
異なる層が同一の式で示されていても、それらの層が同
一の組成を示すものではない。
Next, the light emitting device of the present invention will be described in detail with reference to specific examples. FIG. 6 is a schematic sectional view showing the inside of the reaction vessel of the MOVPE apparatus used to obtain the light emitting device of the present invention. A method for obtaining the light emitting device shown in FIG. 1 using this device will be described. In FIG. 6, reference numeral 30 denotes a reaction vessel made of, for example, stainless steel; a susceptor 32 in which the substrate 50 and the tray 34 are placed;
2 and a heater 33 for heating the substrate 50 are provided. Further, a nozzle 35 for supplying a source gas in a direction parallel or inclined toward the substrate is provided close to the susceptor 32, and a conical tube 36 made of, for example, quartz is provided above the substrate. First, a nitride semiconductor is supplied through a vacuum pump 37 inside the chamber 30.
Then, the substrate 50 placed on the susceptor 32 via the tray 34 is heated to a high temperature by the heater 33, and at the same time, the raw material gas is supplied from the nozzle 35 together with the carrier gas, and the raw material gas is supplied onto the substrate. Grow by breaking down. During the supply of the raw material gas, a pressurized gas composed of an inert gas such as nitrogen or hydrogen is constantly flowed from the top into the conical tube 36 toward the substrate to prevent the raw material gas from being diffused by thermal convection of the substrate. are doing. Note that the general formulas such as In x Ga 1-x N and Al y Ga 1-y N shown in this specification merely indicate the composition formula of a nitride semiconductor,
Even though different layers are represented by the same formula, they do not have the same composition.

【0018】洗浄したスピネル(MgAl24)よりな
る基板101をトレイ34にセットして、反応容器内に
移送し、反応容器内を水素で十分置換した後、水素を流
しながら、基板の温度を1050℃まで上昇させ、基板
のクリーニングを行う。基板にはスピネルの他にA面、
C面、R面等の面方位を有するサファイアが使用でき、
また、SiC、MgO、Si、ZnO、GaN等の単結
晶よりなる、公知の基板が用いられる。
A substrate 101 made of washed spinel (MgAl 2 O 4 ) is set on a tray 34, transferred into a reaction vessel, and the inside of the reaction vessel is sufficiently replaced with hydrogen. Is raised to 1050 ° C. to clean the substrate. On the substrate, besides spinel, A side,
Sapphire having plane orientations such as C plane and R plane can be used,
In addition, a known substrate made of a single crystal such as SiC, MgO, Si, ZnO, or GaN is used.

【0019】次に、温度を500℃まで下げ、キャリア
ガスに水素、原料ガスにアンモニアとTMG(トリメチ
ルガリウム)とを用いてノズル35より供給し、500
℃で基板101上にGaNよりなるバッファ層102を
300オングストローム成長させる。なお成長中はコニ
カルチューブ36より水素、窒素、アルゴンのような不
活性ガスを20リットル/分で供給している。バッファ
層102は基板と窒化物半導体との格子不整合を緩和す
るために設けられ、通常、GaN、AlN、AlGaN
等が1000オングストローム以下の膜厚で成長される
が、窒化物半導体と格子定数の近い基板、格子整合した
基板を用いる場合、また成長方法、成長条件等の要因に
よっては成長されないこともあるので、省略することも
できる。
Next, the temperature is lowered to 500 ° C., and hydrogen is supplied as a carrier gas, and ammonia and TMG (trimethylgallium) are supplied from a nozzle 35 as raw material gases.
A buffer layer 102 of GaN is grown on the substrate 101 at 300 ° C. by 300 Å. During the growth, an inert gas such as hydrogen, nitrogen, or argon is supplied from the conical tube 36 at a rate of 20 liters / minute. The buffer layer 102 is provided to alleviate lattice mismatch between the substrate and the nitride semiconductor, and is usually formed of GaN, AlN, AlGaN
Are grown at a film thickness of 1000 Å or less. However, when a substrate having a lattice constant close to that of the nitride semiconductor or a lattice-matched substrate is used, the growth may not be performed depending on factors such as a growth method and growth conditions. It can be omitted.

