JP2005345716A - 顕微鏡 - Google Patents

顕微鏡 Download PDF

Info

Publication number
JP2005345716A
JP2005345716A JP2004164631A JP2004164631A JP2005345716A JP 2005345716 A JP2005345716 A JP 2005345716A JP 2004164631 A JP2004164631 A JP 2004164631A JP 2004164631 A JP2004164631 A JP 2004164631A JP 2005345716 A JP2005345716 A JP 2005345716A
Authority
JP
Japan
Prior art keywords
light
emitting diode
light emitting
wavelength
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004164631A
Other languages
English (en)
Inventor
Kazuhiro Hasegawa
和宏 長谷川
Atsuhiro Tsuchiya
敦宏 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2004164631A priority Critical patent/JP2005345716A/ja
Priority to EP05011694.6A priority patent/EP1602960B1/en
Priority to US11/143,298 priority patent/US20050224692A1/en
Publication of JP2005345716A publication Critical patent/JP2005345716A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/16Microscopes adapted for ultraviolet illumination ; Fluorescence microscopes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0096Microscopes with photometer devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/361Optical details, e.g. image relay to the camera or image sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6484Optical fibres

Abstract

【課題】標本に照射する光の波長の高速での切り換えとムラの少ない照明と撮像装置のダイナミックレンジを十分に活用した画像取得とが可能な顕微鏡を提供する。
【解決手段】蛍光顕微鏡101は対物レンズ103と投光管105とCCDカメラ122とを備えている。投光管105にはリヤコンバーター109と波長合成器110と第一光源部111と第二光源部115とが取り付けられている。第一光源部111の第一発光ダイオード112と第二光源部115の第二発光ダイオード116は共に対物レンズ103の後側焦点に対して共役な位置関係にある。標本121を基準にして対物レンズ103の反対側に測光装置が配置されている。測光装置はピンホール126とフォトダイオード127とを有している。電源装置119は、フォトダイオード127の測光値に基づいて第一発光ダイオード112と第二発光ダイオード116の駆動電流を制御する。
【選択図】 図1

Description

本発明は、顕微鏡に関する。
生物分野では培養細胞を用い、生体に近い状態での実験が広く行なわれている。実験では、抗原抗体反応を利用した蛍光色素や遺伝子導入により発現した蛍光蛋白を用い、蛍光顕微鏡によって特定の部位の蛍光観察が行なわれる。例えば細胞内のイオン濃度の測定などで用いるレシオイメージング法では、高速での励起波長の切り換えが望まれる。
特開2002−131648号公報は、励起波長の切り換え可能な観察装置を開示している。図8は、特開2002−131648号公報に開示されている観察装置の基本構成を示している。この観察装置では、図8に示されるように、異なる波長の光を発する複数の発光ダイオード801と802と803が対物レンズ804の像側焦点面と共役面内に配置されており、蛍光色素の励起・蛍光波長に合った反射・透過特性を有するダイクロイックミラー805と波長選択フィルター806を用いることにより、機械的な切り換え部を用いないために高速での励起波長の切り換えが可能である。しかし、高輝度の発光ダイオード801と802と803は素子の外形が数mm程度あるため、複数の発光ダイオード801と802と803を共に光軸近くに配置することは困難である。これは、観察視野範囲に明るさのムラが生じる原因となる。
また、特開2003−195117号公報は、励起波長の切り換え可能な別の観察装置を開示している。この観察装置では、異なる波長の光を発する複数の発光ダイオードを回転駆動する切り換え装置を備えており、切り換え装置によって複数の発光ダイオードの一つを選択的に光軸上に配置させることにより、異なる波長による照明ムラの少ない照明を実現している。しかし、この観察装置では、機械的な機構によって発光ダイオードを切り換えるため、高速での励起波長の切り換えは困難である。
さらにレシオイメージング法では、使用する撮像装置のダイナミックレンジを有効に利用した測定が望まれる。つまり、測光する二つの波長の光の間で一方が明るくもう一方が暗い場合に、明るい波長の光に撮像装置の感度を合わせると、暗い波長の光に対して十分な分解能を得ることができない。このため、高精度な測定ができない。
特開2002−131648号公報 特開2003−195117号公報
本発明は、このような実状を考慮して成されたものであり、その目的は、標本に照射する光の波長の高速での切り換えとムラの少ない照明と撮像装置のダイナミックレンジを十分に活用した画像取得とが可能な顕微鏡を提供することである。
本発明は、ひとつには、顕微鏡に向けられている。本発明の顕微鏡は、標本を観察するための対物レンズと、発光波長の異なる複数の光源と、複数の光源から発せられる光を合成する波長合成器と、合成された光を対物レンズの後側焦点面に結像させる照明光学系とを備えており、複数の光源は共に波長合成器と照明光学系を介して対物レンズの後側焦点に共役な位置関係にあり、さらに、標本からの光を測光する測光装置と、対物レンズによる標本の像を撮像し外部トリガーを有する撮像装置と、測光装置の測光値に基づいて光源の駆動電流を制御する電源装置とを備えている。
本発明は、ひとつには、複数の波長の光を切り換えて標本に照射し、標本からの光の画像を取得する画像取得方法に向けられている。本発明の画像取得方法は、撮像装置による画像取り込みに同期して、標本に照射される光の波長を切り換えるとともに、標本からの光の輝度を取得し、取得した複数の輝度の相互の比を演算し、複数の輝度が互いに等しくなるように演算結果の比に基づいて複数の波長の光を発する複数の光源の駆動電流を制御する。
本発明によれば、標本に照射する光の波長の高速切り換えとムラの少ない照明と撮像装置のダイナミックレンジを十分に活用した画像取得とが可能な顕微鏡が提供される。これにより高精度な撮像が可能となる。
以下、図面を参照しながら本発明の実施形態について説明する。
[第一実施形態]
[構成]
本実施形態は、生体細胞で多用される倒立型の蛍光顕微鏡に向けられている。図1は、本発明の第一実施形態の蛍光顕微鏡を示している。
図1に示されるように、倒立型の蛍光顕微鏡101は、標本121を載せる標本台102と、標本121を観察するための対物レンズ103と、ダイクロイックミラー104と、照明光学系としての投光管105と、吸収フィルター106と、反射ミラー107と、観察光学系108と、蛍光画像を撮像する撮像装置としてのCCDカメラ122とから構成されている。投光管105には光源装置が取り付けられている。光源装置は、リヤコンバーター109と波長合成器110と第一光源部111と第二光源部115とから構成されている。投光管105にリヤコンバーター109が取り付けられ、リヤコンバーター109に波長合成器110が取り付けられ、波長合成器110に第一光源部111と第二光源部115とが取り付けられている。第一光源部111と第二光源部115は共に点灯用の電源装置119に接続されている。
第一光源部111は、青色光を発する第一発光ダイオード112と、第一コリメートレンズ113と、第一励起フィルター114とから構成されている。第二光源部115は、赤色光を発する第二発光ダイオード116と、第二コリメートレンズ117と、第二励起フィルター118とから構成されている。第一光源部111には第一励起フィルター114を抜き差しするためのスロットが設けられ、同様に第二光源部115には第二励起フィルター118を抜き差しするためのスロットが設けられている。また、第一発光ダイオード112は第一コリメートレンズ113の焦点位置に固定され、同様に第二発光ダイオード116は第二コリメートレンズ117の焦点位置に固定されている。第一発光ダイオード112と第二発光ダイオード116は共に、投光管105とリヤコンバーター109と波長合成器110とを介して、対物レンズ103の後側焦点に対して共役な位置関係にある。
波長合成器110は、青色光を反射し赤色光を透過する特性を有する波長選択フィルター120を有している。
標本121を基準にして対物レンズ103の反対側には、測光装置が配置されている。測光装置は、コリメートレンズ123と、蛍光選択素子としてのマルチバンドの吸収フィルター124と、結像レンズ125と、ピンホール126と、測光素子としてのフォトダイオード127とから構成されている。ピンホール126は、結像レンズ125の焦点面に配置され、標本121と共役な位置関係にある。すなわち、ピンホール126は、標本面に共役な面上で光軸上に位置している。
電源装置119は駆動部119aと制御部119bとを有している。第一発光ダイオード112と第二発光ダイオード116は駆動部119aに接続され、フォトダイオード127は制御部119bに接続されている。また、CCDカメラ122の外部トリガーも制御部119bに接続されている。電源装置119は、フォトダイオード127により得られる測光値に基づいて第一発光ダイオード112と第二発光ダイオード116の駆動電流を制御する。