【0020】バッファ層成長後、温度を1030℃まで
上昇させ、同じく原料ガスにTMGとアンモニアガス、
不純物ガスにSiH4(シラン)ガスを用いて、Siド
ープGaNよりなるn型コンタクト層103を4μmの
膜厚で成長させる。n型コンタクト層103はn型の窒
化物半導体であればどのような組成でもよいが、好まし
くは、AlYGa1-YN(0≦Y≦1)とする。特にn型
コンタクト層をAlGaNとすることにより、活性層と
の屈折率差が大きくでき、光閉じ込め層としてのクラッ
ド層、及び電流を注入するコンタクト層として作用させ
ることができる。さらに、このコンタクト層をAlGa
Nとすることにより、活性層の発光をn型コンタクト層
内で広がりにくくできるので、閾値が低下する。さらに
n型コンタクト層をAlYGa1-YNとする場合、基板側
のAl混晶比が小さく、活性層側のAl混晶比が大きい
構造、即ち組成傾斜構造とすることが望ましい。前記構
造とすることにより、結晶性の良いn型コンタクト層が
得られるので、結晶性の良いn型コンタクト層の上に積
層する窒化物半導体の結晶性も良くなるため、素子全体
の結晶性が良くなり、ひいては閾値の低下、素子の信頼
性が格段に向上する。また、活性層側のAl混晶比が大
きいために、活性層との屈折率差も大きくなり光閉じ込
め層として有効に作用する。一方、GaNとすると、n
電極とのオーミック特性については非常に優れている。
コンタクト層をGaNとすると、GaNコンタクト層
と、活性層との間にAlGaNよりなる光閉じ込め層を
設ける必要がある。n型コンタクト層103の膜厚は
0.1μm以上、5μm以下に調整することが望まし
い。
After the growth of the buffer layer, the temperature is increased to 1030 ° C., and TMG and ammonia gas
Using SiH 4 (silane) gas as an impurity gas, an n-type contact layer 103 made of Si-doped GaN is grown to a thickness of 4 μm. The n-type contact layer 103 may have any composition as long as it is an n-type nitride semiconductor, but is preferably Al Y Ga 1 -YN (0 ≦ Y ≦ 1). In particular, by using AlGaN for the n-type contact layer, the difference in refractive index from the active layer can be increased, and the n-type contact layer can function as a cladding layer as a light confinement layer and a contact layer for injecting current. Further, this contact layer is
By setting N, the light emission of the active layer can be hardly spread in the n-type contact layer, so that the threshold value decreases. Further, when the n-type contact layer is made of Al Y Ga 1 -YN, it is desirable to have a structure having a small Al composition ratio on the substrate side and a large Al composition ratio on the active layer side, that is, a compositionally graded structure. With the above structure, an n-type contact layer with good crystallinity can be obtained, so that the crystallinity of the nitride semiconductor stacked on the n-type contact layer with good crystallinity can be improved. As a result, the threshold value is reduced, and the reliability of the device is significantly improved. Further, since the Al mixed crystal ratio on the active layer side is large, the refractive index difference from the active layer is also large, and effectively acts as a light confinement layer. On the other hand, if GaN is used, n
The ohmic characteristics with the electrodes are very good.
When the contact layer is GaN, it is necessary to provide a light confinement layer made of AlGaN between the GaN contact layer and the active layer. It is desirable that the thickness of the n-type contact layer 103 be adjusted to 0.1 μm or more and 5 μm or less.