[作用]
第一発光ダイオード112と第二発光ダイオード116から発せられた拡散光は、それぞれ、第一コリメートレンズ113と第二コリメートレンズ117によって平行光にされ、第一励起フィルター114と第二励起フィルター118に入射する。第一発光ダイオード112と第二発光ダイオード116の光は、それぞれ、第一励起フィルター114と第二励起フィルター118にほぼ垂直に入射するため、第一励起フィルター114と第二励起フィルター118への入射角度による特性の変化がなく、良好な波長選択が可能である。一般に発光ダイオードの波長幅は半値幅で20nmないし50nmであり、励起フィルターの透過波長幅は20nm程度である。そのため、第一発光ダイオード112と第二発光ダイオード116から発せられた光はそれぞれ第一励起フィルター114と第二励起フィルター118によって20nmの波長幅に挟められる。明るさが必要な場合には第一励起フィルター114と第二励起フィルター118を取り外して使用してもよい。
第一励起フィルター114と第二励起フィルター118を透過した光は共に、波長合成器110の波長選択フィルター120に入射する。波長選択フィルター120は青色光を反射し赤色光を透過するため、第一発光ダイオード112の光は波長選択フィルター120で反射され、第二発光ダイオード116の光は波長選択フィルター120を透過する。その結果、波長選択フィルター120により二つの波長の光が合成される。
合成された光は、リヤコンバーター109によって観察範囲を照明するために必要な光束径に広げられて投光管105に入射する。投光管105に入射した光は、その内部のレンズによって収束光にされ、ダイクロイックミラー104で反射され、対物レンズ103の後側焦点面に結像され、明るさムラなく標本121を照明する。標本121が発する蛍光の一部は、対物レンズ103で捕獲される。蛍光の波長は励起光の波長より長いため、蛍光は、ダイクロイックミラー104を透過し、反射ミラー107で方向が変えられ、観察光学系108によりCCDカメラ122に結像される。
また、標本121が発した蛍光の一部と励起光の一部は、コリメートレンズ123によって平行光にされ、吸収フィルター124に入射する。標本121が発した蛍光だけが吸収フィルター124を透過し、結像レンズ125によって光軸上に配置されたピンホールに結像される。ピンホール126の大きさは撮像面に対して1%程度で、標本121と光学的に共役な位置関係に配置されている。ピンホール126を透過した蛍光はフォトダイオード127に入射する。
一般に蛍光標本121では観察部位すなわち蛍光部位が散在する。このため、全体での光量に基づいて撮像装置の露出を決定すると、露出オーバーになって適正な露出が得られない。しかし、ピンホール126によって観察部位が配置される観察視野の中央の狭い領域だけの蛍光強度を測光することにより、バックグランドに左右されずに目的とする蛍光部位の正確な輝度測光が可能となる。つまり、散在する標本でも標本の密度に影響されない適正な測光が可能である。フォトダイオード127は光の強弱に応じて発生する電流値が変化する光起電素子であり、第一発光ダイオード112と第二発光ダイオード116が発する励起光によって得られる標本の蛍光輝度に応じた電流値を得ることができる。
撮像の手順は、はじめに目的とする標本121の観察部位つまり蛍光部位を視野中央に移動して撮像を開始する。まず第一発光ダイオード112が電源装置119の駆動部119aからの電流により点灯される。第一発光ダイオード112に対する標本121の蛍光輝度がフォトダイオード127によって測光される。測光値は電源装置119の制御部119bに転送される。CCDカメラ122は予めプログラムされていた時分割駆動に同期して外部トリガー信号を発する。電源装置119の制御部119bは外部トリガー信号に基づいて第二発光ダイオードの点灯に切り換える命令を駆動部119aに発し、励起波長が切り換えられる。
第二発光ダイオード116に対する標本121の蛍光輝度が測光装置で測光される。制御部119bは、第一発光ダイオード112と第二発光ダイオード116に対する蛍光輝度を比較し、第一発光ダイオード112と第二発光ダイオード116の蛍光輝度の比を演算する。演算結果により、低い蛍光輝度を示す発光ダイオードが決定され、両者の蛍光輝度が等しくなるように低い蛍光輝度を示す発光ダイオードの駆動電流値に演算結果の比が積算される。これより、以後の測定では、第一発光ダイオード112と第二発光ダイオード116による蛍光輝度は等しくなり、CCDカメラ122はダイナミックレンジを広範囲に使用した状態で蛍光画像を撮像する。細胞への試薬の投与などの実験を開始し、CCDカメラ122の撮影データはコンピューターで処理され、実験データとして活用される。
[効果]
第一発光ダイオード112と第二発光ダイオード116が共に対物レンズ103の後側焦点面と共役な面上で光軸上に配置されているため、明るさムラのない照明が可能である。機械的な切り換えによってではなく、第一発光ダイオード112と第二発光ダイオード116の電気的な切り換えによって励起波長を切り換えるため、第一発光ダイオード112と第二発光ダイオード116の高速応答性により高速な励起波長の切り換えが可能である。さらに、測光装置によって蛍光強度を測光した結果に基づいて第一発光ダイオード112と第二発光ダイオード116の駆動電流を調整して励起波長ごとの蛍光輝度を合わせることにより、CCD122のダイナミックレンジを有効に活用した測定が可能である。
さらに、測光装置が標本121を基準にして対物レンズ103の反対側に配置されているため、対物レンズ103で捕獲される蛍光を損失することなく測光が可能なため、輝度の高い測定が可能となる。また、第一発光ダイオード112と第二発光ダイオード116からの光を、第一コリメートレンズ113と第二コリメートレンズ117によってそれぞれ平行光にし、波長選択フィルター120によって合成した後、リヤコンバーター109によって必要な光束径に広げることにより、第一コリメートレンズ113と第二コリメートレンズ117を小型にでき、全体の大きさを小さくできる。
[第二実施形態]
[構成]
本実施形態は、第一実施形態の光源装置に代えて適用可能な別の光源装置に向けられている。図2は、本発明の第二実施形態による光源装置を示している。
図2に示されるように、本実施形態の光源装置は、波長合成器200と第一光源部201と第二光源部202と第三光源部203とから構成されている。波長合成器220は投光管105に取り付けられ、波長合成器220に第一光源部201と第二光源部202と第三光源部203とが取り付けられている。