【0021】次に温度を750℃まで下げ、原料ガスに
TMG、TMI(トリメチルインジウム)、アンモニ
ア、不純物ガスにシランガスを用い、SiドープIn0.
1Ga0.9Nよりなるクラック防止層(図示せず。)を5
00オングストロームの膜厚で成長させる。クラック防
止層はInを含むn型の窒化物半導体、好ましくはIn
GaNで成長させることにより、次に成長させるAlを
含む窒化物半導体よりなるn型光閉じこめ層104を厚
膜で成長させることが可能となる。LDの場合は、光閉
じ込め層となる層を、例えば0.1μm以上の膜厚で成
長させる必要がある。従来ではGaN、AlGaN層の
上に直接厚膜のAlGaNを成長させると、後から成長
させたAlGaNにクラックが入るので素子作製が困難
であったが、このクラック防止層が次に成長させる光閉
じこめ層104にクラックが入るのを防止することがで
きる。しかも次に成長させる光閉じこめ層103を厚膜
で成長させても膜質良く成長できる。なおクラック防止
層は100オングストローム以上、0.5μm以下の膜
厚で成長させることが好ましい。100オングストロー
ムよりも薄いと前記のようにクラック防止として作用し
にくく、0.5μmよりも厚いと、結晶自体が黒変する
傾向にある。なお、クラック防止層は成長方法、成長装
置によっては省略することもできるので図示していない
が、LDを製造する上では成長させる方が望ましい。
Next, the temperature is lowered to 750 ° C., and TMG, TMI (trimethylindium) and ammonia are used as source gases, silane gas is used as impurity gas, and Si-doped In0.
A crack preventing layer (not shown) made of 1Ga0.9N
It is grown to a thickness of 00 Å. The anti-crack layer is an n-type nitride semiconductor containing In, preferably In
By growing with GaN, it becomes possible to grow the n-type optical confinement layer 104 made of a nitride semiconductor containing Al to be grown next with a thick film. In the case of an LD, it is necessary to grow a layer serving as a light confinement layer to a thickness of, for example, 0.1 μm or more. Conventionally, when thick AlGaN was directly grown on the GaN and AlGaN layers, cracks were formed in the AlGaN grown later, making it difficult to fabricate the device. Cracks in the layer 104 can be prevented. Moreover, even if the optical confinement layer 103 to be grown next is grown as a thick film, the film can be grown with good film quality. Preferably, the crack preventing layer is grown to a thickness of 100 Å or more and 0.5 μm or less. When the thickness is less than 100 Å, it is difficult to function as a crack prevention as described above, and when the thickness is more than 0.5 μm, the crystal itself tends to turn black. The crack prevention layer is not shown because it can be omitted depending on the growth method and the growth apparatus, but it is preferable to grow the LD in manufacturing an LD.

【0022】次に、温度を1050℃にして、原料ガス
にTEG、TMA(トリメチルアルミニウム)、アンモ
ニア、不純物ガスにシランガスを用いて、Siドープn
型Al0.3Ga0.7Nよりなるn型光閉じこめ層104を
0.6μmの膜厚で成長させる。光閉じ込め層104は
Alを含む窒化物半導体、特に好ましくはAlYGa1 -Y
N(0<Y<1)で構成することにより、結晶性の良い
ものが得られ、また活性層との屈折率差を大きくしてレ
ーザ光の縦方向の閉じ込めに有効である。この層は通常
0.1μm〜1μmの膜厚で成長させることが望まし
い。0.1μmよりも薄いと光閉じ込め層として作用し
にくく、1μmよりも厚いと、たとえクラック防止層の
上に成長させたAlGaNでも、結晶中にクラックが入
りやすくなり素子作成が困難となる傾向にある。
Next, the temperature is raised to 1050 ° C.
TEG, TMA (trimethylaluminum),
Near, Si doped n using silane gas as impurity gas
N-type optical confinement layer 104 of Al0.3Ga0.7N
It is grown to a thickness of 0.6 μm. The optical confinement layer 104
Al-containing nitride semiconductor, particularly preferably AlYGa1 -Y
By constituting N (0 <Y <1), good crystallinity can be obtained.
And a large refractive index difference from the active layer.
This is effective for vertically confining laser light. This layer is usually
It is desirable to grow with a film thickness of 0.1 μm to 1 μm.
No. If it is thinner than 0.1 μm, it acts as a light confinement layer
If it is thicker than 1 μm, even if the crack prevention layer
Even in AlGaN grown on the top, cracks were found in the crystal.
It tends to be difficult to make devices.