第一光源部201は、第一発光ダイオード205と第一コリメートレンズ208と第一励起フィルター211とから構成されている。第二光源部202は、第二発光ダイオード206と第二コリメートレンズ209と第二励起フィルター212とから構成されている。第三光源部203は、第三発光ダイオード207と第三コリメートレンズ210と第三励起フィルター213とから構成されている。第一発光ダイオード205は青色光を発し、第二発光ダイオード206は緑色光を発し、第三発光ダイオード207は赤色光を発する。発光ダイオード205と206と207はそれぞれコリメートレンズ208と209と210の焦点位置に固定されている。また、発光ダイオード205と206と207は共に点灯用の電源装置119に接続されている。
波長合成器200は、青色光と緑色光と赤色光とを合成する色分解プリズム204を有している。色分解プリズム204は、互いに接合された三つのプリズムから構成され、それらの二つの接合面に第一ダイクロイック膜と第二ダイクロイック膜を有している。第一ダイクロイック膜は、青色光を反射し、青色光より長波長の光を透過する。第二ダイクロイック膜は、緑色光を透過し、緑色光より長波長の光を反射する。
[作用]
発光ダイオード205と206と207から発せられた発散光は、コリメートレンズ208と209と210によってそれぞれ平行光にされ、色分解プリズム204に入射する。青色光は、プリズムの構成面で全反射され、第一ダイクロイック膜で反射されて、色分解プリズム204から射出される。緑色光は、第二ダイクロイック膜と第一ダイクロイック膜を透過して、色分解プリズム204から射出される。赤色光は、プリズムの構成面で全反射され、第二ダイクロイック膜で反射され第一ダイクロイック膜を透過して、色分解プリズム204から射出される。これにより、青色光と緑色光と赤色光とが合成されて投光管105に入射する。
[効果]
本実施形態は、第一実施形態と同様の利点を有している。これに加えて、本実施形態では、光源部を放射状に配置できるため、より蛍光顕微鏡の小型化が可能である。
[第三実施形態]
[構成]
本実施形態は、第一実施形態の光源装置に代えて適用可能な別の光源装置に向けられている。図3は、本発明の第三実施形態による光源装置を示している。
図3に示されるように、本実施形態の光源装置は波長合成器300と接続ファイバー301とから構成されている。投光管105と波長合成器300とは接続ファイバー301を介して接続されている。
接続ファイバー301は、ファイバー305と、ファイバー305の両端に設けられた第一ファイバー用コリメートレンズ302と第二ファイバー用コリメートレンズ303とから構成されている。ファイバー305の両端面は、それぞれ、第一ファイバー用コリメートレンズ302と第二ファイバー用コリメートレンズ303の焦点面に固定されている。
波長合成器300は、第一ダイクロイックミラー306と第二ダイクロイックミラー307と、第一励起フィルター308と第二励起フィルター309と第三励起フィルター310と、第一コリメートレンズ314と第二コリメートレンズ315と第三コリメートレンズ316と、第一発光ダイオード311と第二発光ダイオード312と第三発光ダイオード313と、第一発光ダイオード311と第二発光ダイオード312と第三発光ダイオード313の熱を放熱するためのヒートパイプ317と、ヒートパイプ317の熱を放熱するためのヒートシンク318とから構成される。
第一発光ダイオード311と第二発光ダイオード312と第三発光ダイオード313は、それぞれ、第一コリメートレンズ314と第二コリメートレンズ315と第三コリメートレンズ316の焦点位置に固定されている。第一発光ダイオード311と第二発光ダイオード312と第三発光ダイオード313は共に、点灯用の電源装置119に接続されている。第一発光ダイオード311は青色光を発し、第二発光ダイオード312は緑色光を発し、第三発光ダイオード313は赤色光を発する。第一ダイクロイックミラー306は、青色光を反射し、青色光より長波長の光を透過する。第二ダイクロイックミラー307は、緑色光を反射し、緑色光より長波長の光を透過する。
[作用]
第一発光ダイオード311と第二発光ダイオード312と第三発光ダイオード313から発せられた発散光は、それぞれ、第一コリメートレンズ314と第二コリメートレンズ315と第三コリメートレンズ316によって平行光にされ、第一励起フィルター308と第二励起フィルター309と第三励起フィルター310によって必要な波長だけが選択される。
第一発光ダイオード311からの青色光は、第一ダイクロイックミラー306で反射されて、第一ファイバー用コリメートレンズ302に向かう。第二発光ダイオード312からの緑色光は、第二ダイクロイックミラー307で反射され、第一ダイクロイックミラー306を透過して、第一ファイバー用コリメートレンズ302に向かう。第三発光ダイオード313からの赤色光は、第二ダイクロイックミラー307と第一ダイクロイックミラー306とを透過して、第一ファイバー用コリメートレンズ302に向かう。これにより第一発光ダイオード311と第二発光ダイオード312と第三発光ダイオード313から発せられた光が第一ダイクロイックミラー306と第二ダイクロイックミラー307によって合成される。
合成された光は、第一ファイバー用コリメートレンズ302によってファイバー305の端面に集光される。ファイバー305を伝送した光は、他方のファイバー305端面から射出され、第二ファイバー用コリメートレンズ303によって平行光にされ、投光管105に入射する。
発光ダイオードは温度により発光強度が変化するため、発光強度を安定化する目的で放熱を行なう。また、ヒートパイプは、パイプ内に封入された作動液が高温部と低音部で生じる蒸発・凝縮作用によって熱を移動させる。
[効果]
本実施形態は、第一実施形態と同様の利点を有している。これに加えて、本実施形態では、波長合成器を投光管に直接ではなくファイバーを介して取り付けて蛍光顕微鏡に光を供給するため、蛍光顕微鏡の小型化が可能である。ヒートパイプを用いることにより、空間の確保が困難な部位に設けた発光ダイオードでも放熱が可能である。また複数の発光ダイオードを単一のヒートシンクで放熱できるため、部材の共通化も可能である。
[第四実施形態]
[構成]
本実施形態は、第一実施形態の光源装置に代えて適用可能な別の光源装置に向けられている。図4は、本発明の第四実施形態による光源装置を示している。
図4に示されるように、本実施形態の光源装置は波長合成器400からなり、波長合成器400が投光管105に取り付けられる。波長合成器400は、プリズム401と、第一コリメートレンズ402と第二コリメートレンズ403と第三コリメートレンズ404と、第一発光ダイオード405と第二発光ダイオード406と第三発光ダイオード407とから構成されている。第一発光ダイオード405と第二発光ダイオード406と第三発光ダイオード407は共に電源装置119に接続されている。第一発光ダイオード405と第二発光ダイオード406と第三発光ダイオード407はそれぞれ異なる波長の光を発する。第一発光ダイオード405と第二発光ダイオード406と第三発光ダイオード407は、それらから発せられる複数の波長の光が共にプリズム401によって同一方向に屈折されるように、プリズム401の分光特性に合わせて配置されている。
[作用]
第一発光ダイオード405と第二発光ダイオード406と第三発光ダイオード407から発せられた発散光は、それぞれ、第一コリメートレンズ402と第二コリメートレンズ403と第三コリメートレンズ404によって平行光にされ、プリズム401に入射する。プリズム401に入射した複数の波長の光は共に、プリズム401の屈折作用によって同一光軸で重ねられて投光管105に入射する。
[効果]
本実施形態は、第一実施形態と同様の利点を有している。これに加えて、本実施形態では、一つのプリズム401で波長合成しているため、波長合成器400の小型化が可能である。また発光ダイオードの追加も比較的容易に可能である。
[第五実施形態]
[構成]
本実施形態は、第一実施形態の光源装置に代えて適用可能な別の光源装置に向けられている。図5は、本発明の第五実施形態による光源装置を示している。
図5に示されるように、本実施形態の光源装置は波長合成器500からなり、波長合成器500が投光管105に取り付けられる。波長合成器500は、グレーティング501と、第一コリメートレンズ502と第二コリメートレンズ503と第三コリメートレンズ504と、第一発光ダイオード505と第二発光ダイオード506と第三発光ダイオード507とから構成されている。第一発光ダイオード505と第二発光ダイオード506と第三発光ダイオード507は共に電源装置119に接続されている。第一発光ダイオード505と第二発光ダイオード506と第三発光ダイオード507はそれぞれ異なる波長の光を発する。第一発光ダイオード505と第二発光ダイオード506と第三発光ダイオード507は、それらから発せられた複数の波長の光が共にグレーティング501によって同一方向に回折されるように、グレーティング501の分光特性に合わせて配置されている。
グレーティング501への光線の入射角をα、単位長さ当りのグレーティングの溝数をn、回折次数をk、回折角をβとすると、β=sin-1(n・k・λ−sinα)となる。つまり、回折角は波長に依存している。従って、波長に依存している回折角を考慮して、回折後の光が同一光軸で重なるように第一発光ダイオード505と第二発光ダイオード506と第三発光ダイオード507が配置されている。
[作用]
第一発光ダイオード505と第二発光ダイオード506と第三発光ダイオード507から発せられた散乱光は、それぞれ、第一コリメートレンズ502と第二コリメートレンズ503と第三コリメートレンズ504によって平行光にされ、グレーティング501に入射する。グレーティング501に入射した複数の波長の光は、波長に依存した角度でそれぞれ回折される。その結果、第一発光ダイオード505と第二発光ダイオード506と第三発光ダイオード507からの光は共に同一方向に回折され、同一光軸で重ねられて投光管105に入射する。
[効果]
本実施形態は、第一実施形態と同様の利点を有している。
[第六実施形態]
[構成]
本実施形態は、第一実施形態とは異なる構成の倒立型の蛍光顕微鏡に向けられている。本実施形態は、測光装置のレイアウトの点で第一実施形態と大きく相違している。図6は、本発明の第六実施形態による蛍光顕微鏡を概略的に示している。
図6に示されるように、本実施形態の蛍光顕微鏡は、照明光学系としての投光管601と、ダイクロイックミラー602と、標本604を観察するための対物レンズ603と、測光用ダイクロイックミラー605と、波長選択フィルター606と、結像レンズ607と、CCDカメラ608と、蛍光選択素子としての吸収フィルター609と、結像レンズ610と、ピンホール611と、測光素子としてのフォトダイオード612とを備えている。測光用ダイクロイックミラー605と蛍光選択素子としての吸収フィルター609と結像レンズ610とピンホール611とフォトダイオード612は測光装置を構成している。ピンホール611は標本面に共役な面上で光軸上に位置している。投光管601には、図示していないが、光源装置が取り付けられる。光源装置は、第一実施形態〜第五実施形態で説明した光源装置で構成されてよい。
[作用]
投光管601によって収束光にされた発光ダイオードの光は、ダイクロイックミラー602を介して対物レンズ603の後側焦点面に結像して標本604を照明する。標本604から発せられた蛍光は対物レンズ603で捕獲されて平行光となる。蛍光は、ダイクロイックミラー602を透過し、測光用ダイクロイックミラー605に至る。測光用ダイクロイックミラー605は、蛍光波長の長波長域の10%程度を透過する特性を有している。そのため、ほとんどの光は測光用ダイクロイックミラー605で反射され、数%の蛍光が測光用ダイクロイックミラー605を透過する。
測光用ダイクロイックミラー605で反射された光は、蛍光だけが波長選択フィルター606を選択的に透過し、結像レンズ607によってCCDカメラ608上に結像される。
測光用ダイクロイックミラー605を透過した蛍光は、標本面と共役な面上で光軸上に配置されたピンホール611に集光する。ピンホール611を透過した蛍光はフォトダイオード612に入射する。
第一実施形態と同様に、CCDカメラ608の外部トリガーに同期して、発光ダイオードの切り換えを行ない、測光装置で測光した結果を、光源の制御部により発光ダイオードの駆動電流に反映し、複数の発光ダイオードによる蛍光の輝度を同等とする。
[効果]
本実施形態は、第一実施形態と同様の利点を有している。これに加えて、本実施形態では、測光装置が、光源装置やCCDカメラ608と同じ側に配置されている。言い換えれば、標本604を基準にして対物レンズ603と同じ側に配置されている。従って、標本604を基準にして対物レンズ603の反対側に配置されるものがない。このため、他の装置の配置が容易に可能となる。
[第七実施形態]
[構成]
本実施形態は、第一実施形態とは異なる構成の倒立型の蛍光顕微鏡に向けられている。本実施形態は、投光管のレイアウトの点で第一実施形態と大きく相違している。図7は、本発明の第七実施形態による蛍光顕微鏡を概略的に示している。