【0023】続いて、原料ガスにTMG、アンモニア、
不純物ガスにシランガスを用い、Siドープn型GaN
よりなるn型光ガイド層105を500オングストロー
ムの膜厚で成長させる。n型光ガイド層105は、In
を含むn型の窒化物半導体若しくはn型GaN、好まし
くは三元混晶若しくは二元混晶のInXGa1-XN(0≦
X≦1)とする。この層は通常100オングストローム
〜1μmの膜厚で成長させることが望ましく、特にIn
GaN、GaNとすることにより次の活性層106を量
子構造とすることが容易に可能になる。
Subsequently, TMG, ammonia,
Si-doped n-type GaN using silane gas as impurity gas
An n-type light guide layer 105 is grown to a thickness of 500 angstroms. The n-type light guide layer 105 is made of In
N-type nitride semiconductor or n-type GaN, preferably ternary mixed crystal or binary mixed crystal In x Ga 1 -xN (0 ≦
X ≦ 1). This layer is usually preferably grown to a thickness of 100 Å to 1 μm.
By using GaN or GaN, the next active layer 106 can easily have a quantum structure.

【0024】次に原料ガスにTMG、TMI、アンモニ
アを用いて活性層106を成長させる。活性層は温度を
750℃に保持して、まずノンドープIn0.2Ga0.8N
よりなる井戸層を25オングストロームの膜厚で成長さ
せる。次にTMIのモル比を変化させるのみで同一温度
で、ノンドープIn0.01Ga0.95Nよりなる障壁層を5
0オングストロームの膜厚で成長させる。この操作を4
回繰り返し、最後に井戸層を成長させ、総膜厚325オ
ングストロームの膜厚の多重量子井戸構造よりなる活性
層106を成長させる。なお活性層成長後の表面の状態
を示す図が図4である。
Next, the active layer 106 is grown using TMG, TMI, and ammonia as source gases. The temperature of the active layer is maintained at 750 ° C., and first, non-doped In0.2Ga0.8N
A well layer having a thickness of 25 Å is grown. Next, a barrier layer made of non-doped In0.01Ga0.95N was deposited at the same temperature by changing only the molar ratio of TMI.
It is grown to a thickness of 0 Å. This operation 4
This is repeated twice, and finally, a well layer is grown to grow an active layer 106 having a multiple quantum well structure with a total thickness of 325 Å. FIG. 4 shows a state of the surface after the active layer is grown.

【0025】活性層106成長後、温度を1050℃に
してTMG、TMA、アンモニア、アクセプター不純物
源としてCp2Mg(シクロペンタジエニルマグネシウ
ム)を用い、Mgドープp型Al0.2Ga0.8Nよりなる
p型キャップ層(図示せず。)を100オングストロー
ムの膜厚で成長させる。このp型キャップ層は1μm以
下、さらに好ましくは10オングストローム以上、0.
1μm以下の膜厚で成長させることにより、InGaN
よりなる活性層が分解するのを防止するキャップ層とし
ての作用があり、また活性層の上にAlを含むp型窒化
物半導体、好ましくはAlYGa1-YN(0<Y<1)よ
りなるp型キャップ層を成長させることにより、発光出
力が格段に向上する。このp型キャップ層の膜厚は1μ
mよりも厚いと、層自体にクラックが入りやすくなり素
子作製が困難となる傾向にある。なおこのp型キャップ
層も成長方法、成長装置等によっては省略可能であるた
め、特に図示していない。
After the active layer 106 is grown, the temperature is raised to 1050 ° C., and TMG, TMA, ammonia, Cp 2 Mg (cyclopentadienyl magnesium) as an acceptor impurity source, and a p-type cap made of Mg-doped p-type Al 0.2 Ga 0.8 N are used. A layer (not shown) is grown to a thickness of 100 Å. This p-type cap layer has a thickness of 1 μm or less, preferably 10 Å or more, and 0.1 μm or less.
By growing it with a thickness of 1 μm or less, InGaN
Has a function as a cap layer for preventing the active layer formed from being decomposed, and a p-type nitride semiconductor containing Al, preferably Al Y Ga 1-Y N (0 <Y <1), on the active layer. By growing the p-type cap layer made of such a material, the light emission output is significantly improved. The thickness of this p-type cap layer is 1 μm.
If the thickness is larger than m, cracks tend to occur in the layer itself, and it tends to be difficult to fabricate the element. Note that this p-type cap layer can also be omitted depending on the growth method, the growth apparatus, and the like, and is not particularly illustrated.