図7に示されるように、本実施形態の蛍光顕微鏡は、照明光学系としての投光管701と、標本702を観察するための対物レンズ703と、測光素子としてのフォトダイオード704と、ピンホール705と、測光用結像レンズ706と、第一波長選択フィルター707と第二波長選択フィルター708と、第一発光ダイオード709と第二発光ダイオード710と、第一コリメートレンズ715と第二コリメートレンズ716と、コンデンサーレンズ711と、波長選択フィルター712と、結像レンズ713と、CCDカメラ714とから構成されている。投光管701は、標本702を基準にして対物レンズ703の反対側に配置されている。第一波長選択フィルター707と第二波長選択フィルター708は、それぞれ、第一発光ダイオード709と第二発光ダイオード710が発する光より50nm以上長波長の光を透過するロングパスフィルターである。フォトダイオード704とピンホール705と測光用結像レンズ706は測光装置を構成している。ピンホール705は標本面に共役な面上で光軸上に位置している。
[作用]
第一発光ダイオード709と第二発光ダイオード710から発せられた光は、第一コリメートレンズ715と第二コリメートレンズ716によってそれぞれ平行光にされ、第一波長選択フィルター707と第二波長選択フィルター708で合成され、コンデンサーレンズ711の後側焦点面に集光し、ムラの少ない照明で標本702を照明する。標本702から発する蛍光の一部は、対物レンズ703で捕獲されて平行光にされ、波長選択フィルター712によって蛍光だけ選択され、結像レンズ713によってCCDカメラ714に結像される。またコンデンサーレンズ711の側に発せられた蛍光は、コンデンサーレンズ711と投光管を701介して波長選択フィルター707と708に至る。標本702から発せられた蛍光の長波長成分だけが波長選択フィルター707と708を透過し、標本面に共役な面上で光軸上に配置されたピンホール705に集光する。第一発光ダイオード709と第二発光ダイオード710で生じる蛍光波長が近接しない場合は、第一波長選択フィルター707は第二発光ダイオード710の発する蛍光も透過する特性を付加すればよい。
[効果]
本実施形態では、第一実施形態と同様の利点が透過照明の構成で実現される。
[補足]
これまで、図面を参照しながら本発明の実施形態を述べたが、本発明は、これらの実施形態に限定されるものではなく、その要旨を逸脱しない範囲において様々な変形や変更が施されてもよい。
実施形態では、光源が発光ダイオードで構成された例を示したが、光源は、発光・消光を高速で切り換え可能でありさえすればよく、例えばランプとシャッターで構成されてもよい。また実施形態では、蛍光画像を撮像する例を示したが、撮像対象は、蛍光画像に限定されるものではなく、ほかの種類の画像であってもよい。さらに実施形態では、倒立型の顕微鏡の例を示したが、本発明は正立型の顕微鏡に適用されてもよい。
本発明の第一実施形態による蛍光顕微鏡を示している。 本発明の第二実施形態による光源装置を示している。 本発明の第三実施形態による光源装置を示している。 本発明の第四実施形態による光源装置を示している。 本発明の第五実施形態による光源装置を示している。 本発明の第六実施形態による蛍光顕微鏡を概略的に示している。 本発明の第七実施形態による蛍光顕微鏡を概略的に示している。 特開2002−131648号公報に開示されている観察装置の基本構成を示している。
符号の説明
101…蛍光顕微鏡、102…標本台、103…対物レンズ、104…ダイクロイックミラー、105…投光管、106…吸収フィルター、107…反射ミラー、108…観察光学系、109…リヤコンバーター、110…波長合成器、111…第一光源部、112…第一発光ダイオード、113…第一コリメートレンズ、114…第一励起フィルター、115…第二光源部、116…第二発光ダイオード、117…第二コリメートレンズ、118…第二励起フィルター、119…電源装置、119a…駆動部、119b…制御部、120…波長選択フィルター、121…標本、122…CCDカメラ、123…コリメートレンズ、124…吸収フィルター、125…結像レンズ、126…ピンホール、127…フォトダイオード、200…波長合成器、201…第一光源部、202…第二光源部、203…第三光源部、204…色分解プリズム、205…第一発光ダイオード、206…第二発光ダイオード、207…第三発光ダイオード、208…第一コリメートレンズ、209…第二コリメートレンズ、210…第三コリメートレンズ、211…第一励起フィルター、212…第二励起フィルター、213…第三励起フィルター、220…波長合成器、300…波長合成器、301…接続ファイバー、302…第一ファイバー用コリメートレンズ、303…第二ファイバー用コリメートレンズ、305…ファイバー、306…第一ダイクロイックミラー、307…第二ダイクロイックミラー、308…第一励起フィルター、309…第二励起フィルター、310…第三励起フィルター、311…第一発光ダイオード、312…第二発光ダイオード、313…第三発光ダイオード、314…第一コリメートレンズ、315…第二コリメートレンズ、316…第三コリメートレンズ、317…ヒートパイプ、318…ヒートシンク、400…波長合成器、401…プリズム、402…第一コリメートレンズ、403…第二コリメートレンズ、404…第三コリメートレンズ、405…第一発光ダイオード、406…第二発光ダイオード、407…第三発光ダイオード、500…波長合成器、501…グレーティング、502…第一コリメートレンズ、503…第二コリメートレンズ、504…第三コリメートレンズ、505…第一発光ダイオード、506…第二発光ダイオード、507…第三発光ダイオード、601…投光管、602…ダイクロイックミラー、603…対物レンズ、604…標本、605…測光用ダイクロイックミラー、606…波長選択フィルター、607…結像レンズ、608…CCDカメラ、609…吸収フィルター、610…結像レンズ、611…ピンホール、612…フォトダイオード、701…投光管、702…標本、703…対物レンズ、704…フォトダイオード、705…ピンホール、706…測光用結像レンズ、707…第一波長選択フィルター、708…第二波長選択フィルター、709…第一発光ダイオード、710…第二発光ダイオード、711…コンデンサーレンズ、712…波長選択フィルター、713…結像レンズ、714…CCDカメラ、715…第一コリメートレンズ、716…第二コリメートレンズ、801…発光ダイオード、802…発光ダイオード、803…発光ダイオード、804…対物レンズ、805…ダイクロイックミラー、806…波長選択フィルター。