【0026】次に温度を1050℃に保持しながら、T
MG、アンモニア、Cp2Mgを用いMgドープp型G
aNよりなるp型光ガイド層107を500オングスト
ロームの膜厚で成長させる。このp型光ガイド層107
は前記したように、InGaN、GaNとすることによ
り次のAlを含むp型光閉じこめ層108を結晶性良く
成長できる。
Next, while maintaining the temperature at 1050 ° C., T
Mg-doped p-type G using MG, ammonia, Cp2Mg
A p-type light guide layer 107 made of aN is grown to a thickness of 500 Å. This p-type light guide layer 107
As described above, by using InGaN or GaN, the following p-type optical confinement layer 108 containing Al can be grown with good crystallinity.

【0027】続いて、TMG、TMA、アンモニア、C
p2Mgを用いてMgドープAl0.3Ga0.7Nよりなる
p型光閉じ込め層108を0.5μmの膜厚で成長させ
る。p型光閉じ込め層はn型光閉じ込め層と同じく、
0.1μm〜1μmの膜厚で成長させることが望まし
く、AlGaNのようなAlを含むp型窒化物半導体と
することにより、活性層との屈折率差を大きくして、レ
ーザ光の縦方向の光閉じ込め層として有効に作用する。
Subsequently, TMG, TMA, ammonia, C
Using p2Mg, a p-type optical confinement layer 108 of Mg-doped Al0.3Ga0.7N is grown to a thickness of 0.5 .mu.m. The p-type optical confinement layer is the same as the n-type optical confinement layer,
It is desirable to grow with a film thickness of 0.1 μm to 1 μm. By using a p-type nitride semiconductor containing Al such as AlGaN, the difference in the refractive index from the active layer is increased, and the vertical direction of the laser light is increased. Effectively acts as a light confinement layer.

【0028】最後に、TMG、アンモニア、Cp2Mg
を用い、Mgドープp型GaNよりなるp型コンタクト
層109を0.2μmの膜厚で成長させる。p型コンタ
クト層109は、特にAlYGa1-YN(0≦Y≦1)、
その中でもMgをドープしたp型GaNとすると、最も
キャリア濃度の高いp型層が得られて、正電極と良好な
オーミック接触が得られ、しきい値電流を低下させるこ
とができる。
Finally, TMG, ammonia, Cp2Mg
Is used to grow a p-type contact layer 109 made of Mg-doped p-type GaN with a thickness of 0.2 μm. In particular, the p-type contact layer 109 is made of Al Y Ga 1 -Y N (0 ≦ Y ≦ 1),
Among them, when p-type GaN doped with Mg is used, a p-type layer having the highest carrier concentration can be obtained, good ohmic contact with the positive electrode can be obtained, and the threshold current can be reduced.

【0029】以上のようにして窒化物半導体を積層した
ウェーハを反応容器から取り出し、図1に示すように、
最上層のp型コンタクト層109から選択エッチを行
い、負電極を形成すべきn型コンタクト層103の表面
を露出させる。さらに、p型コンタクト層側からエッチ
ングを行い、ストライプ状のリッジ形状のレーザ素子を
作製した後、リッジに平行な位置に正電極20と負電極
21とをストライプ状に形成してレーザ素子とする。
The wafer on which the nitride semiconductor is laminated as described above is taken out of the reaction vessel, and as shown in FIG.
Selective etching is performed from the uppermost p-type contact layer 109 to expose the surface of the n-type contact layer 103 where a negative electrode is to be formed. Furthermore, etching is performed from the p-type contact layer side to produce a stripe-shaped ridge-shaped laser device, and then the positive electrode 20 and the negative electrode 21 are formed in stripes at positions parallel to the ridge to form a laser device. .