Claims (5)

  1. 標本を観察するための対物レンズと、
    発光波長の異なる複数の発光ダイオードと、
    複数の発光ダイオードから発せられる光を合成する波長合成器と、
    合成された光を対物レンズの後側焦点面に結像させる照明光学系とを備えており、
    複数の発光ダイオードは共に波長合成器と照明光学系を介して対物レンズの後側焦点に共役な位置関係にあり、さらに、
    標本からの光を測光する測光装置と、
    対物レンズによる標本の像を撮像し外部トリガーを有する撮像装置と、
    測光装置の測光値に基づいて発光ダイオードの駆動電流を制御する電源装置とを備えている、顕微鏡。
  2. 請求項1において、測光装置が、フォトダイオードからなる測光素子と、測光素子と標本の間に位置し、標本面に対して共役な面上で光軸上に配置されたピンホールとを有している、顕微鏡。
  3. 請求項2において、測光装置が、標本から発せられた蛍光だけを選択的に透過する蛍光選択素子をさらに有している、顕微鏡。
  4. 請求項1において、電源装置は、複数の発光ダイオードに駆動電流を供給する駆動部と、撮像装置による画像取り込みに同期して、複数の発光ダイオードの点灯を切り換えるとともに、測光装置によって測光される標本からの光の輝度を取得し、取得した複数の輝度の相互の比を演算し、複数の輝度が互いに等しくなるように駆動部から出力される駆動電流を制御する制御部とを有している、顕微鏡。
  5. 複数の波長の光を切り換えて標本に照射し、標本からの光の画像を取得する画像取得方法であり、
    撮像装置による画像取り込みに同期して、標本に照射される光の波長を切り換えるとともに、標本からの光の輝度を取得し、
    取得した複数の輝度の相互の比を演算し、
    複数の輝度が互いに等しくなるように演算結果の比に基づいて複数の波長の光を発する複数の発光ダイオードの駆動電流を制御する、画像取得方法。
JP2004164631A 2004-02-06 2004-06-02 顕微鏡 Withdrawn JP2005345716A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004164631A JP2005345716A (ja) 2004-06-02 2004-06-02 顕微鏡
EP05011694.6A EP1602960B1 (en) 2004-06-02 2005-05-31 Microscope
US11/143,298 US20050224692A1 (en) 2004-02-06 2005-06-01 Microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004164631A JP2005345716A (ja) 2004-06-02 2004-06-02 顕微鏡