【0030】このレーザ素子を室温でパルス発振させた
ところ、各電流値において図2に示すようなスペクトル
を示し、発光出力は同様にMBE(分子線気相成長)装
置で成長した同一構造のレーザ素子に比較して閾値電流
が20%以上低下し、出力は2倍以上であった。なお、
MBE装置によると、窒化物半導体層は原子層レベルで
平坦な面が得やすい。
When this laser device was pulse-oscillated at room temperature, it showed a spectrum as shown in FIG. 2 at each current value, and the light emission output was the same as that of a laser beam of the same structure grown by an MBE (molecular beam vapor phase epitaxy) apparatus. The threshold current was reduced by 20% or more compared to the device, and the output was twice or more. In addition,
According to the MBE apparatus, the nitride semiconductor layer can easily obtain a flat surface at the atomic layer level.

【0031】[実施例2]実施例1において、n型コン
タクト層103を成長させる際に、TMAの流量を段階
的に変化させ、バッファ層102側のAl混晶比(Y
値)が0でn型光閉じ込め層104側のAl混晶比が
0.2である組成傾斜した層を成長させる他は同様にし
てレーザ素子を得たところ、閾値電流は実施例1のもの
に比較して4%低下し、出力は10%向上した。
Example 2 In Example 1, when growing the n-type contact layer 103, the flow rate of TMA was changed stepwise, and the Al mixed crystal ratio (Y
Value) was 0, and a laser element was obtained in the same manner as described above except that a layer having a composition gradient of 0.2 on the n-type optical confinement layer 104 side having an Al composition ratio of 0.2 was obtained. 4%, and the output was improved by 10%.

【0032】[0032]

【発明の効果】以上説明したように本発明の発光素子で
は、量子構造の窒化物半導体よりなる活性層を発光層と
して備える窒化物半導体発光素子で、その発光素子の発
光スペクトル中に複数の発光ピークを有することにより
発光素子の出力が向上する。特にレーザ素子では、その
特有の発光スペクトルを用いることにより、単一モード
の発振を嫌う光磁気ディスクの光源として用いると非常
に都合がよい。レーザ素子において、このような現象が
出現することを発見したのは本発明が初めてであり、そ
の産業上の利用価値は非常に大きい。
As described above, the light emitting device of the present invention is a nitride semiconductor light emitting device having an active layer made of a nitride semiconductor having a quantum structure as a light emitting layer. By having a peak, the output of the light emitting element is improved. Particularly, in the case of a laser element, it is very convenient to use the laser element as a light source of a magneto-optical disk which dislikes single-mode oscillation by using its unique emission spectrum. The present invention is the first to discover that such a phenomenon appears in a laser element, and its industrial utility value is very large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例に係る発光素子の構造を示
す模式断面図。
FIG. 1 is a schematic sectional view showing the structure of a light emitting device according to one embodiment of the present invention.

【図2】 本発明の一実施例に係る発光素子の発光スペ
クトルを各電流値で比較して示す図。
FIGS. 2A and 2B are diagrams illustrating emission spectra of light-emitting elements according to one embodiment of the present invention by comparing current values.

【図3】 図1の発光素子の活性層の界面を拡大して部
分的に示す模式断面図。
FIG. 3 is a schematic cross-sectional view showing an enlarged part of an interface of an active layer of the light emitting device of FIG. 1;

【図4】 活性層成長直後の活性層の表面の状態を部分
的に示す斜視図。
FIG. 4 is a perspective view partially showing a state of the surface of the active layer immediately after the active layer is grown.

【図5】 本発明の発光素子の井戸層のエネルギーバン
ド図。
FIG. 5 is an energy band diagram of a well layer of the light emitting element of the present invention.

【図6】 本発明の発光素子を得るために使用したMO
VPE装置の反応容器内の構造を示す模式的な断面図。
FIG. 6 shows an MO used to obtain a light emitting device of the present invention.
FIG. 2 is a schematic cross-sectional view showing a structure inside a reaction container of the VPE device.

【符号の説明】[Explanation of symbols]

101・・・・基板 102・・・・バッファ層 103・・・・n型コンタクト層 104・・・・n型光閉じ込め層 105・・・・n型光ガイド層 106・・・・活性層 107・・・・p型光ガイド層 108・・・・p型光閉じ込め層 109・・・・p型コンタクト層 20・・・・正電極 21・・・・負電極 101 substrate 102 buffer layer 103 n-type contact layer 104 n-type light confinement layer 105 n-type light guide layer 106 active layer 107 ························································································································ Negative-electrode

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01S 5/00 - 5/50 H01L 33/00 JICSTファイル(JOIS)────────────────────────────────────────────────── ─── Continued on the front page (58) Fields surveyed (Int. Cl. 7 , DB name) H01S 5/00-5/50 H01L 33/00 JICST file (JOIS)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基板上に、AlGa1-xN(0<x<
1)から成るn型コンタクト層と、AlGa1-y
(0<y<1)を含むn型光閉じ込め層と、InGa
1-zN(0≦z≦1)から成るn型光ガイド層と、少な
くともインジウムを含む窒化物半導体よりなる膜厚10
0Å以下の井戸層を有する量子井戸構造の活性層とを備
え、p型層にリッジ形状を有する窒化物半導体レーザで
あって、 前記活性層の表面に5オングストローム以上の凹凸を有
し、その窒化物半導体レーザの発光スペクトル中には、
等間隔でない複数の発光ピークを有することを特徴とす
る窒化物半導体レーザ。
1. An Al x Ga 1 -xN (0 <x <
And n-type contact layer made of 1), Al y Ga 1- y N
An n-type optical confinement layer containing (0 <y <1) and In z Ga
An n-type optical guide layer made of 1-z N (0 ≦ z ≦ 1) and a film thickness of at least 10 made of a nitride semiconductor containing indium;
An active layer having a quantum well structure having a well layer of 0 ° or less, a nitride semiconductor laser having a ridge shape in a p-type layer, wherein the active layer has irregularities of 5 angstroms or more on its surface. In the emission spectrum of the semiconductor laser,
A nitride semiconductor laser having a plurality of emission peaks that are not equally spaced.
【請求項2】 前記発光ピークの間隔は1meV〜10
0meVの間隔にあることを特徴とする請求項1に記載
の窒化物半導体レーザ。
2. An interval between the emission peaks is 1 meV to 10 meV.
2. The nitride semiconductor laser according to claim 1, wherein the distance is 0 meV.
【請求項3】 前記活性層の上に、活性層よりもバンド
ギャップが大きいクラッド層が成長されてなることを特
徴とする請求項1に記載の窒化物半導体レーザ。
3. The nitride semiconductor laser according to claim 1, wherein a cladding layer having a larger band gap than the active layer is grown on the active layer.
【請求項4】 前記活性層と前記クラッド層とは格子不
整合の状態で接していることを特徴とする請求項3に記
載の窒化物半導体レーザ。
4. The nitride semiconductor laser according to claim 3, wherein said active layer and said clad layer are in contact with each other in a state of lattice mismatch.
JP18157396A 1996-04-11 1996-06-21 Nitride semiconductor light emitting device Expired - Fee Related JP3314620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18157396A JP3314620B2 (en) 1996-04-11 1996-06-21 Nitride semiconductor light emitting device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-89500 1996-04-11
JP8950096 1996-04-11
JP18157396A JP3314620B2 (en) 1996-04-11 1996-06-21 Nitride semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH09331116A JPH09331116A (en) 1997-12-22
JP3314620B2 true JP3314620B2 (en) 2002-08-12