Publications (1)

Publication Number Publication Date
JP2005345716A true JP2005345716A (ja) 2005-12-15

Family

ID=34937080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004164631A Withdrawn JP2005345716A (ja) 2004-02-06 2004-06-02 顕微鏡

Country Status (3)

Country Link
US (1) US20050224692A1 (ja)
EP (1) EP1602960B1 (ja)
JP (1) JP2005345716A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006218104A (ja) * 2005-02-10 2006-08-24 Olympus Corp 手術用顕微鏡
JP2008139820A (ja) * 2006-11-02 2008-06-19 Olympus Corp 顕微鏡照明装置

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005054184B4 (de) 2005-11-14 2020-10-29 Carl Zeiss Microscopy Gmbh Multispektrale Beleuchtungsvorrichtung und Messverfahren
DE102006009053A1 (de) * 2006-02-27 2007-08-30 Carl Zeiss Jena Gmbh Multispektrale Beleuchtungsvorrichtung
US20070211460A1 (en) * 2006-03-09 2007-09-13 Ilya Ravkin Multi-color LED light source for microscope illumination
DE102006048054A1 (de) 2006-10-11 2008-04-17 Carl Zeiss Microimaging Gmbh Multispektrale Beleuchtungseinrichtung
EP1918757A1 (en) 2006-11-02 2008-05-07 Olympus Corporation Microscope illumination apparatus
DE102007007797B4 (de) * 2007-02-16 2017-11-16 Leica Microsystems Cms Gmbh Fluoreszenzmikroskop mit Beleuchtungseinrichtung
KR101648598B1 (ko) 2008-11-18 2016-08-16 스트리커 코포레이션 피드백 조절 시스템을 갖는 내시경 led 광원
DE102009025127A1 (de) 2009-06-17 2010-12-23 Carl Zeiss Surgical Gmbh Beleuchtungseinrichtung für ein optisches Beobachtungsgerät
JP5616611B2 (ja) * 2009-11-24 2014-10-29 オリンパス株式会社 微弱光標本撮像装置
JP5587120B2 (ja) * 2010-09-30 2014-09-10 富士フイルム株式会社 内視鏡用光源装置
CN103307971B (zh) * 2012-03-14 2018-07-06 鸿富锦精密工业(深圳)有限公司 光学装置及应用该光学装置的影像测量仪
JP6257172B2 (ja) * 2012-05-25 2018-01-10 オリンパス株式会社 顕微鏡装置
GB2511483B (en) * 2013-01-15 2016-11-23 Coolled Ltd LED Illumination
EP4164338A1 (en) 2013-03-15 2023-04-12 Stryker Corporation Endoscopic light source and imaging system
US10788678B2 (en) 2013-05-17 2020-09-29 Excelitas Canada, Inc. High brightness solid state illumination system for fluorescence imaging and analysis
DE102014110575B4 (de) * 2014-07-25 2017-10-12 Leica Microsystems Cms Gmbh Mikroskop und Verfahren zum optischen Untersuchen und/oder Manipulieren einer mikroskopischen Probe
JP6888779B2 (ja) * 2016-03-31 2021-06-16 国立大学法人弘前大学 多面画像取得システム、観察装置、観察方法、スクリーニング方法、および被写体の立体再構成方法
US10690904B2 (en) 2016-04-12 2020-06-23 Stryker Corporation Multiple imaging modality light source
JP2018027272A (ja) * 2016-08-19 2018-02-22 ソニー株式会社 撮像システム
CN106308751A (zh) * 2016-08-23 2017-01-11 江苏鹰利视医疗器械有限公司 一种实现窄带或宽带光谱复合照明的装置及其方法
CN108151650A (zh) * 2018-01-18 2018-06-12 东莞市凯融塑胶五金科技有限公司 一种在线影像测量仪
CN109085352A (zh) * 2018-09-26 2018-12-25 北京乐普医疗科技有限责任公司 一种免疫层析分析仪用的光学装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07122694B2 (ja) * 1986-10-16 1995-12-25 オリンパス光学工業株式会社 顕微鏡用照明装置
US6008892A (en) * 1997-05-23 1999-12-28 Molecular Dynamics, Inc. Optical substrate for enhanced detectability of fluorescence
CA2280398C (en) * 1998-10-26 2009-01-20 Lothar Lilge A semiconductor based excitation illuminator for fluorescence and phosphorescence microscopy
US20030230728A1 (en) * 2002-06-13 2003-12-18 Zhengshan Dai Multiwavelength transilluminator for absorbance and fluorescence detection using light emitting diodes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006218104A (ja) * 2005-02-10 2006-08-24 Olympus Corp 手術用顕微鏡
JP2008139820A (ja) * 2006-11-02 2008-06-19 Olympus Corp 顕微鏡照明装置

Also Published As

Publication number Publication date
EP1602960B1 (en) 2018-10-24
US20050224692A1 (en) 2005-10-13
EP1602960A1 (en) 2005-12-07

Similar Documents

Publication Publication Date Title
EP1602960B1 (en) Microscope
US9642515B2 (en) Solid state continuous white light source
EP1553436B1 (en) Fluorescence microscope with LED light source and controller unit for synchronizing imaging and switching the light source on and off
US8922885B2 (en) Fluorescence microscope having an illumination device
US7324200B2 (en) Fluorescence photometric apparatus
US20090201577A1 (en) Light source
US8809809B1 (en) Apparatus and method for focusing in fluorescence microscope
JP6560694B2 (ja) 顕微鏡
JP2005321453A (ja) 顕微鏡用蛍光照明装置
JP6408239B2 (ja) デジタル光顕微鏡において物体を照明するための方法、デジタル光顕微鏡およびデジタル光顕微鏡用の明視野反射光照明デバイス
JP2003107361A (ja) 顕微鏡
US8998468B2 (en) Solid state light source with hybrid optical and electrical intensity control
US8070291B2 (en) Fundus camera
JP7008029B2 (ja) 源自己蛍光を低減させ、均一性を改良するための散乱を伴う撮像システムおよび方法
US6903869B2 (en) Illumination system for microscopy and observation or measuring method using the same
JP2005055895A (ja) ラスタ顕微鏡
JP2005148296A (ja) 顕微鏡の光源装置
JP2002350732A (ja) 蛍光観察装置
JP2002131648A (ja) 蛍光顕微鏡
JP2005221627A (ja) 全反射蛍光顕微鏡
JP2006038947A (ja) 顕微鏡用光源装置および蛍光顕微鏡
JP3948962B2 (ja) 被写体を照射するための光源を有する撮像装置
JP2020086093A (ja) 光源ユニットおよび落射蛍光顕微鏡
CN115097618A (zh) 荧光显微成像光路、光学成像系统及细胞分析仪
JPH095637A (ja) 顕微鏡写真撮影装置

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070807