Family

ID=26430916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18157396A Expired - Fee Related JP3314620B2 (en) 1996-04-11 1996-06-21 Nitride semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3314620B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3515361B2 (en) * 1997-03-14 2004-04-05 株式会社東芝 Semiconductor light emitting device
JP3650531B2 (en) * 1998-08-24 2005-05-18 三菱電線工業株式会社 GaN-based crystal substrate and method for producing the same
JP3511923B2 (en) * 1998-12-25 2004-03-29 日亜化学工業株式会社 Light emitting element
FR2807909B1 (en) * 2000-04-12 2006-07-28 Centre Nat Rech Scient GaInN SEMICONDUCTOR THIN LAYER, PROCESS FOR PREPARING SAME; LED COMPRISING THIS LAYER AND LIGHTING DEVICE COMPRISING SAID LED
US6958497B2 (en) 2001-05-30 2005-10-25 Cree, Inc. Group III nitride based light emitting diode structures with a quantum well and superlattice, group III nitride based quantum well structures and group III nitride based superlattice structures
US7692182B2 (en) * 2001-05-30 2010-04-06 Cree, Inc. Group III nitride based quantum well light emitting device structures with an indium containing capping structure
JP2003092455A (en) * 2001-09-17 2003-03-28 Japan Science & Technology Corp Semiconductor laser
US7348600B2 (en) 2003-10-20 2008-03-25 Nichia Corporation Nitride semiconductor device, and its fabrication process
JP4641812B2 (en) * 2004-01-29 2011-03-02 昭和電工株式会社 Gallium nitride compound semiconductor laminate and method for producing the same
JP2006210962A (en) * 2006-05-11 2006-08-10 Matsushita Electric Ind Co Ltd Gallium-nitride-based compound semiconductor light-emitting device
JP2010010444A (en) * 2008-06-27 2010-01-14 Showa Denko Kk Semiconductor light emitting element, lamp and method of manufacturing semiconductor light emitting element
KR101028286B1 (en) 2009-12-28 2011-04-11 엘지이노텍 주식회사 Semiconductor light emitting device and fabricating method tereof
JP6927481B2 (en) * 2016-07-07 2021-09-01 国立大学法人京都大学 LED element
JP2020021798A (en) * 2018-07-31 2020-02-06 日機装株式会社 Nitride semiconductor light-emitting element and manufacturing method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Jpn.J.Appl.Phys.Part 2 35[1B](1996)p.L74−L76

Also Published As

Publication number Publication date
JPH09331116A (en) 1997-12-22

Similar Documents

Publication Publication Date Title
US5998810A (en) Semiconductor light-emitting diode having a p-type semiconductor layer formed on a light-emitting layer
JP4703014B2 (en) Nitride semiconductor light emitting element, optical device, semiconductor light emitting device, and method for manufacturing the same
US6452216B1 (en) Nitride semiconductor light emitting device and apparatus including the same
JP3660446B2 (en) Nitride semiconductor device and manufacturing method thereof
JP3646649B2 (en) Gallium nitride compound semiconductor light emitting device
JP3314620B2 (en) Nitride semiconductor light emitting device
JPH1012969A (en) Nitride semiconductor laser element
US6617607B2 (en) Nitride semiconductor laser device and optical pickup apparatus therewith
JP2900990B2 (en) Nitride semiconductor light emitting device
JP3424465B2 (en) Nitride semiconductor device and method of growing nitride semiconductor
JP3740744B2 (en) Semiconductor growth method
JP4854133B2 (en) Nitride semiconductor laser device and optical device including the same
JP4291960B2 (en) Nitride semiconductor device
JP2891348B2 (en) Nitride semiconductor laser device
JP3282175B2 (en) Nitride semiconductor device
JP3909694B2 (en) Group 3 nitride semiconductor light emitting device and method of manufacturing the same
JPH1041581A (en) Nitride semiconductor element
JP4683730B2 (en) Nitride semiconductor light emitting device and apparatus including the same
JP3371830B2 (en) Nitride semiconductor light emitting device
JP4936598B2 (en) Nitride semiconductor light emitting device and manufacturing method thereof
JP4683731B2 (en) Nitride semiconductor laser device and optical device including the same
JPH10326943A (en) Nitride semiconductor element
JP3888036B2 (en) Method for growing n-type nitride semiconductor
JP4567896B2 (en) Manufacturing method of semiconductor light emitting device
JP2003086905A (en) Nitride semiconductor laser element and semiconductor optical unit using the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090607

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090607

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090607

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100607

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100607

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110607

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110607

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120607

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120607

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130607

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130607

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130607

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees